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Low-mass neutron stars are directly associated with the nuclear saturation parameters because their
central density is definitely low. We have already found a suitable combination of nuclear saturation
parameters for expressing the neutron star mass and gravitational redshift, i.e., η≡ ðK0L2Þ1=3 with the
incompressibility for symmetric nuclear matter, K0, and the density-dependent nuclear symmetry energy,
L. In this study, we newly find another suitable combination given by ητ ≡ ð−KτL5Þ1=6 with the isospin
dependence of incompressibility for asymmetric nuclear matter, Kτ, and derive the empirical relations for
the neutron star mass and gravitational redshift as a function of ητ and the normalized central number
density. With these empirical relations, one can evaluate the mass and gravitational redshift of the neutron
star, whose central number density is less than threefold the saturation density, within ∼10% accuracy, and
the radius within a few percent accuracy. In addition, we discuss the neutron star mass and radius
constraints from the terrestrial experiments, using the empirical relations, together with those from the
astronomical observations. Furthermore, we find a tight correlation between ητ and η. With this correlation,
we derive the constraint on Kτ as −348 ≤ Kτ ≤ −237 MeV, assuming that L ¼ 60� 20 and
K0 ¼ 240� 20 MeV.
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I. INTRODUCTION

Neutron star is a massive remnant left after a supernova
explosion, which happens at the last moment of the massive
star’s life. The density inside the star becomes much higher
than the standard nuclear density, ρ0 ¼ 2.7 × 1014 g=cm3,
and the gravitational and magnetic fields inside/around the
star are significantly stronger than those observed in our
solar system [1]. The neutron star mass and radius strongly
depend on the equation of state (EOS) for neutron star
matter under the β equilibrium. The mass of a neutron star
model with a higher central density generally becomes
larger, even though the EOS is not fixed yet. So, the
astronomical observations of neutron stars or their activities
tell us the information about the EOS for a relatively higher
density region, while the terrestrial experiments tell us that
for a lower density region (e.g., Fig. 2 in Ref. [2]).
In practice, the discovery of 2 M⊙ neutron stars [3–6]

has excluded some soft EOSs, with which the expected
maximum mass is less than the observed mass. This
discovery simultaneously reveals the problem that most
of the EOSs with hyperon are too soft to construct the
2 M⊙ neutron star, i.e., the so-called hyperon puzzle.

Meanwhile, the gravitational wave event, GW170817
[7], tells us the information on the tidal deformability of
the neutron star, which leads to the constraint that a 1.4 M⊙
neutron star radius should be less than 13.6 km [8]. We note
that the constraint on neutron star radius may become more
stringent in view of the existing multimessenger observa-
tional data [9,10]. The light bending due to the strong
gravitational field induced by the neutron star is also one of
the important phenomena to see the neutron star properties.
That is, the pulsar light curve from the rotating neutron star
would be modified due to this relativistic effect and one
could get the neutron star properties by carefully observing
it (e.g., [11–16]). Based on this idea, the Neutron star
Interior Composition Explorer (NICER) is now operating
on an International Space Station (ISS) and it has already
announced the constraint on two neutron stars properties,
i.e., PSR J0030þ 0451 [17,18] and PSR J0740þ 6620
[19,20]. Furthermore, the direct detection of the gravita-
tional waves from the neutron star in the future may enable
us to extract the neutron star properties (e.g., [21–29]).
On the other hand, the EOS in a lower density region is

also gradually constrained through terrestrial nuclear
experiments, but still, there are large uncertainties in
EOS parameters (or in neutron star properties) constrained
from terrestrial experiments. For instance, the fiducial value*sotani@yukawa.kyoto-u.ac.jp
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of the density-dependent nuclear symmetry energy L is
L ≃ 60� 20 MeV [30,31], while the constraints of L
obtained recently seem to be significantly larger than the
fiducial value [32,33]. This is because one has to usually
transform the experimental constraint to the EOS param-
eters, even if the information determined via experiments is
associated with some aspects of nuclear EOS. Then, one
can eventually discuss the neutron star mass and radius as a
solution of the Tolman-Oppenheimer-Volkoff (TOV) equa-
tion. Anyway, the terrestrial experiments are definitely
crucial for understanding the neutron star EOS as well as
the astronomical observation of neutron stars.
In order to discuss the neutron star mass and radius

