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A quantitative description of the properties of hot nuclear matter will be needed for the interpretation of
the available and forthcoming astrophysical data, providing information on the postmerger phase of a
neutron star coalescence. We have employed a recently developed theoretical model, based on a
phenomenological nuclear Hamiltonian including two- and three-nucleon potentials, to study the
temperature dependence of average and single-particle properties of nuclear matter relevant to astro-
physical applications. The possibility to represent the results of microscopic calculations using simple and
yet physically motivated parametrizations of thermal effects, suitable for use in numerical simulations of
astrophysical processes, is also discussed.
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I. INTRODUCTION

Understanding the structure and dynamics of hot nuclear
matter at the microscopic level is long known to be essential
for the description of both supernovae and protoneutron
stars [1–4]. More recently, thermal modifications of the
equation of state (EOS) of neutron star matter have been
also shown to play a critical role in the merger and
postmerger phases of binary neutron star coalescence [5–
9]. In this context, it has to be pointed out that an accurate
description of finite-temperature effects is needed to study
not only the equilibrium properties determining the density
dependence of matter pressure, but also the occurrence of
phenomena involving dissipation mechanisms, such as
bulk viscosity [10] and neutrino emission [4,11–14].
The large dataset of zero-temperature EOSs available for

use in simulations and data analysis—for a comprehensive
catalog see Ref. [15]—is contrasted by a scarce number of
EOSs of hot nuclear matter spanning the relevant regime,
which is believed to extend to temperatures as high as
100 MeV [16,17].
The EOS of hot nuclear matter is often obtained using

Skyrme-type effective interactions [18] or the relativistic
mean field (RMF) approach [19]. More comprehensive
studies of the properties of neutron star matter at nonzero
temperature have been carried out within the framework of
nuclear many-body theory, in which nuclear dynamics is
described by a phenomenological Hamiltonian, strongly
constrained by the observed properties of the two- and
three-nucleon systems. Recent calculations along this line
have been performedusingbothG-matrix perturbation theory
[20] and the formalism of correlated basis functions [21].

A number of theoretical studies of the properties of hot
nuclear matter have been also carried out using different
many-body techniques and nuclear Hamiltonians obtained
within the framework of chiral effective field theory (χEFT)
[22–25]. It has to be pointed out, however, that the dynamical
model based on χEFT is not expected to be applicable to the
density region relevant to neutron stars [26,27].
The authors of Refs. [21,28] have developed a procedure

to obtain from a phenomenological nuclear Hamiltonian a
well-behaved effective potential, suitable to carry out
perturbative calculations in the basis of eigenstates of
the noninteracting system. This approach, in which the
effects of irreducible three-nucleon interactions are con-
sistently taken into account at microscopic level, allows to
perform calculations of a variety of properties of dense
nuclear matter with arbitrary proton fraction and temper-
atures in the region of T ≪ mπ, mπ ≈ 150 MeV being the
mass of the π meson, in which thermal effects are not
expected to significantly affect strong-interaction dynam-
ics. Thermodynamic consistency is also achieved by
construction, through a proper definition of the grand
canonical potential [21].
The present work is primarily meant as a follow-up to the

studyofBenharet al. [21], andprovides adetailed analysis of
the impact of thermal effects on specific properties of charge-
neutral and β-stable matter relevant to neutron stars, such as
the proton and neutron energy spectra and effective masses.
We will also examine the possibility of using simple

approximated procedures to parametrize deviations from
the zero-temperature EOS associated with thermal effects.
The development of such procedures is of utmost impor-
tance, because their availability will enable to perform
numerical simulations using EOSs based on a reliable
treatment of the zero-temperature limit. Pinning down the
validity and limitations of the proposed procedures,
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through a direct comparison with the predictions of fully
microscopic calculations, will help to firmly establish their
applicability.
A widely used, although admittedly oversimplified,

parametrization is obtained from the so-called “hybrid-
EOS” approach, in which thermal modifications of the
thermodynamic functions of cold nuclear matter are
approximated by the corresponding quantities of an ideal
fluid [7,29–33].
Within this scheme, pressure and internal energy per

nucleon are respectively written in the form

p ¼ pcold þ pth;

e ¼ ecold þ eth;

and the thermal contribution to the pressure at nucleon
density ϱ and temperature T is parametrized by the
adiabatic index, Γth, according to

