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In compact astrophysical objects, the neutrino density can be so high that neutrino-neutrino refraction
can lead to fast flavor conversion of the kind νeν̄e ↔ νxν̄x with x ¼ μ, τ, depending on the neutrino angle
distribution. Previously, we have shown that in a homogeneous, axisymmetric two-flavor system, these
collective solutions evolve in analogy to a gyroscopic pendulum. In flavor space, its deviation from the
weak-interaction direction is quantified by a variable cos ϑ that moves between þ1 and cos ϑmin, the latter
following from a linear mode analysis. As a next step, we include collisional damping of flavor coherence,
assuming a common damping rate Γ for all modes. Empirically we find that the damped pendular motion
reaches an asymptotic level of pair conversion f ¼ Aþ ð1 − AÞ cos ϑmin (numerically A ≃ 0.370) that does
not depend on details of the angular distribution (except for fixing cosϑmin), the initial seed, nor Γ. On the
other hand, even a small asymmetry between the neutrino and antineutrino damping rates strongly changes
this picture and can even enable flavor instabilities in otherwise stable systems.
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I. INTRODUCTION

The flavor evolution of neutrinos and antineutrinos in
neutrino-dense environments is nonlinear because of the
coherent forward scattering of neutrinos among each other
[1]. This phenomenon is commonly referred to as collective
neutrino oscillation and can span over different time and
length scales [2–6]. The neutrino and antineutrino medium
supports different types of collective flavor evolution,
depending on the flavor-dependent energy and angle
distributions. A normal-mode analysis in the linear regime
reveals the conditions for the existence of unstable
(“tachyonic”) modes that are characterized by an eigen-
frequency with nonvanishing imaginary part [7–13].
In contrast to the early universe, compact astrophysical

objects are characterized by a large matter density that
further affects flavor transformation: neutrino propagation
states nearly coincide with eigenstates of flavor instead of
mass [4,6]. Accordingly, traditional numerical studies of
neutrino transport in core-collapse supernovae (SNe) or
binary neutron-star mergers ignore flavor correlations [14–
16]. Neutrino transport of energy and lepton number in
compact objects thus begs the question whether this
approach remains viable in view of potentially strong

collective flavor evolution that may occur despite, or in
addition to, matter effects.
Much recent attention has revolved around “fast flavor

conversion” (FFC) because it can operate on small length
scales, driven by the neutrino-neutrino matter effect alone,
driven by μ ¼ ffiffiffi

2
p

GFnν. The latter is much larger than the
scale Δm2=2E that governs “slow oscillations” caused by
the vacuum masses [2]. Slow collective flavor transforma-
tion remains of interest in the regions where neutrinos
stream away, e.g., beyond the SN core.
Pure FFC (operating in the limit of vanishing vacuum

frequency) acts on flavor lepton numbers and not on
neutrinos and antineutrinos separately. In the mean-field
approach, the flavor field is represented by 3 × 3 matrices
ϱðt; r;pÞ as extensions of the usual occupation numbers,
and ϱ̄ðt; r;pÞ for antineutrinos. FFC, however, is self-
consistently described by the lepton-number matrix
Dðt; r;pÞ ¼ ϱðt; r;pÞ − ϱ̄ðt; r;pÞ, whereas the solutions
for ϱðt; r;pÞ and ϱ̄ðt; r;pÞ follow from Dðt; r;pÞ that obeys
a closed equation of motion (EOM) [17–19].
The FFC effect in a two flavor system consisting of νe

and νx ¼ νμ or ντ is driven by the angle distribution of
the quantity ðfνe − fν̄eÞ − ðfνx − fν̄xÞ, often called the
electron-lepton number (ELN) distribution, although
this commonly adopted terminology is a bit misleading
in that it is justified only if fνx ¼ fν̄x . (Notice, however, that
in traditional three-species neutrino transport both νx and ν̄x
have the same distribution function by construction.) The
initial FFC instability requires an ELN crossing, i.e., the
angular ELN distribution must change sign for some
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direction [8,10]. In the three-flavor context, the initial
instability can occur in any of the two-flavor subsys-
tems [20].
While the conditions for FFC instabilities can be found

from a linear mode analysis, the possible astrophysical
consequences of course depend on the nonlinear outcome
that must rely on numerical simulations. One can still gain
fresh insight from simple models that lend themselves to
analytic discussion. We have recently explored such a case
in Ref. [18] (Paper I) in the form of an axially symmetric
and homogeneous system, expanding on the formal anal-
ogy pointed out in Refs. [19,21–23]. We showed that the
EOMs are formally equivalent to those of a gyroscopic
pendulum. More specifically, the pendulating “radius
vector” is the flavor polarization vector D1 that describes
the flavor lepton flux along the symmetry axis, whereasD0,
describing the flavor lepton density, is conserved and plays
the role of “gravity.” The orientation of D1 relative to the
flavor-direction is quantified by the zenith angle ϑ. Its
motion is between the original unstable position ϑ ¼ 0
(“upward” position relative to “gravity”) and later dips
down to ϑmin. A typical example is shown in Fig. 1,
corresponding to Case B of Paper I and also used later in
this work.
The bottom turning point ϑmin of a gyroscopic pendulum

is determined by its spin. One key finding of Paper I is that
ϑmin is given by the complex eigenfrequency of the
linearized solution. For an unstable collective mode, it
has the complex form ωP þ iγ where ωP is the initial
frequency of precession and γ the exponential growth rate.
The depth of the collective pair conversion is

cos ϑmin ¼
ω2
P − γ2

ω2
P þ γ2

: ð1Þ

This quantity therefore is found from the initial ELN
distribution by performing a linear stability analysis, but
without solving the nonlinear EOMs.
However, the physics of fast pairwise conversion

remains full of unknowns. The short relevant length scales
initially motivated studies that entirely ignored the effect of
nonforward collisions. However, recent work has shown
that collisions of neutrinos with the matter background can
significantly affect FFC [24–32]. In addition, the ELN
angular distribution can be modified by neutrino advection
dynamically [26,27,31,33–35].
We now venture to include the effect of collisions in the

form of damping of flavor coherence, i.e., the off-diagonal
elements of the flavor density matrices. The simplest case is
that of a common damping rate Γ for all modes. For a
typical example, the damped pendular motion is shown in
Fig. 1 (purple line), approaching an asymptotic value where
the length of D1 has shrunk and the system no longer
moves. For convenience, we define the ELN flux factor

