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We use long-run, high-resolution hydrodynamics simulations to compute the multiwavelength light curves
(LCs) from thermal disk emission around accreting equal-mass supermassive black hole (BH) binaries, with a
focus on revealing binary eccentricity. LCs are obtained by modeling the disk thermodynamics with an
adiabatic equation of state, a local blackbody cooling prescription, and corrections to approximate the effects
of radiation pressure. We find that modulation of multiband LCs on the orbital time scale are generally in
phase (to within∼2% of a binary orbital period), but they contain pulse substructure in the time domain that is

not necessarily reflected in BH accretion rates _M. We thus predict that binary-hosting active galactic nucleus
(AGN) will exhibit highly correlated, in-phase, periodic brightness modulations in their low-energy disk
emission. However, detectability of these modulations in multiwavelength observing campaigns could be
compromised because observed stochastic variability in AGNs typically has a higher amplitude than our
proposed signal. It is possible that observations over temporal baselines of many binary periods may make the

signal more prominent, but this would need to be analyzed carefully. If jet emission is predicted by _M, then we
predict a weaker correlation with low-energy disk emission due to the differing subpeak structure. For the
binary parameters we explore, we show that LC variability due to hydrodynamics likely dominates Doppler
brightening for all equal-mass binaries with diskMach numbers≲20. A promising signature of eccentricity is

weak or absent “lump” periodicity. We find hints that a significant lag exists between _M and low-energy disk
emission for circular binaries, but they are in phase for eccentric binaries, which might explain some “orphan”
blazar flares with no γ-ray counterpart.

DOI: 10.1103/PhysRevD.106.103010

I. INTRODUCTION

Cosmic structure forms hierarchically [1], thus galaxies
merge frequently [2]. Since most galaxies host a super-
massive black hole (SMBH) e.g., [3–5], postmerger
galaxies will likely host a supermassive black hole
binary (SMBHB) at some stage of their evolution [6].
Gravitational waves from orbiting SMBHB systems will
likely be observed by the upcoming Laser Interferometer
Space Antenna (LISA) mission [7], and the NanoGrav
Collaboration has recently reported a pulsar timing array
(PTA) stochastic common-process signal [8], which might
be the cumulative gravitational wave background sourced
by a population of SMBHBs.
For now, the identification of compact SMBHBs (sub-

parsec separation, yearlike orbital period) relies on electro-
magnetic (EM) surveys e.g., [9–13]. Those studies, and
many others, report evidence for periodically modulated

light curves from active galaxies (AGN), ranging from
infrared to γ-ray energies [for a recent review, see
Ref. [14] ]. However, it is not unlikely to observe several
cycles of apparent brightness modulation in stochastically
variable sources [15]. Furthermore, binarity is not the only
possible cause of genuine periodicity; there are single-
SMBH disk processes that might produce quasiperiodic
emission as well. These include limit cycles triggered by
Lightman-Eardley instabilities [16,17], or iron opacity-
driven modulations of the disk thickness [18]. Detailed
predictions of the multiband EM signatures of binary
accretion are thus motivated to aid in the interpretation
of electromagnetic SMBHB candidates.
There are at least two independent causes of periodic

variability from accreting binaries: Doppler brightening,
and hydrodynamic variability. Doppler modulation is
caused by the line-of-sight orbital velocity vk, and induces
Oðvk=cÞ corrections to the emission from gas around each
BH component. This effect can be reliably computed for
a range of orbital parameters and orientations [19–21].
Hydrodynamic variability refers to any other changes in the
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system’s luminous output that are connected to the dynam-
ics of binary accretion. This includes fluctuations in the
thermal emission from the disk surfaces arising from
adiabatic, viscous, or shock heating. It can also include
modulations of a jet luminosity, as induced for example by
the time-varying mass accretion rate onto one or both BH
components. Our focus in this work is on modeling the
hydrodynamic variability of SMBHBs.
Simulated light curves modulated by hydrodynamic

processes in accreting equal-mass, circular binaries have
been reported previously [22–31]. However, eccentricity
can evolve due to interaction with the surrounding gas (see
e.g., Refs. [32,33]). Zrake et al., [34] found that binaries in
the gas-driven regime are likely eccentric with e ≃ 0.4–0.5
(see also Ref. [35]). Presentations of simulated light
curves from eccentric binaries have been limited (see
e.g., Ref. [36]). Since gravitational radiation damps eccen-
tricity [37], only very compact binaries, in the gravitational
wave (GW) driven regime, are expected to be on nearly
circular orbits (e≲ 0.01Þ [34,38]. It is thus important to
predict light curves of both circular and eccentric systems.
In particular, robust EM signatures of orbital eccentricity
could indicate whether an electromagnetic SMBHB is in
the GW or gas-driven regime, independently of the BH
mass and separation estimates.
In this work, we calculate the light curves of accreting

SMBHBs with yearlike orbital periods, and eccentricity
values of e ¼ 0, 0.45, and 0.7. Light curves of the thermal
disk emission are computed at infrared and optical wave-
lengths. We also report nominal light curves of nonthermal
γ-ray emission, based on the assumption that the jet
luminosity is controlled by the accretion power, which
we can accurately measure from our simulations. These
predictions can serve as a guide to interpreting AGNs
(especially blazars) that exhibit periodicity at different
wavelengths. We pay particular attention to the differ-
entiating characteristics of eccentric versus circular binaries
The paper is organized as follows. In Sec. II we describe

our models for the binary, disk, gas, and cooling prescrip-
tion, as well as other technical details. In Sec. III we
describe pertinent numerical details of our simulations,
including the disk initial conditions. Results are presented
in Sec. IV. We focus primarily on the following LC
observables; modulation periods, amplitudes of hydrody-
namic variability, relative power in different electromag-
netic bands, and temporal lags and correlations between
bands. We discuss our results in greater detail in Sec. V,
including: evidence of binarity (Sec. VA), evidence of
eccentricity (Sec. V B), Doppler brightening (Sec. V C),
considerations which must be made when applying our
results to observations, with particular blazars used as a
basis for discussion (Sec. V D), and caveats of our approach
(Sec. V E). We conclude in Sec. VI. The appendixes
describe numerical prescriptions that were used to attain
stable, long-term numerical evolution (Sec. A), sensitivity

tests and their tabulated results (Sec. B), details of a
Doppler brightening calculation (Sec. C), and numerical
convergence properties of the solution scheme (Sec. D).
Throughout this work, “orbits” refer to binary orbits unless
specified otherwise.

II. MODELS

A. Binaries

Our aim is to model the light curves of accreting
SMBHB systems in the gas-driven evolutionary phase,
with realistic orbital parameters and hydrodynamic con-
ditions. We motivate our fiducial model selections from
the following considerations. First, gas accretion tends
to equalize the binary component masses (see e.g.,
Refs. [39,40]) so we have chosen to simulate equal-mass
systems. Equilibrium eccentricities for equal-mass binaries
have now been measured in simulations, so we choose
models with those eccentricity values. Observationally
relevant orbital periods for electromagnetic surveys and
PTAs are typically yearlike, so we choose the component
mass and separation accordingly.
The disk hydrodynamic conditions are selected in part to

satisfy the requirement that the vast majority of the system’s
infrared and optical emission is produced on length scales
that are resolved in the simulation. In other words, the
simulation domain must enclose the part of the circum-
binary disk which emits in the infrared, and the thermal
emission at unresolved length scales very near the BH
components should be mostly at UV and higher energies.
This requirement implies the disk surface temperatures
must lie in a particular range. The temperature is controlled
by an appropriate choice of the disk surface density and
effective viscosity. See Secs. II I and II J for more dis-
cussion about how we meet these requirements.
These considerations motivate a fiducial model with

mass ratio q≡M2=M1 ¼ 1, total mass M≡M1 þM2 ¼
8 × 106 M⊙, and orbital period Tbin ¼ 1 yr (semimajor
axis a≃9.7×10−4 pc≃2530Rg, where Rg ¼ GM=c2). We
consider three different eccentricity values e ∈ f0; 0.45;
0.7g. The circular e ¼ 0 and eccentric e ¼ 0.45 cases were
found to be equilibrium values for binaries in the gas-driven
regime in [34], and a similar equilibrium eccentricity of
e ¼ 0.4 was later reported in [35]. Both studies used a
locally isothermal equation of state for the gas, with orbital
Mach number vkep=cs ¼ 10, where vkep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=r

p
is the

Keplerian orbital velocity and cs is the isothermal
sound speed.
Calculating thermal emission from the disk surface

requires a self-consistent treatment of the gas thermody-
namics, so in this study we drop the locally isothermal
simplification and solve the hydrodynamics equations with
an adiabatic equation of state (see Sec. II C) and radiative
cooling prescription (see Sec. II G). As demonstrated
in [41], the disk thermodynamics can have a significant
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effect on the binary orbital evolution, so the equilibrium
value e ≃ 0.45 is expected to be approximate in our case,
and we leave to future work a determination of the
equilibrium value of eccentricity with more realistic
thermodynamics. A more extreme eccentricity of e ¼ 0.7
is included in our study, in order to check how generic our
results are.
Embedded in a thin accretion disk, these binaries are

likely in the gas-driven regime of orbital evolution, where
significant eccentricity is expected. We estimate the semi-
major axis at which there is a transition between gas-driven
and GW-driven regimes, aGW, by equating the rate of gas-
driven inspiral to the rate of GW-driven inspiral. This is done
by plugging post-Newtonian evolution [37] of the semimajor
axis a into the following relation and then solving for a,

da
dM

¼ −l
a
M

; ð1Þ

where l ¼ Oð1Þ is an “eigenvalue” [42,43] determined by
gas accretion physics. For example, an effective value
of l ≃ 0.43 was reported for binaries with nonzero,
near-equilibrium eccentricity [35]. The result of this sub-
stitution is

a4GW ¼ M
_M

1

l
64

5

G3M1M2M

c5ð1 − e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
�
: ð2Þ

Specializing to equal-mass binaries with eccentricities of
either e ¼ 0 or e ¼ 0.45, and scaling Eq. (2) according to
our target system parameters (described fully in subsequent
sections), we obtain the expression for arbitrary total binary
mass M, accretion rate _M, and accretion eigenvalue l,
relative to our fiducial binary,

aGW ≃ 10−3 pc × BðeÞ

× l−1=4
�

_M

10 _MEdd

�−1=4� M
8 × 106 M⊙

�
3=4

; ð3Þ

where Bðe ¼ 0Þ ≃ 0.73 and Bðe ¼ 0.45Þ ≃ 1. In other
words, our fiducial binary is very close to having gravita-
tional waves start to dominate over gas torques.

