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Stimulated Hawking radiation in an analog black hole in a Bose-Einstein condensate was reported in
2014, and it was claimed that the stimulation was of the black hole lasing variety. The study was based on
the observation of rapidly growing negative-energy waves. We find that the correlations between the
Hawking and partner particles are directly observable in the experimental plots, which confirms the
stimulated Hawking radiation. We further verify this result with new measurements. Also, the observed
Hawking/partner correlations provide a sensitive, background-free probe of the underlying mechanism
of the stimulation. The experiment inspired the prediction of the Bogoliubov-Cherenkov-Landau (BCL)
mechanism of stimulated Hawking radiation. Through a numerical simulation in which the BCL
mechanism is suppressed, we find that the partner particles have an infrared cutoff due to the finite
distance between the outer and inner horizons, which limits the rate of black hole lasing. We compute this
cutoff for the experiment, and the resulting Bogoliubov coefficient, and black hole lasing rate. This analysis
shows that the growth rate of black hole lasing is too slow to explain the observations. It is likely that the
observed stimulation was due to the BCL mechanism. Furthermore, zero frequency lasing modes play no
role in our numerical simulation.
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Stephen Hawking predicted that a black hole should
spontaneously radiate a thermal spectrum [1,2]. It was not
clear whether the prediction was valid in light of quantum
gravity effects, such as trans-Planckian modes and back-
reaction [3]. Bill Unruh suggested that these issues could be
studied in a laboratory experiment [3]. This suggestion
inspired a wide range of studies involving analog black
holes, including stimulated Hawking radiation [4–12].
Within analog black holes in Bose-Einstein condensates

[13–15], superluminal (actually supersonic) particles can
resist the pull of the analog gravity, and travel outward.
When these particles strike the horizon, they stimulate
Hawking radiation [4], pairs of Hawking and partner
particles [1,2]. In this way, the quantity of Hawking
radiation exceeds the spontaneous emission. This process
was first suggested in the context of black hole lasing, in
which the partner particles are reflected from an inner
horizon deep inside the analog black hole, and become the
superluminal particles, which then stimulate additional
Hawking/partner pairs [4–12,16]. This stimulated Hawking
radiation was studied in an experiment in a Bose-Einstein
condensate of 87Rb atoms, in which the partner and
superluminal particles were observed, and it was asserted
that black hole lasing was the source of the superluminal
particles [17]. However, this type of measurement is subject
to a large, growing background, and it is difficult to isolate
the Hawking radiation signal [18].
The experiment [17] inspired several theoretical studies

[18–22], some with explanations other than black hole

lasing, for the observed partner and superluminal particles.
One suggested that superluminal particles can be created
at the inner horizon, rather than evolving from the partners
as in black hole lasing [20]. This is the Bogoliubov-
Cherenkov-Landau (BCL) mechanism of stimulated
Hawking radiation. One of the explanations did not
involve Hawking radiation at all, although it relied on
reflection from a steep harmonic potential not present in
the experiment [22].
Stimulated Hawking radiation was reported in a variety

of other analog black and white holes [23–26], but the
studies involved neither black hole lasing nor the BCL
mechanism.
A later experiment with parameters different from those

of Ref. [17] showed that the stimulated Hawking/partner
pairs can be observed directly, rather than studying the
partners and superluminal particles [27]. In light of this,
we look back to the old experiment [17], and find that the
Hawking/partner pairs are observable there also. This
confirms the claimed observation of stimulated Hawking
radiation. It also gives us a background-free observation
tool for studying the Hawking radiation. We would like to
determine whether black hole lasing is involved, or whether
the BCL mechanism dominates instead, as in Ref. [27].
Before examining the experimental data, we will study

black hole lasing in a numerical simulation, with the goal of
extracting insights which are relevant for the experiments.
In principle, we could compute the black hole lasing modes
from the precise form of the background metric in the
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simulation, and thus determine the growth rate of the lasing.
However, such an approach is not applicable to experi-
ments where the precise form is not known, so we will need
to find a method of predicting the growth rate given a few
general parameters of the simulation. We will use the
method to determine whether the stimulated Hawking
radiation in the experiment could be explained by black
hole lasing.
The analog black hole consists of a Bose-Einstein

condensate flowing in the positive x-direction. In the region
x < 0 the flow velocity vout is less than the speed of
sound cout. On the other hand, the flow is supersonic for
0 < x < L (vin > cin), which creates a trapping region for
sound quasiparticles, in analogy with the inside of a black
hole, as indicated in Fig. 1(a). The points x ¼ 0 and x ¼ L
correspond to the outer horizon BH and the inner horizon
IH, respectively. The acceleration at x ¼ 0 is achieved by
an applied step potential (not shown). The potential also has
an upward slope for larger x which causes the flow to slow
down and become subsonic for x > L.
Spontaneous Hawking radiation is a thermal distribution

of pairs of positive energy Hawking particles H, and
negative energy partner particles P, emitted by the outer
horizon. A small quantity of partner/C pairs are also
produced, where the positive energy particles C are directed

inward in the free-falling frame (comoving with the flowing
condensate). The P and C particles form a tilted sound
cone inside the analog black hole. The dispersion of the
Hawking particles is indicated in green in Fig. 1(b), where
the maximum frequency is given by the Hawking temper-
ature TH, which is proportional to the analog surface
gravity. The green curve in Fig. 1(c) indicates the
dispersion of the corresponding partner particles.
Due to the superluminal dispersion relation of the Bose-