directly with the EOS parameters constrained somehow
from the experiments, it may be useful to derive a kind of
empirical formula expressing the neutron star properties as
a function of EOS parameters if it exists. In practice, we
have already found the empirical relations expressing the
mass (M) and gravitational redshift (z) of a low-mass
neutron star as a function of the suitable combination of the
nuclear saturation parameters, η, and the central density of
neutron star [34], with which the neutron star mass and
radius expected from the terrestrial experiments can be
discussed as in Ref. [2]. On the other hand, in this study, we
consider deriving another type of empirical relation for the
low-mass neutron stars, focusing on the nuclear saturation
parameters for asymmetric nuclear matter, and then discuss
the impact of the uncertainties in the nuclear saturation
parameters on the neutron star mass and radius.

This manuscript is organized as follows. In Sec. II, we
briefly mention the EOSs considered in this study and the
saturation parameters in nuclear matter. In Sec. III, we
examine the neutron star models and derive the empirical
formulas for the neutron star mass and its gravitational
redshift as a function of a suitable combination of the
nuclear saturation parameters we derived in this study.
Using the newly derived empirical formulas, in Sec. IV, we
discuss the neutron star mass and radius together with the
constraints from the astronomical and experimental obser-
vations. Finally, in Sec. V, we conclude this study. Unless
otherwise mentioned, we adopt geometric units in the
following, c ¼ G ¼ 1, where c and G denote the speed
of light and the gravitational constant, respectively.

II. EOS FOR NEUTRON STAR MATTER

To construct the neutron starmodels theoretically, one has
to prepare the EOS for neutron star matter. We note that, in
order to discuss the neutron star properties with the EOS
parameters, one has to adopt the unified EOS. That is, the
EOS describing the neutron star core is constructed with the
same nuclear model as in the EOS for the neutron star crust.
We note that, if one constructs the neutron star model with
the EOS (unlike the unified EOS), which is assembled by
connecting the EOS for the core region to the different EOS
for the crust region at an appropriate transition density, the
radius of a neutron star whose central density is around
the transition density strongly depends on the selection of

TABLE I. EOS parameters adopted in this study, K0, n0, L, Q, Ksym, Qsym, Kτ, and Qτ are listed, while η and ητ are specific
combinations with them given by η ¼ ðK0L2Þ1=3 and ητ ¼ ð−KτL5Þ1=6.
EOS K0 (MeV) n0 (fm−3) L (MeV) Q (MeV) Ksym (MeV) Qsym (MeV) Kτ (MeV) Qτ (MeV) η (MeV) ητ (MeV)

OI-EOSs 200
0.165 35.6 −759 −142 801 −221 2017 63.3 48.2
0.165 67.8 −761 −27.6 589 −176 2909 97.2 79.5

220
0.161 40.2 −720 −144 731 −254 1915 70.9 54.7
0.161 77.6 −722 −9.83 486 −221 2779 110 92.4

240
0.159 45.0 −663 −146 642 −291 1760 78.6 61.4
0.158 88.2 −664 10.5 363 −274 2559 123 107

260
0.156 49.8 −589 −146 535 −333 1551 86.4 68.4
0.155 99.2 −590 32.6 219 −338 2246 137 122

280
0.154 54.9 −496 −146 410 −378 1285 94.5 75.7
0.153 111 −498 57.4 54.4 −412 1834 151 138