B. Disk

When discussing the general characteristics of our target
system, we speak of a single black hole of mass M,
surrounded by a geometrically thin and optically thick
Shakura-Sunyaev accretion disk model with constant-α
viscosity [44] (α ¼ 0.1) undergoing near-Keplerian rota-
tion. However, we will be placing a binary in the system
instead of a single black hole. We largely follow the purely
Newtonian treatment given in [45], except we relate the
disk effective temperature Teff to the mid-plane temperature
T via

T4
eff ¼

4

3

T4

κΣ
; ð4Þ

and we use the sound speed appropriate for a fluid
composed of a nontrivial mixture of gas and radiation.1

We assume the black hole accretes at 10 times the
Eddington rate, i.e., _M ¼ 10 _MEdd, where _MEdd ¼
LEdd=ðηc2Þ and the radiative efficiency is assumed to be
η ¼ 0.1. This choice of accretion rate is primarily moti-
vated by obtaining a numerically tractable Mach number
M ∼Oð10Þ, which also allows a comparison with
past work.
The disk is Toomre stable out to a radius such that

Q ≥ csΩ=ðπGΣÞ ¼ 1, where Ω is the Keplerian angular
frequency of the gas and Σ ¼ 2hρ is the surface density.
The disk semithickness h around a single black hole is
given by an approximate solution to the equation of vertical
hydrostatic balance, h ≃

ffiffiffiffiffiffiffiffi
P=ρ

p
Ω−1, and P is the total (i.e.,

gas and radiation) pressure. In terms of the semimajor axis
of our chosen binary, a ≃ 10−3 pc, the disk is Toomre stable
out to r ≃ 11a. We neglect the self-gravity of the disk,
which is justified to the extent that the disk is Toomre stable
out to a radius significantly larger than a.
The orbital Mach number profile MðrÞ ¼ vKðrÞ=csðrÞ

increases rapidly with radius. For example, MðaÞ ≃ 7,
Mð1.5aÞ ≃ 11, and Mð3aÞ ≃ 21. (Note that in our
simulations, the Mach number profile develops self-
consistently from a balance of heating and cooling.) The
effective optical depth τeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τabsorpðτabsorp þ τscatteringÞ

p
at some radii of interest from the single black hole is
τeffðr ¼ aÞ ≃ 105 and τeffðr ¼ 0.02aÞ ≃ 2, where we esti-
mate τabsorp from the Planck mean opacities tabulated
online2 for Milky Way elemental abundance, and we take
the scattering opacity to be due to electron scattering. Our
assumption of optical thickness and blackbody cooling
spectra are justified to the extent that τeff > 1. The viscous
time scale tν ≡ ð2=3Þr2=ν becomes equal to the cooling
time scale tcool ≡ U= _Q at r ≃ 0.18a ≃ 460 Rg, where U is
the surface density of internal energy and _Q is the cooling
rate per area. Our assumption of radiative efficiency is
justified to the extent that tcool < tν, which may be violated
in the innermost regions of the minidisks in our binary
simulations.
In our target model above, radiation pressure dominates

the disk. For example, the gas pressure fraction β≡ Pgas=P

1Rather than the relation T4
eff ¼ 2T4=ðκΣÞ and isothermal

sound speed cs ¼
ffiffiffiffiffiffiffiffi
P=ρ

p
used in [45]. The sound speed for a

mixture of gas and radiation pressure is given by c2s ¼ γβP=Σ,
where γβ≡βþð4−3βÞ2ðΓ−1Þ=ðβþ12ðΓ−1Þð1−βÞÞ, Σ and P
are the vertically-integrated mass density and total pressure, β is
the gas pressure fraction β≡ Pgas=P, and Γ is the adiabatic
index of the gas component of the fluid. γβ interpolates between
γ0 ¼ 4=3 and γ1 ¼ Γ.

2https://aphysics2.lanl.gov/apps/
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at some radii of interest are βðr ¼ aÞ ≃ 9.4 × 10−4 and
βðr ¼ 3aÞ ≃ 0.016. Including radiation pressure in simu-
lations is a nontrivial task algorithmically, and the disk may
be subject to limit-cycle instabilities [16,17]. Thus, we use
only gas pressure in this work, and below we describe our
strategy to approximate the effects of radiation pressure.

C. Gas

We use a Γ-law equation of state with Γ ¼ 5=3, yielding
the equation of state P ¼ ΣϵðΓ − 1Þ, where Σ and P are
respectively the vertically-integrated mass density and
pressure, and ϵ is the specific internal energy density at
the midplane of the disk. We use constant-α visco-
sity yielding a kinematic shear viscosity ν ¼ αcsh,
where c2s ¼ ΓP=Σ. For a binary, the disk semithickness
is h ¼ ffiffiffiffiffiffiffiffiffi

P=Σ
p

=Ω̃, where Ω̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM1=r31 þGM2=r32

p
and

r1, r2 are the distances from a field point to the respective
point masses M1, M2.
The vertically-integrated Newtonian fluid equations keep

the lowest nontrivial order in powers of z=r under the
conditions of a thin disk (h=r ≪ 1) and mirror symmetry
about z ¼ 0. These equations read

∂tΣþ∇jðΣvjÞ ¼ SΣ; ð5Þ

∂tðΣviÞ þ∇jðΣvjvi þ δjiPÞ ¼ gi þ∇jτ
j
i þ Sp;i; ð6Þ

∂tEþ∇j½ðEþ PÞvj� ¼ vjgj þ∇jðviτjiÞ − _Qþ SE; ð7Þ

where vi is the midplane horizontal fluid velocity; E ¼
Σϵþ ð1=2ÞΣv2 is the vertically-integrated energy density;
gi is the vertically-integrated gravitational force density;
τji ¼ Σνð∇ivj þ∇jvi − ð2=3Þδji∇kvkÞ is the viscous stress
tensor (in a form that is trace-free in a three-dimensional
sense)3 with zero bulk viscosity; SΣ, Sp;i, and SE are the
mass, momentum, and energy sinks, and _Q is a radiative
cooling term, described in Sec. II G. Thermal conductivity
is neglected.

D. Gravity

We model the vertically-integrated gravitational force
from a point mass Mn as that arising from a Plummer
potential,

Φn ¼ −
GMnffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2n þ r2s

p ; ð8Þ

where rn is the distance from a field point to the nth mass,
and rs is the softening length. In this work, we set the

softening length equal to the sink radius, rs ¼ rsink (defined
in Sec. II E). Alternative models of the vertically-integrated
gravitational force, such as assuming rs ∝ h, may yield
stronger gravity near point masses, which may alter the gas
dynamics appreciably. We leave a careful study of this to
future work.

E. Sinks

To model accretion onto scales below the grid separation,
we use torque-free sink prescriptions [46,47] for each point
mass. The torque-free sink models a steady accretion flow
with a torque-free inner boundary, implying that angular
momentum is advected inward and viscously transported
outward in equal measure. The sink terms are

SΣ ¼ −sΩΣ
X
n

wn; ð9Þ

Sp;i ¼ −sΩΣ
X
n

v�i;nwn; ð10Þ

SE ¼ −sΩ
X
n

E�
nwn; ð11Þ

where the star superscript is defined below, s is a dimen-
sionless sink rate, Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a3

p
is the Keplerian angular

frequency of the binary, and wn is a dimensionless window
function defined in terms of a sink radius rsink and a
distance rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xnÞ2 þ ðy − ynÞ2

p
from a field point

ðx; yÞ to the nth point mass ðxn; ynÞ as

wn ¼ exp f−ðrn=rsinkÞ4g: ð12Þ

For rn=rsink > 4, we truncate the window function to
wn ¼ 0. Torque-free sinks are achieved through an adjust-
ment of the velocities, which appear in Eqs. (10) and (11)
with a star superscript,

v⃗�n ≡ ððv⃗ − v⃗Mn
Þ · r̂Mn

Þr̂Mn
þ v⃗Mn

; ð13Þ

where vi;Mn
is the velocity of point mass Mn and r̂Mn

is the
unit radial vector in a coordinate system centered on
point mass Mn. This adjustment removes the angular
component of the velocity in the frame that moves with
and is centered on the point mass. When used in Eqs. (10)
and (11), torque-free sinks are attained. Note that the
kinetic energy in Eq. (11) has been modified such that
E�
n ≡ Σϵþ ð1=2ÞΣðv⃗�nÞ2.

F. Accretion rate

In our target system, we assume an accretion rate of
10 times the Eddington rate in the background disk with
radiative efficiency η ¼ 0.1. Recent numerical work has
shown that such super-Eddington accretion rates can be
physically realized (see e.g., Ref. [48]), but our motivation

3Note this viscous stress tensor should be understood as being
inserted after vertical integration of the perfect fluid equations, as
a model of unresolved turbulence and magnetic fields.
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for this choice is primarily to obtain numerically-tractable
Mach numbers. However, note that the rate of mass flux in
the disk is not necessarily the rate of mass absorbed by the
black hole, since there may be outflows which occur at
subgrid scales or are otherwise uncaptured phenomena in
our simulations. The surface density and viscosity are related
to the accretion rate via _M ¼ 3πΣν (see e.g., Ref. [16]).
As mentioned above, we are modeling our target system

using a gas-dominated fluid. Our strategy to do so is to
match the Mach number of the initial disk profile of our
target system at one particular radius, via large adjustments
of the accretion rate into the extremely super-Eddington
regime. The extremely super-Eddington accretion rate
should be viewed as an artificial aspect of our gas-
dominated simulations, whose purpose is only to yield
Mach numbers in a similar range as the radiation-domi-
nated target model. As a check of the sensitivity of our
results, in our gas-dominated model we study three cases
where the initial Mach number is matched to the target
system at radii r ¼ fa; 1.5a; 3ag (where the initial Mach
number is M ≃ f7; 11; 21g, respectively). The accretion
rates which achieve these Mach numbers in the gas-
dominated model are respectively A≡ f6.7 × 106;
8.15 × 105; 2.3 × 104g times the Eddington rate. (See
Fig. 1 for a comparison of the initial Mach profiles of
the target model and its gas pressure approximations.)
Since the effective temperature is related to the accretion

rate via

T4
eff ∝ _M; ð14Þ

these artificially high accretion rates in the gas-dominated
models result in artificially high effective temperatures,

which affect the light curves in different bands. Thus, when
computing light curves in postprocessing, we adjust the
effective temperature uniformly back down to our target
system via the map T4

eff → T4
eff × 10=A, where the factor

of 10 comes from the target system’s accretion rate of
10 × _MEdd. In a steady disk, this mapping exactly repro-
duces the effective temperature profile of our target system;
in the presence of a binary, there is nontrivial dynamics, so
this mapping is approximate. In our binary simulations, the
artificially high accretion rates scale up viscous heating,
radiative cooling, and shock heating in roughly the
same proportions. To see this, note that viscous heating
scales linearly with _M as long as velocity profiles remain
approximately invariant,

∇jðvjτjiÞ ∝ Σν ∝ _M: ð15Þ

Radiative cooling scales similarly,

_Q ∝ T4
eff ∝ _M: ð16Þ

Lastly, shock heating is described by the Rankine-Hugoniot
condition for the energy equation, which scales linearly
with _M as long as the adiabatic index Γ and Mach number
M are also held approximately fixed,

E ¼ Σϵþ ð1=2ÞΣv2

¼ P
�

1

Γ − 1
þ ð1=2ÞM2Γ

�
∝ P ∝ Σcsh ∝ Σν ∝ _M: ð17Þ

We believe the largest discrepancy will be in shock heating,
primarily because the Mach number is not matched well
everywhere (the radiation-dominated model has a steep
increase of M with r, whereas the gas-dominated model
has a much flatter profile—see Fig. 1).

G. Cooling

Wemodel radiative cooling assuming geometrically thin,
optically thick gas, using

_Q ¼ 8

3

σT4

κΣ
; ð18Þ

where σ is the Stefan-Boltzmann constant, κ ¼ 0.4 cm2 g−1

is the opacity due to electron scattering, and T¼
ðmp=kBÞP=Σ is the midplane temperature assuming
hydrogen dominates the gas density. In postprocessing,
the effective temperature on one face of the disk is obtained
from _Q via the relation

_Q ¼ 2σT4
eff ; ð19Þ

FIG. 1. Mach number profiles of circumsingle α-disks, which
are used as initial conditions for binary simulations. The Mach
number in models with only gas pressure are matched to the
radiation-dominated target model at specific radii.
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where the factor of 2 comes from the fact that cooling
occurs on both faces of the disk.

H. Spectra

We assume blackbody emission from each cell of our
domain, which allows us to compute the cooling luminosity
in different bands. We therefore neglect possible dynamical
variations in optical thickness. We neglect Doppler effects,
so our light curves are valid for observers who are oriented
face-on to the disk. We take the infrared range of wave-
lengths λ to be 700 nm –1 mm, and the optical range to
be 400 nm –700 nm.

