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An inconsistency between the theoretical analysis and numerical calculations of the relativistic r-modes
has puzzled the neutron star community since Kojima’s finding of the continuous part in the r-mode
oscillation spectrum in 1997. In this paper, after a brief review of the Newtonian r-mode theory and of the
literature devoted to the continuous spectrum of r-modes, we apply our original approach to the study of
relativistic oscillation equations. Working within the Cowling approximation, we derive the general
equations, governing the dynamics of discrete relativistic r-modes for both barotropic (isentropic) and
nonbarotropic stars. A detailed analysis of the obtained equations in the limit of extremely slow stellar
rotation rate reveals that, because of the effect of inertial reference frame-dragging, the relativistic r-mode
eigenfunctions and eigenfrequencies become nonanalytic functions of the stellar angular velocity, Ω. We
also derive the explicit expressions for the r-mode eigenfunctions and eigenfrequencies for very small
values of Ω. These expressions explain the asymptotic behavior of the numerically calculated
eigenfrequencies and eigenfunctions in the limit Ω → 0. All the obtained r-mode eigenfrequencies take
discrete values in the frequency range, usually associated with the continuous part of the spectrum. No
indications of the continuous spectrum, at least in the vicinity of the Newtonian l ¼ m ¼ 2 r-mode
frequency σ ¼ −4=3, are found.
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I. INTRODUCTION

The generic property of some oscillation modes in
rotating stars to be unstable with respect to the emission
of gravitational waves, known as the Chandrasekhar-
Friedman-Schutz instability (CFS instability) [1–4], drives
one to the conclusion that, under favorable conditions,
these modes can potentially become “visible” to the
gravitational-wave detectors. Should such a gravitational
signal from a mode be observed, it would serve as a
valuable source of information on the properties of super-
dense matter in the stellar interiors, which cannot be studied
in terrestrial experiments. Among the variety of oscillation
modes that neutron stars can exhibit, the r-modes are
believed to be the most promising ones from this point of
view, since they appear to be the most unstable. In fact, in
the absence of dissipation, the r-modes become unstable at
any rotation frequency of the star [5,6].
Extending the traditional mode classification developed

by Cowling [7], one can attribute the r-modes to the class of
stellar oscillations, whose main restoring force is the
Coriolis force. Their oscillation frequencies vanish in non-
rotating stars, and, for slowly rotating stars, the motion of
fluid elements induced by such an oscillation is, with high
accuracy, characterized as purely toroidal (for this reason
the r-modes are sometimes called “quasitoroidal”). The
searches for the r-mode gravitational-wave signal are
already being conducted [8,9], and there are tentative

indications of possible presence of r-mode signatures in
the x-ray spectra of few observed sources [10,11]. The fact
that the r-modes have not yet been observed can be either
attributed to insufficient gravitational-wave detectors sensi-
tivity, or to the mode suppression by various dissipative
processes, operating in the stellar matter. Understanding of
the r-mode physics becomes of paramount importance as
the new more sensitive detectors, such as the Einstein
Telescope or the Cosmic Explorer (see, e.g., [12,13]), will
come into operation.
While the Newtonian theory of r-modes is well devel-

oped and has already reached maturity (see the extensive
reviews by Andersson and Kokkotas [14] and Haskell [15]
and references therein), the attempts to find the generali-
zation of the Newtonian r-modes within the framework of
general relativity (GR) lead to various contradictory results.
An application of the traditional techniques in the slow-
rotation limit, inherited from the Newtonian theory, immedi-
ately predicts the presence of the continuous part in the
relativistic r-mode oscillation spectrum (e.g., [16–22]),
whereas the straightforward r-mode numerical calculations
do not lead to any indications of the continuous spectrum
and predict the discrete spectrum, as in the Newtonian
theory (e.g., [23–27]). A number of attempts has been made
to regularize the spectrum, but none of them, in our opinion,
can be considered as successful (see Sec. IV B for details). It
was shown that the continuous spectrum does not disappear
with the inclusion of the gravitational radiation effect
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[28,29]. Accounting for the higher order terms, neglected in
the slow-rotation approximation, could potentially regular-
ize the spectrum [30], but the fully relativistic calculation
including such terms has never been attempted, to the best
of our knowledge. Finally, inclusion of the viscous dis-
sipation in the problem does regularize the spectrum
[31,32], but such regularization was studied only in the
case when the rotational corrections are small compared to
the viscous ones, which is exactly the opposite to the
situation in real neutron stars.
This set of discordant results discussed in the literature

is collectively known as “the problem of the continuous
r-mode spectrum.” At this point, it is not clear whether the
presence of the continuous spectrum is a physical phe-
nomenon or if it is just an artifact of the made assumptions
and simplifications. However, the fact that the numerical
calculations, performed beyond the slow-rotation approxi-
mation, do not show any continuous spectrum indicates that
the latter emerges as a result of the slow-rotation approxi-
mation breakdown, i.e., the traditional techniques of the
Newtonian theory cannot be applied to calculating the
relativistic r-modes in the slowly rotating neutron stars.
In this paper, we develop a new approach to the analysis

of the relativistic oscillation equations that allows us to
highlight some previously overlooked properties of relativ-
istic r-modes, that turn out to be of key importance to the
solution of the continuous spectrum problem. The outline of
the paper is the following. In Sec. II we describe the
theoretical model of a neutron star adopted in our study, and
also introduce some useful notations and conventional
definitions. In Sec. III, we briefly revisit the traditional
approach to the calculation of the r-mode eigenfrequencies
and eigenfunctions, developed for Newtonian stars. There
we discuss the nonrelativistic linearized equations, that
govern the dynamics of small stellar oscillations, and then
provide some technical details related to the idea of the
derivation of the Newtonian r-mode equations. Section IV
is devoted to the theoretical investigation of the r-modes
in general relativity. We begin with the discussion of the
linearized equations that govern small stellar oscillations
in GR. We show that the traditional approach, inherited
from the Newtonian theory, inevitably leads to the continu-
ous r-mode spectrum, instead of the discrete one, which is
consistent with the analytical results, known in the literature.
Then we develop a new approach to the study of the
relativistic oscillation equations, that allows us to restore
the traditional discrete r-mode spectrum and to obtain the
equations governing the dynamics of the discrete relativistic
r-modes. We finish Sec. IV with the discussion of the
appropriate boundary conditions for the obtained equations.
Then, in Sec. V, we show the numerical results of the r-
mode calculations for different stellar rotation rates. It turns
out that the behavior of the relativistic r-modes for
extremely small values of Ω significantly differs from that
of the Newtonian ones. We focus on this issue in Sec. VI,

where we provide a detailed analysis of the obtained
equations in the limit of a vanishing rotation rate, derive
explicit formulas for the r-mode eigenfrequencies and
eigenfunctions, and discuss the slow-rotation approximation
breakdown. Finally, Sec. VII contains a summary and
discussion of our results, as well as some concluding
remarks.

II. THE MODEL OF A NEUTRON STAR

From the hydrodynamic viewpoint, a neutron star can be
thought of as a liquid mixture of several particle species,
bound by gravitational forces. Throughout the text these
particle species will be referred to as the components of the
matter, and Latin indices ði; j; k;…Þ will be employed to
relate different physical quantities to one or another
component (for example, fk stands for the value of a
quantity f, associated with the component k). Then the
stellar matter is characterized by the pressure p, energy
density ε, enthalpy density w ¼ εþ p, temperature T, as
well as by a set of number densities nk and chemical
potentials μk of its different components. These parameters
are not independent: first of all, they should satisfy certain
thermodynamic relations, and, second, they should obey a
certain equation of state (EOS), provided by the micro-
scopic theory.
In this paper, we focus on the case of the quasineutral,

nonmagnetized, and degenerate matter, and, for the sake of
simplicity, we assume that all components of the matter are
normal, i.e., are not superfluid or superconducting. The
typical frequencies of the shear torsional oscillations are
about an order of magnitude lower [33,34] than the r-mode
eigenfrequencies in the recycled neutron stars. This means
that the crustal shear modulus is small for the problem of r-
modes in millisecond pulsars. Thus, in what follows, we
neglect elastic properties of the crust in NS dynamics. Next,
since the magnetic field enters the hydrodynamic equations
of the normal matter only via quadratic terms [see Eqs. (23)
and (24) from [35] for the corresponding terms in the stress-
energy tensor], for the case of normal quasineutral non-
magnetized matter its perturbations do not appear in the
linearized equations of the theory that describes small
stellar oscillations. The matter degeneracy allows us to
ignore the temperature dependence of any thermodynamic
quantity f and consider it as a function fðfnkgÞ, depending
only on the set of number densities fnkg. The thermody-
namic relations in degenerate matter take the form

dε ¼ μkdnk; dp ¼ nkdμk; w ¼ μknk: ð1Þ

Here and hereafter we imply the summation over the
repeated Latin indices. At the same time, the EOS of the
degenerate matter can be written as ε ¼ εðfnkgÞ. Knowing
the exact form of this relation, one, with the use of
thermodynamic equations, can also obtain the explicit
dependencies for all the thermodynamic quantities:
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p ¼ pðfnkgÞ; ε ¼ εðfnkgÞ;
w ¼ wðfnkgÞ; μm ¼ μmðfnkgÞ: ð2Þ

Depending on the properties of the matter, we can
roughly divide the stellar interior into two different regions.
We will assume that in the outer region any thermodynamic
quantity of the perturbed matter can actually be considered
as a function of only one parameter, for example, the energy
density. The EOS of the matter that possesses this property
is said to be barotropic (or isentropic) and can be written in
the form p ¼ pðεÞ. This outer region throughout the text
will be referred to as the crust of a neutron star. We believe
that such an approach is justified for the following reasons.
First, although we do not account for the superfluidity in
this paper, microscopic calculations predict (see, e.g., [36])
that neutrons should be superfluid in a major part of the
outer core and crust. Although the pressure in the perturbed
outer core, composed of superfluid neutrons, protons, and
electrons, depends on two variables (three number densities
constrained by the quasineutrality condition) and should not
be considered as barotropic, hydrodynamic equations
describing dynamics of such matter are effectively baro-
tropic (i.e., possess the properties of barotropic ones), and,
in particular, do not contain g-mode solutions [37–40].
Similarly, the bulk of the crust can be treated as barotropic,
except for the narrow regions around chemical inhomoge-
neities [41]. These regions can hardly accumulate a sig-
nificant fraction of oscillation energy and thus should not
affect the global modes. In turn, in the inner region,
containing muons, as well as in the nonsuperfluid part of
the outer core (if it exists), it is impossible to parametrize
each thermodynamic quantity of the perturbed matter with
only one chosen parameter. The EOS obeying this property
is called nonbarotropic (nonisentropic). Moreover, the
dynamic equations describing superfluid npeμ matter are
nonbarotropic even effectively [42]. The region with non-
barotropic matter will further be referred to as the core of a
neutron star.
We should also mention that, whether the EOS of the

stellar matter is barotropic or not, the matter in thermody-
namic and chemical equilibrium can be described by the
relation of the form p0 ¼ p0ðε0Þ. This form of the EOS is
used in calculations of stellar equilibrium configurations. It
is possible to show [43] that in a slowly and uniformly
rotating neutron star in equilibrium the spatial dependency
of thermodynamic quantities reduces to the form f0 ¼
f0ðaÞ with the new spatial coordinate a, introduced to
replace the radial coordinate r in a spherical ðr; θ;φÞ
coordinate system:

rða; θÞ ¼ aþ Ω2ζða; θÞ; ð3Þ

where Ω is the angular velocity of the star, and the function
ζða; θÞ describes the oblateness of the star caused by
rotation. Note that this statement is not only valid for the

Newtonian stars, but also for calculations in GR. A number
of techniques has been developed to compute ζða; θÞ for
both Newtonian and relativistic stellar models, see [43–46].

III. R-MODES IN NEWTONIAN GRAVITY

A. General linearized equations in Newtonian gravity

The macroscopic state of a neutron star in Newtonian
physics is characterized by the parameters of the stellar
matter, discussed in the previous section, the velocity
vector field vðr; tÞ of the macroscopic material flows inside
the star, and its gravitational potential ϕ. The closed system
of equations, describing dynamical processes in the star,
consists of the Euler equation, continuity equations for
different particle species, Poisson’s equation for the gravi-
tational potential, the EOS of the matter, and thermody-
namic relations.
Now, let us consider a small perturbation over the

equilibrium configuration of a neutron star, rotating uni-
formly with the angular velocity Ω, directed along the z
axis. Within the Eulerian treatment any perturbed quantity
f in a given point ðr; tÞ of time and space is decomposed as
a sum fðr; tÞ ¼ f0ðrÞ þ δfðr; tÞ of its equilibrium value f0
and its Eulerian perturbation δf that represents a small
deviation of f from the equilibrium, such that jδf=f0j ≪ 1.
In the study of stellar oscillations, however, this treatment
can become inconvenient. The reason is, for example, that a
given perturbation may induce the deformation of the
surface of a neutron star, which, in turn, leads to the
formation of the areas near the surface, where f0 ¼ 0 and
δf ≠ 0, thus the condition jδf=f0j ≪ 1 does not hold.
The Lagrangian treatment offers an alternative approach

to the description of small perturbations, free of these
shortcomings. Let rðtÞ be the perturbed trajectory of the
chosen fluid element and r0ðtÞ be the trajectory of the same
element in the equilibrium configuration. The vector
ξðr; tÞ ¼ rðtÞ − r0ðtÞ, called the Lagrangian displacement,
shows the variation of the trajectory of the fluid element,
induced by a perturbation. Following the paper of Friedman
and Shutz [47], we introduce the Lagrangian perturbation
of a tensor field f as

Δfðr; tÞ ¼ δfðr; tÞ þ Lξf0ðrÞ; ð4Þ

where Lξf is the Lie derivative along the vector field ξ.
From the physical viewpoint the Lagrangian perturbation of
a tensor field f shows the change in its components with
respect to the reference frame, which is embedded in the
fluid and sensitive to the perturbations of the star.
Particularly, the Lagrangian perturbation of the scalar field
can be written asΔfðr; tÞ ¼ f½rðtÞ; t� − f0½r0ðtÞ� and shows
the difference between the perturbed field fðr; tÞ, measured
along the perturbed trajectory rðtÞ of a fluid element, and
the unperturbed field f0ðr0Þ, measured along the unper-
turbed trajectory r0ðtÞ of the same fluid element. Note that
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thus defined perturbations Δ ¼ δþ Lξ generally differ
from those, introduced, e.g., by Unno et al. [48] as
ΔU ¼ δþ ðξ∇Þ, and we have Δf ¼ ΔUf, only if f is a
scalar field.
Using the definition vðr; tÞ ¼ drðtÞ=dt, it is now easy to

show [47] that

δv ¼ ∂ξ
∂t

þ ðv0∇Þξ − ðξ∇Þv0; Δv ¼ ∂ξ
∂t

: ð5Þ

Although these relations may not be very useful in the
Newtonian theory, where one often solves the problem in
the corotating reference frame with v0 ¼ 0, they can be
easily generalized to the relativistic case and allow one to
properly introduce the relativistic counterpart of the
Lagrangian displacement, as will be discussed in Sec. IV.
Further in this section, we write the equations in the
corotating reference frame, in which case δv ¼ Δv ¼ ∂ξ=∂t.
In terms of the Lagrangian displacements, the closed

system of equations governing the dynamics of small stellar
oscillations ξ ∼ δf ∼ Δf ∼ eiσrt, where σr is the oscillation
frequency in the corotating reference frame, can be written
in the following form:8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

−σ2rξ þ 2iσr½Ω × ξ� ¼ c2
�
δw
w2
0

∇p0 −
1

w0

∇δp
�
− ∇δϕ

δnk þ divðnk0ξÞ ¼ 0

∇2δϕ ¼ 4πG
c2

ðδwþ 2δpÞ
p0 ¼ p0ðnk0Þ; μm0 ¼ μm0ðnk0Þ; w0 ¼ μk0nk0

δp ¼
�
∂p
∂nk

�
0

δnk; δw ¼ μk0δnk þ δp:

ð6Þ

Here c stands for the speed of light and G is the
gravitational constant. The first equation is the linearized
Euler equation, written in the corotating reference frame.
The second and third equations are the linearized continuity
equations and linearized Poisson’s equation for the gravi-
tational potential, respectively. The rest of the equations are
obtained with the use of thermodynamic relations (1) and
the EOS of the matter (2).
Generally, the solution of this system is equivalent to the

simultaneous solution of the two second-order differential
equations in partial derivatives. In order to simplify the
problem, we ignore the perturbed gravitational field in the
Euler equation (the so-called Cowling approximation [7]),
so that the Poisson’s equation could be decoupled and the
rest of the equations could be solved independently. This is
equivalent to the solution of one second-order differential
equation in partial derivatives and greatly simplifies the
problem. At the same time, Cowling approximation pro-
vides, with reasonable accuracy, information on the quali-
tative behavior of many different oscillation modes, arising
in neutron stars (see [49] and references therein). In

particular, for Newtonian r-modes the relative error in
oscillation eigenfrequencies [to be more specific, in the
eigenfrequency corrections σð1Þ, defined below by Eq. (11)]
due to Cowling approximation is less than 8% [50,51].
The system (6) can be easily reduced to the system of

three equations for ξ, δp, and δw. To this aim, we multiply
the linearized continuity equations for different particle
species either by ð∂p=∂nkÞ0, or by μk0, and perform the
summation over the k index. With the use of thermo-
dynamic relations, two equations obtained this way can be
transformed to the form, which is free of the number
density perturbations and contains only the functions ξ, δp,
and δw. Adopting the Cowling approximation, we can
eventually rewrite the resulting equations as

8>>>>><
>>>>>:

−σ2rξ þ 2iσr½Ω × ξ� ¼ c2
�
δw
w2
0

∇p0 − 1
w0

∇δp
�

δpþ w0

�
cs
c

�
2

divξ þ ðξ∇Þp0 ¼ 0

δw − δpþ divðw0ξÞ − ðξ∇Þp0 ¼ 0

;

cs ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
w0

�
∂p
∂nk

�
0

nk0

s
;

ð7Þ

where cs is the local speed of sound. Because of their origin
and for the further convenience, the second and the third
equations of this system will be referred to as the “con-
tinuity equation 1” and “continuity equation 2”, corre-
spondingly. Note that in the case of the barotropic EOS we
have

δw ¼
�
dw
dp

�
0

δp; cs ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dp
dε

�
0

s
; ð8Þ

which makes these continuity equations equivalent to each
other and allows one to transform the right-hand side of the
Euler equation to the form of the pure gradient, so that the
system reduces to

8>>><
>>>:

−σ2rξ þ 2iσr½Ω × ξ� ¼ −c2∇
�
δp
w0

�
;

δpþ w0

�
cs
c

�
2

divξ þ ðξ∇Þp0 ¼ 0.

ð9Þ

As we shall see in the following sections, the difference of
the right-hand sides of the Euler equations for barotropic
and nonbarotropic matter significantly affects the math-
ematical properties of the problem. Thus, generally, the
study of the global oscillatory modes splits into the study of
the system (7) in the core of the star and the study of the
system (9) in the crust of the star with appropriate boundary
conditions, imposed at the stellar center, at the crust-core
interface and at the surface of the star.
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Finally, for the sake of mathematical convenience,
instead of dealing with ξθ and ξφ, we introduce the
functions Q and T, such that

ξθ ¼ ∂Q
∂θ

þ 1

sin θ
∂T
∂φ

; ξφ ¼ 1

sin θ
∂Q
∂φ

−
∂T
∂θ

: ð10Þ

It is easy to verify that, once Q and T are expanded in
spherical harmonics, these formulas simply reduce to the
decomposition of the vector field ξ in vector spherical
harmonics [52]. The function T is often referred to as the
toroidal component of the motion. One can show that any
purely toroidal vector field is divergenceless.