pthðϱ; TÞ ¼ ϱ ethðΓth − 1Þ: ð1Þ

The above procedure involves the drastic assumption
that the adiabatic index be independent of both density and
temperature. However, a comparison between the pressure
obtained from Eq. (1) and that resulting from microscopic
calculations based on advanced models of nuclear dynam-
ics shows that Γth does, in fact, depend strongly on density,
and that the dependence on temperature, while being
weaker, is also non-negligible [7].
A more advanced parametrization, aimed at impro-

ving the description of the thermal pressure in the
high-density region, has been recently proposed by
Raithel et al. [16]. Within this approach, the prediction
of the ideal fluid model—which is known to overestimate
pressure at large densities—is replaced with that obtained
from the leading term of the Sommerfeld expansion, which
allows to systematically include degeneracy effects [34].
Microscopic nuclear dynamics is taken into account, using
nucleon effective masses obtained from RMF models of
nuclear matter.
To assess the accuracy and range of applicability of the

simple and yet physically motivated parametrization of
Ref. [16], we have compared its predictions to the results
obtained from microscopic calculations of β-stable matter
at temperatures up to 50 MeV, carried out within the
formalism described in Ref. [21].
The manuscript is organized as follows. In Sec. II we

outline the dynamical model underlying our theoretical
approach, as well as the main elements of the formalism
employed to study the properties of hot nuclear matter.
Section III reports the results of a detailed analysis of
thermal effects on both single-particle and average nuclear
matter properties, while in Sec. IV we discuss a comparison
with the results of Raithel et al. [16]. Finally, In Sec. V we
summarize our findings and state the conclusions.

II. THEORETICAL MODEL

In this section, we summarize the main features of our
theoretical model. We discuss both the underlying descrip-
tion of nuclear dynamics and the formalism employed to
carry out calculations of the relevant properties of hot
nuclear matter.

A. Nuclear dynamics

Nuclear many-body theory (NMBT) is based on the
hypothesis that all nucleon systems—from the deuteron to
neutron stars—can be described in terms of pointlike
protons and neutrons, whose dynamics is dictated by the
Hamiltonian

H ¼
X
i

p2
i

2m
þ
X
i<j

vij þ
X
i<j<k

Vijk; ð2Þ

with m and pi denoting mass and momentum of the ith
particle.1

The nucleon-nucleon (NN) potential, usually written in
the form

vij ¼
X
p

vpðrijÞOp
ij; ð3Þ

where rij ¼ jri − rjj is the distance between the interacting
particles, is designed to reproduce the measured properties
of the two-nucleon system, in both bound and scattering
states, and reduces to the Yukawa one-pion exchange
potential at large distances. The sum in Eq. (3) includes
up to 18 terms, the corresponding operators, Op, being
needed to describe the strong spin-isospin dependence and
noncentral nature of nuclear forces, as well as the occur-
rence spin-orbit interactions and small violations of charge
symmetry and charge independence [35].
The addition of the three-nucleon (NNN) potential Vijk

is needed to take into account the effects of irreducible
three-body interactions, reflecting the occurrence of proc-
esses involving the internal structure of the nucleons.
The results reported in this article have been obtained

using an effective interaction derived from the phenom-
enological Hamiltonian comprising the Argonne v06 (AV6P)
NN potential [36] and the Urbana IX (UIX) NNN poten-
tial [37,38].
The AV6P potential is determined projecting the full

Argonne v18 potential of Ref. [35] (AV18) onto the operator
basis comprising the terms with p ≤ 6 in the right-hand
side of Eq. (3). It predicts the binding energy and electric
quadrupole moment of the deuteron with accuracy of 1%,
and 4%, respectively, and provides an excellent fit of the

1In this article, we adopt the system of natural units, in which
ℏ ¼ c ¼ kB ¼ 1, and, unless otherwise specified, neglect the
small proton-neutron mass difference.
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NN scattering phase shifts in the 1S0 channel—correspond-
ing to total spin and isospin S ¼ 0 and T ¼ 1, and relative
angular momentum l ¼ 0—providing the dominant con-
tribution to the energy of neutron matter. The contributions
originating from states with l > 0 turn out to largely cancel
among themselves; see, e.g., Ref. [39].
The UIX potential is written in the form