I. Subsink emission

To estimate the cooling luminosity occurring below the
sink scale, we model the subsink disks as gas-dominated
Newtonian multicolor α-disks with Γ ¼ 5=3 that is instan-
taneously in equilibrium with the respective accretion rates
as registered by the sink terms. We integrate the cooling
luminosity from the sink radius rsink down to the innermost
stable orbit r ¼ 6GMn=c2 of an assumed Schwarzschild
black hole. The purpose of this estimate is to gauge how
much of the electromagnetic emission is resolved on the
grid. We report the infrared and optical bands since we
can resolve them to a high degree, whereas only a small
minority of UV and higher-energy bands are resolved.
Note that we perform the effective temperature mapping
described in Sec. II F when estimating the subsink
emission.

J. Superdomain emission

Similarly to our estimate of the subsink emission, we
also estimate the missing emission at radii beyond our
computational domain, except the assumed accretion rate
is the constant one prescribed in the initial conditions.
Superdomain optical emission is negligible [Oð1037Þ erg=s],
whereas infrared emission is not. A caveat is that the
superdomain emission may not be well represented by an
axisymmetric disk, since it may be Toomre unstable or
subject to ionization instabilities.

III. NUMERICS

We use Cartesian coordinates on a square domain with
side length 2D, where D ¼ 15a is the fiducial domain
radius measured from the center of the grid. Our fiducial
resolution is Δx ¼ Δy ¼ 0.01a, and we use a Courant-
Friedrichs-Lewy factor in the range C≡ 0.02–0.1 (depend-
ing on how demanding the simulation proves to be), giving
a time step Δt ¼ CΔx=maxðjvxj þ cs; jvyj þ csÞ. We uti-
lize the Harten-Lax-van Leer-Einfeldt (HLLE) flux for-
mula, piecewise-linear extrapolation of primitive variables
to the cell interfaces, and second-order total variation
diminishing (TVD) Runge-Kutta time stepping. Slope
limiting is done using the generalized minmod limiter,

with parameter θ ¼ 1.5. This value yields a good balance
between robustness and low numerical diffusion.
The cooling term in Eq. (18) is included on the right-

hand side of the energy-evolution equation, Eq. (7). In
regions where the cooling time scale is shorter than the time
step size Δt, the gas temperature can go negative unless
additional care is taken. A robust approach, described
in [49] and which we have adopted in our code, is to
apply the cooling term in a semi-implicit manner, where the
internal energy subtracted in a time step is determined by
analytic integration of the cooling curve over the time
interval Δt, such that ΔQ ¼ R

tþΔt
t

_Qðt0Þdt0. This procedure
is effective, and not costly in terms of performance.
“Buffer” source terms are employed in the vicinity of

the grid boundaries which drive the solution to the initial
conditions for the disk. This results in a squishy outer
boundary which prevents the square grid edges from
propagating artifacts into the inner region of the domain.
For fluid variables U⃗ and initial condition U⃗0, the buffer
source terms have the form

B⃗≡ −fðrÞΩjr¼DðU⃗ − U⃗0Þjr¼D−0.1a; ð20Þ

where fðrÞ increases linearly from 0 at r ¼ D − 0.1a to
1000 at r ¼ D (and is zero otherwise), and Ωjr¼D is the
Keplerian angular frequency at the domain radius.
Additional artificial prescriptions for code stability

are described in Appendix A. Sensitivity tests of our
science results to various prescriptions are described in
Appendix B. Where applicable, we quote results with
uncertainties as indicated by the sensitivity tests.

A. Initial conditions

The disk initial conditions are

Σ ¼ Σ0

�
rsoft
a

�
−3=5

;

P ¼ P0

�
rsoft
a

�
−3=2

;

v⃗ ¼
ffiffiffiffiffiffiffiffi
GM
rsoft

s
ϕ̂; ð21Þ

where rsoft ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2s

p
. We also initialize a central cavity

of radius 2a with a sharp edge by multiplying Σ and P by

10−4 þ ð1 − 10−4Þ expf−ð2a=rsoftÞ30g: ð22Þ

For the case Mð1.5aÞ ≃ 11, we set Σ0 ≃ 0.48M=a2,
P0 ≃ 0.002MΩ2

bin. For the case MðaÞ ≃ 7, we set Σ0 ≃
1.7M=a2, P0 ≃ 0.019MΩ2

bin. For the caseMð3aÞ ≃ 21, we
set Σ0 ≃ 0.057M=a2, P0 ≃ 6.7 × 10−5MΩ2

bin.
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B. Grid refinement

We evolve all runs initially with a resolution of Δx ¼
0.02a and sink radius rsink ¼ 2Δx. The disk settles into a
statistically quasisteady state on the order of a viscous time,
which for our different Mach number runs is tν ≃ 50–500
orbits. When the runs are near our desired analysis time
(typically 600 orbits), we refine the grid uniformly to a
resolution of Δx ¼ 0.01a, using zeroth-order interpolation
and keeping the sink size fixed (so that rsink ¼ 4Δx
following refinement), and run for an additional 100 orbits
in order to allow the system to settle (typically to 700
orbits). Based on qualitative inspection of the mass accre-
tion rates, the system typically settles within ≲10 orbits
following refinement (and more quickly for higher reso-
lution and smaller sink radius). The duration for our
analysis is the subsequent 100 orbits (typically orbits
700 –800). We present tests of sensitivity to the analysis
time and the duration of pre-analysis evolution at Δx ¼
0.01a in Appendix B (test labels: AT and ET, respectively).
In our resolution and sink-shrinking tests (test labels: Δx

and rsink, respectively), we refine the grid again at 700
orbits from Δx ¼ 0.01a to Δx ¼ 0.005a, and evolve at the
latter resolution until 800 orbits. In the case of the sink-
shrinking test, we keep the ratio rsink=Δx ¼ 4 fixed, since
we believe the sink is well resolved at this value, and we
scale up the dimensionless sink rate according to the
viscous time at the sink radius, s ∝ r2sink. The duration
for our analysis at a resolution of Δx ¼ 0.005a is then
roughly orbits 800 –840.
In our sink-shrinking test, we refine the grid once more at

800 orbits to Δx ¼ 0.0025a, once again keeping the ratio
rsink=Δx ¼ 4 fixed and scaling up the sink rate according to
s ∝ r2sink. Since the computational cost of running at this
resolution is so high, we begin analysis immediately, with
the analyzed duration being roughly orbits 800–814.

C. Integrating Planck spectra

The blackbody luminosity from an area element dA of
the computational domain between frequencies ν1 and ν2 is

dL ¼ πdA
Z

ν2

ν1

2hν3c−2dν
expf hν

kTeff
g − 1

: ð23Þ

For computational expedience, we perform the frequency
integral in Eq. (23) approximately using the method of [50],
with the sum in their Eq. (6) carried out to n ¼ 15, which
resulted in Oð1Þ% accuracy in our tests. When integrating
Eq. (23) over the area of the disk, we omit the buffer
region r > D − 0.1a.

IV. RESULTS

In this section, we provide descriptions of some of our
figures and make basic observations. We go into greater
depth about the astrophysical implications of our results in

Sec. V. When applicable, we quote ranges for our results,
which accommodate all of our sensitivity tests presented in
Appendix B. This is a conservative approach that is
preferable to quoting simple averages of our test results,
because the tests are not all equally important.
We have removed long-term (≳20-orbit) trends and

applied subsink corrections to all light curves, and applied
superdomain corrections to the infrared light curves,
as described in Secs. II I and II J. The superdomain
correction to the infrared light curves amounts to roughly
2 × 1042 erg=s when the domain radius is D ¼ 15a, and
roughly 1.5 × 1042 erg=s when D ¼ 20a. The superdo-
main correction is uniform in time, whereas the subsink
correction depends on the instantaneous accretion rate
by each sink. For circular binaries, the proportion of
time-varying luminosity that is resolved on the grid at a
resolution of Δx ¼ 0.01a and sink radius rsink ¼ 4Δx is
approximately 87% for optical and 97% for infrared. In our
sink radius sensitivity tests, where Δx ¼ 0.005a and
rsink ¼ 0.04Δx, the resolved portions improve to approx-
imately 94% for optical and 99% for infrared. Reducing the
sink further, so that Δx ¼ 0.0025a and rsink ¼ 4Δx, we
resolve approximately 98.5% of optical and 99.7% of
infrared. For eccentric runs with e ¼ 0.45, the trends for
the resolved portions of time-varying luminosity as the sink
radius is reduced is approximately f80%; 91%; 97%g for
optical and f97%; 99%; 99.7%g for infrared. We therefore
believe we are able to capture enough optical and infrared
emission to make conclusions that are useful to observing
campaigns.
To orient the reader, in Fig. 2 we display snapshots from

our runs at different Mach numbers. All binaries orbit
counterclockwise in the figure. The runs with the highest
Mach number [Mð3aÞ ¼ 21, top row] have notably dis-
ordered accretion streams and cavity walls, relative to the
lower-Mach runs. Mach number is known to affect the
stability of compressible laminar flows in ways which are
difficult to anticipate in general. However, in a disk with
constant-α viscosity, ν ∝ M−2 and thus higher Mach flows
in circumbinary disks are less stable due to the Reynolds
number scaling with Mach number as Re ∝ M2. The
eccentric runs (right column) are all shown at pericenter
passage. White circles are drawn around each black hole
corresponding to the Eggleton estimate of the Roche lobe
radius specialized to q ¼ 1, [51], rEgg ≡ a × 0.49=ð0.6þ
lnð2ÞÞ for the circular binary, and we extend this to the
eccentric case via the same adjustment that the pericenter
distance would receive, namely rEgg → ð1 − eÞrEgg. The
M ∈ f7; 21g snapshots in Fig. 2 are from runs with
resolution Δx ¼ 0.01a, whereas the snapshots from the
M ¼ 11 runs (middle row) are from our highest resolution
runs with Δx ¼ 0.0025a. All snapshots shown have
rsink ¼ 4Δx.
Figure 3 displays optical and infrared light curves (in the

system’s cosmological rest frame) over a 15-orbit window
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for our fiducial viscosity α ¼ 0.1, eccentricities e ∈
f0; 0.45g, resolution Δx ¼ 0.01a, and sink radius rsink ¼
4Δx. From top to bottom, rows represent different initial
Mach number profiles parametrized by Mð3aÞ ≃ 21,
Mð1.5aÞ ≃ 11, and MðaÞ ≃ 7; each case is a different
representation of our target system accreting at 10 times the
Eddington rate, as described in greater detail in Sec. II F.
We observe that the qualitative appearance of the light
curves can vary substantially with Mach number, in
particular the eccentric case with M ¼ 21. In all cases,

the light curves have a spiky appearance, and the visual
impression of periodicity tends to decrease at larger Mach
number. Also evident in Fig. 3 is the presence of the “lump”
period in the light curves from the circular binary. The lump
has been seen in past studies, and has been described as an
m ¼ 1 overdensity that moves along the eccentric cavity
wall surrounding the binary, with a period equal to several
binary orbital periods. In addition to the lump periodicity,
we observe in Fig. 3 a faster modulation on the order of the
orbital period. The orbital modulation is especially obvious
in the eccentric case, for M ∈ f11; 7g. We also observe
that variability in the light curves is substantial (which is
purely hydrodynamic, in contrast with a Doppler variabil-
ity). For the circular binary, the root-mean-squared (rms)
variability is 3.3–8.5% in the optical band, and 0.90–2.6%
in the infrared. For the eccentric binary, it is larger;
7.7–15% in the optical and 1.9–3.5% in the infrared (see
Tables I and II). Note that the peak-to-trough difference is
roughly 3 times the rms variability. We compare this
variability to Doppler brightening in Sec. V C.
Figure 4 provides quantitative corroboration of our

qualitative judgements about Fig. 3. The panel organization
is the same, except Lomb-Scargle periodograms (normal-
ized to a maximum value of 1) are plotted versus frequency
in units of orbits−1. The lump frequency is obvious for
the circular binary, having a range of values corresponding
to a period of ≃5–10 binary orbital periods. We also see
prominent peaks near the orbital frequency of 1, although
for the circular binary the peak is quite obviously at
≃1.4 orbits−1. The peak at ≃1.4 orbits−1 decreases towards
the orbital frequency in our sink-shrinking tests. This
behavior is shown in Fig. 5. But to be conservative about
our conclusions, the range of frequencies for the near-
orbital modulation for the circular binary is quoted as
1.0–1.5 in Appendix B, and we refer to this modulation as
the “fast” frequency ffast or the “near-orbital” frequency.
A similar frequency of 1.46 orbits−1 was observed in past
studies [29,52,53], and was interpreted as a beat frequency
(for example, 2ðfbin − flumpÞ, where fbin and flump are the
binary and lump frequencies). Given the lump frequencies
we find, and the fact that the near-orbital frequency varies
in our sink-shrinking tests, our ffast does not appear to be
such a beat frequency. Instead, our sink-shrinking test
shows that our ffast is a phenomenon dependent on
gravitational softening, sink size, sink rate, and/or reso-
lution (since our sink-shrinking test varies all of these
parameters simultaneously). We found in our investigations
that ffast − forb is the precession frequency of the mini-
disks, primarily driven by gravitational softening. Although
gravitational softening is required for stability in
Newtonian simulations, in the two-dimensional thin disk
setting, gravitational softening is required to account for
the vertically-integrated, plane-parallel component of the
gravitational force on the disk. Thus, if a result depends on
softening, it does not necessarily follow that the result is an