B. The traditional approach to the Newtonian
r-mode calculations

As was mentioned above, the rotation of a star brings to
life special classes of oscillatory modes, whose main
restoring force is the Coriolis force. They arise because
of the rotation itself and have no counterparts in non-
rotating stars. In particular, there is a class of such
oscillations that obey the following two conditions. First,
their frequency should vanish when Ω ¼ 0. Second, they
should be predominantly toroidal, that is, only the toroidal
component should survive in the limit Ω → 0. In the
literature, oscillations satisfying these conditions are
referred to as the r-modes (see the extensive reviews by
Andersson and Kokkotas [14] and Haskell [15], and
references therein for more details). Now, following
Provost et al. [50], we briefly explain the main ideas of
the traditional approach to the Newtonian r-mode calcu-
lations. Here we do not focus on the explicit form of the
equations, since in the following sections we provide the
detailed derivation of their relativistic counterparts.
Let us consider the r-modes in slowly rotating neutron

stars. Since the rotation is slow, we can present all the
quantities of interest in the form of an Ω series. Once we
assume that the oscillation frequency in the leading order is
proportional to Ω, the analysis of Eqs. (7) and (9) shows
that both in the nonbarotropic core and in the barotropic
crust the first terms of these series are

σr=Ω ¼ σð0Þr þΩ2σð1Þ þ oðΩ2Þ;
T ¼ Tð0Þ þ Ω2Tð1Þ þ oðΩ2Þ; ð11Þ

Q ¼ Ω2Qð1Þ þ oðΩ2Þ; ξr ¼ Ω2ξð1Þ þ oðΩ2Þ; ð12Þ

δp ¼ Ω2pð1Þ þ oðΩ2Þ; δw ¼ Ω2wð1Þ þ oðΩ2Þ; ð13Þ

and that only even powers ofΩ survive in all equations. The
latter property allows one to develop the traditional
perturbation theory with Ω2 being the small parameter.
These series will further be referred to as the traditional
r-mode ordering.

The mode eigenfrequency σð0Þr can be easily found from
the leading-order equations. Let us have a look, for
example, at the equations in the core. Since in the leading
order the vector ξ is purely toroidal, its divergence vanishes,
and continuity equations of the system (7) become iden-
tities. The r, θ, and φ components of the Euler equation are

8>>>>>>>>><
>>>>>>>>>:

2iσð0Þr sin θ
∂Tð0Þ

∂θ
¼ c2

�
wð1Þ

w2
0

dp0

da
−

1

w0

∂pð1Þ

∂a

�
;

σð0Þ2r

sin θ
∂Tð0Þ

∂φ
− 2iσð0Þr cos θ

∂Tð0Þ

∂θ
¼ c2

w0a
∂pð1Þ

∂θ
;

−σð0Þ2r
∂Tð0Þ

∂θ
− 2iσð0Þr ctgθ

∂Tð0Þ

∂φ
¼ c2

w0a sin θ
∂pð1Þ

∂φ
:

ð14Þ

Now, if we set ∂2pð1Þ=∂θ∂φ, obtained from the θ compo-
nent, equal to the same derivative, obtained from the φ
component of the Euler equation, we eventually arrive at
the equation for the toroidal component:

1

sinθ
∂

∂θ
sinθ

∂Tð0Þ

∂θ
þ
�
−

2i

σð0Þr

∂Tð0Þ

∂φ
þ 1

sin2θ
∂
2Tð0Þ

∂φ2

�
¼0: ð15Þ

It is easy to see that this equation admits the solution of the
form

σð0Þr ¼ 2m
lðlþ 1Þ ; Tð0Þ ¼−iTð0Þ

lm ðaÞPm
l ðcosθÞeimφ; ð16Þ

where Pm
l ðcos θÞ is the associated Legendre polynomial,

Tð0Þ
lm is the r-mode amplitude, and the factor (−i) is

introduced for further convenience. Note that the analogous
derivation with the same outcome can be carried out for the
crust of the neutron star. This result implies that the
dependency of all perturbations on the azimuthal angle
reduces to eimφ. Further, for brevity, we omit this depend-
ency and write all the perturbations simply as δfða; θÞ.
Without any loss of generality we can assume that m > 0,
since the solution with m < 0 can be obtained from the
solution with m > 0 via complex conjugation. The typical
geometry of the streamlines, corresponding to the purely
toroidal vector field ξ with angular dependency (16) for
different combinations of l and m, is pictured in the Fig. 8
in Appendix A.
Thus, the leading-order equations allow one to specify

the angular dependency of Tð0Þ. The situation with the

calculation of the amplitude Tð0Þ
lm ðaÞ is more complicated

and depends on whether the EOS is barotropic or not. From

Eq. (14) it is clear that in the core Tð0Þ
lm ðaÞ cannot be found

in the leading order, thus, the analysis of the next-order
equations is needed. These equations are studied using the
expansions in associated Legendre polynomials,
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fð1Þ ¼
X
L≥m

fð1ÞLmðaÞPm
L ðxÞ; x ¼ cos θ: ð17Þ

Since the azimuthal numberm is fixed, in what follows, for

convenience, we omit the subscriptm and write Tð0Þ
l instead

of Tð0Þ
lm and fð1ÞL instead of fð1ÞLm, although these quantities

may actually depend on the value of m. We substitute these
expansions in the first-order equations and use the relations

d
dx

ð1 − x2Þ dP
m
L

dx
þ
�
LðLþ 1Þ − m2

1 − x2

�
Pm
L ¼ 0;

Pm
L ¼ 0 when L < m; ð18Þ

xPm
L ¼ kþLP

m
L−1 þ k−LP

m
Lþ1;

ð1 − x2Þ dP
m
L

dx
¼ ðlþ 1ÞkþLPm

L−1 − lk−LP
m
Lþ1; ð19Þ

kþL ¼ Lþm
2Lþ 1

; k−L ¼ L −mþ 1

2Lþ 1
ð20Þ

to reduce the angular dependency of all the terms in the
obtained equations to one or another Legendre polynomial.
Then, setting the coefficients before different Legendre
polynomials to zero, we arrive at the system of the first-
order ordinary differential equations (ODEs) for fL. The
analysis of these equations, along with the first equation of
(14) shows that in the core the problem reduces to the study

of the closed subsystemof equations forTð0Þ
l ,Qð1Þ

l�1, and ξ
ð1Þ
l�1.

In the crust of the neutron star the situation is different.
The reason is that the right-hand side of the Euler equation
has the form of the pure gradient, which allows one to find

Tð0Þ
l ðaÞ without considering the first-order equations.

Indeed, θ and φ components of the Euler equation exactly
coincide with their counterparts in the core, whereas the
radial component takes the form [compare with the first
equation of (14)]

2iσð0Þr sin θ
∂Tð0Þ

∂θ
¼ −c2

∂

∂a

�
pð1Þ

w0

�
: ð21Þ

Now, since pð1Þ ∼ eimφ, we can express pð1Þ from the φ
component of the Euler equation and substitute it to the
equation above. Using the relations (18), we obtain

ðlþ 1Þ2kþl
�
d
da

ðaTð0Þ
l Þ þ lTð0Þ

l

�
Pm
l−1ðxÞ

þ l2k−l

�
d
da

ðaTð0Þ
l Þ − ðlþ 1ÞTð0Þ

l

�
Pm
lþ1ðxÞ ¼ 0: ð22Þ

This equation is not contradictory, if and only if l ¼ m, in
which case we immediately find

Tð0Þ
l ðaÞ ¼ const · al: ð23Þ

The approach to the next-order equations in the crust is the
same as the one adopted in the core: we start with the
expansions (17) and then study the closed subsystem of the
first-order ODEs for the coefficients fL. But in the case of
the barotropic EOS the solution of this system can be
reduced to the solution of one simple equation for the
radial displacement that can be formally written as

ξð1Þlþ1

0 þg1ðaÞξð1Þlþ1þ½g21ðaÞσð1Þ þg22ðaÞ�Tð0Þ
l ðaÞ¼0; ð24Þ

where g1ðaÞ, g21ðaÞ, and g22ðaÞ are some functions of a
[see Eqs. (73) and (74) for their relativistic counterparts],
and the prime denotes the derivative d=da. This equation is
easily solved analytically,

ξð1Þlþ1ðaÞ ¼
1

ηðaÞ
�
ξ0 þ

Z1
a

ðg21ðaÞσð1Þ

þ g22ðaÞÞηðaÞTð0Þ
l ðaÞda

�
;

ηðaÞ ¼ exp

�
−
Z1
a

g1ðaÞda
�
: ð25Þ

Here ξ0 is the integration constant and the variable a is
normalized such that a ¼ 1 corresponds to the stellar
surface.
Thus, in order to find the global r-modes one has to solve

the mentioned system of ODEs in the core and the obtained
ODE in the crust, supplemented by appropriate boundary
conditions. Solution of these equations, as will be discussed
below in Sec. IV E, constitutes the eigenvalue problem that
allows one to find the eigenfrequency corrections σð1Þ
and corresponding eigenfunctions. These eigenfunctions
are traditionally distinguished by the number of nodes of
the toroidal function, i.e., by the number of points inside the

star, where Tð0Þ
l ðaÞ ¼ 0 (see, e.g., Provost et al. [50]).

In numerical calculations and in the theoretical analysis
it is usually convenient to operate with dimensionless
equations. Let M and R be, respectively, the mass and
radius of a given neutron star. The transition to the
dimensionless counterparts of the functions and variables
discussed above can be achieved by the following formal
replacements in the hydrodynamic equations:

fa;T;Q;ξrg→R ·fa;T;Q;ξrg; fc;csg→ΩKR ·fc;csg;
ð26Þ

fp0; w0; δp; δwg →
MðΩKRÞ2

R3
· fp0; w0; δp; δwg;

fΩ; σrg → ΩK · fΩ; σrg; ð27Þ

where
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ΩK ¼
ffiffiffiffiffiffiffiffi
GM
R3

r
ð28Þ

is the quantity of the order of the stellar Keplerian angular
velocity. Actually, these replacements do not change the
form of the equations: all thus introduced multipliers
eventually cancel each other out and one is left with
exactly the same equations. Therefore, all the quantities
in the resulting ODEs in the core and in the crust can be
considered as dimensionless. From now on, we always
work with dimensionless equations and quantities.

IV. R-MODES IN GENERAL RELATIVITY

A. General linearized equations in GR

The approach to the description of stellar dynamics in
general relativity resembles the one adopted in Newtonian
physics, although there is a number of key differences. First
of all, the macroscopic flows in the star are characterized by
the 4-velocity vector field uμ, instead of the vector field v.
Secondly, a set of metric functions gμν obeying the Einstein
equations describes the gravity of the neutron star, instead
of the gravitational potential ϕ, obeying the Poisson’s
equation. In xμ ¼ ðct; a; θ;φÞ coordinates the equilibrium
configuration of the slowly rotating neutron star corre-
sponds to the equilibrium 4-velocity

uφ ¼ Ω
c
ut; ua ¼ uθ ¼ 0; uμuμ ¼ −1; ð29Þ

and its gravitational field is defined by the line element of
the form [43]

ds2¼ gμνdxμdxν¼−e2νða;θÞc2dt2þe2λða;θÞ½drða;θÞ�2
þ r2ða;θÞe2ψða;θÞ½dθ2þ sin2θðdφ−ΩωðaÞdtÞ2�: ð30Þ

In this study we present the differential drða; θÞ [see Eq. (3)
for the definition of ζ] and metric functions ν, λ, and ψ as

drða; θÞ ¼
�
1þΩ2

∂ζ

∂a

�
daþ Ω2

∂ζ

∂θ
dθ; ð31Þ

νða;θÞ¼ν0ðaÞþΩ2ν2ða;θÞ;
λða;θÞ¼ λ0ðaÞþΩ2λ2ða;θÞ; ψða;θÞ¼Ω2ψ2ða;θÞ; ð32Þ

which is equivalent to the decompositions, adopted byHartle
[43]. Here and hereafter, for convenience, we
omit the subscript “0” when dealing with the equilibrium
4-velocity and metric tensor, and write uμ and gμν instead of,
respectively, uμ

0 and g0;μν. In what follows, we also use the
ð−;þ;þ;þÞ metric signature convention and imply the
summation over the repeated Greek indices. Note that,
whereas in the Newtonian gravity the rotation affects the
equilibrium configuration of the star only starting with

the terms of the order Ω2 and higher, in GR the rotation
of the star manifests itself already in the first order in Ω:
the function ωðaÞ describes the relativistic effect of the
inertial reference frame-dragging and, as we shall see,
drastically changes the properties of the relativistic r-mode
counterparts.
As in the Newtonian theory, in GR there are two ways of

describing small perturbations of a neutron star. The
Eulerian treatment does not undergo any changes and can
be instantly applied in the study of relativistic equations. The
relativistic generalization of the Newtonian Lagrangian
treatment was developed in the papers by Taub [53],
Carter [54], and Friedman and Shutz [4,55]. It was proposed
to introduce the Lagrangian displacement 4-vector ξμ

showing the world line variation of a fluid element induced
by a perturbation. Then the Eulerian δf and Lagrangian Δf
perturbations of any physical quantity f are related as

ΔfðxμÞ ¼ δfðxμÞ þ Lξf0ðxμÞ; ð33Þ

where Lξf is the Lie derivative of a tensor field f along the
vector field ξμ. Particularly, it can be shown [4] that the
Eulerian perturbation of the 4-velocity δuμ ¼ uμ − uμ is
related to ξμ and the metric Eulerian perturbations δgμν ¼
gμν − gμν as

δuμ ¼ 1

2
uμuρuλδgρλþ⊥μ

ρLuξ
ρ; ⊥μ

ρ ¼ δμρ þuμuρ: ð34Þ

From these equations it is easy to verify that the Eulerian
perturbation δuμ automatically satisfies the linearized form
of the normalization condition uμuμ ¼ −1.
The introduced Lagrangian displacement ξμ is defined up

to the gauge transformation ξμ → ξμ þ ημ, where ημ is the
trivial displacement, that is the displacement that realizes the
solution of the perturbed fluid equations with all Eulerian
perturbations set to zero. Particularly, this means that
⊥μ

ρLuη
ρ ¼ 0, which allows us to impose the gauge condition

uμξμ ¼ 0 on the Lagrangian displacement ξμ [4,55].
The fully relativistic calculation of stellar oscillations

constitutes a complex problem, since one has to deal with
linearized Einstein equations in a rotating neutron star. At
the same time, if we ignore the perturbations of the
geometry and set δgμν ¼ 0 (the simplest form of the
relativistic Cowling approximation), the problem greatly
simplifies and reduces to studying the linearized hydro-
dynamic equations, as it was in the Newtonian theory.
A comparison of the full relativistic calculation and the
calculation within the Cowling approximation for different
stellar oscillations shows [56–58] that the latter can be used,
with reasonable accuracy, as an estimate for the normal
stellar modes and corresponding eigenfrequencies, unless
one is interested in the study of w-modes, which do not have
a Newtonian counterpart. For the relativistic r-modes,
which we are interested in, the Cowling approximation
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leads to the relative error in oscillation frequency σ ranging
from 6% to 11% [58]. As will be discussed below (see
Sec. VII), the error introduced by the Cowling approxima-
tion for the relativistic r-modes in the Ω → 0 limit is likely

to be significantly smaller because of the peculiarities of the
r-mode behavior in this limit.
In the Cowling approximation the dynamics of small

perturbations is governed by the following closed system of
equations:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ðuρ∇ρÞδuμ þ δuρ
�
∇ρuμ þ

1

w0

ðuμδλρ þ uλδμρÞ∇λp0

�
−⊥μρ

�
δw
w2
0

∇ρp0 −
1

w0

∇ρδp

�
¼ 0;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ∂

∂xμ
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ðδnkuμ þ nk0δuμÞ� ¼ 0;

p0 ¼ p0ðnk0Þ; μm0 ¼ μm0ðnk0Þ; w0 ¼ μk0nk0;

δp ¼
�
∂p
∂nk

�
0

δnk; δw ¼ μk0δnk þ δp;

δuμ ¼ ⊥μ
ρLuξ

ρ; uμξμ ¼ 0.

ð35Þ

Here det g≡ det gμν ¼ det gμν, the covariant derivative ∇ρ

is defined for the geometry (30), and the metric tensor gμν
is used to relate covariant and contravariant tensorial
components. The first equation is the linearized Euler
equation, written in the laboratory reference frame, and
the second equation presents the set of continuity equa-
tions for different particle species k. The rest of the
equations are obtained from thermodynamic relations
(1), the EOS of the matter (2), the gauge condition for
the Lagrangian displacement, and the formula (34), written
in the Cowling approximation. Note that the components
of the linearized Euler equation are linearly dependent: if
we denote the left-hand side of this equation as Fμ, then,

using the normalization uμuμ ¼ −1 and the unperturbed
Euler equation,

ðuρ∇ρÞuμ ¼ −
1

w0

⊥μρ∇ρp0; ð36Þ

it is easy to show that uμFμ ¼ 0. Therefore, in our study it
is sufficient to consider only a, θ, and φ components of the
Euler equation.
We can get rid of the number density perturbations by

multiplying the continuity equations by either ð∂p=∂nkÞ0 or
μk0 and then performing the summation over the k index.
As a result, in the core the equations can be written as

8>>>>>>>>>>><
>>>>>>>>>>>:

ðuρ∇ρÞδuμ þ δuρ
�
∇ρuμ þ

1

w0

ðuμδλρ þ uλδμρÞ∇λp0

�
¼ ⊥μρ

�
δw
w2
0

∇ρp0 −
1

w0

∇ρδp

�
;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ∂

∂xμ
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
δpuμ� þ w0

�
cs
c

�
2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det g
p ∂

∂xμ
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
δuμ� þ ðδuμ∇μÞp0 ¼ 0;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ∂

∂xμ
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ðδw − δpÞuμ� þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det g
p ∂

∂xμ
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
w0δuμ� − ðδuμ∇μÞp0 ¼ 0;

δuμ ¼ ⊥μ
ρLuξ

ρ; uμξμ ¼ 0.

ð37Þ

Note that in the derivation of these equations we have explicitly used the equality ua ¼ uθ ¼ 0, and the fact that the
equilibrium quantities do not depend on t and φ. In the following, for simplicity, we shall refer to the second and third
equations of this system as the “continuity equation 1” and “continuity equation 2”. Equations in the crust of the neutron
star are obtained in the same manner, but, similarly to the Newtonian case, the barotropy (8) of the EOS makes two
continuity equations equivalent to each other and modifies the right-hand side of the Euler equation. As a result, we have8>>>>><

>>>>>:

ðuρ∇ρÞδuμ þ δuρ
�
∇ρuμ þ 1

w0
ðuμδλρ þ uλδμρÞ∇λp0

�
¼ −⊥μρ∇ρ

�
δp
w0

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det g
p ∂

∂xμ
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
δpuμ� þ w0

�
cs
c

�
2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det g
p ∂

∂xμ
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
δuμ� þ ðδuμ∇μÞp0 ¼ 0

δuμ ¼ ⊥μ
ρLuξ

ρ; uμξμ ¼ 0:

ð38Þ
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Thus, the study of global stellar oscillations splits into the
study of the system (37) in the core and system (38) in the
crust. As we shall see, the barotropy of the EOS brings
about even more serious differences between the r-mode
properties in the core and in the crust of the neutron star
than there were for nonrelativistic modes.
Relativistic counterparts of Newtonian functions Q and

T can be written as

ξθGR ¼ 1

r

�
∂QGR

∂θ
þ 1

sin θ
∂TGR

∂φ

�
;

ξφGR ¼ 1

r sin θ

�
1

sin θ
∂QGR

∂φ
−
∂TGR

∂θ

�
: ð39Þ

It is easy to verify that the functions QGR and TGR reduce,
respectively, to the functions Q and T introduced in the
Newtonian limit. Once we expand QGR and TGR in the
associated Legendre polynomials (or spherical harmonics),
it becomes evident that this decomposition is equivalent to
that used by Regge and Wheeler [59] and Thorne and
Campolattaro [60]. Further, we employ this decomposition
in the study of relativistic equations, omitting the “GR”
subscript. As we shall see, the expansions ofQ, T and other
quantities in the associated Legendre polynomials will
allow us to separate variables in the equations and reduce

the problem to the study of the first-order ODEs, similar to
the Newtonian ones. The function T will be referred to as
the toroidal function throughout the text. It can be shown
that the 4-divergence ∇μAμ of a purely toroidal 4-vector Aμ

vanishes in the limit Ω → 0.