300
0.152 60.0 −386 −146 266 −429 962 103 83.3

0.151 124 −387 86.1 −133 −499 1310 167 157

KDE0v 229 0.161 45.2 −373 −145 523 −342 1187 77.6 63.4

KDE0v1 228 0.165 54.7 −385 −127 484 −363 1317 88.0 75.0

SLy2 230 0.161 47.5 −364 −115 507 −325 1183 80.3 65.4
SLy4 230 0.160 45.9 −363 −120 522 −323 1175 78.7 63.7
SLy9 230 0.151 54.9 −350 −81.4 462 −327 1215 88.4 73.9
SKa 263 0.155 74.6 −300 −78.5 175 −441 940 114 100
SkI3 258 0.158 101 −304 73.0 212 −412 1276 138 127
SkMp 231 0.157 70.3 −338 −49.8 159 −369 1086 105 92.7
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the transition density (e.g., Ref. [35]). That is, unless the
unified EOSs are adopted, one cannot discuss the empirical
relations, expressing the neutron star models, as we will
derive in Sec. III. In this study, to systematically see the EOS
dependence of the neutron star properties, we particularly
adopt the phenomenological EOS proposed by Oyamatsu
and Iida [36,37] (hereafter referred to as OI-EOS) and the
EOSs with the Skyrme-type interaction listed in Table I.
OI-EOSs are based on the Padé-type potential energies

and constructed in such a way that the nucleus models with
a simplified version of the extended Thomas-Fermi theory
should become consistent with the empirical masses and
radii of stable nuclei. We note that most of the OI-EOSs
adopted here may not fulfill either constraint of 2 M⊙
observation or the 1.4 M⊙ neutron star radius constrained
from the GW170817, because the OI-EOSs are constructed
by focusing on the behavior around the saturation point.
Nevertheless, since we discuss the neutron star properties
constructed with the central density, which is not so high,
and since the OI-EOSs are definitely suitable for system-
atical study, we adopt the OI-EOSs in this study. On the
other hand, we also consider the EOSs with various
Skyrme-type interactions, such as KDE0v, KDE0v1 [38],
SLy2, SLy4, SLy9 [39,40], SKa [41], SkI3 [42], and SkMp
[43]. We note that the nonrelativistic EOSs may break the
causality in a high-density region, where the resultant
neutron star models are not realistic. But, in this study,
we focus only on the density region less than threefold the
saturation density, where all the EOSs adopted in this study
do not break the causality.
Even though the EOS generally depends on the nuclear

model, compositions, and interaction, the bulk energy per
nucleon for the uniform nuclear matter at zero temperature
can anyhow be expressed as a function of the baryon number
density, nb, and an asymmetry parameter, α, such as

E
A
¼ wsðnbÞ þ α2SðnbÞ þOðα3Þ; ð1Þ

where nb and α are given by nb ¼ nn þ np and α ¼
ðnn − npÞ=nb with the neutron number density, nn, and
the proton number density, np; ws corresponds to the
energy per nucleon of symmetric nuclear matter (α ¼ 0);
and S denotes the density-dependent symmetry energy.
Additionally,ws andS can be expanded around the saturation
density, n0, of the symmetric nuclear matter as a function of
u ¼ ðnb − n0Þ=ð3n0Þ:

wsðnbÞ ¼ w0 þ
K0

2
u2 þQ

6
u3 þOðu4Þ; ð2Þ

SðnbÞ ¼ S0 þ Luþ Ksym

2
u2 þQsym

6
u3 þOðu4Þ: ð3Þ

The coefficients in this expansion correspond to the nuclear
saturation parameters, and each EOS has its own set of
nuclear saturation parameters. Among the nuclear saturation

