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The Taiji project is a space gravitational-wave detection mission consisting of three satellites that form a
giant equilateral triangle with a side length of approximately 3 × 106 km in the heliocentric orbit. The
target of the mission is to detect gravitational-wave signals in the 0.1 mHz to 1 Hz band. However, its
intersatellite distances are affected by celestial bodies in the solar system, introducing changes that may
reach levels of 30,000 km in magnitude. Thus, it is important to investigate whether the gravitational fields
of celestial bodies in the detection frequency band will have an impact on the realization of ultrahigh-
sensitivity intersatellite ranging measurements. In this study, a high-precision orbit propagator with an
accuracy of 0.03 pm on the 1 AU scale is developed. Based on this orbit propagator, the impact of the major
large celestial bodies in the solar system on the detection sensitivity in the intersatellite measurements are
analyzed. Detailed numerical studies show that the linear spectral density of the range and range

acceleration are approximately 1 × 10−13 m=
ffiffiffiffiffiffi
Hz

p
and 5 × 10−23 m=s2=

ffiffiffiffiffiffi
Hz

p
, respectively, at 0.1 mHz,

indicating that the gravitational disturbance generated by the major celestial bodies in the solar system will
not affect the aim of the Taiji mission to detect gravitational waves in the frequency band 0.1 mHz to 1 Hz.

DOI: 10.1103/PhysRevD.106.102005

I. INTRODUCTION

Taiji is a space gravitational-wave antenna proposed by
the Chinese Academy of Sciences to detect gravitational
waves in the frequency band 0.1 mHz to 1 Hz [1]. The
antenna consists of three satellites configured in a giant
equilateral triangle satellite formation with a side length of
approximately 3 × 106 km. The satellites move in a helio-
centric orbit, i.e., centered on the Sun, whereas the mass
center of the satellite formation moves in a circular orbit
around the Sun, which falls on the Earth orbit and trails
Earth for 20° or −20° [2]. Each satellite, which contains
two laser-interferometric ranging systems and two drag-
free control systems, interferes with the other two to form
three Michelson-type interferometers. To detect weak
gravitational-wave (GW) signals, the drag-free control
systems provide an ultra-stable satellite platform and
a sub-femto-g inertial reference for the laser ranging
interferometers. The laser interferometers need to reach

picometer precision to detect weak GW signals.
According to the baseline design of the Taiji mission
[3], the range measurement accuracy of the laser system
is approximately 8 × 10−12 m=

ffiffiffiffiffiffi
Hz

p
around 0.01 Hz,

whereas the residual acceleration noise along the sensitive
axis is approximately 3 × 10−15 m=s2=

ffiffiffiffiffiffi
Hz

p
in the vicinity

of 0.01 Hz.
Based on the ultrahigh laser ranging accuracy and ultra-

low microgravity level requirements of Taiji, several sources
of disturbances should be considered in the mission design.
Among these sources of disturbances, the space environ-
ment is one of the most important. Space environment may
be divided into two types: one is the gravitational environ-
ment of celestial bodies in the solar system, and the other is
the space environment excluding celestial gravity, which
includes solar radiation pressure, interplanetary magnetic
field, and plasma, among others. With regard to the second
type of space environment, its influence on space gravita-
tional-wave detection may be suppressed based on a
combination of strategies for isolation, sensing, and control
to keep a pair of PMs in each of the three spacecrafts close to
a free-fall (inertial) condition as possible ([4,5,6]).
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The influence of celestial bodies concerns two aspects of
the mission. First, the influence of celestial bodies deter-
mines the orbit and stability of the satellite formation,
which further determine the technical requirements of the
core payloads. For example, the relative velocity between
two satellites is critical to the design of the dynamic range
of the phase meter [7] and the laser frequency plan [8,9],
whereas the breathing angle between two arms determines
the dynamic range requirement of the pointing adjustment
mechanism [10]. Second, because the disturbance reduce
system cannot reduce the gravitational force generated by
the gravitational fields of celestial bodies [11], then, in
theory, we cannot distinguish whether changes in the
distance (or the arm length) between two satellites are
caused by the gravitational fields of celestial bodies or by
gravitational waves.
For the Taiji mission, changes in the arm length due to the