B. The problem of the continuous spectrum

Let us consider the case of a slowly rotating neutron star
and try to find the solution of relativistic perturbative
equations in the form of r-modes, i.e., our aim will be to
find predominantly toroidal oscillations, for which the t and φ
dependencies of any perturbation are ξμ ∼ δf ∼ Δf∼
eiσtþimφ, and for which eigenfrequencies σ ¼ σr −mΩ,
defined in the laboratory reference frame, vanish in the
Ω ¼ 0 case. The linearized equations contain only even
powers ofΩ and it seems that the most natural way to do this
is to study relativistic equations, assuming that the Newtonian

ordering (11) holds for GR (with the frequencies σr and σð0Þr

replaced by σ and σð0Þ, correspondingly). If we employ this
ordering, for example, in the core, then in the leading order
the continuity equations of the system (37) become identities,
whereas the θ and φ components of the Euler equations can
be written as [cf. similar Eq. (14) for Newtonian stars]

8>>><
>>>:

imðmþ σð0ÞÞ2
sin θ

Tð0Þ − 2iðmþ σð0ÞÞ cos θ½1 − ωðaÞ� ∂T
ð0Þ

∂θ
¼ c2e2ν0

aw0

∂pð1Þ

∂θ
;

−ðmþ σð0ÞÞ2 ∂T
ð0Þ

∂θ
þ 2mðmþ σð0ÞÞ½1 − ωðaÞ�ctgθTð0Þ ¼ imc2e2ν0

sin θ
pð1Þ

aw0

:

ð40Þ

Expressing pð1Þ from the second equation and inserting it in
the first one, we arrive at the following equation for the
toroidal function Tð0Þ

1

sinθ
∂

∂θ
sinθ

∂Tð0Þ

∂θ
þ
�
2m½1−ωðaÞ�
mþ σð0Þ

−
m2

sin2θ

�
Tð0Þ ¼ 0: ð41Þ

If we look for the solution of this equation as

Tð0Þ ¼ −iTð0Þ
l ðaÞPm

l ðcos θÞ, we immediately obtain

�
σð0Þ þm −

2m½1 − ωðaÞ�
lðlþ 1Þ

�
Tð0Þ
l ðaÞ ¼ 0: ð42Þ

It follows then that either the solution is trivial, or there
exists a resonance point a�, in which

σð0Þ ¼ 2m½1 − ωða�Þ�
lðlþ 1Þ −m; Tð0Þ

l ðaÞ ∼ δða − a�Þ: ð43Þ

This result implies that, since ωðaÞ is a positive mono-
tonically decreasing function of a, for any combination of l

and m we have a continuous spectrum of eigenfrequencies,
corresponding to resonance points 0 ≤ a� ≤ 1 and taking
values within the range

2m½1 − ωð0Þ�
lðlþ 1Þ −m ≤ σð0Þ ≤

2m½1 − ωð1Þ�
lðlþ 1Þ −m: ð44Þ

Thus, application of the traditional approach to the relativ-
istic r-mode calculations inevitably leads to the continuous
eigenfrequency spectrum. For the first time, this peculiarity
of the relativistic r-mode spectrum was revealed in the
works by Kojima [16,17], where relativistic linearized
equations were studied both within and beyond the
Cowling approximation. The continuous spectrum was
shown to emerge as a consequence of the fact that the
leading-order r-mode equations, derived by Kojima, con-
stitute a singular eigenvalue problem instead of a regular
one [16–18]. Actually, an analysis of the equations beyond
the Cowling approximation indicates that a nontrivial
solution of these equations can be achieved only if the
r-mode eigenfrequency takes a value in the range
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2m½1 − ωð0Þ�
lðlþ 1Þ −m ≤ σð0Þ ≤

2m½1 − ωð∞Þ�
lðlþ 1Þ −m: ð45Þ

As far as we know, at this point there is no consensus in
the literature on whether the continuous spectrum is a
physical phenomenon or an artifact of the adopted assump-
tions and simplifications. Kojima argued [16,17] that the
continuity of the spectrum reflects the fact that the fre-
quency is measured by an observer, whose angular velocity,
because of the inertial reference frame-dragging, is position
dependent even for uniformly rotating stars. Kojima also
expected that, although all eigenfrequencies within the
continuous spectrum range are equally possible in the
leading Ω2 order, some favored eigenfrequencies can be
selected by higher-order corrections. Further investigations
of higher-order equations [19,20] revealed, however, that no
such selection takes place: solving the next-order equations,
one finds continuous corrections to the leading-order
frequency spectrum. Moreover, in the Cowling approxima-
tion for the case of barotropic EOS these continuous
corrections remained continuous even in the Newtonian
limit, i.e., it seemed that the obtained pathological solution
did not have proper Newtonian counterparts.
Significant contribution to understanding the r-modes in

barotropic stars has been made in the papers by Lockitch,
Andersson and Friedman [21,24], where the analysis of the
effect of rotation on the zero-frequency modes of non-
rotating stars was discussed. It was shown that the tradi-
tional ordering cannot be applied to study the r-modes in
barotropic stars, since it immediately leads to the over-
determined system, a fact that was overlooked in the
previous works of Kojima. Moreover, it was shown that
the r-modes in barotropic stars simply do not exist, and that
the l ¼ m Newtonian r-modes correspond to the relativistic
inertial modes with discrete spectrum [which removes the
pathological solution with the nonvanishing (even in the
Newtonian limit) continuous eigenfrequency correction,
discussed above].
For nonbarotropic stars, however, the problem of the

continuous spectrum survives. In the same paper by
Lockitch, Andersson, and Friedman [21] it was noticed
that for the eigenfrequencies within the range

2m½1 − ωð1Þ�
lðlþ 1Þ −m ≤ σð0Þ ≤

2m½1 − ωð∞Þ�
lðlþ 1Þ −m ð46Þ

the problem, actually, is regular and the corresponding
solutions, further referred to as the discrete r-modes,
are characterized by the discrete oscillation spectrum.
Such r-mode solutions with discrete eigenfrequencies were
immediately found by the authors for the uniform density
stellar model, and these solutions were claimed at first as
relativistic replacement to the Newtonian r-modes. It is,
however, interesting to notice that these r-modes cannot be
obtained in the Cowling approximation, since their

eigenfrequencies take values beyond the band (44) (which
becomes possible if one accounts for the metric perturba-
tions). Thus, while the authors of that study do not exclude
the possibility of coexistence of discrete and nondiscrete r-
modes, they still arrive at a conclusion that r-modes very
likely cannot be described in the Cowling approximation.
But further application of their ideas to the more realistic
case of slowly rotating relativistic polytropic stars, carried
out by Yoshida [61], showed that the existence of discrete
r-modes depends on the polytropic index and the compact-
ness of the stellar model, and it is very likely that these
modes do not exist under conditions typical for neutron star
interiors, and, therefore, are not important for neutron star
physics. Yoshida then came to the conclusion that one
should look for the r-mode solutions within the continuous
spectrum band that could also contain some hidden dis-
crete modes.
Such hidden modes, further referred to as the isolated

modes, indeed were found in the low-frequency approxi-
mation by Ruoff and Kokkotas [22], but it turned out that
they have divergent velocity perturbations and therefore
cannot be considered as physical. The authors of that study
concluded then, that the physical r-modes should be sought
beyond the range (44), which, obviously, contradicts the
point of view expressed by Yoshida [61]. At the same time
Lockitch, Andersson, and Watts [30] argued that account-
ing for the higher-order terms in the relativistic r-mode
oscillation equations might regularize the problem and that
the modes that are divergent in the leading order could
actually become finite, once such terms are included.
However, determining the exact form of these terms is a
rather complicated problem which, as far as we know, has
not been solved yet.
In the discussion of the possible origin of the continuous

spectrum, some authors [18,21,61] suggested that the so-far
studied equations, derived by Kojima, simply do not govern
the dynamics of the “genuine” r-modes, since they do not
allow for the gravitational radiation and/or for the dis-
sipative mechanisms operating in the stellar matter. The
idea is that these effects would produce an imaginary part in
oscillation eigenfrequencies, which could potentially regu-
larize the problem. It seems that the inclusion of the
gravitational radiation does not regularize the spectrum
[28,29], and the existence of r-modes in more realistic
stellar models remains questionable. At the same time, the
regularization based on the inclusion of the shear viscosity
in the theory actually works [31,32]: the continuous
spectrum is regularized, and, as the shear viscosity is taken
to be closer and closer to zero, those stellar models that
previously did not admit r-mode solutions, regain them.
However, in such regularization the rotational corrections
are implicitly considered small compared to the viscous
terms, which is exactly the opposite to the situation one
expects to take place in neutron stars.
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All of the studies discussed above are performed within
the slow-rotation approximation and focus on the equations
obtained in different orders in Ω. We did not find any
comments in the literature on whether the solutions to the
equations, obtained within this approximation, really satisfy,
with reasonable accuracy, the general relativistic oscillation
Eq. (37) with small values of Ω or not. In our opinion, there
is no guarantee that the solutions of the known equations in
the slow-rotation limit correspond to the “real” relativistic
modes obtained from the general Eq. (37). Moreover, it is
interesting to notice that more “straightforward” calcula-
tions that do not rely on the slow-rotation approximation,
both in barotropic [25,26,58,62] and in nonbarotropic
[23,63] stars, show no indications of the continuous part
of the spectrum, and there are no difficulties in obtaining the
normal r-modes with discrete eigenfrequencies falling
within the continuous-spectrum-associated frequency band.
This result seems natural for the barotropic case, since, as
has already been mentioned, the relativistic generalization
of the Newtonian r-modes are the discrete inertial modes.
For nonbarotropic stars, however, this result comes as a
surprise, since it contradicts the theoretical predictions of
the presence of the continuous spectrum, made in the slow-
rotation approximation. As far as we know, there are
only two works devoted to the numerical calculations of
the r-modes in nonbarotropic stars, carried out by Yoshida
and Lee [23] and Villain, Bonazzola, and Haensel [63].
Interestingly, in these works discrete r-modes are found in
the Cowling approximation, in which the problem of the
continuous spectrum seems to be especially pronounced.
Summarizing, the calculation of the relativistic r-modes

of nonbarotropic stars produces a lot of controversial
results. Theoretical studies in the slow-rotation approxi-
mation fail to find the relativistic generalization of the
Newtonian r-modes. They predict the coexistence of the
continuous eigenfrequency band (44), the isolated eigen-
frequencies within this band, and discrete modes with
eigenfrequencies (46) placed beyond the continuous spec-
trum range. Neither isolated modes nor discrete modes can
be surely considered as the true relativistic r-modes: the
status of the former is disputable, since they have divergent
velocity perturbations in the leading order of the theory
[22,30], whereas the latter may simply not exist under
conditions typical for neutron star interiors [61], and,
moreover, cannot be found in the Cowling approximation.
At the same time, numerical studies beyond the slow-
rotation approximation [23,25,26,58,62] reproduce the
discrete r-modes, analogous to the Newtonian ones.
Despite the idea [21] that it is impossible to find relativistic
r-modes in the Cowling approximation, Yoshida and Lee
[23] and Villain, Bonazzola, and Haensel [63] actually do
find these modes for rapidly rotating stars. The spectrum
regularization via viscous dissipation [31,32] is an inter-
esting result, but it does not provide much information on
what goes wrong, if one considers the oscillations in the

nondissipative case. There is one thing, though, that seems
to be clear: it is very likely that the traditional approach,
based on the expansion in an Ω series, is not suitable for
this problem. In the following sections, we develop an
alternative approach to studying the r-modes within the
Cowling approximation. This approach reveals some
previously overlooked interesting properties of relativistic
r-modes, and allows one to obtain general r-mode equa-
tions, resembling the Newtonian ones and valid for
arbitrary EOS. This approach also helps us to clarify
the illusive nature of the continuous spectrum and the
reasons for the slow-rotation approximation breakdown.

C. A new approach to the r-mode equations:
Stellar core

The approach we are about to develop is inspired by the
one proposed in Kantor et al. [64], where a mathematically
similar problem was encountered in superfluid neutron
stars and the continuous spectrum emerged as one tried to
account for the so-called entrainment effect between pro-
tons and neutrons (e.g., [65–67]).
Now, let us assume that the frame-dragging effect is

weak, and write ωðaÞ ¼ ϵω̃ðaÞ, where the magnitude of the
effect ϵ ¼ max0≤a≤1fωðaÞg is assumed to be small. On one
hand, this assumption simplifies the analysis of the equa-
tions, and, on the other hand, it does not eliminate the
problem of the continuous spectrum, since the formula (44)
was obtained for the arbitrary (e.g., small) values of ωðaÞ.
As it turns out (see Secs. V and VI B for more details), this
assumption is expected to provide a rather accurate estimate
of the spectrum at Ω → 0 even in the realistic case of (not
necessarily) weak frame-dragging effect. In the following,
we will also ignore background geometry corrections ∝ Ω2

and set the functions ν2ðaÞ, λ2ðaÞ, ψ2ðaÞ, and ζða; θÞ to
zero. Strictly speaking, this approximation is not justified,
since these corrections affect the spectrum quantitatively
and should be accounted for in the most accurate calcu-
lation. But our aim in this paper is not to present such a
calculation but to provide an insight into the origin of the
problem of the continuous spectrum that would give one a
hint on how such calculations should be performed.
Moreover, these corrections do not affect the mathematical
properties of the problem.
When we deal with perturbations of the form

ξμ ∼ δf ∼ Δf ∼ eiσtþimφ, a further reduction of the system
of equations in the core (37) is possible. The first step is to
exclude the perturbation of the enthalpy density δw, using
the a component of the Euler equation. The second step is
to exclude the pressure perturbation δp from the φ
component of the Euler equation. As a result, we obtain
the θ component of the Euler equation and two continuity
equations that form a desired closed system of equations for
ξa, T, and Q. We do not provide an explicit form of these
equations, since at this point they are very cumbersome and
noninformative.
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Now, let us try again to find the r-mode solutions, using
the three obtained equations. An important property of
these equations is that, once we assume the oscillation
frequency to be proportional to Ω, only terms with even
powers of Ω survive, so that the small parameter in the
problem, associated with slow stellar rotation, is Ω2, not Ω.
This rather subtle observation will play a significant role in
the discussion of the relativistic r-mode ordering in the
following sections. At this point it means that we have two
small parameters in the problem—the rotation-associated
parameterΩ2 and the frame-dragging effect of magnitude ϵ,
such that in the limit of the vanishing rotation rate Ω2 → 0

and Ω2=ϵ → 0. Physically, the latter condition means that
we account for the frame-dragging effect even for arbi-
trarily slow rotation rates. Note that this is fundamentally
different from the post-Newtonian studies, when one looks
for the relativistic corrections to the Newtonian modes with
ϵ ¼ 0, so that effectively ϵ=Ω2 → 0. The central idea
behind our approach is not to discriminate between small
corrections due to ϵ or Ω2, but to consider them simulta-
neously. Mathematically, this is achieved by the following
decomposition:

σ ¼ Ω½σð0Þ þ σð1Þ�; T ¼ Tð0Þ þ Tð1Þ;

Q ¼ Qð1Þ; ξa ¼ ξð1Þ: ð47Þ

Here the terms fð0Þ correspond to the solution of the
equations in the limit Ω2 → 0, ϵ → 0, and Ω2=ϵ → 0.
These terms and corresponding equations will be further
attributed to the leading order of the theory, although the
term “order” is ill defined in our case, since we simulta-
neously consider two different small parameters. The terms
fð1Þ are assumed to be small (due to Ω, ϵ, or both),
compared to the terms fð0Þ. These terms and equations,
where one does not set Ω2 → 0, ϵ → 0, and Ω2=ϵ → 0, will
be further attributed to the next order of the theory. The
procedure to obtain the next-order equations will be
discussed below. Note that these decompositions do not
imply any explicit ordering, and the only thing we rely on is
that ϵ and Ω2 are small.
In the leading order of the theory the continuity

equations become identities, and the θ component of the
Euler equation reduces to the equation for Tð0Þ of exactly
the same form

1

sin θ

∂

∂θ
sin θ

∂Tð0Þ

∂θ
þ
�

2m

mþ σð0Þ
−

m2

sin2θ

�
Tð0Þ ¼ 0; ð48Þ

as it was for the Newtonian stars [cf. Eq. (15)]. Thus, in the
leading order the traditional r-mode spectrum is restored,
and we have

σð0Þ ¼ 2m
lðlþ 1Þ −m; σð0Þr ¼ 2m

lðlþ 1Þ ;

Tð0Þ ¼ −iTð0Þ
l ðaÞPm

l ðcos θÞ: ð49Þ

Now, let us proceed with the derivation of the next-order
equations. In order to do this, we substitute our decom-
positions (47) into our general system of equations (two
continuity equations and θ component of the Euler equation
with excluded δp and δw), and then simplify them, using
the leading-order equations. Then we throw away small
terms, using the following selection rule: if, in any
particular equation, there is a term f, then we can safely
ignore the terms ϵf and Ω2f in the very same equation.
Further analysis of thus obtained first-order equations
becomes more feasible, if we, as in the Newtonian theory,
expand all the quantities of interest in the associated
Legendre polynomials:

fð1Þ ¼
X
L≥m

fð1ÞL ðaÞPm
L ðxÞ; x ¼ cos θ: ð50Þ

Then, after using the properties (18) and (19), we find out
that the variables in all the equations separate, and we

obtain a system of the first-order ODEs for Tð0Þ
l ðaÞ, Tð1Þ

L ðaÞ,
Qð1Þ

L ðaÞ, and ξð1ÞL ðaÞ. To be more specific, after the sub-
stitution of Legendre expansions, each of the next-order
equations can be formally written as

Al−2ðaÞPm
l−2ðxÞ þAl−1ðaÞPm

l−1ðxÞ þAlðaÞPm
l ðxÞ

þAlþ1ðaÞPm
lþ1ðxÞ þAlþ2ðaÞPm

lþ2ðxÞ
þ

X
L≥m

BLðaÞPm
L ðxÞ ¼ 0; ð51Þ

whereALðaÞ and BLðaÞ are some functions of a. The terms
ALðaÞ originate from those terms in the system before the
separation of variables that contain Tð0Þða; xÞ and its
derivatives. The terms BLðaÞ, in turn, are produced by
those terms that contain decompositions (50) for fð1Þða; xÞ
and their derivatives. There are two types of the first-order
ODEs that follow from such equations:

first type∶ALðaÞþBLðaÞ¼0 forL∈fl;l�1;l�2g; ð52Þ

second type∶ BLðaÞ¼ 0 for L∉ fl; l�1; l�2g: ð53Þ

Actually, the “permitted” values of L for the first-type
equations and the “forbidden” values of L for the second-
type equations may differ from the shown ones, since for
some L we may have ALðaÞ ¼ 0 [68].
A number of useful conclusions can be drawn from the

analysis of the second-type equations, obtained for the θ
component of the Euler equation
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imðL − lÞðLþ lþ 1Þ
lðlþ 1Þ Tð1Þ

L ¼ ðLþ 1Þk−L−1½ðL − 1ÞQð1Þ
L−1 − ð1 − agÞξð1ÞL−1�

þ LkþLþ1½ðLþ 2ÞQð1Þ
Lþ1 þ ð1 − agÞξð1ÞLþ1�; L ∉ fl; l� 2g ð54Þ

and for the two continuity equations,

aw0
0ξ

ð1Þ
L þ w0½aξð1ÞL

0 þ ð2þ agþ aλ00Þξð1ÞL − LðLþ 1ÞQð1Þ
L � ¼ 0; L ∉ fl� 1g; ð55Þ

agξð1ÞL −
�
cs
c

�
2

½aξð1ÞL
0 þ ð2þ aλ00Þξð1ÞL − LðLþ 1ÞQð1Þ

L � ¼ 0; L ∉ fl� 1g; ð56Þ

where we have introduced the gravitational acceleration g ¼ ν00 ¼ −p0
0=w0 [the last equality follows from the equilibrium

Eq. (36) for Ω ¼ 0]. If we express ξð1ÞL
0 from one of the continuity equations and substitute into the other, we immediately

obtain ξð1ÞL ¼ 0 for L ∉ fl� 1g. Then, from any of the continuity equations and the θ component of the Euler equation it is
easy to see that

ξð1ÞL ¼ Qð1Þ
L ¼ 0 for L ∉ fl� 1g; Tð1Þ

L ¼ 0 for L ∉ fl; l� 2g; ð57Þ

which is very similar to the situation one usually encounters in Newtonian studies of nonbarotropic stellar models.
Now we are ready to study the first-type equations. It turns out that the function Tð1Þ

l remains undetermined in this order

of the theory (similarly to how Tð0Þ
l cannot be obtained from the leading-order equations), and the first-type equations form a

closed system of the first-order ODEs for all remaining functions fTð0Þ
l ; ξð1Þl�1; Q