parameters, n0, w0, and S0 are especially well constrained
from the terrestrial experiments, i.e., n0 ≈ 0.15–0.16 fm−3,
w0 ≈ −15.8 MeV [44], and S0 ≈ 31.6� 2.7 MeV [31]. The
constraint on K0 and L is relatively more difficult. This is
because one needs to obtain the nuclear data in awide density
range to constrain K0 and L, which are a kind of density
derivative. The current fiducial values of K0 and L are
K0 ¼ 240� 20 MeV [45] and L ¼ 60� 20 MeV [30,31].
Meanwhile, since the determination of thevalues ofK0 andL
are strongly model dependent, one may consider K0 ¼
200–315 MeV [46,47] and L ¼ 20–145 MeV [2] as their
conservative values, which cover almost all predictions from
various experiments. The experimental constraints on the
saturation parameters for higher-order terms, such as Q,
Ksym, and Qsym, are almost disorganized, but they are theo-
retically evaluated as −800 ≤ Q ≤ 400, −400 ≤ Ksym ≤
100, and −200 ≤ Qsym ≤ 800 MeV [31].
On the other hand, considering E=A as the energy per

particle of infinite asymmetric nuclear matter, one can also
expand it around an isospin-dependent saturation density,
ñ0ðαÞ ≃ n0½1 − 3ðL=K0Þα2� [48], such as

E
A
¼ w̃0ðñ0Þ þ

K̃0ðñ0Þ
2

ũ2 þ Q̃ðñ0Þ
6

ũ3 þOðũ4Þ; ð4Þ

where ũ is defined as ũ ¼ ðnb − ñ0Þ=ð3ñ0Þ and the coef-
ficients in this expansion are related to the saturation
parameters in Eqs. (2) and (3) through

w̃0ðñ0Þ ¼ w0 þ S0α2 þOðα3Þ; ð5Þ

K̃0ðñ0Þ ¼ K0 þ Kτα
2 þOðα3Þ; ð6Þ

Q̃0ðñ0Þ ¼ QþQτα
2 þOðα3Þ: ð7Þ

Here, Kτ and Qτ are, respectively, the isospin dependence
of incompressibility and skewness coefficient at the satu-
ration density, ñ0ðαÞ, given by

Kτ ¼ Ksym − 6L −
Q
K0

L; ð8Þ

Qτ ¼ Qsym −
9Q
K0

L: ð9Þ

Compared to the constraints on K0 and L, the constraints
on Kτ are still very poor [49,50]. The constraints obtained
from the experiments are Kτ ¼ −550� 100 MeV [51]
from the analysis of the Isoscalar Giant Monopole
Resonance (ISGMR) in Sn isotopes and Kτ ¼ −555�
75 MeV from the analysis of the ISGMR in Cd isotopes
[52], which are performed at the Research Center for
Nuclear Physics (RCNP), Osaka University, Japan. On
the other hand, using the experimental data in RCNP

NEUTRON STAR MASS FORMULA WITH NUCLEAR SATURATION … PHYS. REV. D 106, 103005 (2022)

103005-3



together with those in the Texas A&MUniversity (TAMU),
the theoretical constraints are also obtained: Kτ ¼ −550�
30 MeV from the analysis of the ISGMR in Pb and Sn
isotopes [53]; −840 < Kτ < −350 MeV from the reanal-
ysis of ISGMR in Sn, Cd, and data on 58 ≤ A ≤ 208 nuclei
[54]; Kτ ¼ −500þ120

−100 MeV from the analysis of the neu-
tron-skin data for different antiprotonic atoms [55]; Kτ ¼
−370� 120 MeV from the analysis of the isotopic trans-
port ratios [56]; and Kτ ¼ −500� 50 MeV from the
analysis of the ISGMR in Sn isotopes [57]. In Fig. 1 we
show the experimental and theoretical constraints on Kτ

obtained so far. In this study we particularly adopt the result
obtained in Ref. [51], i.e., Kτ ¼ −550� 100 MeV, as a
fiducial value of Kτ.
Since the neutron star properties are determined by

solving the balance equations, i.e., the TOV equation,
together with the EOS depending on several physical
inputs, it may generally be difficult to predict the neutron
star properties as a function of the EOS parameters.
Nevertheless, we could find a suitable combination of
the nuclear saturation parameters, η, for expressing the

low-mass neutron star [34]. Moreover, as mentioned in the
following section, we newly find another suitable combi-
nation of the saturation parameters, ητ, for expressing the
neutron stars. These suitable combinations, η and ητ, are
given by