Einstein condensate, the inner horizon can also spontane-
ously emit a thermal distribution of pairs of positive and
negative energy quasiparticles referred to as “white hole
radiation” (WHR), labeled Sþ and S− in Fig. 1(a) [28]. The
Sþ and S− dispersion relations are indicated by the dashed
and solid magenta curves in Fig. 1(c), where the maximum
frequency is given by the Hawking-like temperature TI of
the inner horizon. The Sþ and S− modes have negative group
velocity, so they travel outward from the inner horizon
toward the outer horizon. These particles are analogous to
hypothetical superluminal trans-Planckian particles.
There are important similarities and differences between

Hawking radiation and WHR. They are both a thermal,
stationary population of pairs. Furthermore, in both cases,
the population Nk diverges like 1=ω in the 1-dimensional
system. However, for Hawking radiation, k goes to zero as
ω goes to zero, whereas for WHR, k remains finite as ω
goes to zero, as seen in Fig. 1(c). The density amplitude of
a quasiparticle is proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NkS0ðkÞ

p
[29], where

S0ðkÞ is the zero-temperature static structure factor, which
is proportional to k for small k. Thus, in the Hawking
radiation case, the density modulation remains finite for
small ω, whereas for WHR, S0ðkÞ remains finite, resulting
in a diverging density modulation. However, the divergence
occurs on a diverging timescale since ω vanishes. Thus, the
density signal of the WHR continually grows in time, as
seen in Ref. [28].
In black hole lasing, S− waves impinge on the outer

horizon, and stimulate additional Hawking/partner pairs.
The stimulated partners reflect from the inner horizon as
additional S− waves. The reflection can involve significant
amplification, depending on TI. Regardless, the resulting
S− waves travel outward and stimulate yet more partners.
The process repeats with a period τRT, which is the round-
trip propagation time between the horizons. The stimulated
Hawking radiation thus grows exponentially.
For each S− quasiparticle which impinges on the outer

horizon, jβHj2 Hawking/partner pairs are produced, where
the Bogoliubov coefficient introduced by Hawking [1] is
given by

jβHj2 ¼ 1=ðeℏω=kBTH − 1Þ ð1Þ

where ω is the frequency of the S− quasiparticle. The
number of particles thus increases by a factor jβHj2 þ 1

every τRT. There is a similar factor jβIj2 þ 1 as a result of

FIG. 1. Modes relevant for black hole lasing. (a) Spacetime
diagram of the analog black hole. The outer and inner horizons
are indicated by BH and IH, respectively. H, P, and C indicate the
Hawking, partner, and comoving particles, respectively. S− and
Sþ indicate negative and positive energy supersonic particles.
L indicates the length of the supersonic region. (b) The dispersion
relation outside the analog black hole. The green region indicates
Hawking modes H with energies less than the Hawking temper-
ature. (c) The dispersion relation inside the analog black hole.
The green region indicates partner modes P corresponding to
the green region of (b). The dashed magenta region indicates
Sþ particles of WHR with energies less than the Hawking-like
temperature of the inner horizon. The solid magenta region are
the corresponding S− particles. ωmax is the ultraviolet cutoff
frequency for Hawking radiation and lasing. The blue lines
indicate the discrete lasing modes. kz is the zero frequency mode.
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the amplification at the inner horizon. The exponential
growth rate for black hole lasing is thus

τL ¼ τRT
ln½ðjβHj2 þ 1ÞðjβIj2 þ 1Þ� ð2Þ

Black hole lasing can also be understood as a finite set of
discrete growing modes with complex frequency, as indi-
cated by the blue lines in Fig. 1(c) [7]. The spacing between
the modes is determined by the length L of the cavity via
the condition ΔkL ¼ 2πN, where N is an integer, and Δk
is the length of the blue line [8]. The lowest mode is set by
the minimum frequency −ωmax. A similar situation exists
for usual light lasers; the modes are discrete, but much
intuition can be gained by imagining photons traveling
back and forth between the mirrors. The two views are
equivalent, since we can express the wave packets in terms
of the discrete modes.
The reflection of the partners at the inner horizon, and

their conversion to S− particles, differentiates black hole
lasing from the BCL mechanism, in which the S− particles
are produced at the inner horizon by an instability [20].
Specifically, the inside region of the analog black hole is
unstable against the production of the zero frequency mode
labeled kz in Fig. 1(c). Furthermore, in realistic analog
black holes, the inner horizon retreats from the outer one,
as indicated by the tilted dashed line in Fig. 1(a). This
produces a Doppler shift of the kz mode, resulting in a
negative frequency S− mode in the reference frame of the
outer horizon.
In the numerical simulation, we combine the outer