ð1Þ
l�1; T

ð1Þ
l�2g. There are three first-type

equations, obtained from the θ component of the Euler equation. Two of them can be used to express Tð1Þ
l�2 through Tð0Þ

l ,

Qð1Þ
l�1, and ξð1Þl�1 as

Tð1Þ
l−2 ¼

iðlþ 1Þe−2ν0kþl−1f2c2ðl − 2Þl2e2ν0 ½ð1 − agÞξð1Þl−1 þ lQð1Þ
l−1� þmΩ2kþl a

2ðl3 − 6l2 − 8lþ 8ÞTð0Þ
l g

4mc2lð2l − 1Þ ; ð58Þ

Tð1Þ
lþ2 ¼ −

ile−2ν0k−lþ1f2c2ðlþ 1Þ2ðlþ 3Þe2ν0 ½ðag − 1Þξð1Þlþ1 þ ðlþ 1ÞQð1Þ
lþ1� −mΩ2k−l a

2ðl3 þ 9l2 þ 7l − 9ÞTð0Þ
l g

4mc2ðlþ 1Þð2lþ 3Þ ; ð59Þ

while the third has the form of the algebraic relation between Tð0Þ
l , ξð1Þl�1, and Qð1Þ

l�1

c2l2ðlþ 1Þ2e2ν0 ½lðlþ 1Þσð1Þ þ 2mϵωðaÞ�Tð0Þ
l

þ a2mΩ2½4m2 − l2ðlþ 1Þ2 þ l2ðl3 þ 9l2 þ 7l − 9Þk−l kþlþ1 − ðlþ 1Þ2ðl3 − 6l2 − 8lþ 8Þk−l−1kþl �Tð0Þ
l

¼ 2c2l2ðlþ 1Þ2e2ν0fðlþ 1Þk−l−1½ðag − 1Þξð1Þl−1 þ ðl − 1ÞQð1Þ
l−1� þ lkþlþ1½ð1 − agÞξð1Þlþ1 þ ðlþ 2ÞQð1Þ

lþ1�g: ð60Þ

From the first continuity equation we obtain two equations of the first type:

2amΩ2kþl ½4aTð0Þ
l

0 þ að4A − gðl3 þ 2lþ 8Þ − 4λ00ÞTð0Þ
l þ 2ðF þ 2l − 3ÞTð0Þ

l �
¼ c2gl2e2ν0ð2ðl − 1ÞlQð1Þ

l−1 − ξð1Þl−1ð2aAþ F − 1Þ − 2aξð1Þl−1
0Þ; ð61Þ

2amΩ2k−l ½4aTð0Þ
l

0 þ að4Aþ gðl3 þ 3l2 þ 5l − 5Þ − 4λ00ÞTð0Þ
l þ 2ðF − 2l − 5ÞTð0Þ

l �
¼ c2gðlþ 1Þ2e2ν0 ½2ðlþ 1Þðlþ 2ÞQð1Þ

lþ1 − ξð1Þlþ1ð2aAþ F − 1Þ − 2aξð1Þlþ1

0�; ð62Þ

where we have introduced
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AðaÞ ¼ w0
0

w0

þ g

�
1þ

�
c
cs

�
2
�
;

FðaÞ ¼ 2a

�
λ00 − g

�
c
cs

�
2
�
þ 5: ð63Þ

First-type equations, obtained from the second continuity
equation, have similar form and can be used to express

Qð1Þ
l�1 through Tð0Þ

l and ξð1Þl�1 as

Qð1Þ
l−1 ¼

c2gl2½2aξð1Þl−1
0 þ ðF − 1Þξð1Þl−1� − 2amΩ2kþl e

−2ν0 ½ag lðl2 − 2Þ − 2ðF − 5 − 2aλ00Þ�Tð0Þ
l

2c2gl3ðl − 1Þ ; ð64Þ

Qð1Þ
lþ1 ¼

c2gðlþ 1Þ2½2aξð1Þlþ1

0 þ ðF − 1Þξð1Þlþ1� þ 2amΩ2k−l e
−2ν0 ½agðl3 þ 3l2 þ l − 1Þ þ 2ðF − 5 − 2aλ00Þ�Tð0Þ

l

2c2gðlþ 1Þ3ðlþ 2Þ : ð65Þ

If we substitute (64) and (65) into Eqs. (60)–(62), we arrive at the closed system of three equations for Tð0Þ
l , ξð1Þl−1, and ξ

ð1Þ
lþ1.

This system can be transformed to relatively compact form,

8>>>>>>>><
>>>>>>>>:

Tð0Þ
l fc2e2ν0glðlþ 1Þ½lðlþ 1Þσð1Þ þ 2mϵω̃ðaÞ� þ aΩ2½agγ2 þ 4mγ1ð2aλ00 − F þ 5Þ�g ¼

c2ge2ν0 ½l2kþlþ1ð2aξð1Þlþ1

0 þ ξð1Þlþ1½−2agðlþ 1Þ þ F þ 2lþ 1�Þ þ ðlþ 1Þ2k−l−1ð2aξð1Þl−1
0 þ ξð1Þl−1½2aglþ F − 2l − 1�Þ�;

Tð0Þ
l

0 þ Tð0Þ
l

�
Aþ gðl − 1Þ − l

a

�
þ Ac2gðlþ 1Þ2e2ν0

4amΩ2k−l
ξð1Þlþ1 ¼ 0;

Tð0Þ
l

0 þ Tð0Þ
l

�
A − gðlþ 2Þ þ lþ 1

a

�
þ Ac2gl2e2ν0

4amΩ2kþl
ξð1Þl−1 ¼ 0;

ð66Þ

where γ1 and γ2 are numerical coefficients that can be conveniently written as

γ1 ¼
l4k−l k

þ
lþ1 þ ðlþ 1Þ4k−l−1kþl

l2ðlþ 1Þ2 ; γ2 ¼
2m2½3m3 þ 29m2σð0Þ þ 2mð16σð0Þ2 − 1Þ þ 6σð0Þðσð0Þ2 − 4Þ�

ð2l − 1Þð2lþ 3Þðmþ σð0ÞÞ2 : ð67Þ

Being written in the Newtonian limit, the system (66)
reproduces the Newtonian r-mode equations in the core,
whose derivation is very similar to the derivation of the
relativistic equations and was briefly discussed before in
Sec. III.
The l ¼ m case, most intensively studied in the liter-

ature, deserves a special consideration, since the r-mode
with l ¼ m ¼ 2 is most CFS unstable. In this case, the

functions Qð1Þ
l−1, ξ

ð1Þ
l−1, and Tð1Þ

l−2 should be set to zero as
coefficients in front of the Legendre polynomials Pm

l−1ðxÞ
and Pm

l−2ðxÞ that vanish for l ¼ m. One should also ignore
Eqs. (58), (61), (64), and the last equation of the system
(66). The reason is that these equations are obtained via
setting the coefficients before Pm

l−1ðxÞ and Pm
l−2ðxÞ to zero,

whereas for l ¼ m the terms with Pm
l−1ðxÞ and Pm

l−2ðxÞ
simply do not appear. Thus, for l ¼ m we are left with the
first two equations of the system (66), which allow us to

find Tð0Þ
l and ξð1Þlþ1, and with Eqs. (59) and (65), which allow

us to find Tð1Þ
lþ2 and Qð1Þ

lþ1, respectively.

D. A new approach to the r-mode equations:
Stellar crust

Like in the Newtonian theory, the properties of
the relativistic r-mode equations in the crust differ from
the properties of the equations in the core, and r-modes in
the crust should be studied separately. In the crust there is
only one continuity equation (continuity equation 1 and
continuity equation 2 become equivalent to each other
because of the barotropy of the EOS), and we are dealing
with the system (38). Using the φ component of the Euler
equation, we can express δp through Q, T, and ξa, and
substitute δp in all the remaining equations. As a result, we
obtain three equations—the a component of the Euler
equation, the θ component of the Euler equation, and the
continuity equation—that form a closed system for the
functions Q, T, and ξa. We do not explicitly write out
these equations, since they are very cumbersome and
noninformative.
It turns out that the function Tð0Þ is completely defined

by the leading-order equations in our approach. In this
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order, since ξμ is purely toroidal, the continuity equation
is automatically satisfied. From the θ component we
again obtain Eq. (48) and, consequently, Eq. (49), i.e.,
the traditional r-mode spectrum is restored. Then, from the
a component of the Euler equation we get [cf. the
Newtonian equation (22)]

ðlþ 1Þ2kþl ðaTð0Þ
l

0 − ½agðlþ 2Þ − l − 1�Tð0Þ
l ÞPm

l−1ðxÞ
þ l2k−l ðaTð0Þ

l
0 þ ½agðl − 1Þ − l�Tð0Þ

l ÞPm
lþ1ðxÞ ¼ 0: ð68Þ

This equation is self-consistent only if l ¼ m. In the latter
case, it is easy to verify that the solution to this equation is

Tð0Þ
l ðaÞ ¼ const · ale−ðl−1Þν0 : ð69Þ

We see that this solution differs from the Newtonian one by
a relativistic factor e−ðl−1Þν0.
The next-order equations in the crust have a more

sophisticated form than in the core. The main reason for
that is that in the core we have two continuity equations
that produce very similar first- and second-type equations.
Due to this similarity, the expansions in associated
Legendre polynomials have only finite number of nonzero
terms. In the crust, however, we have only one continuity
equation and two components of the Euler equation, and
the analysis of the second-type equations does not indicate
any truncation in the expansions in Legendre polynomials.
Fortunately, among the first type equations obtained from
the θ component of the Euler equation and from the
continuity equation we find two equations that decouple
from this infinite system of equations and contain only

Qð1Þ
lþ1ðaÞ, ξð1Þlþ1ðaÞ, and Tð0Þ

l ðaÞ:

a2Ω2lðl2− 2l− 7Þe−2ν0
c2ðlþ 1Þ2 Tð0Þ

l

¼ ð2lþ 3Þ½ðlþ 1Þσð1Þ

þ 2ϵω̃ðaÞ�Tð0Þ
l þ 2ð2lþ 1Þ½ðag− 1Þξð1Þlþ1 − ðlþ 2ÞQð1Þ

lþ1�;
ð70Þ

a2Ω2le−2ν0

c2ð2lþ1Þðlþ1Þ2
�
ðl3þ3l2þ l−1Þc

2
s

c2
−4

�
Tð0Þ
l

¼agξð1Þlþ1þ
c2s
c2
½ðlþ1Þðlþ2ÞQð1Þ

lþ1−ξð1Þlþ1ðaλ00þ2Þ−aξð1Þlþ1

0�:
ð71Þ

Now, if we express Qð1Þ
lþ1 from one of these equations and

substitute into the other, we arrive at the first-order ODE

for ξð1Þlþ1

ξð1Þlþ1

0 þ g1ξ
ð1Þ
lþ1 þ

�
g21

�
σð1Þ þ 2ϵω̃ðaÞ

lþ 1

�
þΩ2g22

�
Tð0Þ
l ¼ 0

ð72Þ

with the coefficients g1ðaÞ, g21ðaÞ, and g22ðaÞ defined as

g1ðaÞ ¼
lþ 3

a
− g

�
lþ 1þ c2

c2s

�
þ λ00;

g21ðaÞ ¼ −
ðlþ 1Þ2ð2lþ 3Þ

2að2lþ 1Þ ; ð73Þ

g22ðaÞ ¼
al½ðlþ 1Þð3l2 þ 2l − 9Þc2s − 8c2�e−2ν0

2c2ðlþ 1Þ2ð2lþ 1Þc2s
: ð74Þ

The solution to this equation is given by the formula
[cf. Eq. (25)]

ξð1Þlþ1 ¼
1

ηðaÞ
�
ξ0 þ

Z1
a

�
g21ðaÞ

�
σð1Þ þ 2ϵω̃ðaÞ

lþ 1

�

þΩ2g22ðaÞ
�
ηðaÞTð0Þ

l ðaÞda
�
;

ηðaÞ ¼ exp

�
−
Z1
a

g1ðaÞda
�
; ð75Þ

where the values of ξ0 and σð1Þ should be determined from
the boundary conditions, as will be discussed below.

E. Boundary conditions

Since the l ¼ m ¼ 2 mode is expected to be the most
unstable with respect to the emission of gravitational waves,
further, for simplicity,we restrict ourselves only to the l ¼ m
case.We have to specify three types of boundary conditions:
near the center of the star, a ¼ 0, at the crust-core interface,
a ¼ acc, and at the surface of the star, a ¼ 1.
First of all, let us discuss the boundary condition at the

surface of the star. By definition, the surface of the star
corresponds to the set of points in space, where the pressure
vanishes. If xρs are the coordinates of the surface of the
equilibrium star, then xρs þ ξρs , where ξρs ¼ ξρðxsÞ, are
the coordinates of the surface of the perturbed star. The
surface of the perturbed star is then defined by the condition
pðxρs þ ξρsÞ ¼ 0. It is easy to see that this condition is
equivalent to the equality Δplþ1ð1Þ ¼ 0, where Δplþ1

is the coefficient before the Legendre polynomial Pl
lþ1ðxÞ

in the expansion (17) for Δp. Since p0 ¼ p0ðaÞ, we have

Δp ¼ δpþ ξμ∇μp0 ¼ δp − w0gξa: ð76Þ

Both in the crust and in the core the leading contribution to
the Eulerian pressure perturbation is given by the formula
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δpða; θÞ ¼ δplþ1ðaÞPl
lþ1ðcos θÞ;

δplþ1ðaÞ ¼ −
4Ω2 a l w0e−2ν0

c2ðlþ 1Þ2ð2lþ 1ÞT
ð0Þ
l ðaÞ; ð77Þ

following from the φ component of the Euler equation. It
allows us to rewrite the boundary condition at the stellar
surface as

ξð1Þlþ1ð1Þ ¼ ξ0 ¼ −
4Ω2le−2ν0ð1Þ

c2ðlþ 1Þ2ð2lþ 1Þgð1ÞT
ð0Þ
l ð1Þ: ð78Þ

Further, for convenience, we always normalize the solution

in the crust, so as to have Tð0Þ
l ð1Þ ¼ 1. In this normalization,

the toroidal function in the crust and the boundary condition
at the surface take the form

Tð0Þ
l;crustðaÞ ¼ ale−ðl−1Þ½ν0ðaÞ−ν0ð1Þ�; ξð1Þlþ1ð1Þ ¼ ξ0 ¼ −

4Ω2le−2ν0ð1Þ

c2ðlþ 1Þ2ð2lþ 1Þgð1Þ : ð79Þ

Secondly, let us examine the solutions to the system (66)
near the stellar center. To do this, we exclude the radial
displacement ξð1Þlþ1 from this system and obtain the second-

order ODE for Tð0Þ
l . We look for the asymptotic solution of

this equation near the center in the form Tð0Þ
l ≃ Kan, where

K ¼ const is the mode amplitude. Taking into account that
in the vicinity of the center the functions, related to the
equilibrium configuration, behave as

ω̃ðaÞ∼FðaÞ∼ 1; AðaÞ≈ aA0ð0Þ≡ aÃc;

gðaÞ≈ ag0ð0Þ≡ag̃c; ν0ðaÞ≈ ν0ð0Þ≡ νc; λðaÞ∼ a2;

ð80Þ
we find that either n ¼ l or n ¼ −l − 1. The second
solution is divergent in the stellar center and should be
discarded as unphysical. Then, recalling the relation

between ξð1Þlþ1 and Tð0Þ
l , we obtain that the following

asymptotic holds near the center:

Tð0Þ
l ðaÞ ≈ Kal;

ξð1Þlþ1ðaÞ ≈ −
4lΩ2k−l e

−2νc ½Ãc þ g̃cðl − 1Þ�
Ãcg̃cc2ðlþ 1Þ2 Kal;

K ¼ const: ð81Þ
Since the global r-mode in the core should smoothly match
this asymptote, the equalities

Tð0Þ
l ða0Þ¼1; ξð1Þlþ1ða0Þ¼−

4lΩ2k−l e
−2νc ½Ãcþ g̃cðl−1Þ�

Ãcg̃cc2ðlþ1Þ2 ;

ð82Þ
with arbitrarily small value of a0 ≪ 1, can be used as
boundary conditions for the system of equations in the core.
Once the solution in the core is found, one can renormalize
it in a more convenient way, as will be discussed below.
Finally, we demand that the energy and momentum

currents, defined as the ðt; kÞ and ði; kÞ components (with
spatial indices i and k) of the stress-energy tensor,

Tμν ¼ wuμuν þ pgμν; ð83Þ

should be continuous at the crust-core interface. If xρcc are
the coordinates of the boundary between the core and the
crust in the unperturbed star, then xρcc þ ξρcc, where ξρcc ¼
ξρðxccÞ are the coordinates of this boundary in the perturbed
star. Therefore, the continuity of the energy and momentum
currents at the crust-core interface implies that we must have
Tμνðxρcc þ ξρccÞjcore ¼ Tμνðxρcc þ ξρccÞjcrust for ðμνÞ ¼ ðt; kÞ
or ði; kÞ. It is easy to see that these conditions are equivalent
to the continuity conditions for the functions ξρ, Δp, and
Δw (our equilibrium stellar model does not contain any
discontinuities in the energy density). Actually, since these
perturbations are not completely independent and should
satisfy the previously obtained r-mode equations, it is
enough to consider only continuity conditions for ξa and
Δp, and all the remaining conditions will then be satisfied
automatically. From the relations (76) and (77) it, in turn,
follows that these continuity conditions are equivalent to

Tð0Þ
l;coreðaccÞ¼Tð0Þ

l;crustðaccÞ; ξð1Þlþ1;coreðaccÞ¼ ξð1Þlþ1;crustðaccÞ:
ð84Þ

Since at this point we are free to choose the normalization
in the core, we can adjust the amplitude of the solution in

the core, so as to have Tð0Þ
l;coreðaccÞ ¼ Tð0Þ

l;crustðaccÞ. In this
normalization the boundary conditions at the crust-core
interface reduce to

ξð1Þlþ1;coreðaccÞ ¼ ξð1Þlþ1;crustðaccÞ: ð85Þ
The whole set of boundary conditions can be satisfied

not for all, but only for some values of σð1Þ. These values,
for which all conditions are satisfied, correspond to the
sought global r-mode solutions. In order to find the
corresponding eigenfrequencies and eigenfunctions, we
employ the integration scheme, discussed in Appendix B.

V. NUMERICAL RESULTS

In this section we present the results of the numerical
calculation, performed for the global l ¼ m ¼ 2 r-mode.
As a microphysical input, we employ the BSk24 equation
of state [69] that describes a neutron star with a crust and
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core, subdivided into the outer core with npe matter (i.e.,
matter, consisting of neutrons, protons, and electrons) and
the inner core with npeμ matter (i.e., npe matter with
admixture of muons). We calculate the pressure in the
outer layers using the approximate fitting formula from
Pearson et al. [70], while in the inner layers the pressure is
calculated explicitly from the BSK24 energy density
functional. The interface between these regions, acc, is
defined by equating the pressures calculated in these two
ways. Below we treat the outer region (a > acc) as
barotropic and refer to it as the crust, while the inner
region (a < acc) is refereed to as the core and assumed to
be nonbarotropic (see discussion in Sec. II). Note that our
qualitative results are insensitive to the actual value of acc.
Our equilibrium stellar model is obtained via solving the
Hartle’s equations [43,45] and is characterized by the
central density ρc ¼ εð0Þ=c2 ≈ 0.73 × 1015 g=cm3, radius
R ≈ 12.6 km, mass M ≈ 1.4 M⊙, where M⊙ is the solar
mass, and the position of the crust-core interface
acc ≈ 0.92. The function ωðaÞ ¼ ϵω̃ðaÞ that describes
the effect of the inertial reference frame-dragging in this
model is plotted in Fig. 1. This is a smooth, monotonically
decreasing function of a. The amplitude of the inertial

reference frame-dragging effect for the considered stellar
model equals ϵ ≈ 0.41. Although this value can hardly be
considered as small, we still solve the equations, derived in
the limit of weak frame-dragging with precisely this ϵ. Our
assumption that the effect of the inertial reference frame-
dragging is weak becomes more and more accurate as one
approaches the stellar surface, since the function ωðaÞ and,
therefore, ω̃ðaÞ decreases with increasing radius. As we
shall see, in the limit Ω → 0, the relativistic r-modes in the
core become confined to a tiny region in the vicinity of the
crust-core interface, where this assumption can be con-
sidered as accurate. Anyway, going beyond the small ϵ
approximation does not affect the problem of the continu-
ous spectrum and only complicates the equations.
Throughout this section we use the notation χð0Þn for the

toroidal eigenfunction Tð0Þ
l with n nodes (i.e., n points

inside the star, where Tð0Þ
l vanishes), normalized so that

Tð0Þ
l ð1Þ ¼ 1. Also, by σð1Þn we denote the corresponding

eigenfrequency corrections, defined according to decom-
position (47). We study the effect of GR on the r-mode
dynamics by comparing the l ¼ m ¼ 2 modes in the
three different cases: relativistic r-modes (GR), relativistic
r-modes in the absence of the inertial reference frame-
dragging (GRNOω, corresponds to setting ϵ ¼ 0 in
the obtained relativistic equations), and the Newtonian
r-modes (Newt). We present the results of our calculations
for the first five eigenfunctions (number of nodes n ranging
from 0 to 4) for different rotation rates in Fig. 2. All of the

corresponding eigenfrequencies σð1Þn take discrete values
and are listed in Table I.
We see that, generally, the relativistic toroidal eigen-

functions and eigenfrequencies are sensitive to the value of
the angular velocity Ω, but, once the reference frame-
dragging is switched off, they show no dependency on the
rotation rate and start to behave similarly to the Newtonian
ones. Such a behavior can be easily understood from the r-
mode equations in the core [the system (66) for l ¼ m]:

8>>>>><
>>>>>:

Tð0Þ
l fc2e2ν0glðlþ 1Þ½lðlþ 1Þσð1Þ þ 2lϵω̃ðaÞ� þ aΩ2½agγ2 þ 4lγ1ð2aλ00 − F þ 5Þ�g ¼

¼ c2ge2ν0l2kþlþ1ð2aξð1Þlþ1

0 þ ξð1Þlþ1½−2agðlþ 1Þ þ F þ 2lþ 1�Þ

Tð0Þ
l

0 þ Tð0Þ
l

�
Aþ gðl − 1Þ − l

a

�
þ Ac2gðlþ 1Þ2e2ν0

4alΩ2k−l
ξð1Þlþ1 ¼ 0.