FðtÞ ¼ Dz
1ðtÞ

Dz
1ðt0Þ

; ð2Þ

whose asymptotic value as t → ∞ we denote as

f ¼ lim
t→∞

FðtÞ: ð3Þ

Notice that FðtÞ ¼ cosϑðtÞ in the absence of damping,
whereas the length of D1 shrinks with damping, and the
angle of D1 with respect to the z-direction is no longer the
only relevant parameter. We anticipate here our empirical
finding of a universal connection

f ¼ Aþ ð1 − AÞ cosϑmin; ð4Þ

where numerically A ≃ 0.370. This result depends on initial
conditions only through cosϑmin, but not on Γ or the
initial seed.
This work is organized as follows. In Sec. II, we present

the EOMs of (anti)neutrinos and their multipole decom-
position and introduce our specific ELN configurations that
are identical to the ones adopted in Paper I. Section III
focuses on the role of collisional damping, assuming a
common rate Γ for all modes. We consider the linear and
nonlinear regime of flavor evolution and offer analytical
estimates on how to compute the final flavor outcome based
on initial ELN distributions. In Sec. IV, we consider
different damping rates for neutrinos and antineutrinos
and quantify the departure from the case of equal damping
rates for particles and antiparticles. In Sec. V we generalize
our findings for a wide range of ELN distributions. Finally,
closing remarks are reported in Sec. VI. Appendix A
outlines the normal mode analysis in the presence of
collisional damping, while supplemental details on the

FIG. 1. Evolution for a typical fast-flavor pendulum (Case B of
Paper I) where we show FðtÞ defined in Eq. (2) without damping
(green) and with damping (purple). The length of the plateau
phase depends on the smallness of the initial seed. The red dotted
line shows the maximum excursion of the pendulum as in Eq. (1),
while the black dotted line marks the final steady state value f as
predicted by Eq. (4).
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numerical methods of our simulations are provided in
Appendix B.

II. SETTING THE STAGE

In this section, we introduce the equations of motion
(EOMs). We then illustrate the initial angular configura-
tions adopted for neutrinos and antineutrinos.

A. Neutrino mean field equations

For simplicity, we consider two flavors of neutrinos and
refer the reader to Refs. [20,36–38] for investigations
dedicated to three-flavor effects. The evolution of the
neutrino flavor field can be modeled in terms of Wigner
transformed 2 × 2 density matrices, ϱðp⃗; tÞ for neutrinos
and ϱ̄ðp⃗; tÞ for antineutrinos. Since we are interested in
exploring FFC, for simplicity we ignore the energy
dependence of the density matrices, and hence v⃗ ¼ p⃗=E
is a unit vector. Moreover, we impose axial symmetry on
the initial configurations and the solutions—see Ref. [39]
for details on symmetry breaking effects in nonaxially
symmetric systems.
The vector v⃗ is defined with respect to the symmetry axis

(zenith angle θ), while the azimuthal angle ϕ has been
integrated out. The velocity component along the symmetry
axis is v ¼ jv⃗j cos θ ¼ cos θ, since jv⃗j ¼ 1 for (anti)neu-
trinos traveling at the speed of light. The velocity compo-
nent takes values between v ¼ 1 (forward direction) and
v ¼ −1 (backward direction).
After these simplifications, the neutrino density matrix is

ϱðv; tÞ ¼
�
ϱeeðv; tÞ ϱexðv; tÞ
ϱ�exðv; tÞ ϱxxðv; tÞ

�
; ð5Þ

whose diagonal elements represent the occupation numbers
of neutrinos of different species, while the off-diagonal
terms contain information about coherence between fla-
vors. An analogous expression holds for the density matrix
associated to antineutrinos, ϱ̄ðv; tÞ.
The EOMs for neutrinos and antineutrinos are

respectively

ð∂tþ v⃗ · ∇⃗Þϱðv;tÞ¼−i½Hννðv;tÞ;ϱðv;tÞ�þCðϱðv;tÞÞ; ð6Þ

ð∂tþ v⃗ · ∇⃗Þϱ̄ðv;tÞ¼−i½H̄ννðv;tÞ; ϱ̄ðv;tÞ�þ C̄ðϱ̄ðv;tÞÞ: ð7Þ

The term on the left-hand side of the EOMs is the advective
operator, v⃗ · ∇⃗, which affects flavor evolution if the
medium is inhomogeneous [33,34,40,41]. In this work,
we neglect the advective term and focus on homo-
geneous cases.
On the right-hand side of the EOMs, the neutrino self-

interaction Hamiltonian is responsible for the development
of flavor transformation:

Hννðv; tÞ ¼ μ

Z
dv0½ϱðv0; tÞ − ϱ̄ðv0; tÞ�½1 − vv0�; ð8Þ

it couples neutrinos of different momenta and renders the
flavor evolution nonlinear. Since we focus on FFC, we
neglect the vacuum and matter terms in the Hamiltonian;
thus, the Hamiltonian for neutrinos and antineutrinos is
identical, i.e., H ¼ H̄ ¼ Hνν. However, we refer the reader
to Refs. [25,42–44] for work dedicated to explore the
impact of these terms on the FFC phenomenology.
The second term on the right-hand side of the EOMs is

the collision term C, which takes nonforward neutrino
scattering with the background medium into account.
Different implementations of the collision term and its
impact on the flavor conversion phenomenology have been
explored in the recent literature [24–32,41,45]. We here use
a minimal model where random collisions are assumed to
have the effect of damping the flavor coherence of a given
momentum mode without adding or removing particles so
that [46,47]

Cðϱðv; tÞÞ ¼ −Γ
�

0 ϱexðv; tÞ
ϱ�exðv; tÞ 0

�
: ð9Þ

An analogous expression holds for C̄ ¼ αC where the
parameter α accounts for the possibility that quantum
damping effects act differently on neutrinos and antineu-
trinos. For the moment we assume equal damping rates
(α ¼ 1), whereas later (Sec. IV), we will also explore the
scenario of different damping rates (α ≠ 1).