FIG. 2. Surface density snapshots, raised to the 1=4th power to
improve contrast. Left and right columns are circular and
eccentric binaries. All binaries are orbiting counter-clockwise.
Eccentric binaries are shown at pericenter. From top to bottom,
rows correspond to three Mach number runs which we have
labeled M ∈ f21; 11; 7g. The M ¼ 11 case displayed is our
highest resolution run, with Δx ¼ 0.0025a and rsink ¼ 4Δx.
The other Mach numbers are at Δx ¼ 0.01a and rsink ¼ 4Δx.
White circles are centered on each black hole, with radius
rEgg ≡ a × 0.49=ð0.6þ lnð2ÞÞ [51] for the circular binary
and ð1 − eÞ × rEgg for the eccentric binary. In physical units,
these radii are ≃3.7 × 10−4 pc for the circular binary and
≃2.0 × 10−4 pc for the eccentric one.
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artifact. Instead, the result may depend on the disk’s vertical
structure. We will report on this precession phenomenon
and its dependence on softening in greater detail in
future work.

The periodograms for the eccentric binary have a com-
parative absence of the lump frequency. Interestingly, how-
ever, it is not completely absent, especially in the infrared
band. TheM ¼ 21 case has several peaks at low frequency,

FIG. 3. Light curves in the optical (blue) and infrared (red) bands for circular (e ¼ 0, left column) and eccentric (e ¼ 0.45, right
column) binaries. From top to bottom, rows correspond to Mach numbers 21, 11, and 7. The lump period features prominently in the
circular case. Each light curve includes corrections from our estimates of subsink and superdomain emission.

FIG. 4. Normalized Lomb-Scargle periodograms of the optical (blue) and infrared (red) light curves for circular (e ¼ 0, left column)
and eccentric (e ¼ 0.45, right column) binaries. From top to bottom, rows correspond to Mach numbers 21, 11, and 7. The peak in the
circular case at ≃1.4 orbits−1 decreases towards the orbital frequency in our sink-shrinking tests (see Fig. 5).
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which may indicate a lumplike phenomenon. There is a
qualitative suggestion of the presence of a lump in the
corresponding panel of Fig. 2. Since higher Mach number
flows are inherently less stable, it is arguably not surprising
that a lump could appear at higher Mach numbers around the
eccentric binary. Further investigation of lump-like perio-
dicity in high-Mach number disks around eccentric binaries
is beyond our present scope, but it suggests that some
eccentric binaries can be circular binary “imposters.” In the
eccentric M ∈ f11; 7g cases, the first harmonic of the
orbital frequency appears clearly; harmonics often arise as
the Fourier representation of periodic pulses that do not have
a purely sinusoidal shape (as is the case in the corresponding
panels of Fig. 3).
To gain insight into where modulated emission comes

from, we present Fig. 6 for theM ¼ 11 case only, showing
normalized Lomb-Scargle periodograms for the infrared
emission coming from the minidisks (regions within rperi=2
from each black hole) and emission coming from elsewhere
(mostly the accretion streams and cavity wall). We refer to
the latter emission as the “cirumbinary” (CBD) emission.
The optical case (not shown) is similar, so we omit it in
order not to clutter Fig. 6. Other Mach numbers are also
similar, so we believe Fig. 6 is representative. For the
circular binary, we observe that the net minidisk emission is
dominated by the near-orbital period, whereas the accretion
streams and/or cavity wall are dominated by the lump
periodicity. In the eccentric case, all emission is dominated
by the orbital period. Spatial maps of the optical and
infrared luminosity are displayed in Fig. 7, showing bright
minidisks, a diffuse glow in the lump, and narrow bright
features along accretion streams and the shock-heated
cavity wall. For the circular binary, just as the minidisk
emission is not modulated significantly on the lump period,
nor are the accretion rates as registered by the sinks. This

means that lump periodicity does not transmit to the jet
emission via _M. However, it is conceivable that lump
periodicity could manifest in the jet via up-scattering of
photons emitted from the CBD.
We also note that for the circular binary, a beat frequency

appears in the emission from the individual minidisks
(not shown). This beat frequency is ffast − fbin, and it is
completely out-of-phase between the minidisks, which
explains why it does not appear in the periodogram of
the net minidisk emission in Fig. 6. It has a value similar to
a lump frequency (≃0.16 orbits−1 in the top panel of
Fig. 6), but is clearly distinct from the lump frequency
flump ≃ 0.11 orbits−1. Since ffast moves towards fbin in our
sink-shrinking test, the beat frequency ffast − fbin seems to
approach zero. Since our sink-shrinking test varies the
resolution, sink size, sink rate, and gravitational softening
length simultaneously, the beat frequency must be a
function of this subset of parameters. We will also inves-
tigate this in future work.
In Fig. 8 we plot the infrared-to-optical ratio (“color”),

with the same panel organization as Figs. 3 and 4. The lump
periodicity for the circular binary is noticeably suppressed
in comparison with Fig. 3. To the extent that the lump
periodicity is eliminated in the color, that indicates that the
lump signal is in-phase between the optical and infrared

FIG. 5. Normalized Lomb-Scargle periodograms of the infrared
light curves for theM ≃ 11 circular binary at different sink sizes.
Resolution is increased as the sink size is reduced, such that the
sink radius is always rsink ¼ 4Δx. The 1.4 orbits−1 frequency
appears to approach the orbital frequency in the limit of small
sink. Temporal baselines have been truncated to the length of the
highest resolution case, ∼14 orbits, which has widened the peaks
to a similar width. FIG. 6. Normalized Lomb-Scargle periodograms for the total

minidisk emission and emission coming from elsewhere (pri-
marily accretion streams and the cavity wall). As a representative
case, we only show the infrared emission from the run with
M ¼ 11, Δx ¼ 0.005a, rsink ¼ 4Δx. Optical emission (not
shown) is similar, except for a slightly less prominent lump
periodicity. For the circular binary, the lump periodicity is almost
absent in the minidisk emission. Emission from the accretion
streams and the cavity wall has a noticeable peak at 2 orbits−1,
which we interpret as ejected accretion streams shock-heating the
cavity wall twice per orbit.
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bands, and with a similar magnitude (relative to the
average) and shape in both bands. We describe this as
“achromaticity” of the lump periodicity. In Table VI, we

quantify the degree to which the prominence of lump
periodicity (in relation to the near-orbital frequency)
decreases when going from the individual infrared and
optical bands to the color: the prominence of lump
periodicity decreases by 46–83% compared to optical
and 80–99% compared to infrared. This is interestingly
different from the well-established “bluer when brighter”
chromaticity of general stochastic AGN variability.
For the eccentric binary, for M ∈ f11; 7g, although the

orbital modulation in different bands is clearly in phase
(peaking at pericenter, i.e., integer values of orbits, see
Fig. 3), the magnitude and shape of the two bands is
nonetheless different enough that the color peaks midorbit
(at the apocenter, i.e., at times halfway between integer
orbits). The average color is useful to compare to the
emission from a steady circumsingle disk around a black
hole of mass equal to the binary’s mass. The circumsingle
disk color is 0.94, whereas a circular binary has a modest
enhancement to 0.97–1.2, and an eccentric binary has an
even greater enhancement to 1.3–2.1. The color variability
on the near-orbital time scale is also a notable observable:
rms of 2.4–6.2% for circular binaries, 6.3–12% for eccen-
tric binaries. (See Tables VI and VII.) A direct comparison
to the complex phenomenology of AGN observations (see
e.g., Ref. [54]) is involved, and is beyond the scope of the
present study.
In Fig. 10 we plot the optical LC and total accretion rate

_M from our sink-shrinking study (test label: rsink in
Appendix B). The accretion rates are measured by the
sink terms, in a neighborhood of the black holes. The rows
show resolutions Δx ¼ 0.005a (top) and Δx ¼ 0.0025a

FIG. 7. Luminosity map snapshots, raised to the 1=4 th power
to improve contrast. Only the M ¼ 11 case is shown, from our
highest resolution runs. Left and right columns are circular and
eccentric binaries. All binaries are orbiting counterclockwise.
Eccentric binaries are shown at pericenter. Top and bottom rows
optical and infrared maps.

FIG. 8. Infrared-to-optical color as a function of time for circular (e ¼ 0, left column) and eccentric (e ¼ 0.45, right column) binaries.
From top to bottom, rows correspond to Mach numbers 21, 11, and 7. Each light curve includes corrections from our estimates of
subsink and superdomain emission.
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(bottom). The lag between the optical LC and _M appears
converged, and is highly in phase for the eccentric binary
(right column); for the circular binary (left column), they
are nearly out of phase. The infrared LC (not shown) is in
phase with the optical LC. If jet emission is well predicted
by _M, then this is a tantalizing hint of a smoking-gun
signature of eccentricity, in SMBHB candidates with well-
differentiated jet and disk emission. Without having per-
formed sink-shrinking tests for all of our sensitivity tests in
Appendix B, this result is not up to the same standard of
evidence as our other results tabulated in Appendix B.
However, it stands to reason that the smaller minidisks in
the eccentric case result in less buffering of incoming
perturbations, thereby allowing a greater degree of syn-
chronicity between the consequent minidisk heating (and
thus emission) and accretion by the black holes.
Lastly, in order to assess our assumption that the gas is

optically thick everywhere, we display the electron scatter-
ing optical depth τes of the gas in Fig. 9, where regions with
τes < 1 have been grayed out. The electron scattering
optical depth τes is a lower bound for the effective optical
depth (see Sec. II B). To compute this, as per Sec. II F, we
first scaled the surface density down to the general level of
our target model via the approximate map

Σ → Σ ×

�
10

A

�
: ð24Þ

This map follows from these relations,

_M → _M ×

�
10

A

�
; ð25Þ

_M ¼ 3πΣν; ð26Þ

ν → ≃ν; ð27Þ

and ansatz (for some n),

Σ → Σ ×

�
10

A

�
n
: ð28Þ

The only regions with τes < 1 are in the low-density cavity,
from which a subdominant amount of luminosity is
expected.

V. DISCUSSION

In this section we discuss our results in greater depth,
organizing into two categories: signatures of a binary in
general, and signatures of an eccentric binary in particular.
We then discuss the effect of Doppler brightening, which is
often a central consideration when modeling binary quasar
light curves [19,20]. Finally, we discuss, as an illustrative
example, a particular quasar with a claimed quasiperiodic
light curve, to which our results may be relevant in the
future. The optical and infrared signatures we discuss
presuppose that the emission from the system is either
dominated by the thermal disk emission rather than the
jet(s), a dusty torus, etc. (see Ref. [54]), or otherwise that
the thermal disk component can be separated out through
spectral modeling.
Throughout this section, we refer to root-mean-square

variabilities which is a readily recognized measure, but
keep in mind that the peak-to-trough variability (which is
more easily judged visually in plots) is roughly 3 times the
rms variability.