Vijk ¼ V2π
ijk þ VR

ijk; ð4Þ
where the first term is the attractive Fujita-Miyazawa
potential—describing two-pion exchange NNN inter-
actions with excitation of a Δ resonance in the intermediate
state—while VR

ijk is a purely phenomenological repulsive
term. The strength of V2π

ijk is adjusted to explain the
observed ground-state energies of 3He and 4He, while that
of the isoscalar repulsive contribution is fixed in such a way
as to reproduce the saturation density of isospin symmetric
matter, inferred from nuclear systematics.
Recent studies of the EOS of cold neutron matter—

performed by Lovato et al. [40] using state-of-the-art
computational techniques—show that the predictions of
the somewhat simplified AV6Pþ UIX Hamiltonian are
very close to those obtained from the full AV18þ UIX
model, providing the basis of the widely employed EOS of
Akmal, Pandharipande and Ravenhall [41,42].
The procedure to derive the effective interaction, thor-

oughly described in Refs. [21,28,43], exploits the formal-
ism of correlated basis functions (CBF) and cluster
expansion techniques to take into account the effects of
strong nucleon-nucleon correlations, arising from the
presence of a strong repulsive core in the NN potential.
The resulting density-dependent effective potential—which
can be written as in Eq. (3) with the sum in the right-hand
side limited to p ≤ 6—is well behaved, and consistently
includes the contributions of NN and NNN interactions. As
a consequence, it is expected to be well suited to perform
perturbative calculations of nuclear matter properties in the
density regime relevant to neutron stars.

B. Perturbation theory at finite temperature

At first order in the CBF effective interaction veff , the
internal energy per nucleon of nuclear matter at baryon
density ϱ, temperature T can be written in the form [21]

E
N
¼ 1

N

�X
αk

k2

2m
nαðk;TÞ

þ 1

2

X
αk

X
α0k0

hαk;α0k0jveff jαk;α0k0iAnαðk;TÞnα0 ðk0;TÞ
�
:

ð5Þ
In the above equation, k is the nucleon momentum, with

k ¼ jkj, the index α ¼ n, p labels neutrons and protons,
with Yα ¼ ϱα=ϱ being the corresponding fraction, and

jαk; α0k0iA denotes an antisymmetrized two-nucleon
state. Note that conservation of baryon number requires
that Yn ¼ 1 − Yp.
The temperature dependence is described by the Fermi

distribution,

nαðk; TÞ ¼ f1þ exp ½βðeαk − μαÞ�g−1: ð6Þ

where the single-particle energy is defined as

eαk ¼ eHFαk þ δe; ð7Þ

with

eHFαk ¼ k2

2m
þ
X
α0k0

hαk; α0k0jveff jαk; α0k0iAnαðk0; TÞ; ð8Þ

and

δe ¼ ϱ

2

X
αk

X
α0k0

hαk; α0k0j ∂v
eff

∂ϱ
jαk; α0k0iAnαðk; TÞnα0 ðk0; TÞ;

ð9Þ
The correction to the Hartree-Fock (HF) spectrum is
needed to satisfy the requirement of thermodynamic con-
sistence, and vanishes in the case of a density-independent
potential; see Ref. [21] for details.
The chemical potentials μα are determined by the

normalization conditions,

2

V

X
αk

nαðk; TÞ ¼ ϱα; ð10Þ

where V is the normalization volume, and the number
density of particles of species α is defined as ϱα ¼ Yαϱ.
Note that the above definitions imply that both the single-
nucleon energies and the chemical potentials depend on
temperature through the Fermi distribution.
The entropy per nucleon is also defined in terms of the

distribution of Eq. (6) as

S
N

¼ −
1

N

X
αk

fnαðk; TÞ ln nαðk; TÞ

þ ½1 − nαðk; TÞ� ln ½1 − nαðk; TÞ�g: ð11Þ
Finally, the Helmoltz free energy per nucleon is obtained
combining Eqs. (5) and (11) in the form