B. EOMs for lepton and particle number

FFC is primarily a phenomenon of the lepton-number
distribution and it turns out the EOMs strongly simplify if
one considers the density matrices for lepton and particle
number instead of the ones for neutrinos and antineutrinos.
We therefore define the sum (S, particle number) and
difference (D, lepton number) matrices [18,25,48]

Sðv; tÞ ¼ ϱðv; tÞ þ ϱ̄ðv; tÞ; ð10Þ

Dðv; tÞ ¼ ϱðv; tÞ − ϱ̄ðv; tÞ: ð11Þ

A special role is played by the density matrix of total lepton
number and the one for lepton-number flux

D0 ¼
Z þ1

−1
dvDðv; tÞ; ð12Þ

D1 ¼
Z þ1

−1
dv vDðv; tÞ: ð13Þ

Moreover, we express all 2 × 2 density matrices by Bloch
vectors in the usual way. Then the EOMs are
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_DðvÞ ¼ −μDðvÞ × D0 þ μvDðvÞ × D1 − ΓDxyðvÞ; ð14Þ

_SðvÞ ¼ −μSðvÞ × D0 þ μvSðvÞ × D1 − ΓSxyðvÞ; ð15Þ

where we define the “transverse” vectors as DxyðvÞ ¼
ðDxðvÞ; DyðvÞ; 0Þ and SxyðvÞ ¼ ðSxðvÞ; SyðvÞ; 0Þ. They
represent the off-diagonal terms of the density matrices
and thus the flavor coherence of a given mode.
Integrating Eq. (14) over dv immediately reveals that

_Dz
0 ¼ 0 and _Dxy

0 ¼ −ΓDxy
0 in the presence of damping. If

the system is initialized with vanishing transverse compo-
nents, the total flavor lepton number of the system is
conserved. Therefore, even in the damped case, the first
term in both equations only causes a simple precession
around the conserved vector D0 without affecting the
internal dynamics of the system or the question of flavor
conversion. Henceforth we drop this term (we go the
corotating frame) and use

_DðvÞ ¼ μvDðvÞ × D1 − ΓDxyðvÞ; ð16Þ

_SðvÞ ¼ μvSðvÞ × D1 − ΓSxyðvÞ; ð17Þ

as our EOMs. Our initial conditions are that all DðvÞ are
parallel to the z-axis (except for a small seed to trigger the
instability) and are given by the ELN spectrum

Dzðv; t0Þ ¼ gðvÞ; ð18Þ
where

gðvÞ¼ ϱeeðv;t0Þ−ϱxxðv;t0Þ− ϱ̄eeðv;t0Þþ ϱ̄xxðv;t0Þ: ð19Þ

Note that, in the following, we omit the explicit time
dependence for simplicity unless otherwise specified.
Without damping, in Paper I [18] we found a formal

analogy of the EOMs with the ones of a gyroscopic
pendulum. In this scenario,D0 corresponds to the (constant)

gravitational field, which exerts a torque on the pendulum
D1, making it swing away from the flavor axis and
convert flavor. With damping, D0 is still a constant of
motion, resulting in net ELN conservation, regardless of
the initial configuration. While D1 still performs pendu-
lumlike oscillations, its length now shrinks, as opposed to
the earlier undamped solutions (see for instance Fig. 2 of
Paper I).

C. System setup

For fast flavor instabilities to occur, a sufficient condition
is the presence of a crossing in the ELN angular distribution
[10]. However, the presence of flavor instability does not
necessarily imply large flavor conversion [18,34,49–51].
For the sake of simplicity, we restrict ourselves to the case
of single-crossed families of ELN distributions where
ϱxxðv; t0Þ ¼ ϱ̄xxðv; t0Þ ¼ 0, whereas the electron-flavored
terms are of the form:

ϱeeðv; t0Þ ¼ 0.50; ð20Þ

ϱ̄eeðv; t0Þ ¼ 0.45 − aþ 0.1
b

exp

�
−ð1 − vÞ2

2b2

�
: ð21Þ

The shape of the distributions is set by the parameters a ∈
½−0.04; 0.12� and b ∈ ½0.1; 1�, while the normalization isRþ1
−1 dvϱeeðv; t0Þ ¼ 1. In Fig. 2 we show gðvÞ for four
selected examples Cases A–D that are identical with the
benchmark configurations adopted in Paper I [18]. We
ensure the convergence of our results by fixing the number
of angular bins to Nv ¼ 1000. See Appendix B for details
on the numerical method.

III. IMPACT OF COLLISIONAL DAMPING

We now turn to the consequences of damping on flavor
conversion physics. In particular, we explore the steady
state reached by the system as a function of the damping

FIG. 2. Left: representative ELN angular distributions gðvÞ, following Eqs. (20) and (21). Right: ELN angular distributions in the
presence of damping at t ¼ 5 × 10−6 s−1, essentially corresponding to the final distribution at t → ∞. The ELN angular distributions
Dzðv; tÞ evolve in such a way that the total lepton number Dz

0 ¼
R
dvDzðv; tÞ is a constant of motion with the initial Dz

0 ¼
R
dv gðvÞ,

i.e., the integrals over corresponding curves in the left and right panel are the same.
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rate and compare the flavor phenomenology to the one
obtained for cases without damping. In this section, we
assume equal damping rates for neutrinos and antineutri-
nos (α ¼ 1).

A. Example

The rate of FFC is governed by the neutrino-neutrino
interaction energy μ ¼ ffiffiffi

2
p

GFnν, whereas weak interaction
rates are parametrically G2

FntargetE
2
ν and thus Γ ≃ μGFE2

ν.
For a reference energy of Eν ¼ 100 MeV, we find GFE2

ν ≃
10−7, so we are safely in the regime of weak damping. Of
course, if the damping rate were large compared to the
instability rate, the system would be frozen in analogy to
the quantum Zeno effect [52].
In our numerical examples, unless otherwise stated,

we use a fixed reference value for the neutrino-neutrino
interaction strength μ ¼ 105 km−1 ¼ 3 × 1010 s−1 and
Γ ¼ Γ0 ¼ 2.5 × 106 s−1 ≃ 8.3 × 10−5μ ¼ 8.3 km−1, and
therefore much smaller than μ. So we are in the weak
damping regime, yet the asymptotic final state is reached
within a reasonable time of evolution. One of our findings
will be that in the weak damping regime, the asymptotic
final state does not depend on Γ, although the time to get
there is proportional to Γ−1.
Beginning with Case B as a first example, we show in the

top panel of Fig. 3 the transverse components jDxy
1 j (solid

lines) and the growth rates (dashed lines) for Γ ¼ 0
(green) and Γ ¼ Γ0 (purple). The linear regime occurs
within the first 2 × 10−7 s, as visible from the exponential
growth of jDxy