A. Signatures of a binary

One signature of binarity that would be very conspicuous
with a sufficiently long temporal baseline is the simulta-
neous presence of two significant periodicities separated by
a factor of ≃4.5–16. These would be the orbital (or near-
orbital) periodicity and the lump periodicity. Harmonics
of either of these periods are likely, but harmonics are such
a generic phenomenon (encoding nonsinusoidal pulse
shapes) that they are not strong evidence of binarity by
themselves. Even more conspicuous would be different
relative weights of the lump versus near-orbital periodicity
in different bands. We tend to find that the lower-energy
bands (infrared) tend to have an over-representation of the
lump periodicity, and an under-representation of the near-
orbital periodicity, relative to higher-energy bands (optical).
We generally find that optical variability on the orbital

time scale is significantly larger than infrared; we found
that infrared rms variability is≃0.90–3.5%, whereas optical
rms variability is ≃3.3–15% (see Tables I and II). This itself
is a signature of binarity, but may not be sufficiently
specific to be convincing. Note that stochastic AGN
variability amplitudes are also generally larger in bluer
bands, but the ratio between optical and infrared is
significantly below the factor of 3–4 we found for binaries

FIG. 9. Snapshots of the optical depth to electron scattering τes,
displayed on log scale. Only theM ¼ 11 case is shown, from our
highest resolution runs. Left and right are circular and eccentric
binaries, respectively. Regions with τes < 1 are in gray.
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here. If ordinary quasar light curve rms variability is on the
order of 10%, then the periodic hydrodynamic variability
due to a binary may very well be obscured, especially
without a temporal baseline extending for many binary
orbital periods.
The preponderance of our simulations show lags

between optical and infrared that are consistent with zero
(but see Tables IV and V for a few exceptions). Our
temporal cadence is roughly 2% of an orbit, which trans-
lates into lags≲1 week compared to our orbital period of
1 year (in the source frame). We measure lags by comput-
ing the discrete correlation function [55] between the two
signals, and seeing at which lag the first local maximum
occurs; correlations are quoted as the value at that local
maximum. We find the level of correlation between optical
and infrared to be ≃0.64–0.96. See Tables IV and V. If
ordinary quasar variability is of order 10% and uncorre-
lated, one would reasonably expect a decrease in these
correlations by an amount on the order of 0.1. Even so, the
level of correlation between different bands for circum-
binary emission is quite high.
The infrared-to-optical ratio (“color”) is on average

≃0.97–2.1, above the corresponding circumsingle disk
color of ≃0.94 (see Tables VI and VII). This may be an
important signature of binarity, but it would be important
to understand how much other processes in circumsingle
disks (e.g., Lightman-Eardley or ionization instabilities)
could enhance the color above ≃0.94. Chromatic variability
from a binary can be quite large (we find ≃2.4–12%),
and periodicity is generally present. For circular binaries,
the prominence of lump periodicity compared to the

near-orbital frequency decreases substantially when going
from specific bands to the color. For example, the lump
prominence decreases by 80–99% from the infrared band,
and by 46–83% from the optical band. See Table VI. This
degree of achromaticity is unusual for AGN. It is worth
mentioning a very recent work [56] finding chromatic
variability in blazars, in particular. Although our results
apply to more general AGN, we discuss applications of our
results to blazars in Sec. V D.

B. Signatures of an eccentric binary

Most of our simulations show a large relative lack of lump
periodicity in eccentric binaries versus circular binaries. This
may signal eccentricity, but some of our simulations show
that it is possible for eccentric binaries to be circular
imposters by exhibiting significant lump periodicity. Thus,
relative strengths of lump versus near-orbital periodicity in
different bands are tentative ways of distinguishing eccentric
and circular binaries which require further elucidation.
In optical, infrared, and in color, eccentric binaries have

systematically higher variability on the orbital time scale.
This is especially true of optical, with circular binaries
exhibiting ≃3.3–8.5% variability and eccentric ones exhibit-
ing≃7.7–15% variability. (See Tables I, II, VI, and VII.) The
average color is also significantly larger for eccentric binaries:
≃1.3–2.1 for eccentric versus ≃0.97–1.2 for circular. On the
other hand, we do not find a significant difference in
correlations between infrared and optical emission.
As discussed at the end of Sec. IV, Fig. 10 shows

a tantalizing result that the jet emission may have a

FIG. 10. Optical LC and total _M normalized by their averages for theM ¼ 11 high-resolution sink-shrinking study (test label: rsink in
Appendix B). Top row: Δx ¼ 0.005a, bottom row: Δx ¼ 0.0025a. Both cases have rsink ¼ 4Δx. Left column: circular binary, right
column: eccentric binary. Significant lags are apparent in the circular case, but absent in the eccentric case. The lags appear consistent
between the two resolutions, suggesting the lags are well resolved.
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significant lag with respect to low-energy disk emis-
sion for circular binaries, but not for eccentric binaries.
Deeper investigations are warranted, i.e., performing sink-
shrinking tests for all of our sensitivity tests in Appendix B.
Such a suite of simulations would be significantly more
costly than those we have already performed, and we intend
to do so in future work.

C. Doppler brightening

If the binary is not viewed face-on, then emitting gas
parcels will appear Doppler brightened (or dimmed). In
particular, the net motion of gas in each minidisk will cause
Doppler brightening tied to the orbital motion of the black
holes. Doppler brightening is a relativistic effect appearing
first at order vk=c, where vk is the net line-of-sight velocity
of the minidisk. Roughly speaking, the binary orbital
motion only brightens the minidisks, since they have net
motion with their respective black holes. Other emitting
gas, such as the cavity wall, is not moving as quickly. In our
simulations, we consider minidisk emission to be coming
from within a distance rperi=2 from its black hole—such
regions are drawn in Fig. 2.
For our particular binary parameters, the orbital velocity

is ≃0.02c for the circular binary, and ≃0.033c for the
e ¼ 0.45 binary at pericenter. We have checked how large
the Doppler brightening effect is for our system, and found
it to be negligible (≲1% effect on light curves for edge-on
observers). However, it is of interest to estimate how large
the orbital velocities would have to be for Doppler bright-
ening to be important. We do so in this section.
Brightness variability coming from the Doppler effect

competes with hydrodynamic effects. We seek to estimate
how large v=c must be for hydrodynamic and Doppler
variability to have equal amplitude (see also Ref. [20]). To
this end, we schematically decompose the total observed
luminosity as

Lobs
tot ðtÞ ¼ hLtotið1þ δDopplerðtÞ þ δhydroðtÞÞ; ð29Þ

where hLtoti is the average intrinsic total luminosity, and the
relative variabilities δDopplerðtÞ and δhydroðtÞ are caused by
Doppler and hydrodynamic effects, respectively. Our aim
is to compare the amplitudes of these two terms. Two
considerations must be made. First, only the fraction of the
total luminosity produced by the minidisks is subject to
Doppler brightening from binary orbital motion. Second,
the net change in observed flux includes Doppler-bright-
ening of the approaching minidisk, in addition to Doppler
dimming of the receding one. These effects tend to oppose
each other, and would cancel at first order in v=c if the
minidisks both had the same power-law spectra. Let
b≡ hLMDi=hLtoti quantify the fraction of average emission
that originates in the minidisks (and is thus susceptible to
Doppler modulation), and let f ≡ hL2i=hL1i quantify the
average minidisk brightness asymmetry (defined such that

f ≤ 1), where hL1i and hL2i are average luminosities for
the individual minidisks. We relegate a detailed calculation
to Appendix C, and provide the main results of the
calculation here.
To maximize the Doppler variability, we consider edge-

on observers, resulting in

δDopplerðtÞ ≃ 3.44b

�
1 − f
1þ f

�
v
c
sinðΩbintÞ; ð30Þ

where v is the orbital velocity. The factor of 3.44 comes
from an estimate of the power-law spectral index (see
Appendix C). The hydrodynamic variability has a minidisk
contribution δMDðtÞ, and a contribution from elsewhere—
we call the latter the “circumbinary” (CBD) contribution
δCBDðtÞ, so that δhydroðtÞ≡ δMDðtÞ þ δCBDðtÞ. These con-
tributions are estimated as

δMDðtÞ ¼ 1.5bAMDðtÞ ð31Þ

δCBDðtÞ ¼ 1.5ð1 − bÞACBDðtÞ; ð32Þ

where AMDðtÞ and ACBDðtÞ are quasiperiodic modulations
with amplitudes (≡ĀMD and ĀCBD) equal to the root-mean-
square variability of unboosted minidisk and CBD emis-
sion, respectively. These two contributions tend to be
coherent with each other, but to be conservative about
the amplitude of δhydro, we take it to be the maximum of the
amplitudes of δMD and δCBD. The amplitude of δDoppler then
equals δhydro when

v=c ≃
1.5

3.44b

�
1þ f
1 − f

�
maxfbĀMD; ð1 − bÞĀCBDg: ð33Þ

We compute this estimate of v=c for all of our simulations
in Appendix B. By taking the minimum v=c across all of
our simulations,

(i) e ¼ 0, optical: v=c≳ 0.16,
(ii) e ¼ 0, infrared: v=c≳ 0.14,
(iii) e≳ 0.45, optical: v=c≳ 0.12,
(iv) e≳ 0.45, infrared: v=c≳ 0.16.

All of these line-of-sight velocities are rather high; by
comparison, the orbital velocity of our circular binary is
v=c ≃ 0.02, or v=c ≃ 0.033 at pericenter for our e ¼ 0.45
binary. Most binaries would be viewed at some intermedi-
ate angle, as opposed to edge-on, which increases the
required orbital velocity to achieve parity between Doppler
brightening and hydrodynamic variability by a few tens of
percent.
Our results indicate that Doppler modulation of bright-

ness is generally subdominant to hydrodynamic variability
in accreting equal-mass binaries with disk Mach numbers
M≲ 20, even when the binary has significant eccentricity.
These results are consistent with findings from [31], which
were limited to circular binaries. On the other hand, we note
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that lower-mass ratio binaries have smaller hydrodynamical
variability, particularly for q≲ 0.05 [40,57], and Doppler
variability can be dominant for these [20]. Exploring
how the relative importance of Doppler modulation and
hydrodynamic variability translates to unequal-mass sys-
tems, and to higher Mach numbers, will be the subject of
future work.
If periodic Doppler brightening signals are most detect-

able for low mass ratio binaries or higher Mach number
disks, then their detection would serve to constrain those
parameters. Excitingly, if mass ratio can be constrained
by other means (e.g., GWs), then periodic Doppler-
brightening signals might provide a rare constraint on disk
Mach numbers, which in turn constrains combinations of
other disk parameters like accretion rate, turbulent viscos-
ity, and surface density.