gravitational fields of celestial bodies can be approximately
1% of the initial arm length, or approximately 30,000 km,
which far exceeds the gravitational wave observation signal
in magnitude. Therefore, it is necessary to study whether
variations in the distance between two satellites caused by
celestial gravity exceed the gravitational wave observation
signal in the detection frequency band.
Because the orbit of Taiji is similar to that of the first

proposed space-borne gravitational wave detection mis-
sion LISA (Laser Interferometer Space Antenna) [6], we
may borrow from the results of past studies that analyzed
the influence of celestial bodies on the detection of
gravitational waves in the heliocentric orbit. For the
LISA mission, scientists analytically studied the influences
of the Earth–Moon system and of other celestial bodies.
The main effect on the distance variation caused by the
Earth–Moon system is in a very low-frequency range, from
3 × 10−8 Hz to about 2 × 10−6 Hz, and it is estimated that,
in the detection band, the influence is less than that caused
by the laser ranging noise. Other planets have even less
influence [12]. However, the aforementioned results were
obtained via semi-analytical analysis. Because the gravi-
tational effects of celestial bodies are coupled with each
other, it will be useful to estimate the influence of these
celestial bodies through numerical simulation.
To analyze the influence of celestial bodies on the Taiji

mission, we will need to solve two difficult problems. The
first problem is that the spatial scale in the orbit simulation
of Taiji is at least 24 orders in magnitude. Thus, a high-
precision numerical simulation spanning 0.1 pm to 1 AU is
required. Currently, for a number of space missions, such as
the Grace Follow-On [13] and Tianqin [14] missions, high-
precision numerical computing methods have already been
developed. However, the spans of their spatial scales are not
as wide as that of Taiji (or of LISA), and thus their orbit
calculations do not consider ranges as wide as that of the
Taiji mission. Thus, we need to develop a high-precision
orbit propagator with an accuracy of approximately 0.1 pm

in the 1 AU scale. In this respect, we will learn from the
process of developing the high-precision orbit integrator for
the Grace Follow-On mission. In this study, we will develop
a high-precision orbit propagator based on the high-
precision calculation library Multiple Precision Floating-
Point Reliable (MPFR) [15] Library and the ordinary
differential equation solver DOP853 [16]. With this orbit
propagator, and using 34 significant digits, we may realize
an orbit calculation with a high precision of approximately
0.03 pm in the 1 AU scale over a duration of six years using
the two-body problem as the verification model.
The second problem is that when we analyze the

gravitational effects of celestial bodies in the frequency
domain, the frequency band ranges from the orbit frequency,
which is approximately 3 × 10−8 Hz, to the detection
frequency of Taiji, which ranges from 0.1 mHz to 1 Hz.
The range of the amplitude of the spectrum is from the
subpicometers to several tens of thousands of kilometers.
Thus, a very high frequency resolution with a wide dynamic
range of amplitude is needed in the spectral analysis.
However, the orbital period of the Taiji mission is approx-
imately 1 year, and its mission duration of 6 years is
equivalent to only approximately six periods. This limited
number of periods will have a significant influence on the
selection of window functions for the spectral analysis. In
our study, we will search for suitable window functions,
which will be verified based on the analysis of the two-body
problem. Then, using the selected window functions, we
will estimate the upper bound of the influences of the central
gravity of the Sun, the major celestial bodies in the solar
system, and the 344 small celestial bodies outlined in the Jet
Propulsion Laboratory (JPL) calendar DE430 [17] on the
range and range acceleration among the satellites in the
detection band.
Because LISA has the same orbital position as that of the

Taiji program and has a slightly shorter arm length of
approximately 2.5 million kilometers, the analysis results
of this study are also applicable to LISA.
The outline of this paper is as follows. Section II

describes the requirements relevant to the detection accu-
racy of Taiji. Section III introduces the high-precision
satellite orbit propagator, for which the two-body problem
is used to verify correctness and accuracy. Section IV
introduces the force model and initial orbit parameters of
the Taiji mission, and presents the results of a spectral
analysis of the range and range acceleration caused by
celestial bodies. Lastly, the final section of this paper
presents the conclusions of the study.