1 j. Once the linear phase is over, the
solutions with and without damping begin to depart from
each other, and damping finally leads to a stationary
asymptotic solution after Oð10−6Þ s, as shown in the
middle panel of Fig. 3. Without damping, the initial
growth rate is γ ¼ Im½Ωnd=μ� ¼ 2.58 × 10−3. Including
damping, it is reduced to γ − Γ0 ¼ 2.49 × 10−3, a 4%
reduction for our choice of parameters.
Our benchmark damping rate is small enough that the

linear regime is almost unaffected; see the top panel of
Fig. 3. The latter can also be appreciated by noticing that
the first dip in FðtÞ is almost identical in both cases. After
a few iterations (middle panel of Fig. 3), the solution with
damping saturates and reaches a steady state solution
while the case without damping continues to oscillate
regularly and indefinitely [18]. The minimal dip in the
undamped case and the final flux factor are given in
Table I, both values being related by Eq. (4). Indeed,
numerically the final steady state does not depend on Γ as
long as it is small.
In flavor space, one can introduce the angle ϑ defined as

the angle between the flavor axis (also that of D0) and the
vector D1 (see Eq. (8) of Ref. [18] for more details); thus,
cosϑ ¼ 1 corresponds to pure electron-flavor content (and
therefore no conversion) while cosϑ ¼ −1 corresponds to

FIG. 3. Flavor evolution for Case B without (green) and with
(purple) damping, using equal damping rates for ν and ν̄. Top
panel: transverse components jDxy

1 j (solid) and corresponding
growth rates Im½Ω=μ� (dashed). Middle panel: ELN flux factor,
FðtÞ, where the effect of damping becomes visible in the
nonlinear regime. While the solution without damping periodi-
cally oscillates, the damped solution tends to reach a steady state.
Bottom panel: parametric plot of _ϑðtÞ as a function of ϑðtÞ. The
case without damping encloses the damped solution.

TABLE I. Parameters for our reference examples, where
cos ϑmin is the lowest dip of the undamped flavor pendulum
and f the asymptotic flux factor as defined in Eq. (3). Cases B–D
are unstable, while Case A is stable.

Case a b cos ϑmin f

A 0.00 0.4 � � � � � �
B 0.02 0.4 þ0.335 0.581
C 0.02 0.6 þ0.849 0.904
D 0.06 0.2 −0.034 0.348
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maximal flavor conversion, as allowed by the total
lepton number conservation. An alternative approach to
visualize the flavor evolution for the cases with and
without damping is reported in the bottom panel of
Fig. 3, where a parametric plot of the angular velocity
_ϑ is shown as a function of the angular position ϑ. The
solution with Γ ¼ Γ̄ ¼ 0 (bottom green line in Fig. 3)
encloses the damped solution (purple line) as it reaches
the steady state _ϑ → 0, ϑ → 0. The maximum excursion of
the pendulum D1 from its initial orientation along the
flavor axis is given by [18]:

cos ϑmin ¼ −1þ 2σ2: ð22Þ

Here, σ is the spin parameter that is connected to the
spin of the pendulum (no damping) through S ¼ 2σλ,
where λ is the natural frequency of the pendulum. For a
solution to be unstable, the spin parameter σ must be such
that σ < 1 [18]. In the example presented in Fig. 3 (see
lower panel), the ELN angular distribution is such that
σ ¼ 0.817 therefore cos ϑmin ¼ 0.335 (or ϑmin ≈ π=3).
When the damped solution reaches the steady state, the
pendulum D1 is oriented along the flavor axis and
conversions cease.

B. The steady state

The undamped case is formally equivalent to a gyro-
scopic pendulum [18]. For the damped case this remains
true in the sense that if we were to stop damping at any time
during the evolution, the motion from that time onward is
again a gyroscopic pendulum, but one with different
parameters (different length jD1j, different spin, different
natural frequency). The final state then is a gyroscopic
pendulum in a stable position.
Mapping the continuous-spectrum case on a pendulum

and including damping of the transverse parts of all Bloch
vectors, in particular the angular momentum J has a
conserved z-component which is identical to the spin in
a position where the pendulum is oriented along the z-axis
and thus has no orbital angular momentum. Therefore, the
asymptotic final state has the same spin as the initial state,
although in between the spin changes and only returns to its
initial state toward the end.
Clearly the damped pendulum has conserved parame-

ters that determine the final asymptotic state, but thus far
we were not able to find an analytic prediction of the final
state properties, which we hence explore numerically. In
particular, the top left panel of Fig. 4 shows the final
configuration for Case B and four different values of the

FIG. 4. Top panels: evolution of the ELN flux factor FðtÞ (left panel) and Dxy
1 (right panel) for Case B, same damping rates for

neutrinos and antineutrinos, for different values of Γ. The final flavor outcome is the same, independently of Γ, that however determines
the time to get there. Bottom panels: same for Cases A–D for a single damping rate Γ ¼ Γ0. The dashed line is expð−Γ0tÞ and mimics the
descent of the transverse component jDxy

1 j. They all have the same slope, even the stable Case A, where only the initial seed is damped.
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damping rate, while the top right panel shows the
evolution of the off-diagonal terms. One can see that
the time taken from the system to achieve the steady state
configuration is fixed by Γ, without affecting the final
flavor outcome.
The steady-state configuration depends on the initial

ELN, as displayed in the bottom panels of Fig. 4. Since the
off-diagonal terms can only exponentially shrink, as
described by Eq. (16), our collision term cannot lead to
a dynamical enhancement of the transverse components
jDxy