D. Application to periodic blazars

Since we are primarily focusing on the resolved infrared
and optical thermal emission from the disk, our predictions
are most relevant for supermassive black hole binaries
in AGN for which the jet emission components are either
subdominant or can be modeled out. For this reason,
predictions about thermal disk emission are not directly
relevant to BL Lacertae objects, since they are more
dominated by jet emission at all wavelengths. However,
we do predict properties of the jet emission to the extent
that they track accretion rates. Energy considerations
motivate a schematic relationship between jet power Ljet

and the accretion rate,

Ljet ≈ η _Mc2; ð34Þ

where η is the efficiency. This relationship is generally not
expected to hold instantaneously, but rather on average
[e.g. [30,58] ]. However, for the binaries considered in this
work, the periodic variability of _M takes place on the binary
orbital time scale of 1 year, whereas the characteristic
orbital time near the black holes is a few minutes. Thus,
given how slow the accretion rate modulations are for our
binaries, it is sensible to expect Eq. (34) to hold in a
quasistationary sense in our case.
In this section, as a basis for an illustrative discussion,

and to limit our scope, we focus primarily on a specific flat
spectrum radio quasar (FSRQ) for which there is a recent
claim of quasiperiodic oscillations at a period of ≃2.6 years
in γ-rays; PKS 0208-512 [59]. Only a few cycles are
present in the data, therefore stochastic flaring is not
precluded. However, it serves as a useful case to explore
ideas on how our results could be applied to binary blazars.
This object is at a redshift of z ≃ 1 [60], which means the
source frame periodicity is ≃1.3 years. If this periodicity
corresponds to the orbital period of a putative binary, then it
is similar to the fiducial model we studied in this work. The
total black hole mass has been estimated based on various

assumptions to be ð6–25Þ × 107 M⊙ [61,62], which is in
the range of ≃8–30 times the total binary mass we studied
in this work. The disk effective temperature of PKS 0208-
512 can be made similar to the system we studied in this
work via a corresponding scaling down of the accretion
rate, to ≃ð0.01–0.15Þ × _MEdd. This would make many of
our predictions applicable (see Sec. V E for more discus-
sion of this point). However, one still has to isolate the
thermal disk emission, which could be done through model
fits of the observed broadband spectrum. In addition to
γ-ray data, there exists x-ray, optical, and infrared data for
PKS 0208-512, and they have been analyzed in a number of
contexts [see e.g., Refs. [63,64] ]. It has been suggested
that the disk emission is observable when the jet activity is
low [63]. However, we are unaware of a periodicity
analysis in bands other than γ-rays [59].
Using Eq. (2), we can check that the above putative

binary with total mass ≃ð6–25Þ × 107 M⊙ is in the GW-
driven regime for a wide range of parameter values. One
can therefore expect that it is circularizing. If it has
circularized sufficiently, then our predictions for equal-
mass circular binaries may apply. Assuming PKS 0208-512
hosts a near-equal mass, near-circular binary, we predict
that the thermal disk emission in infrared and optical (or
far-infrared and near-infrared in the observer frame due
to cosmological redshift ν → ν=ð1þ zÞ) should exhibit in-
phase (<20 days in the observer frame) brightness mod-
ulations on near-orbital time scales, with a prominent lump
period of ≃4.5–16 times the orbital period. The lump
period will be more prominent (relative to the orbital
period) in lower-energy disk emission. Given the semi-
major axis of a ≃ ½ð2–5Þ × 10−3� pc implied by the inferred
binary mass range and a 1.3-year orbital period, the
maximum orbital velocity is on the order of v=c ≃
0.03–0.08 for a circular binary and v=c ≃ 0.05–0.13 for
an eccentricity of e ¼ 0.45. Since PKS 0208-512 is a blazar
(i.e., viewed nearly face-on), the line-of-sight orbital
velocities are likely well below the levels in Sec. V C.
Thus, Doppler brightening on the orbital time scale is
very likely irrelevant, so we can predict that a binary
would produce spiky orbital periodicity, with the near-
infrared light curves (observer frame) having more signifi-
cant (3.3–8.5%) rms variability in comparison to far
infrared (0.90–2.6%).
Keeping our caveats from Sec. V E in mind, and the

assumptions above, we predict that periodic modulations in
the jet emission will be significantly out-of-phase with disk
emission. Absence of the lump frequency in our measure-
ments of the _M time series also implies that if modulations
of γ-ray brightness reflect the intrinsic jet power [as per
e.g. [58] ], the jet emission should not be modulated by the
lump. On the other hand, the lump periodicity has been
observed to appear in _M in past work using the same
nonisothermal equation of state as ours [e.g., [24] ]. It
would be interesting to understand the conditions under
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which lump periodicity does and does not transmit to
accretion rates, including the effect of the sink size, since
that informs whether one should expect jet power to be
systematically modulated on that time scale.
On the other hand, if modulations of γ-ray brightness

instead reflect the supply of seed photons to the inverse
Compton process in the jet, then some long-term trends in
blazar γ-ray light curves might reflect lump periodicity in
that external supply of seed photons. For example, it has
recently been noted that PKS 0208-512 has had an increase
in γ-ray activity beginning around 2019 [64], and the trend
in flare amplitudes suggests a lumplike (e.g., ≃5-orbit)
period. So it is worth considering jet brightness modula-
tions arising from the supply of seed photons from the disk.
In this scenario, one would expect the inverse Compton
component of the blazar spectral energy distribution to
have an imprint of lump periodicity (whereas the lower-
energy sychrotron component would have such an imprint
only if the lump periodicity transmits to the accretion rates).
In this external inverse Compton scenario, since the

cavity is the region whose emission is primarily modulated
at the lump period (see Fig. 6), the time delay between CBD
brightening and upscattering of the resultant photons by the
jet would be at least on the order of the light-travel time
from the cavity wall to the black holes. This delay is of
order ≃1% of an orbital period for the putative binary in
PKS 0208-512.
If the lump period is indeed being transmitted to jet

emission, then in addition to predicting flares in early/mid
2021, early 2024, and mid 2026, the amplitude of those
flares will show evidence of reverting to the low-activity
state similar to the years 2009–2017.
An “orphan” flare from PKS 0208-512 in the optical-

near-infrared band (i.e., no γ-ray counterpart) was reported
between the two γ-ray flares that bracket the interval from
2008–2011 [63]. Orphan flares in low-energy bands could
be explained by a binary, since one would expect flares in
disk emission that are out-of-phase with the jet (either due
to the binary being circular, or even for eccentric binaries
since the pulse substructure of disk emission can be distinct
from _M; see Fig. 10). Since the low-energy flares occur
while the jet is not flaring, the disk emission would be more
visible at that time than otherwise. If binarity is the cause
of an orphan flare, we would predict that the orphan
low-energy flares have a thermal spectrum (i.e., originating
in the disk), whereas the low-energy flares coincident with
γ-rays would be nonthermal (i.e., originating in a jet).
Lastly, the BL Lacertae object PKS 2155-304 has several

reports of 1.7-year γ-ray periodicity, but different studies
disagree about whether optical data has the same 1.7-year
periodicity or roughly half of that (0.87 years) [59,65–69].
If optical flares from the disk around a binary are out-of-
phase with jet flares, one would expect a periodicity in the
optical band at roughly twice the jet periodicity. Since the
flares in disk emission may be weaker than the jet, they may

be harder to discern in the data, which might explain the
mixed claims of 0.87 year and 1.7 year periodicity in the
literature.

E. Caveats

In this section, we discuss some caveats, focusing on the
ones we believe are most important for interpreting EM
signatures of SMBHB candidates.
Firstly, when generalizing our results about optical and

infrared emission to other binary parameters, one must pay
special attention to the overall effective temperature of the
gas. If the effective temperature of our system were scaled
down, then infrared and optical emission would come from
deeper inside the gravitational wells of each black hole.
Then, the lump periodicity would feature less prominently,
and the fraction of emission coming from the minidisks
would be increased. That effect would be reversed if the
effective temperature were instead scaled up. Thus, one
ought to think spatially, by associating our results about
infrared and optical emission with whatever emission is
coming ≃7.6–28% and ≃37–84% from the minidisks,
respectively (see b in Tables VIII and IX); which band of
emission that corresponds to will depend on the accretion
rate _M, binary massM, and orbital semimajor axis a roughly
via T4

eff ∼M _Ma−3. However, if the amplitude of periodic
signals depend on such parameters, then our results should
not be taken as generic. One also must apply a cosmological
redshift to the bands (ν → ν=ð1þ zÞ), since our results are
quoted in the cosmological rest frame of the source.
Secondly, we caution against overinterpreting the shapes

of specific pulses seen in Fig. 3. The pulse shapes for a
given model change from one cycle to the next, and also
vary in character between models with different nominal
Mach numbers. Our tests show reliable results about the
frequency content of the pulse time series (i.e., near-orbital
and lump frequencies having values within a certain range,
see Table III), and it is safe to say that the pulse shapes
resulting from hydrodynamic processes are probably
“spiky,” and not perfectly periodic.
Furthermore, the Mach number of the gas depends

strongly on the accretion rate. For lower accretion rates,
the Mach number can easily become greater than 100; for
example, if our target system were accreting at 0.1 × _MEdd

instead of 10 × _MEdd (all else being equal), then the initial
condition would have MðaÞ ≃ 240. Our Fig. 3 suggests
that the visual appearance of light curves depends very
strongly on Mach number, becoming noisier at higher
Mach. One wonders whether light curves from very
high-Mach number circumbinary accretion disks would
present any obvious periodicity at all, unless from Doppler
modulation. However, even though the Mach numbers
we have simulated are in a narrow range of possible values,
the Mach numbers we have simulated are physically
reasonable. In particular, the Mach numbers we simulated
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do not require super-Eddington accretion rates; the Mach
profile of the α-disk models we use are nearly invariant
when simultaneously scaling the black hole mass up by a
factor of n and the accretion rate (expressed in multiples of
Eddington) down by a factor of n. Thus, for example, a
binary with M ¼ 109 M⊙ accreting at 0.1× the Eddington
rate would have similar Mach number as the systems we
study in this work.
Next, as we have mentioned above, we are primarily

predicting the thermal disk emission. Infrared wavelengths
are expected to be heavily contaminated by dust near the
quasar [54], which must be taken into consideration when
applying our results to observations. However, since the
specific bands we present should be thought of more
generally as whatever emission is coming ≃7.6–28%
and ≃37–84% from the minidisks, dust will not be a
contaminant in general (in particular, for sufficiently higher
binary mass and/or compaction).
We can only infer properties of the jet emission to the

extent that it is predicted by _M (which has some theoretical
support, e.g., [30,58]) or by the disk supply of seed
photons. Our inferences about _M are not up to the same
standard as our other results quoted in Tables I through IX,
because that was not a primary design goal of our study. We
believe that our conclusions involving _M would be at the
same standard as our infrared and optical conclusions if we
performed sink-shrinking studies in all of our sensitivity
tests in Appendix B. Currently, we only performed a sink-
shrinking study for our fiducial M ¼ 11 run.
Some further caveats are commonplace ones associated

with two-dimensional simulations (e.g., in reality, the
binary orbital plane may be tilted with respect to the
accretion disk) the vertically-integrated fluid equations may
not be sufficiently accurate in highly-dynamical settings
such as circumbinary accretion; the constant-α prescription
for unresolved turbulence and magnetic fields may be
inadequate, etc. Furthermore, we have not varied the binary
mass ratio, we simulated a Newtonian system, and
neglected the self-gravity of the gas. Restricting to
equal-mass binaries limits our ability to inform interpreta-
tions of PG 1302-102, for example, which is a SMBH
binary candidate crucially believed to have a small mass
ratio, which increases the orbital velocity of the secondary
black hole to account for large amplitude sinusoidal
modulations via Doppler brightening [20]. However, we
did pay special attention to our system parameters to ensure
the disk is reasonably Toomre-stable, optically-thick,
far from the ionization-unstable regime (T ∼ 6500 K),
not deep within the gravitational-wave driven regime (so
that large eccentricity is not precluded), etc.