F
N

¼ 1

N
ðE − TSÞ: ð12Þ

III. THERMAL EFFECTS

In the temperature regime considered in the present
study, thermal modifications of nuclear matter properties
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arise primarily from the Fermi distribution, defined by
Eq. (6). Comparison to the T → 0 limit

nαðk; 0Þ ¼ θðμα − eαkÞ; ð13Þ

where θðxÞ is the Heaviside theta function, shows that the
probability distribution nαðk; T > 0Þ is reduced from unity
in the region corresponding to μα − T ≲ eαk ≲ μα, while
acquiring a nonvanishing positive value for μα ≲ eαk≲
μα þ T. It follows that, for any given temperature T, the
extent of thermal modifications to the Fermi distribution is
driven by the ratio 2T=μαk. This observation in turn implies
that, because the chemical potential is a monotonically
increasing function of the particle density ϱα, for any given
T thermal effects are more significant at lower ϱα. On the
other hand, they become vanishingly small in the high-
density regime, in which degeneracy becomes dominant.
The density dependence of thermal effects—which also

affects the particle energies and chemical potentials,
defined by Eqs. (7) and (10), respectively—plays a sig-
nificant role in the determination of the properties of
multicomponent systems, such as charge-neutral β-stable
matter, in which different particles have different densities.

A. Composition of charge-neutral β-stable matter

In charge-neutral matter consisting of neutrons, protons
and leptons in equilibrium with respect to the weak
interaction processes

n → pþ lþ ν̄l; pþ l− → nþ νl; ð14Þ

where l ¼ e, μ labels the lepton flavor, the proton fraction
Yp ¼ ϱp=ϱ is uniquely determined by the equations

μn − μp ¼ μl; ð15Þ

Yp ¼
X
l

Yl: ð16Þ

Note that Eq. (15) is obtained under the assumption that
matter is transparent to the produced neutrinos, implying on
turn that neutrinos have vanishing density and chemical
potential. At densities such that the electron chemical
potential does not exceed the rest mass of the muon,
mμ ¼ 105.7 MeV, the sum appearing in the above equation
includes electrons only. However, at higher densities—
typically at ϱ≳ ϱ0, with ϱ0 ¼ 0.16 fm−3 being the equi-
librium density of isospin-symmetric matter—the appear-
ance of muons becomes energetically favored, and must be
taken into account.
The solid lines of Fig. 1 show the density dependence of

the proton fractions corresponding to β equilibrium of
matter consisting of protons, neutrons, electrons and muons,
ornpeμmatter, atT ¼ 0 (triangles) and 50MeV (circles); all
results have been obtained using the formalism described in

Ref. [21]. For comparison, the same quantities in npematter,
inwhich themuon contribution is not included, are displayed
by the dashed lines.
The most prominent thermal effect is a significant

departure from the monotonic behavior observed in cold
matter. The emergence of a minimum in the density
dependence of the proton fraction results from the interplay
between the thermal and degeneracy contributions to the
chemical potentials appearing in Eq. (15). For T ≳ 20 MeV
and low density, typically ϱ≲ ϱ0, the thermal contribution
—whose leading order term can be written in the form
δμα ∝ T2=ϱ2=3α —turns out to be much larger for protons
than for neutrons, and β equilibrium requires large proton
fractions.

B. Fermi distributions

The Fermi distribution of Eq. (6) depends on temperature
both explicitly, through the factor β ¼ 1=T appearing in the
argument of the exponential, and implicitly, through the T
dependence of both eαk and μα. Because the calculation of
single-particle energies and chemical potentials in turn
involves the Fermi distribution, eαk, μα and nαðk; TÞ must,
in fact, be determined self-consistently, applying an iter-
ative procedure.
Figure 2 shows the distributions of neutrons and protons

in charge-neutral β-stable npeμ matter at baryon den-
sity ϱ ¼ 0.32 fm−3.
It is apparent that, as pointed out in the previous

section, thermal modifications to nαðk; TÞ—extending
over a region of width 2T around the Fermi momentum
kFα ¼ ð3π2ϱαÞ1=3—depend on both temperature and den-
sity. As a consequence, for any given temperature T they
are more pronounced in the case of protons, whose density
is suppressed by a factor Yp=ð1 − YpÞ ≪ 1 with respect to
the neutron density.