II. ACCURACY REQUIREMENTS

The requirements for the accuracy of numerical simu-
lation of the orbits of Taiji may be derived from the baseline
design of the Taiji mission, which is shown in Table I [2]. To
estimate the influence of the gravitational fields of celestial
bodies, the accuracy of numerical simulation should be at

XIAOQING HAN et al. PHYS. REV. D 106, 102005 (2022)

102005-2



least one order of magnitude higher than the requirements
shown in Table I.
The intersatellite observations concerned include the arm

length (range), range rate, and range acceleration. They
require different numbers of significant digits in the
numerical calculation because of their different dynamic
ranges in magnitude. The range between two satellites is
defined by

L12 ¼ jr⃗2 − r⃗1j; ð1Þ

where r⃗1 and r⃗2 are the position vectors of satellite 1 and
satellite 2 in the inertial reference system, respectively,
relative to the center of the Sun. In our study, we will use
the heliocentric ecliptic coordinate system of J2000.0
(denoted by HECSJ2000) as the inertial reference system.
The positions of the satellites are approximately 1 AU, or
≈1.496 × 1011 m, in magnitude, whereas the variation in
the arm length needs to be measured in the order of several
picometers. Therefore, the numerical representation of the
arm length observation requires at least 23 significant
digits, which is far beyond the current range of double-
precision values, or 16 significant digits. The range rate
may be obtained from the derivative of the range as

_L12 ¼
r⃗2 − r⃗1
L12

· ð_r⃗2 − _r⃗1Þ ¼ e⃗12 · ð_r⃗2 − _r⃗1Þ; ð2Þ

where e⃗12 ¼ ðr⃗2 − r⃗1Þ=L12 is the unit direction vector from
satellite 1 to satellite 2. The speeds of the satellites in Taiji
are approximately 3 × 104 m=s in magnitude. The require-
ment for the range rate may be obtained from that for
range, such as 2πfL̃ðfÞ (where L̃ðfÞ is the ranging
accuracy, as shown in Table I), which is approximately
6.28 × 10−14 m=s=

ffiffiffiffiffiffi
Hz

p
(based on 2πf × 10−12 m=

ffiffiffiffiffiffi
Hz

p
at

f ¼ 0.01 Hz). Thus, the numerical representation of _L12

requires at least 18 significant digits. Finally, that for the
range acceleration can be obtained from the derivative of
the range rate as

L̈12 ¼
r⃗2 − r⃗1
L12

· ð̈r⃗2 − ̈r⃗1Þ þ
1

L12

· ðj_r⃗2 − _r⃗1j2 − _L2
12Þ

¼ e⃗12 · ð̈r⃗2 − ̈r⃗1Þ þ
1

L12

· ðj_r⃗2 − _r⃗1j2 − _L2
12Þ: ð3Þ

The range acceleration of the Taiji satellite due to the
gravitational fields of celestial bodies is in the order of
1 × 10−6 m=s2, whereas the required limit for the residual

acceleration noise is 3 × 10−15 m=s2=
ffiffiffiffiffiffi
Hz

p
. Thus, the

numerical representation of L̈12 requires at least 9 signifi-
cant digits.
The dynamic ranges of these three intersatellite obser-

vations are summarized in Table II. Based on all of these
findings thus far, at least 23 significant digits are required to
precisely represent the intersatellite observations of Taiji.