horizon of Ref. [30] with the inner horizon of Ref. [28],
and employ the Truncated Wigner method. The method of
achieving the analog black hole is different from the
experiment, but it is useful since it is a stationary configu-
ration which suppresses the BCL emission from the inner
horizon [28]. The simulation begins with a uniform con-
densate flowing with constant velocity. The speed of sound
is rapidly decreased in a finite segment of the x, x0 axis by
decreasing the interaction between the atoms, which creates
the supersonic region between the horizons. At the same
time, a potential is applied between the horizons to
maintain stationarity.
Figure 2 shows the normally ordered density-density

correlation function from the simulation, which is
defined as

Gð2Þðx; x0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
noutnin

p
ξ

�hδnðxÞδnðx0Þi
hnðxÞihnðx0Þi −

δðx − x0Þ
hnðxÞi

�
ð3Þ

where nðxÞ is the one-dimensional density, δnðxÞ is its
fluctuation, and nout and nin are the background densities.
The healing length is given by ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ξoutξin
p

, where
ξi ¼ ℏ=mci, and m is the atomic mass. The position is
indicated in units of ξ, and time is in units of ℏ=mcoutcin.

The upper left quadrant of the panels of Fig. 2 shows the
correlations between inside andoutside the analog black hole,
since x0 > 0 is inside, and x < 0 is outside. Soon after the
creation of the horizons, correlations between the sponta-
neous Hawking/partner pairs (the Hawking radiation) are
seen in Fig. 2(a) as a gray band [30,31], which is highlighted
with a green line. At some point in time, the partners strike the
inner horizon of the analog black hole (IH in Figs. 1(a) and 2),
which initiates the growth of the black hole lasing mode, as
shown in the Appendix. The partners are reflected from the
inner horizon in the form of supersonic S particles, as seen in
Fig. 2(c), where the green Hawking/partner correlation
band reflects from IH in the form of Hawking/S correlations.
The latter correlations have a short wavelength in the vertical
direction, since the S mode has large wave number. By the
time of Fig. 2(d), the Hawking/partner band has become
much stronger than the spontaneous band seen in Fig. 2(a).
This stimulated Hawking radiation is black hole lasing.
In Fig. 2(d), the Hawking/partner band exhibits an

oscillatory profile, which rules out the possibility that
the dominant lasing mode is a zero frequency lasing mode,
which would not oscillate [9]. These modes have a slightly
shorter lasing time than the finite frequency modes.
As shown in the appendix, the lasing mode starts to grow

precisely when the partner quasiparticles impinge on the

FIG. 2. Numerical simulation of black hole lasing. The density-
density correlation functions at 14, 24, 40, and 46 time units are
shown. (a) The green line indicates the spontaneous Hawking/
partner correlations emitted from the outer horizon BH. The red
line indicates the Hawking/C correlations. The checkerboard
pattern at W is the white hole radiation spontaneously emitted by
the inner horizon IH. (b) The Hawking/partner correlations (green
line) are approaching IH. (c) The Hawking/partner correlations
(green line) reflect from IH and become Hawking/S correlations
with a short wavelength in the vertical direction. (d) The lasing
mode has grown significantly.

CONFIRMATION OF STIMULATED HAWKING RADIATION, BUT … PHYS. REV. D 106, 102007 (2022)

102007-3



inner horizon. It is thus reasonable to assume that the
partners which trigger the lasing mode have the same
frequency as the real part of the frequency of the lasing
mode. Furthermore, the partners should have an infrared
cutoff due to the finite length of the supersonic region.
Therefore, the lasing mode itself should have the same
cutoff. There may be other lasing modes with lower
frequency, but they would not be stimulated by the partners.
This infrared cutoff is in agreement with the lower right
quadrant of Fig. 2(d), in which the horizontal wavelength
of the lasing mode is approximately equal to the length
of the supersonic region. This is verified quantitatively in
the appendix.
We are now ready to write a strategy for determining

the growth rate of the lasing. It assumes knowledge of the
dispersion relations of the various modes. (1) Estimate
the frequency of the lasing mode as being equal to the
infrared cutoff, which is determined from the length of
the supersonic region. (2) Determine the Hawking tem-
perature from the observed spontaneous Hawking radi-
ation, via our Fourier transform technique [32]. (3) Based
on the physical system, estimate the relationship between
jβIj2 and jβHj2 in Eq. (2). For example, jβIj2 ≈ jβHj2 or
jβIj2 ≪ jβHj2. (4) Evaluate Eqs. (1) and (2) based on these
considerations.
Using this strategy, the predicted lasing times are longer

than the simulated lasing time by 30%–40%. One possible
reason for this discrepancy is the symmetric outer and inner
horizons. This is predicted to cause interference, which
gives shorter lasing times for certain cavity lengths, and
infinite lasing times for others [8]. The experiment does not
have symmetric horizons, so the estimate there should be
closer to the actual value. However, even the correct order
of magnitude is sufficient for our purposes.
Before applying the strategy to the experiment, we will

look for stimulated Hawking radiation in the experiment.
Figure 3 shows a more realistic numerical simulation of the
experiment, from Ref. [27]. The Hawking/partner correla-
tions due to the stimulated Hawking radiation are visible as
a gray band in the direction of the green line. This strong
gray band was first discovered in the experimental plots
of Ref. [27]. We can look for this band in the data from
Ref. [17], as seen in Fig. 4. The band is clear in columns
2–4 of the first two rows, in the direction of the green line. It
is even more apparent in the profile of the band shown in
the third row (black curve and points), which has a negative
peak in all columns. This confirms the observation of
stimulated Hawking radiation in Ref. [17].
We have the opportunity to verify the stimulated