η ¼ ðK0L2Þ1=3; ð10Þ

ητ ¼ ð−KτL5Þ1=6: ð11Þ

We note that the finding of η and ητ is just through trial and
error, and unfortunately we could not understand the
physics behind these quantities. Since one can express
the neutron star properties with η or ητ, it is natural to expect
the existence of a tight correlation between η and ητ. In fact,
there is no correlation between Kτ and L as shown in the
left panel of Fig. 2, while we find the tight correlation
between η and ητ as shown in the right panel of Fig. 2,
adopting the 304 models for OI-EOSs and 240 models for
the Skyrme-type EOSs listed in Ref. [58]. We note that, for
plotting Fig. 2, we omit some of the 240 models in Ref. [58]
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FIG. 1. Experimental and theoretical constraints on Kτ obtained so far. The constraint of −348 ≤ Kτ ≤ −237 MeV
(−718 ≤ Kτ ≤ −245 MeV) is obtained from the empirical relation given by Eq. (12), assuming that L ¼ 60� 20 MeV [30,31]
and K0 ¼ 240� 20 MeV [45] (L ¼ 20–145 MeV [2] and K0 ¼ 200–315 MeV [46,47]).
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FIG. 2. The left panel is the relation between L and Kτ for the OI-EOSs (open circles) and the Skyrme-type EOS models (filled
circles). The right panel is the relation between η and ητ. The thick solid line denotes the fitting formula given by Eq. (12). With this
empirical relation together with the fiducial value of η, i.e., 70.6 ≤ η ≤ 118.5 MeV (shaded region), the expected value of ητ is in the
range of 53.8 ≤ ητ ≤ 102.2 MeV (shaded region). In a similar way, the value of ητ is expected in the range of 30.4 ≤ ητ ≤ 189.3 MeV
(the region between two horizontal dashed lines) with the conservative value of η, i.e., 43.1 ≤ η ≤ 187.8 MeV (the region between two
vertical dashed lines).
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with the negative value of L. From this figure, we can
derive the empirical relation, such as

ητ ¼ 61.439η100 þ 20.965η2100; ð12Þ

where η100 is defined by η100 ≡ η=ð100 MeVÞ. From
this empirical relation together with the fiducial value of
η, i.e., 70.6 ≤ η ≤ 118.5 MeV (L ¼ 60� 20 MeV [30,31]
and K0 ¼ 240� 20 MeV [45]), one can expect 53.8 ≤
ητ ≤ 102.2 MeV, which leads to −348≤Kτ≤−237MeV.
In a similar way, using 30.4 ≤ ητ ≤ 189.3 MeV estimated
with the conservative value of η, i.e., 43.1≤η≤187.8MeV
(L ¼ 20–145 MeV [2] and K0 ¼ 200–315 MeV [46,47]),
one can get the constraint on Kτ as −718 ≤ Kτ ≤
−245 MeV. These constraints on Kτ are also shown in
Fig. 1. From Fig. 1, one can observe that the value of Kτ

constrained with the conservative values of K0 and L
through Eq. (12) is more or less similar to the conservative
value of Kτ.

III. NEUTRON STAR MASS FORMULA

In the previous studies, we could derive the empirical
formula expressing the neutron star mass and gravitational
redshift as a function of η and uc ¼ ρc=ρ0 (or nc=n0), where
ρc and ρ0 are, respectively, the central density of neutron
star and the saturation density, while nc is the baryon
number density at the stellar center [34,59]. With η, one can
also discuss the rotational properties in low-mass neutron
stars [60] and the possible maximum mass of neutron
stars [61,62].
Now, we try to derive another type of empirical relation