VI. CONCLUSIONS AND OUTLOOK

We study eccentric and circular equal-mass binaries near
the transition between gas and GW driven evolution using

two-dimensional simulations. We report multiband light
curves for the thermal disk emission, and compared them to
jet emission under the assumption that jet power is propor-
tional to the accretion rate. We find that optical and infrared
(low-energy) disk emission in different bands are generally
in-phase to within ∼2% of an orbital period, and that the
low-energy emission is in-phase with the long term (i.e.
orbital) variability of the accretion rate for eccentric
binaries. Tantalizingly, low-energy disk emission is almost
completely out-of-phase with accretion rates for circular
binaries, and is thus a possible smoking-gun signature of
circularity. This seems consistent with the fact that circular
binaries harbor larger minidisks than eccentric binaries,
since one expects larger minidisks to provide more effective
buffering of incoming perturbations. It is also clear that
periodic low-energy disk emission can have pulse sub-
structure that is quite distinct from accretion rates.
We find that the well-known “lump” period features

more prominently in the low-energy disk emission from
circular binaries (compared to eccentric binaries), and more
prominently in emission coming from accretion streams
and the cavity wall (compared to the minidisks). The lump
period is virtually absent in accretion rates, suggesting that
jet power could not be modulated at the lump frequency
through the mechanism of mass accretion. An alternative
mechanism for lump periodicity to imprint upon jet power
is inverse Compton scattering of low-energy photons
originating in the disk, in which case the time delays
between CBD brightening and jet brightening would be
much smaller than an orbital period.
We also compare the amplitude of periodic, hydrody-

namic light curve variability to periodic Doppler brightening
signals arising from bulk translational motion of the mini-
disks. We estimate that Doppler brightening is only on par
with hydrodynamic variability for very high orbital veloc-
ities, typically v=c≳ 0.12–0.16. Doppler brightening and
gravitational redshift have previously been reported to
primarily cause an overall dimming effect for equal-mass
binaries near merger [31], rather than a smooth sinusoidal
modulation. We therefore conclude that periodicity in low-
energy light curves from disks around equal-mass binaries
(with characteristic diskMach numbers≲20) generically has
a spiky, possibly noisy character associated with hydro-
dynamic effects, rather than the smooth and orderly character
associated with Doppler brightening. We provided simula-
tion data in Tables VIII and IX which we hope will be useful
for modeling Doppler brightening from accreting binaries.
We also found that the rms variability of light curves is

generally less than the ∼10% stochastic variability found in
typical AGN (see Tables I and II). Phase folding a longer
temporal baseline of data is a strategy which might reduce
the stochastic component of light curves and reveal the
periodic signal.
Our results here should aid the identification of genuine

binaries among candidates identified as periodic quasars.
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The time-domain dataset from the forthcoming Vera Rubin
Observatory’s Legacy Survey of Space and Time (LSST)
will replace current samples (of a few ×100; 000 quasars
with sparsely sampled light curves in a single band) with
tens of millions of quasars sampled at the much higher
cadence of once per few days in multiple bands [70,71].
This will allow searches for periodic quasars at much
higher fidelity and extending to much shorter periods [72],
thereby providing a way to diminish stochastic variability.
Our results will be especially applicable to this large
anticipated AGN-variability dataset.
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APPENDIX A: NUMERICAL PRESCRIPTIONS

We use density and pressure floors in the conservative-
to-primitive variable transformation. The floor values
are respectively set to Σðt ¼ 0; r ¼ aÞ × 10−10 andPðt¼0;
r¼aÞ×10−10. If the pressure is found to be below the floor
value, it is set to the floor value. If the density is found to be
below the floor value, both the density and pressure are set
to their floor values and the velocity is set to zero.
A component-wise velocity ceiling is applied in the

conserved-to-primitive variable transformation. If a veloc-
ity component is found to be greater than 10aΩbin, then it is
set to 10aΩbin. This compares with a typical maximum
speed on the grid of ≃3aΩbin, corresponding to the orbital

speed at the sink radius. We find that the velocity ceiling is
rarely invoked, but it prevents the time step from becoming
prohibitively small in rare scenarios whereby a fluid
element is temporarily accelerated to high speeds in the
neighborhood of a sink. For reference, the speed of light is
approximately 50aΩbin for our binary parameters.
We employ a Mach ceiling to the cooling prescription,

which acts to regulate the cooling strength when the
updated Mach number would exceed the Mach ceiling
Mc ¼ 105. This is achieved by limiting the rate of cooling
such that the updated specific internal energy ([49]) has a
minimum value of

2

ΓðΓ − 1Þ
v2

M2
c
: ðA1Þ

We find the Mach ceiling is applied very infrequently.

APPENDIX B: SENSITIVITY TESTS

We checked the sensitivity of our results to variations in
many parameters and prescriptions. The tests and their
labels are enumerated below, and the labels are used when
quoting results in Tables I–IX. Tabulated results are
rounded to two significant figures. All tests except the
variation of viscosity are alternate representations of
our target system described in Sec. II A and Sec. II B.
All tests are variations of our “fiducial” run parameters;
Mð1.5aÞ ≃ 11, e ∈ f0; 0.45g, Δx ¼ 0.01a, D ¼ 15a,
floors 10 orders of magnitude below the initial conditions
at r ¼ a, rsink=Δx ¼ 4, s ¼ 10, analysis time of 700 –800
orbits, rs ¼ rsink, α ¼ 0.1, and disk initial conditions given
in Sec. III A.
(1) {label: M} Mach number Mð3aÞ ≃ 21, MðaÞ ≃ 7

(fiducial is Mð1.5aÞ ≃ 11)

TABLE I. Circular binary: root-mean-square variability (rms) for the fast periodic modulation 1=ffast. The median peak-to-trough
difference is roughly 3 times the rms variability. We also provide the average luminosity.

M D Δx VC F rsink s AT ET α Total range

Optical average [1042 erg=s] 8.6–14 9.4 9.9 9.5 9.5 8.2–8.5 8.7–11 8.9 9.0 6.0 6.0−14
Infrared average [1042 erg=s] 9.5–14 10 9.6 10 10 9.6–9.7 10–11 9.5 10 5.8 5.8−14
Optical variability [rms %] 3.3–7.7 5.6 3.3 5.5 5.5 5.2 5.5–5.6 5.9 5.7 8.5 3.3−8.5
Infrared variability [rms %] 1.1–2.4 1.4 0.90 1.4 1.4 0.95–1.1 1.4–1.5 1.7 1.4 2.6 0.90−2.6

TABLE II. Eccentric binary: root-mean-square variability (rms) for the orbital modulation. The median peak-to-trough difference is
roughly 3 times the rms variability. All columns are for e ¼ 0.45 except the column labeled e ¼ 0.7. We also provide the average
luminosity.

M D Δx VC F rsink s AT ET α e ¼ 0.7 Total range

Optical average [1042 erg=s] 4.4–8.7 6.2 5.4 6.3 4.4 4.1–5.2 5.4–6.8 5.3 5.7 2.7 5.7 2.7 − 8.7
Infrared average [1042 erg=s] 8.5–12 9.4 8.5 9.2 8.5 8.5–9.0 8.9–11 8.8 9.3 4.5 8.7 4.5 − 12
Optical variability (rms %) 8.4–15 7.7 9.1 13 15 9.5–10 13–15 11 9.7 15 13 7.7 − 15
Infrared variability (rms %) 2.0–2.6 2.4 2.3 3.5 2.8 1.9–2.4 3.0–3.2 2.6 2.3 2.2 3.1 1.9 − 3.5
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(2) {label: D} Domain radius: D ¼ 20a at fixed reso-
lution Δx ¼ 0.01a (fiducial is D ¼ 15a)

(3) {label: Δx} Resolution: Δx ¼ 0.005a (fiducial is
Δx ¼ 0.01a)

(4) {label: VC} Velocity ceiling of 20aΩbin (fiducial
is 10aΩbin)

(5) {label: F} Floors on pressure and density: 15 orders
of magnitude smaller than the initial conditions at
r ¼ a (fiducial is 10 orders of magnitude)

(6) {label: rsink}Sink radius: rsink∈f0.02a;0.01ag, keep-
ing rsink=Δx ¼ 4 constant (fiducial is rsink ¼ 0.04a)

(7) {label: s} Sink rate: s ∈ f2; 50g (fiducial is s ¼ 10)

(8) {label: AT} Analysis time: 1300 orbits (fiducial is
700 orbits)

(9) {label: ET} Evolution time from grid refinement
at 600 orbits until the analysis time; 200 orbits
(fiducial is 100 orbits), corresponding to analysis
times 800–900 orbits (fiducial is 700–800 orbits)

(10) {label: α} Viscosity: α ¼ 0.02 (fiducial is α ¼ 0.1)
(11) {label: e ¼ 0.7} Eccentricity of e ¼ 0.7 (fiducial

eccentric run is e ¼ 0.45)
(12) Gravitational softening length rs; this is changed

simultaneously with the sink radius, since we
fix rs ¼ rsink

TABLE III. Circular binary: flump and ffast.

M D Δx VC F rsink s AT ET α Total range

flump (orbits−1) 0.11–0.22 0.11 0.11 0.11 0.11 0.10–0.11 0.10–0.11 0.093 0.10 0.10 0.093−0.22
ffast (orbits−1) 1.3–1.4 1.4 1.3 1.4 1.4 1.0–1.2 1.4 1.4 1.4 1.5 1.0–1.5

TABLE IV. Circular binary: lags and correlations between infrared and optical. A positive lag corresponds to infrared lagging optical.

M D Δx VC F rsink s AT ET α Total range

Lag (orbits) 0.0 0.0 0.0 0.0 0.0 −0.02–0.0 0.0 0.0 0.0 0.0 ½−0.02; 0.02Þ
Correlation 0.88–0.91 0.88 0.83 0.83 0.87 0.75–0.80 0.82–0.89 0.84 0.81 0.85 0.75–0.91

TABLE V. Eccentric binary: lags and correlations between infrared and optical. A positive lag corresponds to infrared lagging optical.
All columns are for e ¼ 0.45 except the column labeled e ¼ 0.7.

M D Δx VC F rsink s AT ET α e ¼ 0.7 Total range

Lag (orbits) 0.0–0.08 0.0 0.0 0.0 0.0 0.02 −0.02–0.0 0.0 0.0 0.0 0.0 ½−0.02; 0.08�
Correlation 0.80–0.94 0.64 0.89 0.94 0.93 0.89–0.94 0.93–0.96 0.78 0.94 0.88 0.90 0.64–0.96

TABLE VI. Circular binary: properties of the infrared-to-optical color. We quote the average and the root-mean-square variability
(rms). The median peak-to-trough difference is roughly 3 times the rms variability. We also provide the color for the corresponding
circumsingle disk. The last two rows show the percentage that the ratio of lump-to-orbital peak frequencies decreased from the optical
and infrared bands to the color. This measures the degree of achromaticity of the lump period, relative to each band.

M D Δx VC F rsink s AT ET α Total range

Color average 1.0–1.1 1.1 1.0 1.1 1.1 1.2 1.0–1.2 1.1 1.1 0.97 0.97–1.2
Color variability (rms %) 2.5–5.6 4.5 2.6 4.3 4.4 4.3–4.4 4.3–4.5 4.5 4.5 6.2 2.4–6.2
Color (circumsingle disk) 0.94
Lump achromaticity [vs optical, %] 46–76 81 74 81 77 51–71 75–79 83 76 47 46–83
Lump achromaticity [vs infrared, %] 80–98 99 97 99 98 97–98 97–98 98 98 96 80–99

TABLE VII. Eccentric binary: properties of the infrared-to-optical color. We quote the average and the root-mean-square variability
(rms). The median peak-to-trough difference is roughly 3 times the rms variability. We also provide the color for the corresponding
circumsingle disk. All columns are for e ¼ 0.45 except the column labeled e ¼ 0.7.

M D Δx VC F rsink s AT ET α e ¼ 0.7 Total range

Color average 1.3–2.0 1.5 1.7 1.5 2.0 1.8–2.1 1.6–1.7 1.7 1.7 1.7 1.5 1.3–2.1
Color variability (rms %) 7.2–12 6.3 7.5 9.8 12 8.2–8.8 9.9–12 9.5 9.4 12 10 6.3–12
Color (circumsingle disk) 0.94
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The disk initial conditions we use for the viscosity test are
fixed to the α ¼ 0.1 case, for simplicity; for α ¼ 0.02, the
self-consistent initial densities and pressures at r ¼ a
would vary by a factor of a few above the value in the
α ¼ 0.1 case.