Hawking radiation of Fig. 4 in a greatly improved exper-
imental apparatus. Figure 5 shows new data gathered 5
years later, using the experimental apparatus of Ref. [27].
The experimental parameters are the same as in Ref. [27],
with the exception of the step height, which is decreased by
a factor of approximately 0.6 in order to give similar

density profiles (row 4) to Fig. 4. One indeed sees a clear
Hawking/partner correlation band in all columns of Fig. 5.
With the smaller step height of Fig. 5, the correlation band

is less pronounced than in Ref. [27]. This trend is also seen
in Fig. 4, in which the correlation band becomes narrower
and clearer from left to right. This is because the S− waves
grow faster for a smaller potential step. At some point, the
amplitude is large enough that nonlinear or backreaction
effects modify the correlation function. Regardless of the
precise profile of the correlation band, the depth of the band
is more than an order of magnitude deeper than expected
for spontaneous Hawking radiation, which demonstrates that
the Hawking radiation is stimulated.
Figure 6 shows the growth of the correlation band from

Fig. 4. The exponential fits give time constants of 62, 17,
and 27 ms for the small, medium, and large potential steps,
respectively. We can compare these time constants to the
expectation for black hole lasing, computed by the method
found above for the simulation. We assume a Hawking
temperature of kBTH ¼ 0.35 nK as in Ref. [33]. This is an
optimistic estimate, since the step potential was sharper in
Ref. [33] than in Ref. [17]. From the length of the lasing
region and the propagation speed of the partners, the
infrared cutoff is 29, 31, and 23 Hz for the small, medium,
and large potential steps, respectively. To find the minimum
possible lasing time, we can assume that jβIj2 ¼ jβHj2,
although jβIj2 is likely smaller since the inner horizon is
gradual, whereas the outer horizon is imposed by a steep
potential step. Combining this with τRT ¼ 57, 55, and
78 ms from Ref. [17], this gives minimum lasing times of

FIG. 3. Numerical simulation of the experiment from Ref. [27].
The density-density correlation function is shown. The green line
is a guide to the eye.

JEFF STEINHAUER PHYS. REV. D 106, 102007 (2022)

102007-4



1.6, 2.0, and 0.8 s. These values are almost 2 orders of
magnitude longer than the experimental values given
above. Thus, one concludes that the stimulated Hawking
radiation is not black hole lasing. It is likely that the
stimulation is due to the BCL mechanism, as in Ref. [27].
There is an additional effect which can further lengthen

the lasing time. Simulations suggest that the inner horizon
should move away from the outer horizon with a velocity
vIH, as illustrated in Fig. 1(a) [20]. In black hole lasing, the
partners reflect from this moving horizon, which causes a
Doppler shift k0vIH in the frequency of the S particles,
where k0 is their large wave number. This increase in
frequency will decrease the rate of black hole lasing by
Eqs. (1) and (2). We can evaluate vIH in the experimental
data of Ref. [17]. Figure 7 shows the position of the inner
horizon as a function of time. The data shows a slight
positive slope. The linear fits give vIH ¼ 14ð8Þ, 18(17), and
18ð26Þ μms−1 for the small, medium, and large steps,
respectively. The wavelength of the density oscillations in

the fourth row of Fig. 4 yield k0 ¼ 1.7, 2.3, and 2.8 μm−1.
Thus, the Doppler shifts are k0vIH=2π ¼ 4ð2Þ, 7(6), and
8(12) Hz. These values provide a lower bound on ω=2π,
since they neglect the contribution of the Hawking temper-
ature. Taking ω=2π to be this lower bound gives lasing
times of 60, 110, and 180 ms. We see that this effect is less
significant than the infrared cutoff, but it still limits the
lasing time to a value longer than the observed growth time,
in most cases.
Previous numerical simulations [20,21] also found a lack

of black hole lasing in Ref. [17]. However, one of these
simulations [20] had a vIH which was 5 times faster than
in [17], which would greatly increase τL. The simulation in
Ref. [21] was likely improved in this respect, and it reached
the same findings.
The BCL mechanism is the alternative to black hole

lasing. Its growth rate is determined by the emission

FIG. 5. Stimulated Hawking radiation in the new experiment.
The description of the rows is the same as in Fig. 4. From left to
right, the 4 columns show relative step heights of 0.59, 0.59, 0.60,
and 0.65, respectively. The second column shows 66.5 ms later
than the first column.