ð86Þ

If we set ϵ ¼ 0 (i.e., ignore the underlined term in the
first equation), we see that the traditional r-mode ordering
can be applied. Indeed, replacing σð1Þ → Ω2σð1Þ and

ξð1Þlþ1 → Ω2ξð1Þlþ1, we immediately find that the angular veloc-
ity Ω disappears from these equations, as well as from the
boundary conditions. Therefore, the problem becomes

completely independent of the stellar rotation rate, which
explains the observed behavior of the GRNOω modes. This
also explains why the ratios σð1Þ=Ω2 for the GRNOω case,
provided in the Table I, do not depend on Ω.
Accounting for the effect of the inertial reference

frame-dragging drastically changes the picture, and

FIG. 1. The function ωðaÞ that describes the effect of the inertial
reference frame-dragging for the considered stellar model.

NONANALYTIC BEHAVIOR OF THE RELATIVISTIC … PHYS. REV. D 106, 103009 (2022)

103009-17



toroidal eigenfunctions and eigenfrequencies become
extremely sensitive to the values of Ω. This is additionally
illustrated in Fig. 3, where we show the relativistic
r-modes with ϵ ≠ 0, computed for a rather broad set of
rotation rates. We see that for extremely slowly rotating

stars (Ω≲ 0.01) the modes in the core are strongly
suppressed and do not vanish only in the vicinity of
the crust-core interface, acc ≈ 0.92, where the application
of the weak frame-dragging effect approximation is
justified. This suppression can be explained by thorough

FIG. 2. Comparison of the toroidal l ¼ m ¼ 2 eigenfunctions χð0Þn with n nodes computed for different rotation rates in general
relativity (GR, solid blue lines), in general relativity without the effect of inertial reference frame-dragging (GRNOω, dashed blue lines),
and in the Newtonian theory (Newt, dashed red lines). The left, central, and right columns are calculated for Ω ¼ 0.1, Ω ¼ 0.05, and
Ω ¼ 0.01, respectively. Each row corresponds to a fixed number of nodes n of eigenfunctions with number n increasing towards the
bottom of the figure.
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analysis of the r-mode equations in the Ω → 0 limit,
which itself deserves a special consideration and will be
addressed in the following section.

VI. NEW INSIGHT INTO THE SLOW-ROTATION
APPROXIMATION

A. The relativistic r-mode nonanalyticity and ordering

The system (66) governs the dynamics of relativistic
r-modes in the core of a neutron star in the limit of weak
reference frame-dragging effect and slow rotation. In its
derivation, we do not use any ordering and assume only that
ϵ and Ω2 take small values. Note that, if ξrl�1 ∝ Ω2, as
traditional ordering assumes, then setting Ω → 0 in the first
equation of this system, one immediately arrives at the
continuous spectrum and resonant eigenfunctions, as in
Sec. IV B. We saw, however, that the numerical solution of

this system shows no evidence of the continuous spectrum
and is characterized by discrete eigenfrequencies and
regular eigenfunctions. Thus, traditional ordering is not
suitable for describing this numerical solution. It is inter-
esting to find out, how does the correct ordering of
relativistic r-modes look in the limit of a slow rotation
rate. Since we are dealing with two small parameters, ϵ and
Ω2, we have to distinguish between the Ω ordering (series
in Ω, relativistic counterpart of the Newtonian ordering)
and ϵ ordering (series in ϵ, does not arise in the Newtonian
theory, where ϵ ¼ 0), so that each quantity is characterized
by itsΩ order and ϵ order. We start with the searches for the
correct relativistic Ω ordering, and for this purpose it is
sufficient to consider only the equations for the l ¼ m case
(the consideration of the l ≠ m case is completely analo-
gous). The system (86), describing the l ¼ mmodes, can be
schematically represented as

TABLE I. Newtonian and relativistic r-mode eigenfrequency corrections σð1Þn =Ω2 for different rotation rates.

Number of nodes n Newt (any Ω) GRNOω (any Ω) GR (Ω ¼ 0.1) GR (Ω ¼ 0.05) GR (Ω ¼ 0.01)

0 −0.096 −0.124 −14.4 −0.529 × 102 −1.08 × 103

1 −7.94 −13.8 −32.4 −0.830 × 102 −1.30 × 103

2 −16.2 −29.6 −49.2 −1.09 × 102 −1.46 × 103

3 −27.1 −50.8 −70.9 −1.33 × 102 −1.63 × 103

4 −40.97 −77.9 −98.4 −1.61 × 102 −1.79 × 103

FIG. 3. Relativistic r-mode toroidal eigenfunctions χð0Þn with n nodes, computed for different angular velocities Ω.
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8>>>><
>>>>:

�
C1ðaÞ

d
da

þ C2ðaÞ
�
ξð1Þlþ1 þ ½Ω2C3ðaÞ þ σð1Þ þ C4ϵω̃ðaÞ�Tð0Þ

l ¼ 0;�
d
da

þ G1ðaÞ
�
Tð0Þ
l þ G2ðaÞ

Ω2
ξð1Þlþ1 ¼ 0;

ð87Þ

whereC1ðaÞ,C2ðaÞ,C3ðaÞ,C4,G1ðaÞ, andG2ðaÞ are some
Ω- and ϵ-independent functions and coefficients, whose
exact form at this point is not important and can be
established via straightforward comparison of this system
and the system (86). Explicit expressions for these coef-
ficients are provided in Appendix C. In the limit of a
vanishing rotation rate we expect that the leading contri-
bution to the correction σð1Þ is associated with the reference
frame-dragging (contributions due to Ω become extremely
small); therefore, from the point of view of the Ω ordering,
we must have σð1Þ ∼ 1 (nevertheless, σð1Þ is small due to ϵ).
In order to establish theΩ ordering, let us assume that in the
limit of extremely slow rotation, Ω → 0 (which implies
Ω2 → 0), we have

ξð1Þlþ1¼Ωk1X;
d
da

¼Ωd1
D
Da

; σð1Þ∼Tð0Þ
l ∼X∼

D
Da

∼1:

ð88Þ

As further analysis reveals, the full toroidal function

Tð0Þ
l ðaÞ and full eigenfrequency correction σð1Þ actually

contain the terms of linear Ω order, which, in the Ω → 0
limit, are discarded as small (see Appendix E for details).

Below, unless stated otherwise, under Tð0Þ
l ðaÞ and σð1Þ we

imply only the leading contributions without the mentioned
small terms. The second equality above is formal and
simply requires that the derivative d=da should be con-
sidered as a “quantity” of order Ωd1 (for example, the

derivatives of Tð0Þ
l or ξð1Þlþ1 should be considered as quan-

tities of the order Ωd1 or Ωd1þk1, respectively). For those
functions which are analytic functions ofΩ, we have d1 ¼ 0
[71], whereas the case d1 ≠ 0 signals that the functions
under consideration are nonanalytic functions of Ω. Below
this statement will be given a transparent and more
mathematically clear explanation. Assuming the discussed
Ω ordering, we thus obtain

8>>>><
>>>>:

�
C1ðaÞΩd1

D
Da

þ C2ðaÞ
�
Ωk1X þ ½Ω2C3ðaÞ þ σð1Þ þ C4ϵω̃ðaÞ�Tð0Þ

l ¼ 0�
Ωd1þ2

D
Da

þ G1ðaÞΩ2

�
Tð0Þ
l þG2ðaÞΩk1X ¼ 0.

ð89Þ

At Ω → 0 some terms in this system may be small
compared to the others, and only the leading terms should

be retained to obtain Tð0Þ
l , X, and σð1Þ. In this limit the

system should allow us to determine the leading eigenfre-
quency correction associated with ϵ; therefore, the terms
with σð1Þ and ω̃ðaÞ in the first equation should be of the
same Ω order as at least one of the other terms (while the
remaining terms in this equation should be small). This is
achieved if either k1 ¼ 0 and d1 ≥ 0, or d1 þ k1 ¼ 0 and
d1 ≤ 0. It is also necessary that at least two of the three
terms in the second equation are large and of the same Ω
order—otherwise we obtain the trivial solution. This, in
turn, is achieved, if either d1 ¼ 0 and k1 ≥ 2, or k1 ¼ 2 and
d1 ≥ 0, or d1 þ 2 ¼ k1 and k1 ≤ 2. It is easy to see that
only for d1 ¼ −1 and k1 ¼ 1 the conditions imposed for the
first equation do not contradict the conditions imposed for
the second equation. Thus, in the limit Ω → 0 we have
obtained

ξð1Þlþ1 ∼Ω;
d
da

∼
1

Ω
: ð90Þ

According to this ordering, in the system (89) we have to
retain only the underlined terms and ignore everything else.

Therefore, in the Ω → 0 limit the functions Tð0Þ
l and ξð1Þlþ1

obey the simple system of the form

(C1ðaÞξð1Þlþ1

0 þ ½σð1Þ þ C4ϵω̃ðaÞ�Tð0Þ
l ¼ 0

ΩTð0Þ
l

0 þ G2ðaÞ
Ω

ξð1Þlþ1 ¼ 0.
ð91Þ

Using these equations it is easy to clarify what is implied by
the notation d=da ∼ 1=Ω. For this purpose we propose to
investigate a simple toy model and consider the obtained
system, assuming that coefficients C1ðaÞ and G2ðaÞ are
constant. Then the system reduces to the single second-
order equation,
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Ω2Tð0Þ
l

00 − qTð0Þ
l ¼ 0; ð92Þ

where q is some constant. The solution to this equation

Tð0Þ
l ¼ const · exp

�
�

ffiffiffi
q

p
Ω

a

�
ð93Þ

gives extra 1=Ω factor when taking the derivative, and we
have

Tð0Þ
l

0 ¼ �const ·
ffiffiffi
q

p
Ω

exp

�
�

ffiffiffi
q

p
Ω

a

�
∼
Tð0Þ
l

Ω
: ð94Þ

Thus, the solution of our toy model is given by nonanalytic
functions of Ω and, therefore, cannot be expanded in
Taylor Ω series near the point Ω ¼ 0. Nonanalyticity
manifests itself when it comes to the calculation of
derivatives of the sought eigenfunctions, leading to the
appearance of the extra 1=Ω factor. Although this inter-
pretation of the d=da ∼ 1=Ω notation comes from the
consideration of the simplified equations, it also holds for
the real equations with variable-dependent coefficients, as
will be shown in the following section.
The system (91) can be used to determine the ϵ ordering

similarly to how the system (86) was used to determine the
Ω ordering. Since in the limit Ω → 0 the equations should
allow us to find the contribution to the correction σð1Þ,
associated with frame-dragging, the terms with σð1Þ and
ω̃ðaÞ should be of the same ϵ order. We therefore expect
that σð1Þ ∼ ϵ and look for the ϵ ordering in the form

σð1Þ ¼ ϵσð10Þ; ξð1Þlþ1 ∼ ϵk2 ;
d
da

∼ ϵd2 ; ð95Þ

where the (yet unknown) quantity σð10Þ defines the leading
contribution to the eigenfrequency σð1Þ in the Ω → 0 limit.
All the terms in the first equation should be of the same
ϵ order; therefore, k2 þ d2 ¼ 1. Similarly, the second
equation implies that k2 ¼ d2. As a result, we have k2 ¼
d2 ¼ 1=2 and

ξð1Þlþ1 ∼
ffiffiffi
ϵ

p
;

d
da

∼
ffiffiffi
ϵ

p
: ð96Þ

The last equality here should be interpreted in the same
manner, as the expression d=da ∼ 1=Ω was interpreted
before. Combining Ω and ϵ ordering, we finally have

Tð0Þ
l ∼ 1; ξð1Þlþ1 ∼

ffiffiffi
ϵ

p
Ω;

d
da

∼
ffiffiffi
ϵ

p
Ω

: ð97Þ

As we have already mentioned, the quantities Tð0Þ
l ðaÞ and

σð1Þ actually contain linear corrections in Ω, which were
ignored (treated as small) in the performed analysis. If we
account for these corrections and introduce a new small

parameter κ ¼ Ω=
ffiffiffi
ϵ

p
, then the r-mode eigenfunctions and

σð1Þ, up to linear terms inΩ, take the form (see Appendix E)

σð1Þ ¼ ϵσð10Þ þ ϵκσð11Þ; Tð0Þ
l ¼ Tð00Þ

l þ κTð01Þ
l ;

ξð1Þlþ1 ¼ ϵκξð11Þlþ1 ; ð98Þ

where only the terms Tð00Þ
l , ϵκξð11Þlþ1 , and ϵσð10Þ satisfy the

derived above simplified system of equations. In these
notations any term fðikÞ describes the contribution of the
order ϵiκk to the function f.
Summarizing, we find that the r-mode eigenfunctions

are nonanalytic functions ofΩ and ϵ, and that the quantities
f and f0 are of different Ω and ϵ orders. This is one of the
reasons of the breakdown of the traditional approach that
implicitly relies on the analyticity of eigenfunctions in the
stellar angular velocity when using Taylor series (11)–(13).
Strictly speaking, the terms “series,” “order,” and “order-
ing” become ill defined, since we deal with nonanalytic
functions. We can now think only in terms of relative
ordering. For example, the decomposition f ¼ f1 þ Ωf2
should be interpreted in the following way: both f1 and f2
are nonanalytic functions of Ω and ϵ, but the second term is

Ω times smaller than the first one. The expression Tð0Þ
l ∼ 1

means that, although Tð0Þ
l depends on the small Ω and ϵ, it

still takes typical values of the order of unity. Keeping in
mind the nonanalyticity of the eigenfunctions, one can also
expect that the correction σð10Þ, generally, may also be a
nonanalytic function of ϵ and Ω. As we shall show, this
expectation appears to be correct for all eigenfrequencies
except for those of the fundamental (nodeless) harmonic.
As was mentioned before, the analysis of the l ≠ m case

is similar to that performed for l ¼ m, and it eventually
leads to the same conclusions about the r-mode non-
analyticity and to the same r-mode ordering. Being
generalized to the l ≠ m case, the r-mode equations in
the Ω → 0 limit are very similar to those derived above and
are presented in Appendix D.
Now, one can also easily establish the relativistic r-mode

ordering in the crust. Since the toroidal function (69) is
known, we have to analyze only the formula for the radial
displacement (75):

ξð1Þlþ1 ¼
1

ηðaÞ
�
ξ0 þ

Z1
a

�
g21ðaÞ

�
σð1Þ þ 2ϵω̃ðaÞ

lþ 1

�

þ Ω2g22ðaÞ
�
ηðaÞTð0Þ

l ðaÞda
�
; ð99Þ

where ξ0 ∼Ω2 is the integration constant, found from the
boundary condition at the stellar surface (79). All functions
here are analytic functions of ϵ and Ω. The leading
contribution in the Ω → 0 limit is obviously given by
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ξð1Þlþ1 ¼
1

ηðaÞ
Z1
a

g21ðaÞ
�
σð1Þ þ 2ϵω̃ðaÞ

lþ 1

�
ηðaÞTð0Þ

l ðaÞda;

ð100Þ

where one should account only for the terms up to linear
order in Ω in the frequency correction σð1Þ. We should
further distinguish between two possibilities. If one con-
siders a purely barotropic star, the vanishing of the solution
at the center implies that in the Ω → 0 limit σð1Þ ∼ ϵ and

therefore ξð1Þlþ1 ∼ ϵ and Qð1Þ ∼ ϵ [see Eq. (70) or Eq. (71)].
Rotational corrections to these quantities are then of order
Ω2. When, however, a star possesses a core with a
nonbarotropic EOS, the eigenfrequency, as it will be
demonstrated below, contains a contribution linear in Ω.
In this case we have

σð1Þ ¼ ϵσð10Þ þϵκσð11Þ þ…; ξð1Þlþ1¼ ϵξð10Þlþ1 þϵκξð11Þlþ1 þ…;

Qð1Þ
lþ1¼ ϵQð10Þ

lþ1 þϵκQð11Þ
lþ1 þ…; ð101Þ

with the functions ξð10Þlþ1 and ξð11Þlþ1 defined as

ξð10Þlþ1 ðaÞ ¼
1

ηðaÞ
Z1
a

g21ðaÞ
�
σð10Þ þ 2ω̃ðaÞ

lþ 1

�
ηðaÞTð0Þ

l ðaÞda;

ξð11Þlþ1 ¼ σð11Þ

ηðaÞ
Z1
a

g21ðaÞηðaÞTð0Þ
l ðaÞda: ð102Þ

Here we use the same notations as in the core: the term fðikÞ

defines the contribution of the order ϵiκk to the quantity f.

The functionsQð10Þ
lþ1 andQð11Þ

lþ1 can be found from any of the
Eqs. (70) and (71) in the Ω → 0 limit.