FIG. 1. Density dependence of the proton fraction in charge-
neutral β-stable matter. Solid lines marked with triangles and
circles correspond to npeμ matter at T ¼ 0 and 50 MeV,
respectively. The same quantities in npe matter are represented
by dashed lines.
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C. Nucleon energy spectra and effective masses

The proton and neutron spectra employed to calculate
the Fermi distributions of Fig. 2—corresponding to
β-stable npeμ matter at baryon density ϱ ¼ 2ϱ0—are
displayed in Fig. 3. It is apparent that eαk is an increasing
function of temperature at all values of k, with the T
dependence being stronger at lower momentum. At k ¼ 0
the difference between the energies corresponding to T ¼ 0
and 50 MeV reaches ∼35.8 MeV for protons, and
∼17.5 MeV for neutrons. In the case of protons, a
∼29 MeV increase with respect to the zero-temperature
spectrum is still clearly visible at k ¼ kFp

, kFp
¼ 1.01 fm−1

being the proton Fermi momentum, while the T ¼ 0 and
50 MeV neutron spectra at k ¼ kFn

, with kFn
¼ 2.04 fm−1,

are nearly indistinguishable.
As an illustration of the overall decrease of thermal

effects with increasing baryon density, Fig. 4 shows the
proton and neutron spectra in β-stable npeμ matter
at ϱ ¼ 0.48 fm−3.
In theoretical calculations of nuclear matter properties of

astrophysical interest—such as the neutrino emission rates
[4], and the shear and bulk viscosity coefficients [10,44,45]
—the relevant information comprised in proton and neutron
spectra is captured by the corresponding effective masses
m⋆

α , defined by the equations

1

m⋆
α
¼

�
1

k
deαk
dk

�
k¼kFα

: ð17Þ

The role played by the effective masses can be readily
grasped considering that they determine the dispersion
relations of matter constituents, which in turn affect their
collision rates through both the incident flux and the
available phase space.
The density dependence of the proton and neutron

effective masses of charge-neutral β-stable npeμ matter
at temperature 0 ≤ T ≤ 50 MeV is illustrated in Fig. 5. It
clearly appears that, regardless of temperature, m⋆

α is a
monotonically decreasing function of baryon density. For
neutrons, thermal effects—measured by the departure from
the zero-temperature effective mass—turn out to be limited
to ∼5% over the whole temperature and density range
considered. For protons, on the other hand, their size for
T ¼ 50 MeV turns out to be ∼25% at ϱ ¼ ϱ0, and is still
≳10% at ϱ ¼ 4ϱ0.
The nucleon effective masses are routinely used to

parametrize the momentum dependence of the nucleon
spectra in cold nuclear matter according to [4]

FIG. 2. Neutron and proton Fermi distributions in charge-
neutral β-stable npeμ matter at baryon density ϱ ¼ 0.32 fm−3.

FIG. 3. Neutron and proton spectra in β-stable npeμ matter at
baryon density ρ ¼ 0.32 fm−3, and temperatures in the range
0 ≤ T ≤ 50 MeV.
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eαk ¼
k2

2m⋆
0

þ Uα; ð18Þ

wherem⋆
0 denotes the value ofm

⋆
α at T ¼ 0, while the offset

Uα is determined by the requirement that the above
approximation reproduce the spectrum obtained from the
full microscopic calculation in the k → 0 limit.
In Fig. 6 the proton spectra in β-stable npeμ matter at

baryon density ϱB ¼ 0.32 fm−3 and temperature T ¼ 0 and
50 MeV, obtained from Eqs. (7)–(9), are compared to those
computed using Eq. (18). At T ¼ 0 the quadratic approxi-
mation turns out to be remarkably accurate up to momenta
largely above the Fermi momentum, kFp

¼ 1.01 fm−1. At
T ¼ 50 MeV, on the other hand, the agreement between
the results of the two calculations is somewhat degraded;
the discrepancy is ∼25% at k ¼ kFp

, and monotonically
increases with k.
The spectra displayed in the bottom panel of Fig. 6

clearly show that the accuracy of Eq. (6) at T > 0 can be
significantly improved by taking into account the temper-
ature dependence of the effective mass, which amounts to
replacing m⋆

0 with the appropriate finite-temperature value,
obtained from Eq. (17).
In the literature, the temperature dependence of eαk is

often disregarded, and the properties of nuclear matter
at T > 0 are calculated using zero-temperature spectra.