FIG. 6. Growth of the experimental correlations. The growth of
the minimum in the third row of Fig. 4 is shown. The first and
second columns correspond to the first and second columns of
Fig. 4, respectively. The third column corresponds to the third and
fourth columns of Fig. 4.

FIG. 4. Hawking/partner correlations in the experiment of
Ref. [17]. The first through third columns show small, medium,
and large step heights, respectively. The fourth column shows the
large step 20 ms later. The first row shows the raw correlation
function. The second row is smoothed (convoluted with a
Gaussian) to improve the visibility of the Hawking/partner
correlation band. The green line indicates the angle of the
Hawking/partner correlation band, which is determined in the
inset of the third row. The third row (black curve) shows the profile
of the correlation band in the x00 direction, which is perpendicular
to the band. The profile is computed by integrating the second row
along parallel segments at the angle found in the inset. The gray
curves show earlier times separated by 20 ms, where the darker the
gray the later the time. The inset shows the angular profile of the
second row. The gray line indicates the minimum of the correlation
band, which gives the angle of the band. The fourth row shows the
ensemble-averaged density profile.
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rate of S− particles from the inner horizon. This rate
increases as the square of the background density in the
supersonic region [20]. The small potential steps consid-
ered in this work result in an increased background density,
so the BCL growth should be even faster than in Ref. [27].
In conclusion, stimulated Hawking radiation is confirmed

in the 2014 experiment, by direct observation of the
Hawking/partner pair correlations. The result is further
supported by new measurements. The observed pairs pro-
vide a sensitive test of the mechanism of stimulated Hawking
radiation. Through a numerical simulation of black hole
lasing, we see that the lasing is triggered by the partner
particles. These particles have an infrared cutoff due to the
finite distance between the outer and inner horizons. Thus,
the lasing mode likely has the same cutoff. Computing this
cutoff for the experiment, and the resulting Bogoliubov
coefficient, we find that the rate of black hole lasing would
be too small to explain the pair production in the experiment.
Even if the infrared cutoff is not relevant for the experiment,
the motion of the inner horizon would limit the lasing rate to
a value lower than the experimentally observed rate, in most
cases. These considerations suggest that the BCL mecha-
nism dominates, as found in a different experiment.
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APPENDIX: DETERMINING THE LASING
TIME CONSTANT

In this appendix, we will evaluate the expected black
hole lasing time constant for the simulation via Eqs. (1)

and (2). The actual simulated lasing time constant will also
be extracted.
We can quantitatively study the simulated correlation

patterns by means of our Fourier transform technique [32].
The two-dimensional Fourier transform of the upper left
quadrant of the correlation function gives us the correla-
tions between the Hawking and partner modes, by the
relation [32]

S0hb̂Hb̂Pi ¼
ξffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LoutLin
p

Z
dxdx0eikHxeikPx0Gð2Þðx; x0Þ ðA1Þ

where b̂H and b̂P are annihilation operators for Hawking
and partner particles, S0 is the geometric mean of S0ðkÞ
for the Hawking and partner particles, and LoutðinÞ is the
effective length of the region outside (inside) the analog
black hole. The ratio of Lout and Lin is given by the ratio of
the wave propagation speeds

Lout

Lin
¼ cout − vout

vin − cin
ðA2Þ

In other words, the Hawking/partner correlation band in the
correlation function should cross opposite corners of a
rectangle of dimension Lout × Lin, as illustrated by the
green rectangle in Fig. 8.
Figure 9(a) shows the correlation pattern at an early time

before the partners have struck the inner horizon. Thus, the
Hawking radiation and WHR are of the spontaneous type.
The Fourier transform within the green rectangle in the
upper left quadrant gives us the correlations between the
Hawking and partner quasiparticles as seen in Fig. 9(b),
where the vertical (horizontal) axis is inside (outside). The
green curve indicates the k-values for Hawking/partner

FIG. 7. Motion of the inner horizon in Ref. [17]. The position of
the inner horizon is shown for the small step (open circles),
medium step (filled circles), and large step (squares). The lines
are linear fits.

FIG. 8. The relevant regions for the Fourier transform. The
Hawking/partner correlation band crosses the corners of the green
rectangle. The vertical (horizontal) dimension of the green
rectangle is Lin (Lout). The blue rectangle corresponds to a large
k-value.
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pairs along the green curves of Figs. 1(b) and 1(c). Some
correlations are also visible along the cyan curve, which
are Hawking/C correlations. The upper right quadrant of
Fig. 9(a) shows correlations between pairs of points, both
of which are located inside the analog black hole. The
Fourier transform within the green square in this quadrant
gives the correlations of the Sþ=S− pairs of the spontaneous
WHR, as shown in Fig. 9(c).
By the time of the third row of Fig. 9, the stimulated

Hawking radiation (the black hole lasing) dominates over
the spontaneous contribution, as seen through the strong
Hawking/partner correlations in the upper left quadrant of
Fig. 9(g). The Fourier transforms seen in Figs. 9(h) and 9(i)
have become pointlike, since a single lasing mode domi-
nates, in contrast to the spontaneous thermal spectra of
Figs. 9(b) and 9(c).
We would like to compute the expected lasing time from