B. Finding analytically the discrete r-mode spectrum
and eigenfunctions in the Ω → 0 limit

Let us analyze more meticulously the r-mode equations
in the core for the l ¼ m case in the limit of vanishing

rotation rate. If we substitute ξð1Þlþ1ðaÞ from the second
equation of the system (91) into the first one, use that
d=da ∼ 1=κ for relativistic ordering, retain only the leading-
order terms, and employ the explicit formulas for the
coefficients C1ðaÞ, C4, and G2ðaÞ from Appendix C, we

arrive at the following second-order ODE for Tð0Þ
l :

κ2Tð0Þ
l

00 − qσðaÞTð0Þ
l ¼ 0; qσðaÞ ¼ −

AðaÞc2gðaÞð2lþ 3Þðlþ 1Þ3e2ν0ðaÞ½ðlþ 1Þσð10Þ þ 2ω̃ðaÞ�
8a2l

: ð103Þ

Note that the asymptotic solution of this equation near the
center does not match the asymptotic solution of the
general system (66). The reason is that the correct asymp-
totic behavior is produced by those terms that are small due
to Ω or ϵ everywhere but in the vicinity of the center. These
terms do not enter the simplified system (91) [see Eq. (D2)
for the explicit form], since in the derivation of the system
we implicitly did not consider the radial coordinate a to be
small. Therefore, Eq. (103) governs r-mode dynamics in
some region ac ≤ a ≤ acc, whereas r-modes in the region
0 ≤ a ≤ ac near the center are governed by the general
system (66). The exact value of ac can be estimated from
the analysis of general r-mode equations, and tends to zero
as Ω → 0.
Mathematically, Eq. (103) resembles the Schrödinger

equation, and its analysis for small values of κ can be
performed using the Wentzel-Kramers-Brillouin (WKB)
method (see, e.g., Landau and Lifshitz [72], where the
WKB method was applied to find approximate solutions to
the Schrödinger equation, treating the Planck constant ℏ as
a small parameter). An equation of the same form also
appears in the paper by Kantor et al. [64], where the r-
modes of superfluid neutron stars were studied in the limit
of a vanishing rotation rate and weak entrainment. Turning
points at of both equations are defined by the condition

qσðatÞ ¼ 0, and the analysis of these equations splits into
that near and far from the turning points.
Since the functions AðaÞ < 0 and gðaÞ > 0 do not

change sign inside the star, and function ω̃ðaÞ is a
monotonically decreasing function of a [i.e., ω0ðaÞ < 0],
for each value of σð10Þ there is no more than one turning
point at, defined as the unique solution to the equation

ðlþ 1Þσð10Þ þ 2ω̃ðatÞ ¼ 0; at ≤ acc: ð104Þ

Typical behavior of the solution to Eq. (103) depends on
whether the turning point exists or not (i.e., on whether it is
possible to find the solution of Eq. (104) satisfying
at ≤ acc), as shown in Fig. 4. If the turning point does
not exist [panel (a)], for ac ≤ a ≤ acc the solution to
Eq. (103) exhibits either exponential growth or exponential
decay towards the center of the star. Otherwise, if the
turning point exists [panel (b)], such a behavior is expected
only for ac < a ≤ at, whereas for at < a < acc the sol-
ution is an oscillating function.
Our aim in this section is to find the explicit expressions

for the r-mode eigenfunctions and oscillation frequencies
in the Ω → 0 limit. As we have already mentioned,
different r-mode solutions can be classified according to
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the number of nodes that the toroidal function Tð0Þ
l ðaÞ has

inside the star. Further we will be interested in the first few
solutions with small number of nodes. When the turning
point exists, the wavelength of oscillations in the at ≤ a ≤
acc region becomes smaller and smaller as κ → 0.
Consider, for example, the case qσðaÞ ¼ const, for which

the distance Δ between the neighboring nodes of Tð0Þ
l

equals πκ=
ffiffiffiffiffiffiffiffijqσj

p
. The number of nodes inside any finite

interval of the region at ≤ a ≤ acc tends to infinity as κ
tends to zero; therefore, in the limit κ → 0 the interval itself
should considerably shrink so as not to contain an infinite
number of nodes. Thus, in this limit for the turning point
inside the core and for the corresponding eigenfrequencies
we must have [73]

at → acc; σð10Þ → −
2ω̃ðaccÞ
lþ 1

for at < acc: ð105Þ

We see that for slow rotation rates the r-modes in the core
are localized only in the vicinity of the crust-core interface.
As we have already mentioned, the weak frame-dragging

effect approximation is applicable in this region and
therefore should provide rather accurate predictions for
the r-mode eigenfrequencies and oscillation spectrum.
Thus, if the turning point exists, it must be located close

to the crust-core interface for small values of κ, and we
have to consider the solution to Eq. (103) in the two
different regions: region I far from the turning point with
ac ≤ a < at, and region II in the vicinity of the turning
point with a ≤ acc, where qσðaÞ can be Taylor-expanded
as qσðaÞ ≈ α2ðat − aÞ. It is well known that there exists a

transition region, where both the solutions Tð0Þ
l;I and Tð0Þ

l;II,
obtained for the regions I and II, respectively, are valid.
This region corresponds to those values of a that, on one
hand, are relatively far from the turning point, so that qσðaÞ
significantly differs from zero, but, on the other hand, are
not too far, so that the Taylor expansion employed in the
region II is still accurate enough. We demand that in the
transition region these solutions should be with high
accuracy equivalent to each other. If the turning point
does not exist, we have to consider only the region I, which
in this case spans the whole stellar core, except for a tiny
region 0 ≤ a < ac in the vicinity of the center.

FIG. 4. Typical behavior of the toroidal function in the κ → 0 limit. Panels (a) and (b) correspond to the cases, when the turning point
does not exist or exists, respectively. Red dashed lines show schematically the coefficient qσðaÞ, whereas blue solid lines show the

toroidal function Tð0Þ
l ðaÞ itself. Here we picture only the scenario in which the toroidal function exponentially decreases towards the

center of the star. An analogous illustration can be drawn when the toroidal function, instead, exponentially grows towards the center.
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In the region I the approximate solution to Eq. (103) can
be written as (see Landau and Lifshitz [72])

Tð0Þ
l;I ðaÞ ¼

AI

q1=4σ

exp

�
1

κ

Za
ac

ffiffiffiffiffi
qσ

p
da

�

þ BI

q1=4σ

exp

�
−
1

κ

Za
ac

ffiffiffiffiffi
qσ

p
da

�
: ð106Þ

In the region II we employ the mentioned above Taylor
expansion of the function qσðaÞ, which allows us to write
Eq. (103) in the form of the Airy equation

d2

dz2
Tð0Þ
l − zTð0Þ

l ¼ 0; z ¼ ðat − aÞ
�
α

κ

�
2=3

: ð107Þ

An arbitrary solution to this equation can be represented as
a linear combination

Tð0Þ
l;IIðzÞ ¼ AII AiðzÞ þ BII BiðzÞ; ð108Þ

where AiðzÞ and BiðzÞ are the first- and second-type Airy
functions, respectively. Relatively far from the turning
point z ¼ 0 these functions show the following asymptotic
behavior:

z > 0 ða < atÞ∶ z < 0 ða > atÞ∶ ð109Þ

AiðzÞ ≃ 1

2
ffiffiffi
π

p
z1=4

exp
�
−
2

3
z3=2

�
; AiðzÞ ≃ 1ffiffiffi

π
p jzj1=4 sin

�
2

3
jzj3=2 þ π

4

�
; ð110Þ

BiðzÞ ≃ 1ffiffiffi
π

p
z1=4

exp

�
2

3
z3=2

�
; BiðzÞ ≃ 1ffiffiffi

π
p jzj1=4 cos

�
2

3
jzj3=2 þ π

4

�
: ð111Þ

Thus, the functions AiðzÞ and BiðzÞ oscillate in the region
a > at, while for a < at the function AiðzÞ exponentially
decreases, and function BiðzÞ exponentially grows towards
the center of the star. Actually, Airy functions reach their
asymptotic behavior quite fast, and for approximately
jzj ∼ 2 they, with a reasonable accuracy (with the relative
error of 4–5%) can be replaced by the corresponding
asymptotic functions.
Now, as we know the form of the toroidal function in all

regions, we, using the second equation of the system (91)
and the expression for G2ðaÞ from Appendix C, can obtain
the explicit formulas for the radial displacement:

ξð1Þlþ1;IðaÞ ¼ −
4alq1=4σ ϵκe−2ν0

Ac2gðlþ 1Þ2ð2lþ 1Þ
�
AI exp

�
1

κ

Za
ac

ffiffiffiffiffi
qσ

p
da

�

−BI exp

�
−
1

κ

Za
ac

ffiffiffiffiffi
qσ

p
da

��
; ð112Þ

ξð1Þlþ1;IIðaÞ¼−
4alϵκ2e−2ν0

Ac2gðlþ1Þ2ð2lþ1Þ
d
da

½AIIAiðzÞþBIIBiðzÞ�:

ð113Þ

We have to check whether we can satisfy all the
boundary conditions with these solutions or not. First of
all, we assume that at the point a ¼ ac the solution of
Eq. (103) matches the asymptotic solution (81). It is easy to

show that these stitching conditions imply the following
relation:

Tð0Þ
l;I

0ðacÞ ¼ ac½Ãc þ g̃cðl − 1Þ�Tð0Þ
l;I ðacÞ; ð114Þ

which is equivalent to

AI − BI ¼
κffiffiffiffiffiffiffiffiffiffiffiffiffi

qσðacÞ
p ac½Ãc þ g̃cðl − 1Þ�ðAI þ BIÞ: ð115Þ

We see that the constants AI and BI are of the same order
and, therefore, we can ignore the increasing towards the
center exponent in the region I and write the solution
approximately as

Tð0Þ
l;I ðaÞ ¼

AI

q1=4σ

exp

�
1

κ

Za
ac

ffiffiffiffiffi
qσ

p
da

�
;

ξð1Þlþ1;IðaÞ ¼ −
4al

ffiffiffiffiffi
qσ

p
ϵκe−2ν0

Ac2gðlþ 1Þ2ð2lþ 1Þ

×

�
AI

q1=4σ

exp

�
1

κ

Za
ac

ffiffiffiffiffi
qσ

p
da

��
: ð116Þ

Secondly, if the turning point exists, the region II arises,
and we require that in the transition region the obtained

solution Tð0Þ
l;I and the solution Tð0Þ

l;II (and their derivatives)
should coincide with high accuracy. Comparing the
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asymptotes of the Airy functions with the solution Tð0Þ
l;I , one

can show that AII ≫ BII and, therefore, the solution in the
region II is given by the first-type Airy function:

Tð0Þ
l;IIðaÞ ¼ AIIAiðzÞ;

ξð1Þlþ1;IIðaÞ ¼ −
4alϵκ2e−2ν0

Ac2gðlþ 1Þ2ð2lþ 1Þ
d
da

½AIIAiðzÞ�: ð117Þ

Finally, at the crust-core interface the toroidal function

Tð0Þ
l ðaÞ and the radial displacement ξð1Þlþ1ðaÞ of the core

should stitch with those in the crust, which implies that

Tð0Þ
l;coreðaccÞ¼Tð0Þ

l;crustðaccÞ;
ξð1Þlþ1;coreðaccÞ
Tð0Þ
l;coreðaccÞ

¼ ξð1Þlþ1;crustðaccÞ
Tð0Þ
l;crustðaccÞ

:

ð118Þ

Since, generally, the ratios ξð1Þlþ1;coreðaÞ=Tð0Þ
l;coreðaÞ ∼ ϵκ and

ξð1Þlþ1;crustðaÞ=Tð0Þ
l;crustðaÞ ∼ ϵ differ one from another, there are

two ways to meet these boundary conditions, as shown
in Fig. 5.
The first option is to choose such specific value of σð1Þ

that the radial displacement ξð1Þlþ1;crust would be suppressed
by a factor κ at the crust-core interface (left panel of Fig. 5).
The second option is to choose such value of σð1Þ for which
the toroidal function Tð0Þ

l;core would be suppressed by the
factor κ at the crust-core interface (right panel of Fig. 5). As
we shall see, which one of these scenarios is actually
realized depends on whether the turning point exists or not.
For instance, consider the case, when the turning point

does not exist. Then the region I spans the whole core at

ac ≤ a ≤ acc, the toroidal function cannot have nodes
neither in the core, where it grows exponentially as one
approaches acc, nor in the crust, where the solution is known
[see Eq. (69)] and takes only positive values. Therefore, it
cannot be suppressed at the crust-core interface and the
scenario pictured in the right panel of Fig. 5 cannot be
realized. Thus, the left panel scenario takes place and the
eigenfrequencyσð1Þ should take such value, so as to suppress
ξð1Þlþ1;crustðaÞ at the crust-core interface. From the boundary
condition (118), using the formulas for the radial displace-
ment in the core (116) and in the crust (100), we then find
that the eigenfrequency, as expected, can be written as

σð1Þ0 ¼ ϵσð10Þ0 þ ϵκσð11Þ0 ; ð119Þ

where the index “0” refers to the fact that this solution has no

nodes, and the terms σð10Þ0 and σð11Þ0 are given by

σð10Þ0 ¼ −
2

lþ 1

�Z1
acc

g21ðaÞω̃ðaÞηðaÞTð0Þ
l;crustðaÞda

�

=

�Z1
acc

g21ðaÞηðaÞTð0Þ
l;crustðaÞda

�
; ð120Þ

σð11Þ0 ¼ −
4alη

ffiffiffiffiffi
qσ

p
e−2ν0

Ac2gðlþ 1Þ2ð2lþ 1Þ
����
a¼acc

=

�Z1
acc

g21ðaÞηðaÞfTð0Þ
l;crustðaÞ=Tð0Þ

l;crustðaccÞgda
�
:

ð121Þ

FIG. 5. Two different ways to satisfy the boundary conditions at the crust-core interface. The left panel presents the first way with the

suppression of the ξð1Þlþ1;crust ðaÞ at the crust-core interface a ¼ acc. The right panel presents the second way with the suppression of the

Tð0Þ
l;core at the crust-core interface. The figure is schematic and does not reflect all the properties of the toroidal function and radial

displacement in the vicinity of the crust-core interface (see the detailed discussion in the end of this section).
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Recalling the decomposition of the radial displacement in
the crust (101), we see that the found contribution σð10Þ is
such that ϵξð10Þlþ1 ðaccÞ ¼ 0, and, therefore, the leading con-
tribution to the value of the radial displacement at the crust-

core interface is ϵκξð11Þlþ1 ðaccÞ, i.e., we indeed have a
suppression of the radial displacement by a factor κ.
Now, let us consider the case, when the turning point

exists. Since the scenario 1 corresponds to the solution
without the turning point, this case should be described
within the scenario 2, pictured in the right panel of Fig. 5
(otherwise we come to a contradiction). In this scenario the
core toroidal function at the crust-core interface should be
suppressed by a factor of κ, i.e., AIIAiðzccÞ ∼ κ. The smaller
the value of κ, the better this condition can be replaced by
the condition AiðzccÞ ¼ 0, which is equivalent to

at − acc ¼ zn

�
κ

α

�
2=3

; n ∈ N; ð122Þ

where zn < 0 are the roots of the equation AiðzÞ ¼ 0,
conventionally numbered so as to have znþ1 < zn. Note that
this result is consistent with the condition at < acc. Note
also that the condition AiðzccÞ ¼ 0 is actually an exact
boundary condition, since the equations under consider-
ation govern only the leading-order contributions to the

toroidal function and radial displacement. Indeed, Tð0Þ
l and

ξð1Þlþ1 in the studied equations correspond to the terms Tð00Þ
l

and ξð11Þlþ1 in the relativistic r-mode ordering (98). At the
same time, if one accounts for the rotational correction to

the toroidal function and writes Tð0Þ
l ¼ Tð00Þ

l þ κTð01Þ
l , then

it becomes clear that the suppression of the full toroidal
function by the factor κ at the crust-core interface is

equivalent to the equality Tð00Þ
l ðaccÞ ¼ 0 at κ → 0.

Now we can easily obtain the analytic formula for the r-
mode spectrum. Since the turning point is close to the crust-
core interface, from the definition of the coefficient α and
from Eq. (104) we have, by expanding ωðatÞ in the Taylor
series near a ¼ acc,

α2¼ qσðaccÞ
at−acc

; σð10Þ ¼−
2ω̃ðaccÞ
lþ1

�
1þ ω̃0ðaccÞ

ω̃ðaccÞ
ðat−accÞ

�
:

ð123Þ
Using the explicit form of the function qσðaÞ and relation
(122), we immediately obtain

α2 ¼ Ac2gð2lþ 3Þðlþ 1Þ3e2ν0ω̃0ðaÞ
4a2l

����
a¼acc

;

σð10Þ ¼ −
2ω̃ðaccÞ
lþ 1

�
1þ zn

ω̃0ðaccÞ
ω̃ðaccÞ

�
κ

α

�
2=3

�
: ð124Þ

Actually, all the roots zn take the values in the region
z < −2, where the Airy function AiðzÞ can be replaced,

with reasonable accuracy, by its asymptotic representation
(110), and we can approximate zn and the r-mode eigen-
frequencies as

zn¼−
�
3π

2

�
n−

1

4

��
2=3

;

σð10Þn ¼−
2ω̃ðaccÞ
lþ1

�
1−

ω̃0ðaccÞ
ω̃ðaccÞ

�
3

2

πκ

α

�
n−

1

4

��
2=3

	
; n∈N:

ð125Þ

Note that this spectrum can alternatively be written in the
form of the Bohr-Sommerfeld quantization rule

Zacc
at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqσðaÞj

p
da ¼ πκ

�
n −

1

4

�
; n ∈ N: ð126Þ

One can show that the latter formula, generally, is more
accurate, since it does not rely on the Taylor expansion of
the function qσðaÞ near the turning point. If, for example,
for a given Ω, the function qσðaÞ is not smooth enough in
the region at ≤ a ≤ acc (its derivative exhibits significant
changes), its Taylor expansion near at may not describe its
behavior near acc. In this case, the formulas (124)–(125)
cannot be applied to obtain the spectrum, whereas the
quantization rule (126) will provide accurate results.
Let us show that all these eigenfrequencies correspond to

the r-modes with n nodes inside the core. We recall that all
of the nodes (if any) of the toroidal function are always
located in the core. Because of the boundary condition,

Tð00Þ
l ðaccÞ ¼ 0, one of the nodes of the derived node-

possessing eigenfunctions lies exactly at the crust-core
interface. We have to make sure that this node is not the
“artificial” one, i.e., it corresponds to the real node of the

full toroidal function Tð0Þ
l;fullðaÞ, defined as the solution to the

system (86) and accounting for the next-order rotational
corrections. To demonstrate this, let us consider a tiny layer
near the crust-core interface, where the Airy function can
be Taylor expanded as AiðzÞ ≈ Ai0ðznÞðz − znÞ [recall that
AiðznÞ ¼ 0]. Using this expansion and the relation (107)
between z and a, from Eq. (117) we find that the toroidal
eigenfunction and the radial displacement can be approx-

imately related as ξð1Þlþ1;IIðaÞ ¼ −F̃ðaÞTð0Þ
l;IIðaÞ, where F̃ðaÞ

is some positive function for a < acc. This means that the
radial displacement, obtained in the κ → 0 limit, and
toroidal function in the core approach the point a ¼ acc
with different signs. On the other hand, since at < acc and
ωðaÞ > 0, from Eq. (104) it follows that for the node-
possessing modes the combination σð1Þ þ 2ϵω̃=ðlþ 1Þ is
negative in the crust. As a result, the integrand in (75) and
therefore the radial displacement in the crust take positive
values for any acc ≤ a ≤ 1. We conclude then that the radial
displacement in the core should also be positive near the
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point a ¼ acc. Therefore, near the crust-core interface, the

toroidal function Tð0Þ
l;IIðaÞ is negative. At the same time, the

full toroidal function should take a positive value, since it

should be matched with Tð0Þ
l;crust, which is a positive function.

This indicates that, if we account for small κ corrections to

the function Tð0Þ
l;II, the node of the Airy function, located at

the crust-core interface, gets shifted inside the core and

produces a real node of the full toroidal function Tð0Þ
l;fullðaÞ,

so that it could change sign and match the toroidal function
in the crust.
Summing up, we see that in the limit κ → 0 we have

two different types of solutions, describing relativistic
r-modes with discrete eigenfrequencies, placed within the
continuous-spectrum-associated frequency band. The first
type is the fundamental exponentially growing nodeless
r-mode with no turning point and with the eigenfrequency,
given by Eq. (119). The second type comprises the
r-modes with at < acc with one or more nodes inside
the core and eigenfrequencies given by the formula (124)
or, approximately, (125). For these modes the turning
point is located closely to the crust-core interface, and the
r-mode eigenfunctions are exponentially suppressed on
the left of the turning point and oscillate extremely rapidly
with the oscillation wavelength proportional to Ω2=3, in the
tiny region at ≤ a ≤ acc near the crust-core interface. The

number n ∈ N is equal to the number of nodes of Tð0Þ
l ðaÞ,

concentrated in this region. Eventually, as κ gets extremely
small, all eigenfrequencies of these second-type modes

reduce to σð10Þn → −2ω̃ðaccÞ=ðlþ 1Þ and become almost
indistinguishable.