This approximation, referred to as frozen correlations
approximation (FCA), has been recently employed in the
studies of binary neutron star mergers of Figura et al. [7,8].
The results reported in Ref. [46] suggest that the FCA has a
nearly negligible effect on the thermodynamic properties of
nuclear matter at T ≲ 30 MeV. However, its accuracy has
been shown to deteriorate at larger temperatures [47]. The
validity of the assumption underlying the FCAcan begauged
from Figs. 3 and 4. The implications of using this approxi-
mation scheme in calculations of nuclear matter properties
will be discussed further in the next section.

D. Chemical potentials and matter composition

Within the theoretical approach underlying our work,
thoroughly discussed in Ref. [21], thermodynamic consis-
tency is satisfied by construction. To illustrate this property,
in Fig. 7 the chemical potential defined in Eq. (10) is
compared to the one obtained from the thermodynamic
definition,

μα ¼
�
∂F
∂Nα

�
V;Nα0≠α

; ð19Þ

using the free energy of Eq. (12).

FIG. 5. Density dependence of the proton and neutron effective
masses of charge-neutral β-stable matter at temperature
0 ≤ T ≤ 50 MeV. Baryon densities are measured in units of
the equilibrium density of cold isospin-symmetric matter.

FIG. 4. Same as in Fig. 3, but for matter at baryon density
ϱ ¼ 0.48 fm−3.
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The chemical potentials of protons and neutrons in
charge-neutral β-stable matter at temperature T ¼ 0 and
50 MeV are displayed in Fig. 8 as a function of baryon
density. For comparison, the difference μn − μp ¼ μe is
also shown.

Thermal effects on chemical potentials can be analyzed
considering the difference,

δμα;th ¼ μα − μα;0; ð20Þ

with μα;0 being the value of μα in cold matter at fixed
baryon density ϱB and particle fraction Yα. Figure 9
illustrates the temperature dependence of δμn;th in
charge-neutral β-stable matter at baryon density ϱ ¼ 2ϱ0.
Because thermal effects in β-stable matter have a differ-

ent impact on proton and neutron properties, the capability
to accurately predict β equilibrium and matter composition
using FCA must be carefully investigated. The results of
numerical calculations carried out within our approach
indicate for temperatures up to T ¼ 50 MeV the discrep-
ancy between the proton fractions obtained from FCA and
the exact results never exceeds ∼3% over the considered
range of baryon density.

FIG. 7. Comparison between the neutron chemical potential in
pure neutron matter computed using Eq. (10), represented by the
solid lines, and that obtained from the thermodynamic definition
using the free energy of Eq. (12).

FIG. 6. Proton spectra in charge-neutral, β-stable matter at T ¼
0 (upper panel) and 50 MeV (lower panel). The solid lines
represent results of calculations carried out using Eqs. (7)–(9),
while the dashed lines have been obtained from the quadratic
approximation of Eq. (18) with the zero-temperature effective
mass. The dot-dashed line in the lower panel illustrates the effect
of the thermal dependence of m⋆

p; see text for details.

FIG. 8. Density dependence of the chemical potentials of
protons (p) and neutrons (n) in β-stable matter ar
T ¼ 50 MeV. For comparison, the corresponding quantities at
T ¼ 0 are shown by the solid lines. The dot-dashed line
represents the difference μn − μp at T ¼ 50 MeV.

FIG. 9. Temperature dependence of the thermal contribution to
the proton (p) and neutron (n) chemical potentials, defined by
Eq. (20), in β-stable matter at baryon density ϱB ¼ 2ϱ0.
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E. Internal energy and free energy

The results of a detailed study of the properties of cold
nuclear matter—performed by the authors of Ref. [28]
using the CBF effective interaction discussed in this article
—are collected in Table I. This analysis shows that the
AV6Pþ UIX Hamiltonian reproduces the correct equilib-
rium density of isospin-symmetric matter, and yields values
of the compressibility module and symmetry energy largely
compatible with the available data. As for the energy per
nucleon, it should be kept in mind that, because kinetic and
interaction energies largely cancel one another, the 5 MeV
discrepancy in the value of Eðρ0Þ=N translates into a ∼15%
underestimate of the empirical interaction energy. This
result is within ∼7% of that reported by Akmal et al. [42],
who performed an accurate variational calculation of
symmetric nuclear matter with the full AV18þ UIX
Hamiltonian.
The density and temperature dependence of the internal

energy and entropy per baryon of β-stable matter, defined
according to Eqs. (5) and (11), respectively, is illustrated in
Figs. 10 and 11.
Figure 10 shows that, for any given ϱ, the internal energy

is an increasing function of temperature. However, the
concurrent increment of the proton fraction with T,

discussed in Sec. III A, leads to the appearance of a
minimum for temperatures larger than 10 MeV.
As expected, thermal contributions to the internal energy

turn out to be less important at higher ϱ. However, for T >
10 MeV they are still significant at densities as high as 4ϱ0.