III. HIGH-PRECISION ORBIT PROPAGATOR

To evaluate the effect of celestial gravitational fields
on intersatellite range and range acceleration, we need
high-precision models of the gravitational fields and high-
precision numerical simulations of the satellite orbits. In
this section, we will introduce the high-precision orbit
propagator that we use in this study.
In the simulation, the error of the numerical integration of

the orbit needs to be maintained at least one order of
magnitude smaller than the required limits outlined in
Table I, to safely avoid contamination [18]. In our study,
the required accuracies for the position and acceleration
implemented in our numerical simulation are approximately
0.1 pm and 1 × 10−16 m=s2, respectively. Meanwhile, the
effect of accumulating errors should also be considered in
this simulation, and thus, 1–3 additional significant digits
are required to cover the dynamic range shown in Table I.
Furthermore, considering the general high-precision
requirements of future deep space exploration missions,
we develop a high-precision orbit propagator that can
implement an arbitrary number of significant digits for
floating-point arithmetic (limited only by the available
memory).

A. High-precision orbit propagator with arbitrary
number of significant digits

MPFR is an open-source library that can be used to
perform floating-point operations with arbitrary numbers of
significant digits (limited only by the available memory). It
provides the fundamental mathematical functions sin, sqrt,
pow, log, etc. The framework of a high-precision orbit
propagator with arbitrary number of significant digits is

TABLE I. Taiji mission requirements [2].

Mission Frequency band Ranging accuracy Acceleration noise Orbit radius

Taiji 0.1 mHz–1 Hz 8 pm=Hz1=2 3 × 10−15 ms−2=Hz1=2 ≈1 AU

TABLE II. Dynamic range of intersatellite observations.

Inter-satellite observations Dynamic range

Range 10−12–1011

Range rate 10−14–104

Range acceleration 10−15–10−6
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shown in Fig. 1. First, based on the MPFR, we develop a
matrix operation and an ordinary differential equation
solver. Afterward, we develop a space–time reference
system and a force model of the gravitational fields.
Finally, we derive the numerical calculation of the orbit
and perform the relevant spectral analysis.
The ordinary differential equation solver that we use in

this study is the famous 8th-order variable-step Runge–
Kutta integrator DOP853. For the number of significant
digits, it will be a trade-off between resource management
and time performance. Based on the findings of past
research on using quadruple-precision [14,19,20], we use
34 significant digits in calculating the orbit.

B. Accuracy evaluation

It is well known that the accuracy of an orbit integrator
may be evaluated based on comparisons of the numerical
calculation of the orbit with its analytical solution, using the
two-body problem [19]. The state of a satellite can be
represented using Kepler orbit elements [21], namely,
semimajor axis (a), eccentricity (e), orbit inclination (i),
right ascension of ascending node (Ω), argument of perigee
(ω), and mean anomaly (M). The position of a satellite in
HECSJ2000 is given by [22]

R⃗ ¼ R3ð−ΩÞR1ð−iÞR3ð−ωÞ

2
64

aðcosE − eÞ
a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sinE

0

3
75; ð4Þ

where the functions R1ð� � �Þ and R3ð� � �Þ are the Euler
rotation matrices around the x and z axes, respectively,

whereas E is the eccentric anomaly, which can be calcu-
lated using the Kepler equation [22]

E − e sinE ¼ M: ð5Þ

The mean anomaly at the epoch t can be solved using the
following formula:

M ¼ M0 þ nðt − t0Þ; ð6Þ

where n ¼
ffiffiffiffiffiffiffiffiffiffi
μ=a3

p
is the angular velocity of the orbit, μ is

the gravitational parameter of the central body, t0 is the
initial time, andM0 is the mean anomaly at the initial time.
The velocity vector V⃗ of the satellite is given by the
following formula [22]:

V⃗ ¼ na
1 − e cosE

R3ð−ΩÞR1ð−iÞR3ð−ωÞ

2
64

− sinEffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
cosE

0

3
75:
ð7Þ

In our study, we use the ideal “Sun–Earth” two-body
problem to verify our integrator. The reason for this
selection is that the distance between Earth and the Sun
is approximately 1 AU, and thus it has the same spatial
scale as that of Taiji. The equation of motion of the two-
body problem is

̈r⃗ ¼ −
μS
jr⃗j3 · r⃗; ð8Þ

where r⃗ is the position of Earth, and μS ¼ GMS is the
gravitational parameter of the Sun. We also select midnight
on January 1, 2030, as the initial moment. To summarize,
the initial orbit elements are outlined in Table III.
The numerical solution is obtained via numerical

integration with the 8th-order variable-step DOP853 inte-
grator, and the analytical solution is obtained according to
Eqs. (4) and (7). When the integral orbit is subtracted from
the analytic orbit, the difference can be used to evaluate the
accuracy level of the numerical integration, which is
expressed in HECSJ2000.

FIG. 1. Framework of orbit propagator.

TABLE III. Initial Kepler orbit elements of Earth in
2030.01.01.

Orbit elements Initial value

a (m) 1.495978852117977450000000000000000 × 1011

e 1.669880800000000000000000000000000 × 10−2

i (rad) −6.739879794784769382886985850980193 × 10−2

Ω (rad) 6.060138148349757504428920819197350
ω (rad) 2.021557407619410035649390804621808
M (rad) 6.234822626305905303072886103194597
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The error tolerance, which is determined empirically
after several trials, is set to 1 × 10−26. The integration
period is six years, spanning January 1, 2030, to January
1, 2036, which is consistent with the expected mission
duration of Taiji. Moreover, the selection of different
time periods has no subversive impact on the accuracy
evaluation of the results. The sampling interval is set to
one day.
Figure 2 shows the differences in the three components

of the position vector obtained from the numerical inte-
gration and the analytical solution. From these results, it
can be clearly observed that when the error tolerance of the
DOP853 solver is set to 1 × 10−26, the maximum position
error within six years is within 3 × 10−14 m, or 0.03 pm,
which fulfills the expected accuracy. Figure 3 shows the
difference between the numerical integration and analytical
solution of the three components of the velocity. The
maximum difference is within 5 × 10−21 m=s, which also
fulfills the requirement.
To sum up, it can be inferred that when the error

tolerance is set to 1 × 10−26, the maximum position error
and maximum velocity error obtained using the 8th-order
variable-step DOP853 algorithm for a mission duration of
six years satisfy the requirements. Thus, the integrator
based on 34 significant digits is sufficient for accurately
simulating the Taiji intersatellite observations. In the
subsequent parts of the study, we will use this integrator
with an error tolerance of 1 × 10−26 to calculate the orbits
of the Taiji satellites, and then perform a reliable spectral
analysis of the Taiji range and range acceleration while
accounting for the effects of the gravitational fields of
celestial bodies.

IV. NUMERICAL SIMULATION OF TAIJI’S ORBIT
AND ITS SPECTRUM ESTIMATION

A. Force model and orbital parameter settings

Because our goal is to evaluate the influence of the
gravitational fields of celestial bodies on the range and
range acceleration, we consider only the Newtonian
gravitational forces of the Sun and of the ten other major
bodies in the solar system-Mercury, Venus, Earth, Mars,
Jupiter, Saturn, Uranus, Neptune, Pluto and Moon. The
equation of motion of the satellites may be written in
HECSJ2000 as

̈r⃗j ¼ −μS
r⃗j
r3j

−
X
p

μp

�
r⃗j − R⃗p

jr⃗j − R⃗pj3
þ R⃗p

R⃗3
p

�
; ð9Þ

where μS and μp represent the gravitational parameters of

the Sun and planets, respectively; and r⃗j and R⃗p represent
the positions of the jth satellite and planet, respectively.
The positions of the planets are provided by the JPL
planetary ephemeris DE430 in our work. The initial
conditions of the orbit, which are obtained from the
Ref. [23], are shown in Table IV.