C. Verifying the theory and explaining
numerical results

Now we can explain the behavior of numerically
obtained r-modes for small values of Ω. Consider, for
example, the relativistic r-mode with four nodes for
Ω ¼ 0.005, shown by the blue solid line in Fig. 6 [recall

that we use the notation χð0Þn for the toroidal eigenfunction

Tð0Þ
l with n nodes, normalized so as to have Tð0Þ

l ð1Þ ¼ 1].
As expected, we see that all of the nodes of the toroidal
function are concentrated in the region at ≤ a ≤ acc. The
suppression of the mode on the left of the turning point is
explained by the behavior of the solution (116) in region I.
We also check the accuracy of the obtained analytic

expressions for the r-mode eigenfrequencies in the Ω → 0
limit, see Fig. 7. Here the results for the genuine stellar
model with acc ≈ 0.92 are shown in blue, while orange and
green colors correspond to modified stellar models that will
be discussed a bit later. We show the calculated [via solving
the system (86)] frequencies by filled circles and the

frequencies predicted by the explicit analytic formu-
las (119)–(121) and (124) in the Ω → 0 limit by solid lines.
There are two reasons why for the genuine stellar model

the theoretical curves deviate from the numerical points
with the increase of the angular velocity, as observed in the
figure. The first one is that the explicit formulas (124) for
the spectrum of the node-possessing r-modes do not
account for the linear in Ω rotational corrections to the
eigenfrequencies, which may become important at faster
rotation rates. One can check whether the inclusion of such
terms compensates this deviation or not by trying to fit our
numerical results with a simple formula

σð1Þn;fitðΩÞ ¼ σð1Þn;analyticðΩÞ þ cnΩ; ð127Þ

consistent with the expected r-mode ordering (98). Here
the index n refers to the eigenfrequency of the mode with n

nodes, the terms σð1Þn;analytic are calculated using the derived
above explicit expressions (119)–(121) and (124) in the
Ω → 0 limit, and cn are the fitting constants. Use of this fit
is justified, strictly speaking, only for the node-possessing

r-modes (n ≠ 0), for which σð1Þn;analytic is defined by
Eq. (124) and does not include linear in Ω rotational
corrections. The explicit formulas (119)–(121) for the
main harmonic eigenfrequency (n ¼ 0), instead, do
include such correction; therefore, the fit (127) cannot
be used to explain the eigenfrequency deviation of the
main harmonic. Nevertheless, we can formally employ it,
since the numerically obtained main harmonic eigenfre-
quencies still show almost linear dependency on Ω. The
resulting fitting curves are shown by dashed lines. The
fitting curves describe the numerically obtained

FIG. 6. Explaining the r-mode suppression in the core using, as
an example, the toroidal eigenfunction with four nodes, obtained
assuming Ω ¼ 0.005. Vertical dashed lines represent the crust-
core interface a ¼ acc and the turning point a ¼ at. Red-dashed
and blue solid lines show the Newtonian and relativistic r-modes,
respectively.
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eigenfrequencies reasonably well, which meets our expect-
ations concerning the relativistic r-mode spectrum depend-
ency on Ω in the Ω → 0 limit. We, however, still have to
explain why the theoretically predicted slope of the line for
the main harmonic does not coincide with that of the fitting
formula, which brings us to the second reason. It turns out
that when we consider a two-layer stellar model, a new

small parameter—the size of the crust—comes into play.
In the original stellar model the crust forms a narrow outer
layer with the relative thickness ð1 − accÞ ≈ 0.08. As a
result, the crust appears to be too small to let the radial

displacement ξð1Þlþ1 grow from the value ξ0 ∼ Ω2 at the
surface [see Eq. (79)] to its expected typical value of the

order ϵ: the first term in the decomposition (101) for ξð1Þlþ1

FIG. 7. Relativistic r-mode eigenfrequencies σð1Þn for slow rotation rates, corresponding to the toroidal eigenfunctions with n nodes.
Blue, orange, and green colors refer to the stellar models with acc ≈ 0.92, acc ¼ 0.7, and acc ¼ 0.4, respectively. Filled circles show
numerically calculated frequencies (numerical points), solid lines show the frequencies calculated with the obtained analytical formulas
(analytical curves), and dashed lines show the fit of these numerical points, accounting for the linear rotational corrections to the
frequencies (fitting curves).
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remains small, so that effectively, for the considered range

10−3 ≤ Ω ≤ 10−2 of rotation rates, we have ξð1Þlþ1ðaÞ ∼
ϵκTð0Þ

l ðaÞ instead of ξð1Þlþ1ðaÞ ∼ ϵTð0Þ
l (see the detailed

discussion of this issue in Appendix F). This effective
violation of the ordering makes the developed theory
marginally applicable for the considered values of Ω
and contributes to the observed deviation of the theoretical
curves from the numerical points.
To check the developed theory we avoid the problem

associated with the small thickness of the crust by
considering two artificial stellar models with significantly
larger crust (see Appendix F for details): the first with
acc ¼ 0.7 and the second with acc ¼ 0.4. We show the
calculated r-mode eigenfrequencies for these models in
Fig. 7 by red and green colors, respectively. As before,
we compare the frequencies predicted by the theory in the
Ω → 0 limit (solid lines), the numerically obtained
frequencies (dots) and the corresponding fit (127) (dashed
lines). All the numerical eigenfrequencies lie on the fitting
curves, indicating again that our predictions concerning
the spectrum dependency on Ω are correct. As expected,
the main harmonic frequencies in these models are
described better than for the original star, especially in
the model with acc ¼ 0.4. The fitting curves for the
eigenfrequencies of all the other r-modes (i.e., those with
the nodes, n ≠ 0) also only slightly differ from those
calculated using the derived analytical formulas, which
indicates that for these modes the linear inΩ corrections to
the spectrum are relatively small (as expected) and that

approximately σð1Þn ≈ ϵσð10Þn for the considered rota-
tion rates.

VII. DISCUSSION

In this paper, in order to find the relativistic generali-
zation of the Newtonian r-modes in a slowly rotating
neutron star, we have developed and applied a new original
approach to the study of the relativistic oscillation equa-
tions. We adopt the model of a neutron star with the
barotropic (isentropic) crust and nonbarotropic core. The
barotropy of the EOS significantly affects the mathematical
properties of the problem, so that oscillation equations in
the crust and in the core are studied separately. Although
the rotation of the star is assumed to be slow, we, in contrast
to what is done within the traditional approach [14,16–
22,50,51], do not rely on any preliminary postulated
ordering, i.e., we do not assume the analyticity of the
sought r-mode solutions in the stellar angular velocity, Ω.
The ordering, instead of being set from the very beginning,
is determined from the r-mode oscillation equations,
obtained within our approach. The derivation of the general
equations that govern the relativistic r-mode dynamics is
based only on the assumptions that the angular velocity Ω
of the star is small and that the effect of the inertial
reference frame-dragging is weak. In the developed theory,

the leading contribution to the r-mode eigenfrequencies
exactly coincides with that of the Newtonian theory, and the
numerical solutions of the obtained equations for l ¼ m ¼ 2
correspond to the relativistic r-modes with the discrete
eigenfrequency corrections. Thus, at least in the vicinity of
the traditional r-mode frequency, we find no indications of
the continuous spectrum.
These results, unlike the predictions of the traditional

analysis in the slow-rotation limit, are consistent with
numerical calculations performed beyond the slow-rotation
approximation for barotropic [25,26,58,62] and, more
importantly, for nonbarotropic [23,63] stars, where the
problem of the continuous spectrum has not been solved
yet. Moreover, the detailed analysis of the equations in the
Ω → 0 limit allows us to derive the explicit expressions for
the r-mode eigenfunctions and corresponding discrete
eigenfrequency corrections, each one uniquely character-
ized by the number of nodes of the toroidal function in the
star. Besides, our theory explains other relativistic r-mode
features, found in numerical calculations. Figures 6–8 of
Yoshida and Lee [23] demonstrate the spectrum depend-
ence onΩ very similar to ours, as well as the effect of mode
localization towards the stellar surface in the Ω → 0 limit,
which has been explained in our work. Also Villain,
Bonazzola, and Haensel [63] find that r-mode radial
velocities are suppressed (in fact, we find indications that
they are of linear order in Ω in that study), and r-mode
frequencies in their numerical calculations are very similar
to ours. It is also interesting to notice that we have managed
to find the r-mode solutions within the Cowling approxi-
mation, which is also possible in the Newtonian theory,
whereas the (discussed in the literature) relativistic r-modes
with discrete and isolated eigenfrequencies, coexisting with
the continuous part of the spectrum, can be obtained only if
one goes beyond this approximation. Combining all these
remarks together, we conclude that the obtained r-mode
solutions are indeed the relativistic counterparts of the
Newtonian r-modes.
So, why does the traditional approach fail to describe the

discrete relativistic r-modes? Let us recall that within this
approach, in order to study the effects of slow rotation on
stellar oscillations, one usually starts with the investigation
of the perturbations of the nonrotating star, and then finds
small rotational corrections to these perturbations. In
analogy to the Newtonian theory, it is assumed that the
would-be r-modes in the nonrotating stellar model corre-
spond to the nonoscillating solutions of the perturbation
equations that form a subset of the so-called zero-frequency
subspace. In a slowly rotating star, these solutions acquire
small but finite oscillation frequencies and become the
r-modes. Thus, the traditional approach relies on the
perturbation theory with Ω being the small parameter,
and the analysis of the oscillation equations immediately
points towards the traditional r-mode ordering, which, in
turn, immediately predicts the continuous oscillation
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spectrum. Note that every step and assumption of this
approach is justified only if one studies the oscillations that
are analytic functions of the angular velocity Ω (i.e.,
oscillation eigenfunctions and eigenfrequencies can be
written in the form of an Ω series). Now, looking at the
theory of discrete relativistic r-modes developed in this
paper, we realize that, because of the effect of the inertial
reference frame-dragging, this is actually not the case, and
the obtained solutions contain nonanalyticity that strongly
manifests itself in the limit of extremely slow rotation rates.
In the nonbarotropic core one gets, in the limit Ω → 0 [see
Eqs. (116) and (117)],

Tð0Þ
l;I ðaÞ ∝ exp

� ffiffiffi
ϵ

p
Ω

Za
ac

ffiffiffiffiffi
qσ

p
da

�
;

Tð0Þ
l;IIðaÞ ∝ Ai

�
ðat − aÞ

�
α

ffiffiffi
ϵ

p
Ω

�
2=3

�
: ð128Þ

Because of nonanalyticity, these functions are undeter-
mined at Ω ¼ 0, i.e., they, in principle, cannot be consid-
ered as rotational corrections to any zero-frequency
subspace perturbation of a nonrotating star. For the same
reason, the discrete r-modes in the core cannot be studied
with usual perturbative techniques, i.e., treating Ω as a
small parameter and expanding all the quantities in Taylor
series inΩ. As for the barotropic crust, the obtained r-mode
solutions would have been analytic functions of Ω, had it
not been for the nonanalyticity in the core that affects the
solution in the crust through the boundary conditions at the
crust-core interface. As a result, we see that because of the
effect of inertial reference frame-dragging, the correct
relativistic ordering in the Ω → 0 limit (with all the
reservations concerning the validity of the term “ordering”
in this situation, see the discussion in Sec. VI A),

TGR;core ∼ 1; σð1Þ ∼ ϵ; ξaGR;core ∼
ffiffiffi
ϵ

p
Ω;

QGR;core ∼ ϵ;

�
d
da

�
GR;core

∼
ffiffiffi
ϵ

p
Ω

; ð129Þ

TGR;crust ∼ 1; σð1Þ ∼ ϵ; ξaGR;crust ∼ ϵ;

QGR;crust ∼ ϵ;

�
d
da

�
GR;crust

∼ 1 ð130Þ

drastically differs from the traditional one,

TNewt ∼ 1; σð1Þ ∼ Ω2; ξaNewt ∼ Ω2;

QNewt ∼Ω2;

�
d
da

�
Newt

∼ 1: ð131Þ

Interestingly, if one turns the effect of the inertial reference
frame-dragging off, one immediately obtains that
the traditional ordering again holds for such relativistic
r-modes, both in the nonbarotropic core and barotropic
crust. If, however, one accounts for the frame-dragging
effect and uses traditional ordering in relativistic r-mode
equations, one immediately arrives at the continuous
spectrum problem. Summarizing, we see that the frame-
dragging effect is responsible for the slow-rotation approxi-
mation breakdown, since it leads to the r-mode non-
analyticity in the core and alters the ordering both in the
core and in the crust.
Not only the r-mode eigenfunctions but also the oscil-

lation frequencies σn of r-modes with nonzero number of
nodes n become nonanalytic because of the frame-dragging
effect. In the limit Ω → 0 their spectrum is given by the
following analytical formula:

σn ¼
2Ω
lþ 1

�
1−ωðaccÞ

�
1þ zn

ω0ðaccÞ
ωðaccÞ

�
Ω

α
ffiffiffi
ϵ

p
�

2=3
	�

− lΩ;

AiðznÞ ¼ 0; n ∈ N ð132Þ

with α defined by Eq. (124). Here each oscillation
frequency is determined by the corresponding zero
zn of the Airy function. Notably, σn depends only on the
value of the frame-dragging function [and its derivative,
ω0ðaÞ] at one point a ¼ acc. It is worth noting that this
formula has no counterparts in the Newtonian theory,
where the eigenfrequency corrections for r-modes
with different number of nodes can only be found
numerically.
There are still several legitimate questions concerning the

obtained r-mode solutions that deserve a separate discus-
sion. As we have mentioned before, it was shown by
Lockitch, Andersson, and Friedman [21] that the r-modes
in relativistic barotropic stars do not exist, and that the
l ¼ m ¼ 2 Newtonian r-modes correspond to the relativ-
istic inertial modes. Although we have managed to find the
r-mode solutions in the barotropic crust, our results,
actually, do not contradict these predictions. The reason
is that by the term “r-modes” one usually implies oscillation
modes, for which all the velocity components except for the
toroidal one are suppressed in a slowly rotating star (when
Ω is small). In this sense, strictly speaking, our solution in
the crust cannot be referred to as the r-mode. It does
describe the predominantly toroidal oscillation mode, but in
our case all the velocity components except for the toroidal
one are small because of theweak effect of inertial reference
frame-dragging. The same remark applies to the obtained
solution in the core. Whereas the radial displacement in the
core, indeed, becomes small because of the slow
rotation rate, the component Q of the motion is small
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because of the small ϵ. Thus, what we find in this paper
cannot be termed an “r-mode” in the conventional sense,
but, nevertheless, we still call it an “r-mode” since it is the
predominantly toroidal solution of the oscillation equations
that presents the relativistic generalization of the Newtonian
r-modes.
Now, what happens if one drops the small ϵ approxi-

mation? We expect that the predominantly toroidal solu-
tions to the relativistic oscillation equations cease to exist.
For the barotropic stars the obtained solutions will pre-
sumably correspond to the hybrid inertial modes discussed
in [21] (but in the Cowling approximation). As for the
nonbarotropic stars, our preliminary results indicate that the
r-modes discussed in this paper will become nonanalytic
inertial hybrid modes. And still, the corresponding oscil-
lation frequencies in the Ω → 0 limit should not drastically
differ from those given by the derived explicit formulas.
The reason is that for extremely small values of Ω the
r-mode eigenfunctions noticeably differ from zero only in
the stellar crust and in the vicinity of the crust-core
interface, where the effect of the inertial reference
frame-dragging indeed can be considered as weak. Note
that such behavior of the eigenfunctions also implies that
the Cowling approximation in the Ω → 0 limit should
lead to significantly smaller eigenfrequency errors, than
6%–11% obtained in [58]. Indeed, while the perturbations
of the gravitational field in the crust do not affect the
physics of the inner layers of the star, we also expect the
perturbations of the gravitational field to be exponentially
suppressed almost everywhere in the core. In the case of the
node-possessing modes the effect is amplified by the form
of the eigenfunctions, whose fast oscillations cancel each
other out and should prevent the gravitational field from
being perturbed. Anyway, finding the discrete relativistic
r-modes beyond the Cowling approximation should not be
a problem anymore, as we are now aware of the r-mode
nonanalyticity, and we have managed to find the discrete
r-modes within the Cowling approximation, where the
problem of the continuous spectrum seemed to be the most
critical. Our preliminary results, based on the consideration
of the full set of linearized relativistic oscillation equations,
indicate that metric perturbations for such nonanalytic
relativistic modes are significantly smaller than those
predicted in the traditional approach. As a consequence,
the ordering of the hydrodynamic eigenfunctions coincides
with that predicted within the Cowling approximation, and
the nonanalytic r-mode dynamics in the Ω → 0 limit is
described by exactly the same equations, as in the Cowling
approximation. We postpone a detailed discussion of these
results to a forthcoming publication.
Finally, let us remark that, although the traditional

approach fails to describe the discrete r-modes in non-
barotropic stars, the question, whether the (discussed in the
literature) oscillation modes possessing the continuous

oscillation spectrum do or do not correspond to some real
oscillation modes that can be found beyond the slow-
rotation approximation, still has to be answered. As we
have mentioned before, such numerical studies encounter
no signatures of the continuous oscillation spectrum. In
our opinion, this can indicate that some internal incon-
sistency of the theory, based on the traditional ordering,
takes place. Such inconsistency has already been revealed
in the study of the r-modes in barotropic stars: the system
of equations based on the traditional ordering turned out to
be overdetermined [21]. Revealing analogous or any other
inconsistency for nonbarotropic stars is a very interesting
problem, whose investigation goes beyond the scope of the
present work.
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APPENDIX A: TYPICAL r-MODE STREAMLINES

In this appendix we show the Fig. 8, which illustrates the
streamlines of the Lagrangian displacement vector ξ,
typical for the r-mode perturbations.

FIG. 8. Still image of animated streamlines of the Lagrangian
displacement vector field ξ for the r-modes on the stellar surface
for different combinations of l and m, as seen in the corotating
reference frame (see Supplemental Material [74] for animation).
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APPENDIX B: INTEGRATION SCHEME

To find the relativistic r-mode eigenfunctions and
eigenfrequencies for a fixed rotation rate Ω, we employ
the following algorithm:
(1) We choose the range of values ½σð1Þleft; σ

ð1Þ
right� that we

want to check for the presence of eigenfrequencies
σð1Þ. We look for the solution of the equations for
the values of σð1Þ equidistantly located within
this range.

(2) The nth iteration of the algorithm starts with some

value of the frequency σð1Þ ¼ σð1Þn , for which we find
the solution of Eq. (72) in the crust with the
boundary condition (79), corresponding to the nor-

malization Tð0Þ
l;crustð1Þ ¼ 1. Let us denote the corre-

sponding value of the radial displacement at the

crust-core interface as ξð1Þlþ1;crustðaccÞ≡ ξcrust;n.
Although we know the analytic solution of this
equation, its numerical calculation turns out to be
faster and more practical. Also note that the quantity
ξcrust is a linear function of σð1Þ [see the for-
mula (75)]; therefore, there is no need to solve
every time Eq. (72), but it is sufficient to find ξcrust
only for two arbitrary values, say, σð1Þ1 and σð1Þ2 .
Knowing the corresponding values of ξcrust one
completely finds the linear dependency that can
be used further to find ξcrust without solving Eq. (72).

(3) For the same value σð1Þn we solve the system (66) in
the core with boundary conditions (82), normalize

the obtained solution so as to have Tð0Þ
l;coreðaccÞ ¼

Tð0Þ
l;crustðaccÞ, and then find the corresponding value of

the radial displacement at the crust-core inter-

face ξð1Þlþ1;coreðaccÞ≡ ξcore;n.
(4) We evaluate the residual parameter δn ≡ δðσð1Þn Þ ¼

ðξcore;n − ξcrust;nÞ=jξcrust;nj, and then compare the
values of δn and δn−1. If δn−1 and δn are of opposite
signs, then this range may contain the sought
eigenfrequencies, which can be found with the
use of ordinary numeric routines.

Thus, evaluating the residual parameter and monitoring
its sign changes for different values of σð1Þ, lying in a
certain range, we can determine whether there are any
eigenvalues in this range. The smaller the residual is, the
more accurately the remaining boundary condition (85) is
satisfied.