1 j. In practice, this means that if a configuration is
stable in the absence of damping, such as Case A (pink
curve in the lower panels of Fig. 4), damping (Γ̄ ¼ Γ) will
not affect the stability of the solution, as seen by the
exponential decrease of the transverse component (pink
curve) in the bottom right panel of Fig. 4. However, this is
not necessarily the case when Γ̄ ≠ Γ, as we will see
in Sec. IV.
Empirically we have found that the final configuration

does not depend on the initial seed nor Γ, but only on the
original pendulum parameters, and more specifically only
on the maximum dip reached without damping as provided
by Eqs. (1) and (3) (see the black dotted line in Fig. 1
corresponding to the steady state value f [Eq. (3)] that we
predict empirically). In order to highlight the predictive
power of Eq. (4), Table I shows the values of cosϑmin and f
for Cases A–D, which are in perfect agreement with the
numerical solutions.
We have tested this empirical result not just for the few

Cases A–D, but have performed many tests. In particular,
we have considered the explicit pendulum equations given
in Paper I and included damping of the transverse compo-
nent of the pendulum vector RðtÞ ¼ D1ðtÞ and JðtÞ,
varying the seed, the damping rate, and especially the
initial spin, i.e., the initial Jz that returns in the end to its
initial value.

IV. DIFFERENT DAMPING RATES FOR
NEUTRINOS AND ANTINEUTRINOS

In this section, we investigate the flavor conversion
phenomenology in the context of different damping rates
for neutrinos and antineutrinos. We also show that if Γ ≠ Γ̄,
collisions can induce a flavor instability even in the absence
of flavor mixing, confirming the findings of Ref. [25].

A. Collisional instability

The equations of motion for the case of unequal
damping rates C̄ ¼ αC are a set of coupled differential
equations for the vectors SðvÞ and DðvÞwith the following
structure:

_DðvÞ¼ μvDðvÞ×D1−
Γ
2
ð1þαÞDxyðvÞ−Γ

2
ð1−αÞSxyðvÞ;

ð23Þ

_SðvÞ ¼ μvSðvÞ × D1 −
Γ
2
ð1þ αÞSxyðvÞ − Γ

2
ð1 − αÞDxyðvÞ:

ð24Þ

For α ¼ 1, the equations for DðvÞ are a closed set of
equations [18,19] as opposed to the case with α ≠ 1. The
fact that DðvÞ and SðvÞ couple to each other for α ≠ 1
gives rise to flavor instabilities where there were none for
α ¼ 1. Such a system was also investigated by Ref. [53],
whose Eqs. (22) coincide with our Eqs. (23) and (24).
We focus on Case A, which is stable for C ¼ C̄ ¼ 0 and

C̄ ¼ C (α ¼ 1) and explore its flavor evolution for C̄ ¼ αC
(α ≠ 1). Figure 5 shows the effect of the coupling between
DðvÞ and SðvÞ as visible from Eqs. (23) and (24). In the top
panel of Fig. 5, we show the dependence of the growth rate
Im½Ω=Γ� on the magnitude of α. For α ¼ 1, the growth rate
equals Im½Ω� ¼ −Γ and the solution is stable, in agreement

FIG. 5. Flavor evolution for Case A under the assumption of
different damping rates for neutrinos and antineutrinos, i.e.,
α ≠ 1. Top panel: growth rate as a function of α. Case A is
stable in the absence of damping and with damping for α ¼ 1. For
α ¼ 1, one finds Im½Ω� ¼ −Γ, whereas the solutions grow
exponentially (unstable solutions) for α < αcrit, which we found
to be αcrit ¼ 0.975. The stable region is marked by the green
shaded area where α ≥ αcrit. The value of αcrit is independent of
the chosen value of Γ as long as Γ ≪ μ. Bottom panel: temporal
evolution of FðtÞ for three selected values of α. If α ≠ 1 the flavor
solutions become unstable.
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with Fig. 4. Eventually, α reaches the critical value αcrit ¼
0.975 for which the growth rate transitions from Im½Ω� < 0
to Im½Ω� > 0, rendering the solution unstable. The growth
rates of Case A are larger for smaller values of α; hence
systems with asymmetric damping rates between neutrinos
and antineutrinos lead to solutions that grow faster.
Moreover, the upper panel of Fig. 5 shows that the critical
value αcrit only depends on the ELN angular distribution
and not on the specific value of the damping rate Γ.
In the bottom panel of Fig. 5, we show the evolution of

the ELN flux factor FðtÞ for three different values of α.
Even for a modest asymmetry between the neutrino and
antineutrino damping rate (α ¼ 0.95 < αcrit, green line), a
significant amount of flavor is converted in the first
5 × 10−6 s. A more extreme asymmetry (α¼ 0.90< αcrit,
blue line) leads to near flavor equipartition within the same
time interval.
In Fig. 6, we show the phase-space dynamics for

different values of α for Case B. For α ≠ 0, the phase
space trajectories escape the “envelope” subtended by the
undamped solution (green line). For instance, for α ¼ 0.95,
the phase-space trajectory escapes the envelope during the
first iterations of the evolution, reaching its steady state
ð _ϑ ¼ 0Þ. At that point, the polarization vector D1 points
downward (ϑ ¼ π) in contrast to the α ¼ 1 case where D1

points upward (ϑ ¼ 0).

B. Stability criteria

The conditions for flavor instability can be found by
studying an isotropic system that consists only of two
modes P and P̄ for simplicity. Within this system, flavor
instabilities are not triggered by the ELN angular crossing,
but rather by the asymmetry between damping rates, as
originally pointed out in Refs. [25,53]. Nevertheless, our
results carry over to the ELN-crossed configurations (i.e.,
Case A) considered in Fig. 5. For an isotropic system the

EOMs [Eq. (14)] can be integrated over the velocity
variable v to obtain

_P ¼ μðP − P̄Þ × P − ΓPxy; ð25Þ

_̄P ¼ μðP − P̄Þ × P̄ − ΓαP̄xy; ð26Þ

where the ELNdensity vector isD0¼
R
dvðPv− P̄vÞ¼ P− P̄,

whereas the ELN flux vector vanishesD1¼
R
dvvðPv−P̄vÞ¼

0. Further simplification of the EOMs leads to

_P ¼ −μP̄ × P − ΓPxy; ð27Þ

_̄P ¼ −μP̄ × P − ΓαP̄xy: ð28Þ

The equations for the transverse components are

_Px ¼ μðP̄zPy − P̄yPzÞ − ΓPx; ð29Þ

_Py ¼ μðP̄xPz − P̄zPxÞ − ΓPy: ð30Þ

Let us define the following linear combinations

ϵ ¼ Px − iPy; ð31Þ

ϵ̄ ¼ P̄x − iP̄y: ð32Þ

By combining Eqs. (29) and (30), one can obtain a set of
equations for the transverse components ϵ and ϵ̄. The
linearization assumes that the neutrino transverse compo-
nent ϵ is much smaller thanPz (and similar for antineutrinos)
so that higher order terms such as ϵ2 can be dropped. Thus,
the equations of motion for the transverse components are