IV. MODELING THERMAL EFFECTS

The description of thermal effects on the thermodynamic
functions determining the EOS, that is, pressure and energy
density, is of paramount importance in view of astrophysi-
cal applications. The number of available EOSs of nuclear
matter at T ≠ 0 is much smaller when compared to the
corresponding figure for cold matter. Moreover, the imple-
mentation of microscopic EOSs in numerical simulation of
processes such as binary neutron star merger involves
nontrivial difficulties [51,52].
These above problems are often circumvented using

simple but physically sound parametrization of the EOSs.
An extensively used expression is based on the so-called
hybrid-EOS approach, in which thermal contributions to
pressure and energy density are described using an
approximation based on the ideal fluid law; see Eq. (1).
As pointed out in the previous section, the results of

microscopic calculations clearly signal a strong interplay
between the dependencies of the nuclear matter properties
on density and temperature. This feature obviously ques-
tions the adequacy of the assumption that thermal con-
tributions to the EOS be the same to all densities. Motivated
by this observation, Raithel et al. have recently proposed a
model that explicitly takes into consideration the effect of
matter degeneracy [16].
Rather than using the ideal fluid EOS in the whole

density range, the authors of Ref. [16] employ the
Sommerfeld expansion described by Constantinou et al.
[53] in the region high ϱ. This formalism allows to write the
deviations of the thermodynamic functions from their zero-

TABLE I. Properties of isospin-symmetric matter at T ¼ 0
obtained by the authors or Ref. [28] using the CBF effective
interaction described in this article. The experimental values of
the compressibility module, K0, and symmetry energy, Esymðρ0Þ,
are taken from Refs. [48,49] and [50], respectively.

ρ0 ½fm−3�
Eðρ0Þ=N
[MeV]

K0

[MeV]
Esymðρ0Þ
[MeV]

Ref. [28] 0.16 −11.0 210.0 30.9
Experiment 0.16 −16.0 240.0� 20.0 31.6� 2.66

FIG. 10. Internal energy per baryon of beta-stable matter as a
function of baryon density for different temperatures. Note that ϱ
is given in units of the equilibrium density of cold isospin-
symmetric matter, ϱ0 ¼ 0.16 fm−3.

FIG. 11. Entropy per baryon of beta-stable matter as a function
of density for different temperatures. Note that ϱ is given in units
of the equilibrium density of cold isospin-symmetric matter,
ϱ0 ¼ 0.16 fm−3.
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temperature values as series of powers of T. The calculation
of the next-to-leading order term involves the nucleon
effective mass and its derivatives, which implies that a
model of nuclear dynamics at T ≠ 0 is needed beforehand.
In order to make their parametrization as general as

possible, Raithel et al. [16] considered a set of RMFmodels
for which the effective masses at different temperatures are
available in the literature, and performed a fit using
analytical models, such as piecewise polytropes, as zero-
temperature baseline.
Our goal here is establish the extent to which the results

reported in Ref. [16] stand, when compared to an EOS
obtained within the framework of NMBT, rather than the
RMF approach. We use the parameter values n0 ∼
0.13 fm−3 and α ∼ 0.9—see box 1 of Ref. [16] and the
erratum, Ref. [54]—to obtain first the effective mass, and
subsequently the internal energy per baryon and the matter
pressure. Note that the results reported in Ref. [16] do not
include the contribution of muons. Therefore, our analysis
will be limited to the case of npe matter.
In Fig. 12 we show a comparison between the internal

energy per baryon of β-stable npematter obtained from the
approach described in the previous section (solid lines) and
the fit of Refs. [16,54] (dashed lines). It is apparent that at
T ¼ 10 MeV, the agreement is almost perfect, while
discrepancies—the size of which increases with increasing
T—are clearly visible at larger temperatures. The maxi-
mum relative error between the fit and the microscopic
calculation at T ¼ 50 MeV (30MeV) turns out to be∼16%
(∼11%), and occurs at density ∼1.5ϱ0 (∼ϱ0).
We have also analyzed the accuracy of the approxima-

tion of Raithel et al. [16] for the pressure. A comparison
with the results obtained from our microscopic approach,
illustrated in Fig. 13, shows a remarkably good agreement
over the whole temperature range. The parametrization of
Ref. [16] appears to properly take into account the effects of
degeneracy at all densities.