APPENDIX C: EXPLICIT FORMULAS FOR THE
FORMAL COEFFICIENTS IN THE r-MODE

EQUATIONS FOR l =m

Below we provide the exact form of the Ω- and
ϵ-independent coefficients that appear in the formal system
(87) in the discussion of the slow-rotation limit:

C1ðaÞ ¼ −
2akþlþ1

ðlþ 1Þ2 ;

C2ðaÞ ¼
kþlþ1

ðlþ 1Þ2 ½2agðlþ 1Þ − F − 2l − 1�; ðC1Þ

C3ðaÞ ¼
ae−2ν0

c2gl2ðlþ 1Þ2 ½agγ2 þ 4lγ1ð2aλ00 − F þ 5Þ�;

C4 ¼
2

lþ 1
; ðC2Þ

G1ðaÞ ¼ Aþ gðl− 1Þ− l
a
; G2ðaÞ ¼

Ac2gðlþ 1Þ2e2ν0
4alk−l

:

ðC3Þ

APPENDIX D: THE EXPLICIT FORM OF THE
r-MODE EQUATIONS IN THE Ω → 0 LIMIT

Using the relativistic r-mode ordering, one can derive the
r-mode equations in the Ω → 0 limit from the system (66),
retaining only the leading-order terms. From the second

and third equations of this system we find that ξð1Þl−1 is

proportional to ξð1Þlþ1, which allows us to introduce a new
useful function

ξ̃ðaÞ ¼ ξð1Þl−1ðaÞ
ðlþ 1Þ2kþlþ1

¼ ξð1Þlþ1ðaÞ
l2k−l

: ðD1Þ

Then, ignoring small terms in the system (66), we obtain

(
ϵ½lðlþ1Þσð10Þ þ2mω̃ðaÞ�Tð0Þ

l −2aγ1lðlþ1Þξ̃0 ¼ 0

4amϵκ2Tð0Þ
l

0 þAc2gl2ðlþ1Þ2e2ν0 ξ̃¼ 0:
ðD2Þ

This system is the exact generalization of the system (91) to
the case of arbitrary l and m: if we consider Eq. (D2) with
l ¼ m, we immediately reproduce the exact form of the
coefficients C1ðaÞ, C4, andG2ðaÞ. Once the solution of this
system is known, we can use Eqs. (64), (65), (58), and (59)

to find the functions Qð1Þ
l�1 and Tð1Þ

l�2 in the Ω → 0 limit:

Qð1Þ
l−1 ¼

ðlþ 1Þ2kþl
lðl− 1Þ aξ̃0; Qð1Þ

lþ1 ¼
l2k−l

ðlþ 1Þðlþ 2Þaξ̃
0; ðD3Þ

Tð1Þ
l−2 ¼

iðl − 2Þlðlþ 1Þ3kþl−1kþl
2mðl − 1Þð2l − 1Þ aξ̃0;

Tð1Þ
lþ2 ¼ −

il3ðlþ 1Þðlþ 3Þk−l k−lþ1

2mðlþ 2Þð2lþ 3Þ aξ̃0: ðD4Þ

It is easy to see that these formulas define the contributions

Qð10Þ
l�1 and Tð10Þ

l�2 from the decompositions (E13) and (E15).
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Other terms are small in the Ω → 0 limit and can be
ignored.

APPENDIX E: THE RELATIVISTIC r-MODE
ORDERING IN THE CORE

Let us imagine that we are not aware of the relativistic
r-mode nonanalyticity. As we have already mentioned, the
small parameter in r-mode oscillation equations (66) [or
(86) for l ¼ m case], associated with slow stellar rotation,
is Ω2, not Ω. Then it seems natural to look for the solution
to the oscillation equations in the form of a series in this
parameter

fða;ΩÞ ¼
X
n

f½n�ðaÞΩ2n: ðE1Þ

For example, if we ignore the frame-dragging effect in these

equations, we immediately obtain that σð1Þ ∼ ξð1Þlþ1 ∼Ω2,
which is the traditional r-mode ordering, known from the
Newtonian theory. In general relativity, however, we deal
with nonanalytic functions, for which the leading contri-

bution to the radial displacement ξð1Þlþ1 ∼
ffiffiffi
ϵ

p
Ω turns out to be

of linear order in Ω, and, moreover, the operator d=da
should be considered as a “quantity” of order

ffiffiffi
ϵ

p
=Ω (recall

the discussion in Sec. VI A concerning the validity of terms
“order”and “series” when one deals with nonanalytic
functions). As a result, the terms of linear order in Ω arise

and violate the expected picture: the actual small
rotation-associated parameter to be used in an Ω series

should beΩ, notΩ2. This implies that the quantities Tð0Þ
l ðaÞ

and σð1Þ are, generally, allowed to contain linear in Ω
contributions.
It may feel like we have arrived at some internal

inconsistency of the theory: in the decomposition T ¼
Tð0Þ þ Tð1Þ the function Tð0Þ ¼ Tð0Þ

l ðaÞPm
l ðcos θÞ that, by

definition, should describe the leading-order contribution to
the toroidal function T in the slow-rotation limit, is allowed
to contain a small linear in Ω term that seemingly should be
attributed to Tð1Þ. This impression, however, is wrong,
since the rotation-associated small parameter, used in the
derivation of the general r-mode equations, is Ω2. For slow
rotation rates linear inΩ terms are much larger thanΩ2 and,
therefore, can be a part of Tð0Þ. Note, however, that it does
not necessarily mean that linear in Ω contributions cannot
appear in Tð1Þ: they can, but with additional small factors,
associated with ϵ.
With all these remarks in mind, let us proceed further

with the derivation of the relativistic r-mode ordering. As
previously, for simplicity we focus on the l ¼ m case, since
the analysis of the l ≠ m case can be performed in a
completely analogous manner. In Sec. VI Awe have shown
that in the limit of extremely slow rotation the general
system of equations

8>>>><
>>>>:

�
C1ðaÞ

d
da

þ C2ðaÞ
�
ξð1Þlþ1 þ ½Ω2C3ðaÞ þ σð1Þ þ C4ϵω̃ðaÞ�Tð0Þ

l ¼ 0;�
d
da

þ G1ðaÞ
�
Tð0Þ
l þ G2ðaÞ

Ω2
ξð1Þlþ1 ¼ 0;

ðE2Þ

reduces to 8>><
>>:

C1ðaÞξð1Þlþ1

0 þ ½σð1Þ þ C4ϵω̃ðaÞ�Tð0Þ
l ¼ 0

ΩTð0Þ
l

0 þG2ðaÞ
Ω

ξð1Þlþ1 ¼ 0.
ðE3Þ

In the latter system σð1Þ ¼ ϵσð10Þ, Tð0Þ
l ¼ Tð00Þ

l , and ξð1Þlþ1 ¼ffiffiffi
ϵ

p
Ωξð11Þlþ1 ∼

ffiffiffi
ϵ

p
Ω are the leading contributions to, respec-

tively, the r-mode eigenfrequency, toroidal function, and
radial displacement in this limit, that by definition do not
include the generally allowed “linear” Ω order corrections.
We have also shown that, because of nonanalyticity of the
eigenfunctions, the derivative d=da in these equations
should be considered as a quantity of order

ffiffiffi
ϵ

p
=Ω. For

further analysis we introduce a new convenient parameter

κ ¼ Ωffiffiffi
ϵ

p ðE4Þ

and look for the solution to the general Eq. (E2) in the form

σð1Þ ¼ ϵ½σð10Þ þ δσ�; Tð0Þ
l ¼ Tð00Þ

l þ δTl;

ξð1Þlþ1 ¼ ϵκ½ξð11Þlþ1 þ δξlþ1�;
dTð00Þ

l

da
∼
dξð11Þlþ1

da
∼
1

κ
: ðE5Þ

Here the first terms correspond to the solution of Eq. (E3),
while the terms of the form δf describe small corrections to
this solution of yet unknown order. Note that at this point
we do not know whether the operator d=da changes the

order of δTl and δξlþ1, like it does with Tð00Þ
l and ξð11Þlþ1 .
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It turns out that when we employ decompositions (E5) in
the general system (E2), the only small parameter left in all
equations is κ. Therefore, the corrections δTl, δξlþ1, and δσ
should be considered as quantities of nonzero positive κ
orders (this statement, however, generally does not have to
hold for their derivatives, if we allow them to be nonana-
lytic functions of κ). Having used these decompositions, we
can discard small terms in this system, following two
selection rules. The first rule is that, in any equation

containing simultaneously the terms f and δf (with factors
of the same order), the latter can be ignored. The second
rule is that in each equation we ignore all the terms smaller
than the largest inhomogeneous term in that chosen

equation [i.e., the largest term containing Tð00Þ
l or ξð11Þ].

For example, in the first equation, we ignore the term

κ2Tð00Þ
l compared to κξð11Þ. Eventually, we obtain the

following simplified system of equations:

8>><
>>:

C1ðaÞ
d
da

κδξlþ1 þ ½σð10Þ þ C4ω̃ðaÞ�δTl þ C2ðaÞκξð11Þlþ1 þ δσ · Tð00Þ
l ¼ 0

d
da

δTl þ
G2ðaÞ
κ

δξlþ1 þ G1ðaÞTð00Þ
l ¼ 0.

ðE6Þ

This system should be solved with three boundary con-
ditions (two of them imposed at the crust-core interface and
one at the stellar center); therefore, its general solution
should contain three unknown constants: two integration
constants and the correction δσ. This is possible, if and only
if the terms with the derivatives of δTl and δξlþ1 are not
small compared to other terms in the obtained system:
otherwise differential equations reduce to algebraic ones,
and we are left with only one unknown constant δσ. For the
same reason, the term with δσ in the first equation should be
of the same order as the term with the derivative dδξlþ1=da.
Finally, the order of the correction δTl cannot be larger than
κ, otherwise, δTl should have been attributed to Tð1Þ. If we
look for the ordering in the form

δσ ∼ κs; δTl ∼ κt; δξlþ1 ∼ κx;
d
da

∼ κd; ðE7Þ

the discussed conditions can be formally written as

�
1þ dþ x ¼ s

s ≤ t
ðE8Þ

for the first equation, and

option 1 :

�
dþ t¼ 0

x≥ 1;
or option 2 :

�
dþ t¼ x− 1

x≤ 1;
ðE9Þ

for the second equation. Let us consider, for example, the
first option. In this case, using the conditions above, we
easily obtain the inequality 2t ≥ xþ 1. Since t ≤ 1 and
x ≥ 1, this inequality is satisfied only for x ¼ t ¼ 1, and we
immediately obtain s ¼ 1 and d ¼ −1. The analysis of the
second option can be performed in a similar way and leads
to the same ordering.
Thus, we have shown that δσ ∼ δTl ∼ δξlþ1 ∼ κ, and that

corrections δTl and δξlþ1 are nonanalytic functions of κ, for

which d=da ∼ 1=κ. Now, we can write down the next-order
terms in the relativistic r-mode ordering. First of all, we have

δσ ¼ κσð11Þ; σð1Þ ¼ ϵσð10Þ þ ϵκσð11Þ; ðE10Þ

δTl ¼ κTð01Þ
l ; Tð0Þ

l ¼ Tð00Þ
l þ κTð01Þ

l ; ðE11Þ

δξlþ1 ¼ κξð12Þlþ1 ; ξð1Þlþ1 ¼ ϵκξð11Þlþ1 þ ϵκ2ξð12Þlþ1 ; ðE12Þ

where σð11Þ ∼ Tð01Þ
l ∼ ξð12Þlþ1 ∼ 1. Secondly, from Eq. (65) it

follows that, up to the terms linear in κ, we have

Qð1Þ
lþ1 ¼ ϵQð10Þ

lþ1 þ ϵκQð11Þ
lþ1 ; ðE13Þ

Qð10Þ
lþ1 ¼ a

ðlþ 1Þðlþ 2Þ κξ
ð11Þ
lþ1

0;

Qð11Þ
lþ1 ¼ 1

2ðlþ 1Þðlþ 2Þ ½ðF − 1Þξð11Þlþ1 þ 2aκξð12Þlþ1

0�: ðE14Þ

Note that the “order” of the quantities κξð11Þlþ1

0 and κξð12Þlþ1

0 in
Eq. (E14) is 1, since d=da ∼ 1=κ. Finally, from Eq. (59) we
find that, up to the terms “linear” in κ, we have

Tð1Þ
lþ2 ¼ ϵTð10Þ

lþ2 þ ϵκTð11Þ
lþ2 ; ðE15Þ

Tð10Þ
lþ2 ¼ −

ik−lþ1ðlþ 1Þ2ðlþ 3Þ
2ð2lþ 3Þ Qð10Þ

lþ1 ;

Tð11Þ
lþ2 ¼ −

ik−lþ1ðlþ 1Þðlþ 3Þ
2ð2lþ 3Þ ½ðag− 1Þξð11Þlþ1 þ ðlþ 1ÞQð11Þ

lþ1 �:

ðE16Þ

Although we discuss here only the ordering of the
coefficients before associated Legendre polynomials, it is
easy to see that the same ordering should hold for the whole
θ-dependent functions. Indeed, for the l ¼ m case, we have
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ξð1Þða; θÞ ¼ ξð1Þlþ1ðaÞPl
lþ1ðcos θÞ;

Qð1Þða; θÞ ¼ Qð1Þ
lþ1ðaÞPl

lþ1ðcos θÞ; ðE17Þ

Tð0Þða;θÞ¼Tð0Þ
l ðaÞPl

lðcosθÞ;
Tð1Þða;θÞ¼Tð1Þ

l ðaÞPl
lðcosθÞþTð1Þ

lþ2ðaÞPl
lþ2ðcosθÞ: ðE18Þ

We know the ordering of all of the coefficients in these

decompositions, except for Tð1Þ
l ðaÞ that disappears from the

equations. Nevertheless, we still can conclude that the
ordering of the toroidal function up to the terms “linear” in
κ is defined by the expressions above. The toroidal function
correction Tð1Þða; θÞ definitely contains the terms of the
order ϵ and ϵκ, since the terms of the same order appear in

Tð1Þ
lþ2ðaÞ. At the same time, it cannot contain the terms of the

order 1 or κ, since these terms, by definition, should be
attributed to the leading-order contribution Tð0Þða; θÞ. One,
however, cannot exclude the possibility that Tð1Þ

l ðaÞ is of

higher order than Tð1Þ
lþ2ðaÞ.

Summarizing, we can write the first terms of the
relativistic r-mode ordering as

σ=Ω ¼ σð0Þ þ ϵσð10Þ þ ϵκσð11Þ þ…; ðE19Þ

T ¼ Tð00Þ þ κTð01Þ þ ϵTð10Þ þ ϵκTð11Þ þ…; ðE20Þ

Q ¼ ϵQð10Þ þ ϵκQð11Þ þ…; ðE21Þ

ξa ¼ ϵκξð11Þ þ…;
∂

∂a
∼
1

κ
: ðE22Þ

These formulas do not correspond to any sort of Ω or ϵ
series. The terms fðikÞ in these decompositions, including
those for eigenfrequency corrections, generally, are non-
analytic functions of Ω and ϵ that define the nonanalytic
contributions of the “order” ϵiκk (but the dependency of
these contributions on Ω and ϵ does not reduce to the factor
ϵiκk). For example, the function Tð11Þ defines the nonana-
lytic contribution to the toroidal function, which is linear in
ϵ and linear in κ. All the terms of the form fð00Þ and fð01Þ

correspond to the terms in (47) that were designated as fð0Þ,
and all the terms of the form fð10Þ and fð11Þ correspond to
fð1Þ. For instance, Tð01Þ is a part of Tð0Þ, whereas Tð10Þ is a
part of Tð1Þ. As we anticipated, linear in κ terms enter the
corrections fð1Þ with small ϵ-associated factors.

APPENDIX F: THE EFFECT
OF CRUST THICKNESS

Let us take a look at the obtained analytic solution in the

crust. According to Eq. (101) we have ξð1Þlþ1ðaÞ ≈ ϵξð10Þlþ1 ðaÞ,
while from the definition (102) it follows that

ξð10Þlþ1 ðaÞ ∼ Tð0Þ
l ðaÞ. As a result, in the crust, we expect

the condition ξð1Þlþ1ðaÞ ∼ ϵTð0Þ
l ðaÞ to take place. Although

the function ξð10Þlþ1 ðaÞ for the main harmonic does not
depend on and for the node-possessing nodes depends
only weakly on the small parameters Ω and ϵ, and this
condition seems correct, it in fact turns out to be wrong for
the considered values 10−3 ≤ Ω ≤ 10−2. To see this we use
the formulas (120) and (102) to rewrite the analytic solution
for the main harmonic in the Ω → 0 limit as

ξð1Þlþ1ðaÞ ≈ ϵξð10Þlþ1 ðaÞ ¼ −
2ϵ

lþ 1
I2ðaccÞΔðaÞ; ðF1Þ

where

ΔðaÞ ¼ I1ðaÞ
I1ðaccÞ

−
I2ðaÞ
I2ðaccÞ

;

I1ðaÞ ¼
1

ηðaÞ
Z1
a

g21ðaÞηðaÞTð0Þ
l ðaÞda;

I2ðaÞ ¼
1

ηðaÞ
Z1
a

g21ðaÞηðaÞω̃ðaÞTð0Þ
l ðaÞda: ðF2Þ

Our numerical calculations show that the ratios
I1ðaÞ=I1ðaccÞ and I2ðaÞ=I2ðaccÞ both take positive values
in the interval ½0; 1� and only slightly differ from each other.
As a result, the function ΔðaÞ is, typically, of the order
4 × 10−2. We also obtain that I2ðaccÞ ≈ 3 × 10−2, which
combined with the previous estimate and the fact that in

the crust Tð0Þ
l ðaÞ ∼ 1, allows one to conclude that

ξð1Þlþ1ðaÞ ∼ 10−3 × ϵTð0Þ
l ðaÞ. Even for the smallest consid-

ered value, Ω ¼ 10−3, this means that, effectively, we have

ξð1Þlþ1ðaÞ ∼ ϵκTð0Þ
l ðaÞ, which makes the developed analytic

theory for the main harmonic less applicable for the
considered range of rotation rates. A similar situation
emerges when one considers node-possessing harmonics,
for which the radial displacement in the Ω → 0 limit
approximately equals

ξð1Þlþ1ðaÞ ≈
ϵ

ηðaÞ
Z1
a

g21ðaÞ
�
σð10Þ þ 2ω̃ðaÞ

lþ 1

�
ηðaÞTð0Þ

l ðaÞda

≈ −
2ϵ

lþ 1
½ω̃ðaccÞI1ðaÞ − I2ðaÞ� ∼ 10−3 × ϵTð0Þ

l ðaÞ:
ðF3Þ

Thus, an application of the theory to the node-possessing
r-modes also turns out to be marginally justified for the
considered rotation rates. We expect, however, that the
theory provides more accurate results when smaller values
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of Ω≲ 10−4 are considered, but we cannot perform the
corresponding calculations due to numerical problems
arising at slower rotation rates.
What we can do to test the theory is to consider a slightly

different stellar model with a larger crust. Instead of
working with a “genuine” star with acc ≈ 0.92, we can
calculate the r-modes for an artificial star with a different
(smaller) value of acc, by solving the dynamical equations
in the core at a < acc and in the crust at a > acc (but
employing exactly the same equilibrium stellar model as
before). Our numerical calculations show that typical values
of the function ΔðaÞ only slightly depend on the position of
the crust-core interface, whereas the quantities jI2ðaccÞj and
ω̃ðaccÞ get larger and larger with the decrease of acc. The
functions jI1ðaÞj and jI2ðaÞj decrease with a, so for stellar
models with a larger crust they are also allowed to be larger.
We, therefore, expect that the r-mode spectrum for stellar
models with a larger crust should be better described by the
analytic formulas derived in the limit Ω → 0. Moreover, the
function AðaÞ (in our model) exhibits two extremum points
in the region 0.87 ≤ a ≤ 0.9. Therefore, if at < 0.9, the
Taylor expansion qσðaÞ ¼ α2ðat − aÞ cannot be applied in
the vicinity of the crust-core interface and the oscillation
spectrum should be calculated according to the quantization

rule (126) instead of Eq. (124). In the stellar models with a
large crust (acc < 0.87), however, extremum points do not
arise and the Taylor expansion of qσðaÞ remains accurate up
to the crust-core interface.
We consider two such stellar models: one with acc ¼ 0.7

and the other with acc ¼ 0.4. In the model with acc ¼ 0.7
according to our estimates (performed in the same manner as

previously for the “genuine” star), we have ξð1Þlþ1ðaÞ ∼
10−2 × ϵTð0Þ

l ðaÞ for the main harmonic and ξð1Þlþ1ðaÞ ∼
10−1 × ϵTð0Þ

l ðaÞ for the node-possessing harmonics. The
theory for this model should work better at rotation rates
Ω ∼ 10−3, but we still cannot expect exact predictions for
sufficiently higher rotation ratesΩ ∼ 10−2, especially for the
main harmonic. In the model with acc ¼ 0.4 we have

ξð1Þlþ1ðaÞ ∼ 4 × 10−2ϵTð0Þ
l ðaÞ for the main harmonic and

ξð1Þlþ1ðaÞ ∼ ϵTð0Þ
l ðaÞ for the node-possessing r-modes. In this

case, the theory should describe with high accuracy the
eigenfrequencies of the node-possessing r-modes even at
Ω ∼ 10−2. Predictions concerning the main harmonic eigen-
frequency should also be significantly more precise than for
the other discussed stellar models. All these conclusions are
confirmed by Fig. 7, discussed in Sec. VI C.
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