APPENDIX C: DOPPLER BRIGHTENING

Doppler brightening is a relativistic effect appearing
first at order vk=c, where vk is the net line-of-sight velocity
of the minidisk. At a given photon frequency ν, assuming
that the intrinsic emission is a power law in ν, Fν ∝ να,
the Doppler brightening signal at lowest order in vk=c
modifies the unboosted flux Fν to an observed flux
Fobs
ν as Fobs

ν ¼ Fν½1þ ð3 − ανÞvk=c�. Here αν is the power
spectral index at frequency ν, which is on the order of
αν ≃ −few × 0.1 (for a very recent and extensive discus-
sion, see Ref. [19]). For the purpose of estimation, we set
αν ¼ −0.44 [19,75] below and replace fluxes with lumi-
nosities F → L.

As a crude approximation, we assume that the net
binary motion only Doppler brightens the minidisk
emission. To help inform modeling of the Doppler signal,
we provide some useful information in Tables VIII
and IX. In particular, expressed as percentages; the
average fraction of emission coming from both mini-
disks (b), the average asymmetry of minidisk emission
(dimmer minidisk luminosity divided by the brighter
one, f), and the purely hydrodynamic rms variability
of emission from the minidisks (ĀMD) and elsewhere
(ĀCBD). Note that the median peak-to-trough difference in
luminosity (modulated at the orbital frequency) is
roughly 3 times the rms variability.
Let the dimmer minidisk be labeled “2” with average

luminosity hL2i≡ fhL1i, where L1 is the luminosity of
the brighter minidisk. The net luminosity from both
minidisks is

Lobs
MD ≃ L1ð1þ 3.44vk=cÞ þ L2ð1 − 3.44vk=cÞ; ðC1Þ

TABLE VIII. Circular binary. Rows 1 and 2: average percentage of emission coming from the minidisks (approximated as those
regions within ð1=2Þrperi from each black hole). Rows 3 and 4: the minidisk asymmetry in average luminosity, expressed as a percentage,
with the brighter minidisk luminosity always in the denominator (so that the asymmetry is always ≤100%). Rows 5 and 6: the root-
mean-square variability (rms) averaged over both minidisks (they are similar), expressed as a percentage. Rows 7 and 8: the rms
variability of the circumbinary disk emission (i.e. emission from everywhere other than the minidisks), expressed as a percentage. The
median peak-to-trough difference is roughly 3 times the rms variability.

M D Δx VC F rsink s AT ET α Total range

b (optical, %) 53–83 75 81 75 75 78 73–77 77 75 84 53–84
b (infrared, %) 15–25 21 25 21 21 21 20–23 23 21 28 15–28
f (optical, %) 98–100 99 79 99 100 78–97 98–100 100 100 100 78–100
f (infrared, %) 98–100 99 81 99 100 79–97 99–100 100 100 100 79–100
ĀMD (optical, %) 4.4–12 7.8 4.5 7.5 7.7 7.1–7.2 7.3–8.0 7.5 7.8 10 4.4–12
ĀMD (infrared, %) 3.4–11 6.3 3.4 6.1 6.2 4.5–5.1 5.9–6.2 6.1 6.3 8.9 3.3–11
ĀCBD (optical, %) 9.7–12 10 6.2 10 11 5.5–6.7 10–11 14 11 22 5.5–22
ĀCBD (infrared, %) 1.2–2.5 1.3 0.79 1.4 1.4 0.71–0.84 1.4 1.8 1.4 2.5 0.71–2.5

TABLE IX. Eccentric binary. Rows 1 and 2: average percentage of emission coming from the minidisks (approximated as those
regions within ð1=2Þrperi from each black hole). Rows 3 and 4: the minidisk asymmetry in average luminosity, expressed as a percentage,
with the brighter minidisk luminosity always in the denominator (so that the asymmetry is always ≤100%). Rows 5 and 6: the root-
mean-square variability (rms) averaged over both minidisks (they are similar), expressed as a percentage. Rows 7 and 8: the rms
variability of the circumbinary disk emission (i.e. emission from everywhere other than the minidisks), expressed as a percentage. All
columns are for e ¼ 0.45 except the column labeled e ¼ 0.7. The median peak-to-trough difference is roughly 3 times the rms
variability.

M D Δx VC F rsink s AT ET α e ¼ 0.7 Total range

b (optical, %) 37–73 59 63 64 60 57–59 49–64 58 55 71 43 37–73
b (infrared, %) 7.8–17 11 12 13 9.5 9.0–10 9.8–12 11 11 14 7.6 7.6–17
f (optical, %) 41–72 33 52 55 44 35–63 52–95 55 64 45 62 33–95
f (infrared, %) 47–76 39 56 60 50 42–67 57–94 60 68 51 67 39–94
ĀMD (optical, %) 12–17 16 11 12 17 12 14–18 17 15 20 19 11–20
ĀMD (infrared, %) 8.0–12 11 6.7 8.1 11 6.7–7.4 9.1–12 11 10 15 15 6.7–15
ĀCBD (optical, %) 12–23 20 24 29 25 22–24 25–27 24 20 19 21 12–29
ĀCBD (infrared, %) 2.1–2.6 3.1 2.8 3.7 2.7 2.3–3.0 3.1–3.7 3.4 3.0 1.7 3.4 1.7–3.7
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(which is a similar to Eq. (36) from [19]). The intrinsic
luminosity of the minidisks varies hydrodynamically on
the orbital time scale. Let us write this as L1 ¼
hL1ið1þ ð3=2ÞA1ðtÞÞ, where hL1i is the time-averaged
luminosity from minidisk 1 and A1 is the fractional rms
hydrodynamic variability. Similarly for minidisk 2;
L2 ≃ hL2ið1þ ð3=2ÞA2ðtÞÞ ¼ fhL1ið1þ ð3=2ÞA2ðtÞÞ. The
line-of-sight velocity also varies on the orbital time scale,
with some phase with respect to the hydrodynamic vari-
ability; for edge-on observers the effect is maximal,
vk ¼ v sinðΩbintÞ. The observed luminosity from the mini-
disks is then

Lobs
MD ≃ hL1ið1þ fÞ

�
1þ 3

2

A1ðtÞ þ fA2ðtÞ
1þ f

þ
�
1 − f
1þ f

�
3.44

v
c
sinðΩbintÞ

�

þO
�
Ā1

v
c

�
þO

�
Ā2

v
c

�
: ðC2Þ

We neglect the last two terms on the basis that they are of
order Ā1ðv=cÞ or Ā2ðv=cÞ. Denote amplitudes with an
overbar. We observe in our simulations that Ā1 ≃ Ā2≡
ĀMD, where ĀMD is provided in Tables VIII and IX. So we
approximate ðA1ðtÞ þ fA2ðtÞÞ=ð1þ fÞ ≃ AMDðtÞ.
We must also consider the hydrodynamic variability of

nonminidisk emission. Let us call this “circumbinary”
(CBD) emission, and write LCBD ¼ hLCBDið1þ ð3=2Þ×
ACBDðtÞÞ, similarly to the unboosted minidisk emission.
ĀCBD is provided (as percentages) in Tables VIII and IX.
The CBD emission has a much weaker Doppler boost, so
we treat it as unboosted. We have the total average
unboosted emission being hLtoti ¼ hLCBDi þ hLMDi, and
hLMDi ¼ bhLtoti where b is quoted (as percentages) in
Tables VIII and IX. Then hLCBDi ¼ hLMDið1 − bÞ=b ¼
hL1ið1þ fÞð1 − bÞ=b. The total boosted luminosity is then

Lobs
tot ≃ hL1ið1þ fÞ

�
1þ 1 − b

b
þ
�
1 − b
b

�
3

2
ACBDðtÞ

þ 3

2
AMDðtÞ þ

�
1 − f
1þ f

�
3.44

v
c
sinðΩbintÞ

�
; ðC3Þ

or rewritten with a prefactor hLtoti ¼ hL1ið1þ fÞ=b,

Lobs
tot ≃ hLtoti

�
1þ ð1 − bÞ 3

2
ACBDðtÞ þ b

3

2
AMDðtÞ

þ b

�
1 − f
1þ f

�
3.44

v
c
sinðΩbintÞ

�
: ðC4Þ

For clarity, let us define δCBDðtÞ≡ ð3=2Þð1 − bÞACBDðtÞ,
δMDðtÞ ¼ ð3=2ÞbAMDðtÞ, and δDopper ≡ 3.44bðð1 − fÞ=
ð1þ fÞÞðv=cÞ sinðΩbintÞ, so that we obtain a form of the
equation with a similarly simple appearance as Eq. (29),

Lobs
tot ≃ hLtoti½1þ δCBDðtÞ þ δMDðtÞ þ δDopplerðtÞ�: ðC5Þ

The CBD and MD fluctuating parts tend to be coherent. To
place conservative lower bounds on the orbital velocities
which achieve parity between Doppler brightening and
hydrodynamic variability, we take the hydrodynamic vari-
ability amplitude to be the maximum between the CBD and
MD contributions (rather than their coherent sum), i.e.,
δ̄hydro ≡maxðδ̄MD; δ̄CBDÞ. Setting this equal to the Doppler
variability amplitude δ̄Doppler and solving for v=c, we obtain
Eq. (33),

v=c ≃
1.5

3.44b
1þ f
1 − f

max ðbĀMD; ð1 − bÞĀCBDÞ: ðC6Þ

APPENDIX D: INDEPENDENT RESIDUAL TEST

We test our solution scheme by performing an indepen-
dent residual test using all the equations of motion. This test
consists of plugging a simulated numerical solution into the
equations of motion, discretized in space and time using
second-order finite differences. The residual evaluator is
written independently from the simulation code (hence it is
“independent”), so as not to contaminate it with any bugs
that may be present in the simulation code. This is a form of
analytic convergence test, since the equations of motion
hold analytically. Thus, only two resolutions are necessary
for this test. As the accuracy of the numerical solution
increases, one expects to see that the equations of motion
are being solved to within an error that converges to zero at
1.5th-order. Since we evaluate the equations of motion
using finite differences, this test is only valid while the
solution is smooth.
The initial conditions for this test are chosen in order to

activate all terms in the equations of motion, and such that
no symmetries exist. Such conditions ensure a stringent
test. The initial conditions we choose are depicted in
Fig. 11, and are given by

r2 ≡ x2 þ y2

r21 ≡ ðx − aÞ2 þ ðy − aÞ2
r22 ≡ ðxþ aÞ2 þ ðyþ aÞ2
Σ ¼ ð1þ exp f−ðr1=aÞ2gÞMa−2

P ¼ ð1þ exp f−ðr2=aÞ2gÞMΩ2
bin

vr ¼ sinfϕ − π=4g expf−5ða=rÞ − ð1=3Þðr=aÞ2gMΩbin

vϕ ¼
ffiffiffiffiffiffiffiffi
a=r

p
expf−5ða=rÞ − ð1=3Þðr=aÞ2gMΩbin: ðD1Þ

We also set Γ¼5=3, q¼0.5, M¼0.033M⊙, a ¼ 10−4 pc,
α ¼ 0.001, rsink ¼ a, s ¼ 0.05, and D ¼ 6a. Low resolu-
tion corresponds to Δx ¼ 2D=256 and high resolution
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corresponds toΔx ¼ 2D=512. All terms in the equations of
motion are active, including radiative cooling (Sec. II G),
torque-free sinks (Sec. II E), and the buffer source terms
(Sec. III). The residuals are plotted versus time in Fig. 12;
the residuals have been subjected to spatial L2-norms.

The high-resolution residual is also shown scaled up by
a factor of 21.5, which is expected to coincide with the
low-resolution residual while the solution is smooth. The
formation of steepening gradients is evident starting around
t ≃ 0.15 orbits.

FIG. 11. Initial conditions for the independent residual test, described in Eqs. (D1).
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