In order to provide a quantitative estimate of the validity
of the approximations involved in the parametrization of
pressure, in Fig. 14 we report the relative difference,

ΔP
P

¼ ðPapprox − PÞ
P

; ð21Þ

where P is the result of our calculation, as a function of
baryon density. It is apparent that for T ¼ 10 MeV the error
is always less than ∼3%, and never exceeds ∼13% for
temperatures up to 50 MeV.

V. SUMMARY AND CONCLUSIONS

We have analyzed the impact of temperature on several
properties of charge-neutral nuclear matter in β equilib-
rium. Calculations have been performed using the

FIG. 12. Density dependence of the internal energy per baryon
of npematter in β equilibrium. Solid and dashed lines correspond
to the results of our calculations and to the fit of Refs. [16,54].

FIG. 13. Comparison between the pressure of β-stable npe
matter obtained using the approximate model of Refs. [16,54]
(dashed lines) and the microscopic approach described in this
work (solid lines).

FIG. 14. Relative difference between the pressure of β-stable
npe matter obtained using the model of Raithel et al. [6] and that
resulting from the microscopic approach described in this work.
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formalism of finite-temperature perturbation theory, with
an effective interaction derived from a nuclear Hamiltonian
comprising both two- and three-nucleon potentials.
The most prominent feature emerging from our results

is the strong interplay between temperature and density,
which can be ultimately traced back to the form of the
Fermi distribution. For any given temperature thermal
effects turn out to decrease with density, although in
some instances they are still significant at density as high
as ∼4ϱ. As a consequence, in β-stable matter thermal
modifications of nucleon properties, such as the energy
spectrum, are more pronounced for protons than for
neutrons.
The interplay of temperature and density has no trivial

implications for astrophysical studies. The temperature and
density profiles obtained from neutron star merger simu-
lations—see, e.g., Refs. [6,7,55]—show that in the inner
region of the remnant the thermal contribution to the
pressure is lower. However, this happens not only because
the degeneracy pressure becomes more important, but also
because the temperature is lower. On the other hand, at
intermediate densities the temperature is higher and the
thermal contribution to the pressure is larger as well. At
lower densities, despite the temperature being lower, the
thermal contribution to the pressure is even more important
due to naturally lower degeneracy pressure. It clearly
appears that, in order to pin down the role of thermal
effects in determining the properties of neutron star matter,
their temperature and density dependence must be accu-
rately described within a consistent framework.
Of great importance, in this context, will be the avail-

ability of simple parametrizations of the EOS of hot nuclear
matter in β equilibrium, suitable for use in numerical
simulations. A direct comparison to the results of our

calculations shows that the approximate treatment of
thermal effects recently proposed by Raithel et al. [6] is
remarkably accurate, and suitable to describe EOSs
obtained from different models of nuclear dynamics.
It is important to keep in mind that the discussion of

temperature effects in nuclear matter should not be limited
to thermal contributions to average properties, such as the
pressure and energy density. As shown by the results
discussed in this article, the most fundamental properties,
including the Fermi distributions, single-particle spectra
and effective masses, are significantly modified at finite
temperature. A consistent inclusion of the temperature
dependence of these quantities is essential to accurately
describe nuclear collision rates in matter, which in turn
determine out-of-equilibrium phenomena [10,45,56,57], as
well as neutrino emission. The approach described in this
article allows to carry out calculations of, e.g., the rates of
modified Urca processes at T > 0, using nuclear matrix
elements obtained from a highly realistic nuclear
Hamiltonian, comprising both two- and three-nucleon
potentials.
As a final remark, is should be also mentioned that in this

work we have considered β equilibrium in the absence of
neutrinos. However, neutrino trapping is expected to occur
even at T ≲ 10 MeV [58], and we plan to extend our
calculations to study this scenario.
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