Eq. (2). In order to do this, we will need to know jβHj2.
By Eq. (1), this quantity is a function of TH, which can be
extracted from the simulation at early times for which the
Hawking radiation is still spontaneous.
For the sake of determining TH, the right side of Eq. (A1)

can be evaluated from the spontaneous correlation pattern,
while the left side can be expressed in terms of jβHj2.
Specifically,

S20 ¼
ðξoutkHÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ðξoutkHÞ2 þ ðξoutkHÞ4
p ðξinkPÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ðξinkPÞ2 þ ðξinkPÞ4
p

ðA3Þ

and

jhb̂Hb̂Pij2 ¼ jαHj2jβHj2 ðA4Þ

where jαHj2 is given by [34]

jαHj2 ¼ 1þ jβHj2 þ jγHj2 ðA5Þ

and αH and γH are the Bogoliubov coefficients for the
production of partner and C modes respectively, from
incoming S− particles. Figure 10 shows the correlation
pattern and its Fourier transforms during the spontaneous
period. The Hawking/partner correlations [the magnitude
squared of the right side of Eq. (A1)] along the green curve
of Fig. 10(b) are indicated by the black curve in Fig. 11,
where each point is a weighted average of nearby pixels in
Fig. 10(b). The gray curve in Fig. 11 shows a slightly earlier
time. Low k-values are not shown since they are affected
by the Hawking/C correlations along the cyan curve in
Fig. 10(b). These positive correlations are also seen as a
light gray region within the upper part of the green square
in Fig. 10(a). These Hawking/C correlations are much
stronger than those of the experiment due to the low
ultraviolet cutoff ωmax in the simulation.
Another effect of the low ultraviolet cutoff in the

simulation is that the Hawking temperature is close to
the cutoff. This implies that there is a significant population
of Hawking/partner pairs close to the cutoff. The partners
have vanishing group velocity near the cutoff, as seen in
Fig. 1(c). This must be accounted for in Eq. (A1), as
explained in Ref. [34], which states that the ratio Lout=Lin

FIG. 9. Fourier transform of the simulated correlation patterns.
The first column shows the density-density correlation function at
times of 12, 32, and 52. The second (third) column shows the
magnitude squared of the Fourier transform within the left (right)
green square of the first column. In the second column, the green,
cyan, and magenta curves indicate Hawking/partner pairs, Hawk-
ing/C pairs, and Hawking=S− pairs, respectively. The green circle
is the infrared cutoff. In the third column, the magenta curve
indicates the WHR correlations between the S−=Sþ pairs.

FIG. 10. Spontaneous Hawking radiation in the simulation. A
time of 10 is shown. (a) The density-density correlation function.
(b) The magnitude squared of the Fourier transform within the
green square of (a). The green, cyan, and magenta curves indicate
Hawking/partner pairs, Hawking/C pairs, and Hawking=S− pairs,
respectively. (c) The magnitude squared of the Fourier transform
within the green rectangle in (a). The green curve indicates the
partner/C correlations.

CONFIRMATION OF STIMULATED HAWKING RADIATION, BUT … PHYS. REV. D 106, 102007 (2022)

102007-7



should be given by the ratio of the group velocities rather
than by Eq. (A2), so the Fourier transform should be
computed in rectangles of various aspect ratios, depending
on k. However, this prescription is impractical for exper-
imental data, or even for simulations, because it requires
evaluating the Fourier transform in a rectangle with a
diverging aspect ratio. An extremely long rectangle would
have extremely large area, which would introduce diverg-
ing noise in the case of experimental data. It would also
require an extremely large measurement system.
We propose an alternative method to account for the

Lout=Lin ratio. The right side of Eq. (A1) should be
independent of Lout and Lin, as long as they have the
correct ratio. Thus, we understand that the area integral
should increase like a length. This suggests that the
integrand is a long narrow band of finite cross section,
as illustrated by the light gray band in Fig. 8. For this
k-value, we should compute the Fourier transform within
the blue rectangle. On the other hand, in Eqs. (A1)
and (A2), we use the green rectangle (the small-k rectangle)
for all k. However, we can see that the Fourier transform
of the light gray band is the same, regardless of whether it is
computed in the blue or green rectangle, since the light
gray band has approximately zero value outside the blue
rectangle. Thus, there is no need to adjust the region used
for the integral in Eq. (A1), for each k. One only needs to
adjust the value of Lin in the prefactor, in order to maintain
the correct Lout=Lin ratio for each k. This additional
prefactor would depend on knowledge of the dispersion
relation, so it seems more appropriate to put this factor on
the left theory side of the equation, and to leave the right
side as the measurement. Equation (A1) becomes