_ϵ ¼ −iμðPzϵ̄ − P̄zϵÞ − Γϵ; ð33Þ

_̄ϵ ¼ −iμðPzϵ̄ − P̄zϵÞ − Γαϵ̄: ð34Þ

This set of equations can be written in matrix form

�
_ϵ

_̄ϵ

�
¼ ð−iÞM

�
ϵ

ϵ̄

�
; ð35Þ

where the matrix M is given by

M ¼
�
−μP̄z − iΓ μPz

−μP̄z μPz − iαΓ

�
: ð36Þ

The determinant equation detðM −Ω12×2Þ ¼ 0 guarantees
that there are nontrivial solutions to the linear equations in
Eq. (35). The determinant equation can be solved analyti-
cally, revealing the eigenfrequency common to ϵ and ϵ̄,
since we have assumed that both neutrinos and antineu-
trinos evolve collectively i.e., ϵðtÞ ¼ ϵðt0Þe−iΩt and

FIG. 6. Parametric plot of _ϑ as a function of ϑ for Case B for
different damping rates for neutrinos and antineutrinos. For
α ≠ 1, the trajectory escapes the “envelope” defined by the
pendulum solution (green line), flipping the orientation of the
polarization vector while shrinking.
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ϵ̄ðtÞ ¼ ϵ̄ðt0Þe−iΩt. The determinant equation is a quadratic
equation in the eigenfrequencyΩ with the following pair of
solutions:

Ω� ¼ μ

2
Dz−

iΓ
2
ð1þαÞ

�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDzÞ2μ2− ð1−αÞ2Γ2þ2iSzð1−αÞΓμ

q
; ð37Þ

with the usual definitions for the sum and the difference of
the polarization vectors Sz ¼ Pz þ P̄z and Dz ¼ Pz − P̄z,
respectively.
These solutions Ω� reveal that one needs nonvanishing

μΓ to have solutions that grow exponentially [25]; if either
μ or Γ are zero, the imaginary components of the eigen-
frequencies are either Im½Ω�� < 0 or Im½Ω�� ¼ 0, respec-
tively. Moreover, one can clearly see that for the case with
equal damping rates for neutrinos and antineutrinos (i.e.,
α ¼ 1) the solutions Ω� reduce to Ω− ¼ −iΓ and Ωþ ¼
μDz − iΓ where Im½Ω�� ¼ −Γ, in agreement with our
results in Fig. 5.
We can approximate the expression for the roots Ω� for

the limiting case of weak damping, i.e., Γ ≪ μ. By Taylor
expanding the square root in Eq. (37) we obtain the
following expression for the eigenfrequencies:

Ω� ¼ μ

2
Dz−

iΓ
2

ð1þαÞDz�ð1−αÞSz
Dz þOðΓ2=μ2Þ; ð38Þ

where, without loss of generality, we can assume that P̄z <
Pz and α ∈ ½0; 1� to ensure that all quantities are positive.
Neglecting higher order terms ∼OðΓ2=μ2Þ and rearranging
terms lead to

Im½Ω−� ¼ −Γ
Pz − αP̄z

Pz − P̄z ;

Im½Ωþ� ¼ þΓ
P̄z − αPz

Pz − P̄z : ð39Þ

The solution that grows exponentially is Ωþ. Thus, the
stability transition occurs when Im½Ωþ� ¼ 0 which occurs
if and only if

αcrit ¼
P̄z

Pz : ð40Þ

Hence, solutions are unstable for α < αcrit. Notice that, in
the small Γ limit, the dependence of Im½Ω�� on α is linear,
which explains the behavior shown in the upper panel of
Fig. 5. Furthermore, the parameter α in Eq. (40) controls the
slope of Im½Ω�� while the relative ratio between P̄z and Pz

determines where the growth rate crosses zero.
One can reproduce the eigenfrequencies shown in the

upper panel of Fig. 5 using such a two mode system with
Pz ¼ 1 and P̄z ¼ 0.975; such choice implies αcrit ¼ 0.975

according to Eq. (40). Finally, in light of the expressions for
Ω� [Eq. (37)] we find that the growth rates are maximal
when P̄z → Pz, regardless of the particular choice of α and
Γ, as shown in Fig. 7. Notice that all solid lines in Fig. 7
cross zero at P̄z ¼ αcrit indicating that they follow the
instability condition given by Eq. (40) which in this case is
simply P̄z > αcrit, as shown in Fig. 7.

V. DEPENDENCE OF THE FINAL FLAVOR
CONFIGURATION FROM THE ELN CROSSING

In this section, we generalize our findings to a family of
ELN distributions, modeled as described in Eqs. (20) and
(21). The ensemble of ELN angular configurations deter-
mined by the parameters a and b can be represented with a
two-dimensional grid as shown in Fig. 8. The parameter a
controls the relative normalization between neutrinos and
antineutrinos, while b parametrizes how forward-peaked
the angular distributions are. Running over a range of
values of a and b allows us to explore a family of single-
crossed ELN spectra systematically. Each point in the plane
represents an ELN configuration for which we compute f
through Eq. (4). We find that the analytical results match
very well the final flavor outcome obtained numerically.
Figure 8 shows contour plots of the asymptotic value f

computed in the plane spanned by the parameters a and b.
The simulation is stopped afterΔt ¼ 2.5 × 10−6 s to ensure
that all configurations have reached a steady state as
confirmed by Fig. 4. We performed resolution tests to
ensure that the reached steady state is a reliable result; for
more details on the numerical methods see Appendix B. We