for the mass and gravitational redshift of the neutron star in
a similar way considered in Refs. [34,59]. The neutron star
mass is determined by integrating the TOV equation,
assuming the central density, where the resultant mass also
depends on the EOS parameters. As a result of trial and
error by hand, we find a suitable combination of Kτ and L,
i.e., ητ given by Eq. (11), with which the neutron star mass
with a fixed central number density can be characterized
well, as shown in the top panel of Fig. 3. In the same way,
we find that the gravitational redshift, z, given by
z ¼ ð1 − 2GM=Rc2Þ−1=2 − 1, for a fixed central number
density is also well expressed as a function of ητ, as shown
in the bottom panel of Fig. 3. From this result, we can
derive the fitting formulas for the neutron star mass and
gravitational redshift for each central number density as a
function of ητ, such as

M=M⊙ ¼ am0 þ am1 ητ;100 þ am2 η
2
τ;100 þ am3 η

3
τ;100; ð13Þ

z ¼ az0 þ az1ητ;100 þ az2η
2
τ;100 þ az3η

3
τ;100; ð14Þ

where ητ;100 is defined by ητ;100 ≡ ητ=ð100 MeVÞ, while ami
and azi for i ¼ 0–3 are coefficients depending on nc=n0.

Moreover, the coefficients in Eqs. (13) and (14), i.e., ami
and azi , are calculated by varying nc=n0, which are shown
in Fig. 4. From this result, we can derive the fitting
formulas for ami and azi as a function of nc=n0, such as
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FIG. 3. The mass (top panel) and gravitational redshift (bottom
panel) for the neutron star models with nc=n0 ¼ 1, 2, and 3,
constructed with various EOSs, are plotted as a function of ητ.
The thick solid lines are fitting lines given by Eqs. (13) and (14).
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FIG. 4. The coefficients in the fitting formula (13) and (14) are
shown as a function of nc=n0, where the top and bottom panels
correspond to the results for ami and azi , respectively. In both
panels, the solid lines denote the fitting of ami and azi given by
Eqs. (15) and (16).
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ami ¼
X4

j¼0

amijðnc=n0Þj; ð15Þ

azi ¼
X4

j¼0

azijðnc=n0Þj: ð16Þ

The concrete values of the coefficients in these equations,
amij and azij, are listed in Table II. At last, we can derive
the empirical relations for neutron star mass and gravita-
tional redshift as a function of ητ and nc=n0, given by
Eqs. (13)—(16).
Here, we check how well the empirical relations derived

in this study work. In Fig. 5 we show the relative deviation
of the neutron star mass (top panel), gravitational redshift
(middle panel), and radius (bottom panel) estimated with
the empirical relations from those for a TOV solution with
various EOSs. From this figure, one can observe that the
neutron star mass and gravitational redshift are estimated
with the empirical relations within ∼10% accuracy, while
the radius for neutron star models with nc=n0 ≥ 1.7 is
estimated within a few percent accuracy.

IV. NEUTRON STAR MASS AND
RADIUS RELATION

To simultaneously discuss the EOS parameters con-
strained from the terrestrial experiments together with
the EOSs for a higher density region constrained from
the astronomical observations, the neutron star mass and
radius must be reasonable. In this section, first, we briefly
mention the constraints on the neutron star mass and radius
obtained from several astronomical observations. Then, we
discuss the impact of the EOS parameters constrained from
the terrestrial experiments on the neutron star mass and
radius by using the empirical formulas, Eqs. (13)—(16),
derived in this study.