FvS0hb̂Hb̂Pi ¼
ξffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LoutLin
p

Z
dxdx0eikHxeikPx0Gð2Þðx; x0Þ

ðA6Þ

where

Fv ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ving
voutg

cout − vout
vin − cin

s
ðA7Þ

where vig is the group velocity in each region.
The dashed green curve of Fig. 11 indicates the magni-

tude squared of the left side of Eq. (A6), computed with
Eqs. (A3), (A4), (A5) (without the jγHj2 term for now),
and (A7), where kBTH has been adjusted to 0.45mcoutcin,
as discussed below. If the Fv factor is neglected, one
obtains the dash-dotted green curve, which is far from the
black and gray simulation curves. We thus see that the Fv
factor gives a good result in the presence of the low
ultraviolet cutoff. Furthermore, the factor seems reasonable
as explained above. However, a precise test of the method is
beyond the scope of this work. Such a test could be
performed on the precisely stationary analytical correlation
functions of Ref. [35].
Now we shall add the jγHj2 term. This quantity is similar

to jβHj2, but for the production of C particles rather than
Hawking particles. Figure 12 shows the profiles along
the green curve of Fig. 10(c) for two different times,
where each point is a weighted average of nearby pixels in
Fig. 10(c). Computing the ratio of these curves to the black
and gray curves of Fig. 11, and accounting for the Fv

factors, gives the ratio between the jγHj2 and jβHj2
coefficients. Including jγHj2 in Eq. (A5) results in the
dotted magenta curve of Fig. 11.

FIG. 11. The simulated correlation spectrum of spontaneous
Hawking radiation. The gray and black curves correspond to
times of 8 and 10, respectively. The solid region of the magenta
curve is fit to the gray and black curves, by adjusting the Hawking
temperature. The green curves neglect the effect of the C modes.
The dash-dotted green curve neglects the effect of the varying
group velocity.

FIG. 12. The simulated correlation spectrum of the partner and
C modes. The gray and black curves correspond to times of 8
and 10, respectively.
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We extract the Hawking temperature from Fig. 11 by
fitting the magenta curve to the black and gray curves in the
region indicated by the solid magenta curve. The fit gives a
Hawking temperature of kBTH ¼ 0.45mcoutcin. This value
is not far from the ultraviolet cutoff 0.72mcoutcin; it is only
smaller by a factor of 0.6. In contrast, in the experiment of
Ref. [33], the Hawking temperature is smaller than the
ultraviolet cutoff by a factor of 0.1, so the cutoff plays a
negligible role. We can understand this difference between
the simulation and the experiment by considering the flow
velocity, since the cutoff is on the order of mv2in=2. In the
experiment, vin > cout, so there is a large cutoff. In contrast,
the simulation has the same flow velocity on both sides of
the horizon (vout ¼ vin). The flow outside is necessarily
subsonic, so vin < cout. Thus, the simulation inherently has
a low ultraviolet cutoff. For the simulation discussed
here, vin ¼ 0.6cout.
In addition to the Hawking temperature, we need the

frequency of the lasing mode in order to evaluate jβHj2. We
can see the lasing mode along the green curve in Fig. 9(h).
Through the dispersion relation, we can see that the
frequency of this point is 0.25mcoutcin=ℏ. Equation (1)
then gives jβHj2 ¼ 1.30. To evaluate Eq. (2), we will need
jβIj2. Since the outer and inner horizons are symmetric, we
assume that jβIj2 ¼ jβHj2. In this case, the predicted lasing
time from Eq. (2) is 30 time units. We can make a similar
prediction without directly using the frequency of the lasing
mode, by noting that it is close to the infrared cutoff (the
green circle) in Fig. 9(h). This is reasonable since the
dominant lasing mode is the one with the shortest τL, which
implies lowest frequency. As stated in the main text, we can
also see that the dominant lasing mode is close to the
infrared cutoff by inspecting Fig. 9(g), since the horizontal
wavelength in the lower right quadrant is close to the entire
length of the lasing region. The infrared cutoff frequency is
given by 0.21mcoutcin=ℏ. Taking this as the frequency
of the lasing mode gives a predicted lasing time of
27 time units.
In order to plot the simulated growth of the lasing

mode, we focus on two quantities. First, the magnitude
of the Hawking/partner correlations from Fig. 10(b)
are indicated by the blue curve of Fig. 13. Second, the
upper point along the magenta curve in Fig. 9(h) is the

Hawking=S− correlations of the lasing mode. Its magnitude
is indicated by the black curve of Fig. 13. Since Fig. 13
shows the growth of the single lasing mode, maximum
pixel values are shown. At early times, the Hawking
radiation is spontaneous, and the blue curve is almost
constant. The partner particles strike the inner horizon at
the time τP, which triggers the lasing, and the blue curve
starts to increase. The dashed blue line is a linear fit for
times after τP, and its slope gives the lasing time.
The emission from the two horizons is uncorrelated for

the earliest times, as reflected in the low value of the black
curve of Fig. 13. The spontaneously emitted C modes
are the first to traverse the distance between the horizons.
They reach the inner horizon at the time τC, which causes
correlations between the horizons, and the black curve
begins to increase. It joins the blue curve when the lasing
begins. The average slope of the two linear fits of Fig. 13
give a lasing time of 21 time units (the quantity plotted
grows like 2τ−1L ).
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[25] L.-P. Euvé, F. Michel, R. Parentani, T. G. Philbin, and G.
Rousseaux, Observation of Noise Correlated by the
Hawking Effect in a Water Tank, Phys. Rev. Lett. 117,
121301 (2016).