FIG. 7. Imaginary components of the positive and negative
eigenfrequencies Ω� [Eq. (37)] for the (isotropic) two mode
system. We show Im½Ω�=Γ0� as a function of P̄z for different
values of α while keeping the other parameters fixed. The
components of Ωþ are shown as solid lines, while the ones
for Ω− are plotted as dotted lines. For α ¼ 1 (blue) the system is
stable and Im½Ω�=Γ0� < 0 always. On the contrary, for α ≠ 1 the
growth rates reach a maximum when P̄z → Pz ¼ 1, independ-
ently of α or Γ as suggested by the linear expressions for Im½Ω��
in Eq. (39). The instability transition occurs at P̄z ¼ αcrit, making
solutions unstable for the interval P̄z > αcrit in all configurations.
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consider the following two scenarios: equal damping rates
for neutrinos and antineutrinos (α ¼ 1, top panel), and
unequal damping rates for neutrinos and antineutrinos
(α ¼ 0.9, bottom panel). Although not shown here, for
Γ ¼ 0 a large portion of the parameter space has an average
value hFðtÞi close to 1 since conversions are periodic and
no asymptotic value is ever reached, as discussed in Paper I.
The parameter space is divided by theDz

0 ¼ Pz − P̄z ¼ 0
contour (red dashed line) which separates stable solutions

from unstable ones [18]. For the case with equal damping
rates for neutrinos and antineutrinos (upper panel of Fig. 8),
flavor decoherence forces the pendulum to settle around
the steady state value f [Eq. (4)], without returning to the
cosϑ ¼ 1 (stable) configuration, in agreement with the
results reported in Figs. 3 and 4. Qualitatively, f reaches
f ≃ 0 for a large region of the parameter space, especially
for forward-peaked ELN configurations (small values of b).
In agreement with the stability criteria in Eq. (40), we find
that the Dz

0 ¼ Pz − P̄z ¼ 0 transition boundary remains
unchanged since the imaginary component of the growing
solution Ωþ [Eq. (39)] changes sign when P̄z ¼ Pz. We
find that the computed value of f is in excellent agreement
with our numerical simulations, as shown by the overlap
between the black dotted line (our estimation) and the solid
blue line (numerical) for a wide range of ELN angular
distributions.
The most extreme scenario is the one obtained for

unequal damping rates for neutrinos and antineutrinos
(bottom panel of Fig. 8), where the steady state value of f
can even reach negative values (blue region) f ≃ −0.9, in
agreement with our findings in Fig. 5 where the vector D1

can change its orientation for smaller values of α. For the
case with unequal damping rates for neutrinos and anti-
neutrinos, the lepton number is not a constant of motion;
see Eq. (23). For these systems, we show the locus
of initially vanishing lepton number Dz

0ðt0Þ ¼ 0, which
helps visualize the deviation from the pendulumlike
solution and well as where new instabilities arise as a
result of α ≠ 1. In the region below Dz

0ðt0Þ ¼ 0, the
component Dz

0 is negative and the growing solution is
Ω− [Eq. (39)]. Thus, the stability transition occurs when
Pz − αP̄z ¼ Pz − 0.9P̄z ¼ 0, which lies barely outside the
simulation box and allows for the bottom part of the
parameter space to become unstable due to unequal
damping rates. In the other cases with equal damping
rates (upper panel) or no damping, the lepton number Dz

0

is strictly conserved, and the locus of Dz
0 ¼ 0 remains

constant. No conversions are allowed in this region, in
agreement with the stability criteria for the gyroscopic
pendulum [18].

VI. CONCLUSIONS

Our earlier work [18] shows that it is possible to exploit a
formal analogy of the neutrino EOMs with the ones of a
gyroscopic pendulum, confirming previous findings
reported in Refs. [19,21–23], allowing us to predict the
final flavor configuration analytically for a homogeneous
and axially symmetric system. In this work, we follow up
on our previous findings and investigate the role of
damping due to random collisions in the final flavor
configuration. We assume spatial homogeneity and axial
symmetry and work in the two-flavor framework. Even in
the presence of damping, the ELN lepton number vector,

FIG. 8. Flavor evolution for a wide range of single-
crossed ELN spectra characterized by the parameters a and b
[see Eqs. (20) and (21)]. In the top panel we present the
case of same damping rates for neutrinos and antineutrinos
ðΓ ¼ Γ0; α ¼ 1Þ, whereas in the bottom panel we show the
scenario with unequal damping rates for neutrinos and antineu-
trinos ðΓ ¼ Γ0; α ¼ 0.9Þ. The locus of vanishing lepton number
Dz

0 ¼ 0 is marked with a red dashed line. In the colormaps, we
show the steady state value f [Eq. (4)] after 2.5 × 10−6 s. As
shown in the middle panel, the contours of the predicted value f
(dotted line) and the numerical solution (solid line) are in
excellent agreement for a wide range of single-crossed ELN
distributions. The red regions show little to no conversions, while
blue shows significant flavor transitions. In agreement with
Fig. 5, the ðΓ ¼ Γ0; α ¼ 0.9Þ case displays the largest regions
of the parameter space where flavor conversion occurs, including
cases otherwise stable when Γ ¼ 0 or α ¼ 1.
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D0, is conserved and plays the role of “gravity,” exerting a
torque on the dynamical ELN flux vector, D1. A limitation
of our work is the assumption of spatial homogeneity,
which enable us to estimate the final flavor outcome.
However, an estimation that simultaneously includes space
and time evolution is out of the scope of this work.
Moreover, the simple form of our collision term that
mimics the loss of coherence among neutrino flavors
remains an approximation and a more realistic collision
term should be considered.
Although no simple gyroscopic pendulum analogy can

be found in the presence of damping, most of the features of
the gyroscopic pendulum outlined in Ref. [18] are pre-
served. We provide a simple analytical formula to estimate
the final steady state achieved by the system and show that
it is a simple linear function of the one found to predict the
lowest point of the pendulum in Ref. [18]. Our estimations
are in excellent agreement with our numerical computa-
tions for a wide range of single-crossed ELN spectra.
Under the assumption of equal damping rates for

neutrinos and antineutrinos, the final flavor outcome differs
from the scenario without damping. In particular, we find
that the same steady state flavor configuration is reached in
the presence of damping and independently of the particu-
lar values of the damping rate Γ (as long as μ ≫ Γ).
However, the time the system takes to reach such a
configuration is a function of the damping rate.
When the damping rates for neutrinos and antineutrinos

are different, new regions of flavor instability appear, and
systems that were stable in the absence of damping or for
equal damping rates for neutrinos and antineutrinos may
become unstable. In particular, even in the absence of ELN
crossings, we find that unequal damping rates for neutrinos
and antineutrinos could trigger flavor instabilities, con-
firming the findings of Ref. [25]. The criteria for flavor
instabilities triggered by the damping rate asymmetry are
provided in this work using an isotropic system, however
our findings carry over to anisotropic systems with non-
trivial momentum dependence.
This work provides new insights into the flavor evolution

of neutrinos in dense neutrino environments. Our analytical
findings shed light on the rich phenomenology of FFC in
the presence of random collisions, offering simple estima-
tions on the final flavor outcome.