A. Constraints from astronomical observations

The mass of a neutron star is one of the most important
pieces of information for constraining the EOS. In par-
ticular, the massive star is more important to exclude the

soft EOS, with which the expected maximum mass does
not reach the observed mass. Up to now, the maximum
mass precisely determined isM ¼ 2.08� 0.07 M⊙ (68.3%
credibility) for MSP J0740þ 6620 [5,6]. Owing to the
NICER observations, the neutron star mass and radius for
PSR J0030þ 0451 [17,18] and MSP J0740þ 6620
[19,20] are also constrained. The resultant 68 and 95%
confidential levels are shown in Fig. 6. In addition, the
gravitational wave observed from the binary neutron star
merger, GW170817, told us the tidal deformability of the
neutron star, which leads to the constraint on the 1.4 M⊙
radius as R1.4 ≤ 13.6 km [8]. This constraint must be
conservative, while more stringent constraints on the
1.4 M⊙ radius are also suggested from multimessenger
observations and nuclear theory, i.e., R1.4 ¼ 11.0þ0.9

−0.6 km
(90% confidence) [9] and R1.4 ¼ 11.75þ0.86

−0.81 km (90% con-
fidence) [10]. Furthermore, the neutron star mass and
radius are constrained from the x-ray burst observations
[63], although this constraint may strongly depend on the

TABLE II. Values of amij and azij in Eqs. (15) and (16).

j 0 1 2 3 4

am0j −0.4498 1.0714 −0.5067 −0.09871 0.03648
am1j 2.2712 −4.9277 2.4996 0.2726 −0.1296
am2j −2.4238 4.6837 −1.2923 −0.7641 0.1883
am3j 0.6795 −1.1991 0.1422 0.3175 −0.06662

az0j −0.03506 0.04173 0.01848 −0.03742 0.006334
az1j 0.1561 −0.3211 0.09294 0.09648 −0.01888
az2j −0.1884 0.3743 −0.03323 −0.1200 0.02129
az3j 0.05780 −0.1110 −0.001509 0.04061 −0.006882
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FIG. 5. The relative deviation of neutron star mass (top panel)
and gravitational redshift (middle panel) estimated with the
empirical formulas from those determined with the specific
EOSs is shown as a function of nc=n0. The bottom panel is
the relative deviation of the neutron star radius estimated with the
empirical formulas for the stellar mass and gravitational redshift
from that of the TOV solution.
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theoretical model. Meanwhile, as a theoretical constraint,
the left-top region of Fig. 6 should be excluded due to the
causality [64]. We collect these constraints in Fig. 6. From
this figure, one can see that the constraints from the
astronomical observations seem to be still uncertain, but
they will gradually become better. In the same figure, we
also plot the neutron star mass and radius relations
constructed with some of the specific EOSs. We note that

the Shen EOS is ruled out from the 1.4 M⊙ radius
constraint, but we show it because the Shen EOS is one
of the standard EOSs adopted in many astrophysical
studies.

B. Constraints from terrestrial experiments

Since the neutron star EOS cannot characterize only by
the nuclear saturation parameters in a higher density region,
the neutron star mass and radius discussed with the nuclear
saturation parameters constrained from terrestrial experi-
ments are only for low-mass neutron stars, which are
located at the right-bottom side on the neutron star mass
and radius relation. Anyway, to connect the neutron star
mass and radius with the nuclear saturation parameters, the
empirical relations for neutron star mass and radius (or
gravitational redshift) must be useful. With the empirical
relation for the neutron star mass and gravitational redshift
as a function of η [34], we have already discussed the
expected region in the neutron star mass and radius relation
[2], e.g., the allowed region with the fiducial values of L
and K0, i.e., L ¼ 60� 20 and K0 ¼ 240� 20 MeV, is
shown as in Fig. 6, where the central density is considered
up to twice the saturation density. In a similar way, with the
empirical relations derived in this study as a function of ητ,
the expected region in the neutron star mass and radius
relation can be shown with the shaded region in Fig. 6,
assuming that L ¼ 60� 20 and Kτ ¼ −550� 100 MeV,
where the central density is considered up to threefold the
saturation density and the stellar models with twice the
saturation density are also denoted with the dotted line in
the shaded region.
Finally, in Fig. 7, we show the expected region of the