[26] J. Drori, Y. Rosenberg, D. Bermudez, Y. Silberberg, and U.
Leonhardt, Observation of Stimulated Hawking Radiation in
an Optical Analogue, Phys. Rev. Lett. 122, 010404 (2019).

[27] V. I. Kolobov, K. Golubkov, J. R. M. de Nova, and J.
Steinhauer, Observation of stationary spontaneous Hawking
radiation and the time evolution of an analogue black hole,
Nat. Phys. 17, 362 (2021).

[28] C. Mayoral, A. Recati, A. Fabbri, R. Parentani, R. Balbinot,
and I. Carusotto, Acoustic white holes in flowing atomic
Bose-Einstein condensates, New J. Phys. 13, 025007 (2011).

[29] I. Shammass, S. Rinott, A. Berkovitz, R. Schley, and J.
Steinhauer, Phonon Dispersion Relation of an Atomic
Bose-Einstein Condensate, Phys. Rev. Lett. 109, 195301
(2012).

[30] I. Carusotto, S. Fagnocchi, A. Recati, R. Balbinot, and A.
Fabbri, Numerical observation of Hawking radiation from
acoustic black holes in atomic Bose-Einstein condensates,
New J. Phys. 10, 103001 (2008).

[31] R. Balbinot, A. Fabbri, S. Fagnocchi, A. Recati, and I.
Carusotto, Nonlocal density correlations as a signature of
Hawking radiation from acoustic black holes, Phys. Rev. A
78, 021603(R) (2008).

[32] J. Steinhauer, Measuring the entanglement of analogue
hawking radiation by the density-density correlation func-
tion, Phys. Rev. D 92, 024043 (2015).

[33] J. R. M. de Nova, K. Golubkov, V. I. Kolobov, and J.
Steinhauer, Observation of thermal Hawking radiation
and its temperature in an analogue black hole, Nature
(London) 569, 688 (2019).

[34] M. Isoard and N. Pavloff, Departing from Thermality of
Analogue Hawking Radiation in a Bose-Einstein Conden-
sate, Phys. Rev. Lett. 124, 060401 (2020).

[35] P.-E. Larre, A. Recati, I. Carusotto, and N. Pavloff, Quantum
fluctuations around black hole horizons in Bose-Einstein
condensates, Phys. Rev. A 85, 013621 (2012).

JEFF STEINHAUER PHYS. REV. D 106, 102007 (2022)

102007-10

https://doi.org/10.1007/3-540-70859-6
https://doi.org/10.1007/3-540-70859-6
https://doi.org/10.1103/PhysRevD.81.084042
https://doi.org/10.1088/1367-2630/12/9/095015
https://doi.org/10.1103/PhysRevD.88.125012
https://doi.org/10.1103/PhysRevD.88.125012
https://doi.org/10.1088/1367-2630/abdce2
https://doi.org/10.1088/1367-2630/abdce2
https://doi.org/10.1016/j.aop.2017.03.005
https://doi.org/10.1002/andp.202000239
https://doi.org/10.1002/andp.202000239
https://doi.org/10.1103/PhysRevLett.85.4643
https://doi.org/10.1088/0264-9381/18/6/312
https://doi.org/10.1088/0264-9381/18/6/312
https://doi.org/10.1103/PhysRevA.80.043601
https://doi.org/10.1103/PhysRevA.94.043616
https://doi.org/10.1038/nphys3104
https://doi.org/10.1038/nphys3104
https://doi.org/10.1103/PhysRevA.95.033604
https://doi.org/10.1103/PhysRevA.95.033604
https://doi.org/10.1209/0295-5075/114/60011
https://doi.org/10.1103/PhysRevA.96.023616
https://doi.org/10.21468/SciPostPhys.3.3.022
https://doi.org/10.1209/0295-5075/133/20002
https://doi.org/10.1103/PhysRevLett.106.021302
https://doi.org/10.1103/PhysRevLett.106.021302
https://doi.org/10.1088/1367-2630/10/5/053015
https://doi.org/10.1103/PhysRevLett.117.121301
https://doi.org/10.1103/PhysRevLett.117.121301
https://doi.org/10.1103/PhysRevLett.122.010404
https://doi.org/10.1038/s41567-020-01076-0
https://doi.org/10.1088/1367-2630/13/2/025007
https://doi.org/10.1103/PhysRevLett.109.195301
https://doi.org/10.1103/PhysRevLett.109.195301
https://doi.org/10.1088/1367-2630/10/10/103001
https://doi.org/10.1103/PhysRevA.78.021603
https://doi.org/10.1103/PhysRevA.78.021603
https://doi.org/10.1103/PhysRevD.92.024043
https://doi.org/10.1038/s41586-019-1241-0
https://doi.org/10.1038/s41586-019-1241-0
https://doi.org/10.1103/PhysRevLett.124.060401
https://doi.org/10.1103/PhysRevA.85.013621