ACKNOWLEDGMENTS

We would like to thank Sajad Abbar, Rasmus
S. L. Hansen, Lucas Johns, and Shashank Shalgar for
useful discussions. This project has received support
from the Villum Foundation (Project No. 13164), the
Danmarks Frie Forskningsfonds (Project No. 8049-
00038B), and the Deutsche Forschungsgemeinschaft
through Sonderforschungbereich SFB 1258 “Neutrinos
and Dark Matter in Astro- and Particle Physics” (NDM)

and under Germany’s Excellence Strategy through the
Cluster of Excellence ORIGINS EXC-2094-390783311.

APPENDIX A: NORMAL MODE ANALYSIS IN
THE PRESENCE OF DAMPING

In this Appendix, we carry out the normal mode analysis
in the presence of collisional damping. We note that a
complementary study on the stability criteria with colli-
sional damping is provided in Ref. [25], however, one
important difference is that our normal mode analysis
includes nonisotropic ELN distributions, while the analysis
in Ref. [25] focuses on isotropic systems. As such, the
analysis of this Appendix captures both instabilities due to
angular crossings and collisional damping.
We start by linearizing the EOMs and tracking the

evolution of the off-diagonal terms:

ϱexðvÞ ¼ QðvÞe−iΩt and ϱ̄exðvÞ ¼ Q̄ðvÞe−iΩt; ðA1Þ

where Ω represents the collective oscillation frequency for
neutrinos and antineutrinos. We look for temporal insta-
bilities for the homogeneous mode (k⃗ ¼ 0). The off-
diagonal component of the EOM for neutrinos and anti-
neutrinos are

i_ϱexðvÞ¼HeeðvÞϱexðvÞ−ϱeeðvÞHexðvÞ− iΓϱexðvÞ; ðA2Þ

i _̄ϱexðvÞ¼HeeðvÞϱ̄exðvÞ− ϱ̄eeðvÞHexðvÞ− iαΓϱ̄exðvÞ; ðA3Þ

where we have assumed ϱxxðt0Þ ¼ ϱ̄xxðt0Þ ¼ 0. Again, here
Γ is the damping rate, and α allows for a difference in the
damping rates of neutrinos and antineutrinos. By substitut-
ing Eq. (A1) in the equation above and solving for QðvÞ,
we obtain

QðvÞ ¼ ϱeeðvÞ
R
dv0½Qðv0Þ − Q̄ðv0Þ�½1 − vv0�
−Ω − iΓþ AðvÞ ; ðA4Þ

where we express Ω and Γ in units of μ. Also, we have
defined the angle-dependent quantity AðvÞ as

AðvÞ≡
Z

dv0½ϱeeðv0Þ − ϱ̄eeðv0Þ�½1 − vv0�: ðA5Þ

A similar procedure follows for Q̄ðvÞ:

Q̄ðvÞ ¼ ϱ̄eeðvÞ
R
dv0½Qðv0Þ − Q̄ðv0Þ�½1 − vv0�
−Ω − iαΓþ AðvÞ : ðA6Þ

Combining the expressions for QðvÞ and Q̄ðvÞ, we have

QðvÞ− Q̄ðvÞ¼
Z

dv0
�

ϱeeðvÞ
−Ω− iΓþAðvÞ−

ϱ̄eeðvÞ
−Ω− iαΓþAðvÞ

�

× ½Qðv0Þ− Q̄ðv0Þ�½1−vv0�: ðA7Þ
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From the equation above, it must be true that

QðvÞ − Q̄ðvÞ ¼
�

ϱeeðvÞ
−Ω − iΓþ AðvÞ −

ϱ̄eeðvÞ
−Ω − iαΓþ AðvÞ

�

× ðβ1 − β2vÞ; ðA8Þ

where β1 and β2 are unknown coefficients. Substituting
Eq. (A8) in Eq. (A7), we obtain a system of equations for
the coefficients β1 and β2:

�
β1

β2

�
¼

�
I ½1� −I ½v�
I ½v� −I ½v2�

��
β1

β2

�
¼ M

�
β1

β2

�
; ðA9Þ

where the functional I ½f� is

I ½f� ¼
Z

dv

�
ϱeeðvÞ

−Ω − iΓþ AðvÞ −
ϱ̄eeðvÞ

−Ω − iαΓþ AðvÞ
�
fðvÞ:

ðA10Þ

The system of equations has a not trivial solution if and
only if the following condition is met

detðM − 12×2Þ ¼ 0: ðA11Þ

To search for instabilities, we need to look for the solutions
with Im½Ω� ≠ 0.
If α ¼ 1, the functional I ½f� simplifies to

I ½f� ¼
Z

dv

�
ϱeeðvÞ − ϱ̄eeðvÞ
−Ω − iΓþ AðvÞ

�
fðvÞ: ðA12Þ

APPENDIX B: NUMERICAL METHODS AND
CONVERGENCE

We implement different initial conditions while keeping
the architecture of the numerical simulations unchanged.
The angular variable v is discretized in Nv ¼ 1000 bins.
We compute the flavor evolution according to the EOMs
[Eqs. (14) and (15)].

The temporal evolution of the system is computed by
using an adaptive method. In particular we implement a
Runge-Kutta-Fehlberg (7,8) method from the Boost
library [54].
Figure 9 shows the flavor evolution of a system with

damping using distinct angular binning. Both solutions
agree very well with each other even in the most chal-
lenging scenario of different damping rates (α ≠ 1).
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