neutron star mass and radius, adopting the specific value of
L and Kτ, e.g., the shaded region for L ¼ 60� 20 and
Kτ ¼ −550� 100 MeV as in Fig. 6. In addition, in the left
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FIG. 6. The expected region in the relation between neutron star
mass and radius is shown with the shaded region on the right-
bottom side of the figure by adopting the constraint on Kτ from
experiments at RCNP, i.e., Kτ ¼ −550� 100 MeV [51], to-
gether with L ¼ 60� 20 MeV as a fiducial value of L, which
corresponds to ητ ¼ 59.9–113 MeV. We also show the allowed
region with the empirical relation as a function of η, assuming the
fiducial values of L ¼ 60� 20 MeV and K0 ¼ 240� 20 MeV.
For reference, we show the constraints obtained from the
astronomical observations, i.e., PSR J0030þ 0451 and MSP
J0740þ 6620 with NICER, the shaded region with the obser-
vation of x-ray bursts, and 1.4 M⊙ neutron star radius from
GW170817 (see text for the details), together with the theoretical
mass-radius curves constructed with some EOSs. The shaded
region on the left-top side of the figure denotes the excluded
region from the causality.
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L ¼ 60 and −348 ≤ Kτ ≤ −237 MeV respectively.
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panel, the expected regions are shown for L ¼ 60� 30,
L ¼ 60� 10, L ¼ 60� 5, and L ¼ 60 MeV with
Kτ ¼ −550� 100 MeV, while in the right panel, the
region enclosed with the dashed line, the solid line, and
the dotted line correspond to the expected mass and
radius for L ¼ 60� 20 and Kτ ¼ −550 MeV; L ¼ 60
and Kτ ¼ −550� 100 MeV; and L ¼ 60 and −348 ≤
Kτ ≤ −237 MeV, respectively. From this figure, one can
obviously see that the L dependence is much stronger than
the Kτ dependence for determining the neutron star proper-
ties, but still Kτ also plays an important role in neutron star
mass and radius relation.

V. CONCLUSION

To discuss the neutron star mass and radius with the
constraints on the nuclear saturation parameters obtained
from terrestrial experiments, the empirical relations for the
neutron star mass and radius (or gravitational redshift) as a
function of nuclear saturation parameters must be useful, if
they exist. In this study, we find a suitable combination, ητ,
of the nuclear saturation parameters for expressing neutron
star mass and gravitational redshift and derive their
empirical relations, focusing on the saturation parameters
for asymmetric nuclear matter. With the resultant empirical
relations, which are applicable up to threefold the saturation
density of symmetric nuclear matter, one can evaluate the
neutron star mass and gravitational redshift within ∼10%
accuracy, and the radius within a few percent accuracies. In
addition, with these empirical relations, we discuss the
expected region in the neutron star mass and radius relation,
assuming the experimental values of saturation parameters,
together with the constraints from the astronomical obser-
vations. Furthermore, we find a tight correlation between ητ

and η, which is another suitable combination of saturation
parameters for symmetric nuclear matter. With this corre-
lation, we derive the constraint on the isospin dependence
of incompressibility for asymmetric nuclear matter, Kτ, as
−348 ≤ Kτ ≤ −237 MeV, assuming the fiducial value of
the density-dependent nuclear symmetry energy and the
incompressibility for symmetric nuclear matter. The value
of Kτ derived in this study shows the discrepancy from the
values deduced from experiments. This may be because the
experiments have been done using finite nuclei. As pointed
out in Ref. [54], the surface term or the mass-number
dependence especially in the expansion of the incompress-
ibility in finite nuclei should be evaluated in such a way as
to appropriately deduce the incompressibility and its
isospin dependence of the nuclear matter. Systematic
measurement of the incompressibility in finite nuclei in
a wide mass-number range may provide an opportunity to
evaluate such a finite system effect. In addition, we found η
and ητ through trial and error. Since these are good
quantities to express the low-mass neutron stars and we
also find a strong correlation between η and ητ, there may
exist a physical meaning behind these quantities. If one will
find such a physical meaning, it must tell us a new aspect of
nuclear physics, which has never been known up to now.
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