B. Effect of the Sun

Because the gravitational field of the Sun is the most
significantly influential among all the celestial bodies in
the solar system, we first use the analytical solution
Eqs. (4) and (7) of the two-body problem to calculate
the states of the three satellites when only the central
gravitational field of the Sun is considered, after which we
perform a spectral analysis of the intersatellite range and
range accelerations. In this case, the orbital period of the

0 1 2 3 4 5 6

time, year,1.Jan.2030+

-3

-2

-1

0

1

2

3

th
e 

di
ffe

re
nc

e 
of

 r
 [m

]

10-14

x1
x2
x3

FIG. 2. Differences in three components of position between
numerical integration and analytical solution.
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FIG. 3. Differences in three components of velocity between
numerical integration and analytical solution.
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satellite can be calculated to be approximately
T ¼ 365.2568983 days, and the orbital frequency to be
approximately f0 ¼ 3.1687489 × 10−8 Hz.
The linear spectrum of a signal fxkg may be obtained

from its discrete Fourier transform (DFT). Using the
window function fwkg, the DFT of fwkxkg is defined by
[24]

ym ¼
XN−1

k¼0

wkxk exp

�
−i2π

mk
N

�
; m¼ 0;…;N − 1: ð10Þ

Then the linear spectrum of fxkg is estimated to be [24]

LSðfm ¼ m · fresÞ ¼
2

S1
jymj; m ¼ 0;…;

N
2
; ð11Þ

where fres ¼ fs=N is the frequency resolution, fs is the
sampling frequency and S1 is defined to be

S1 ¼
XN−1

j¼0

wj: ð12Þ

The linear spectral density of fxkg is estimated to be [24]

LSDðfm ¼m · fresÞ ¼ 2

ffiffiffiffiffiffiffiffiffi
1

fsS2

s
jymj; m¼ 0;…;

N
2
; ð13Þ

where S2 is defined to be

S2 ¼
XN−1

j¼0

w2
j : ð14Þ

1. How to choose the window functions

In this section, we explain how the window function is
chosen. When only the central gravitational field of the Sun
is considered, the intersatellite ranges are periodic with the

orbital period when the three spacecrafts have the same
semimajor axes. The choice of window function depends
on whether the duration of the sampling is an integer
multiple of the orbital period.
Here, we will consider two situations, the first one is a

coherent sampling whose duration of the sampling is
greater than that of the orbital period by a factor of six.
The second one is a noncoherent sampling whose duration
of sampling is not an integer multiple of the orbital period.
In the first situation, the duration of the sampling is six

periods, namely, 6T. The sampling interval Δt is set to
approximately 49.9999937 s such that the duration of the
sampling NΔt, with N ¼ 3786984, yields exactly 6 orbital
periods of data to analyze. The orbit is solved based on 34
significant digits. Given the orbit, the range and range
acceleration are calculated. Without loss of generality, we
analyze only the range LSun

12 and range acceleration L̈Sun
12

between satellites 1 and 2, which are shown in Figs. 4 and 5,
respectively. From these two figures, it is clear that the

TABLE IV. Initial Kepler orbit elements of three satellites in 2030.01.01.

Orbit elements SC1 SC2 SC3

a (m)
1.4959634565681490386 1.4959655899222014199 1.4959697193924532455
58328221198078 × 1011 90617423675783 × 1011 97536941283611 × 1011

e
5.7765668488692236856 5.7787542595113695371 5.7800535062226950242
47181406043320 × 10−3 10531279492637 × 10−3 26810413151545 × 10−3

i (rad)
4.1885699049577268650 4.0563848156460195492 4.0266269238196154535
87121482595773 × 10−1 88806113694051 × 10−1 13913766115822 × 10−1

Ω (rad)
6.2789100176769823 2.3694187073916838473 6.2634647123248397
75829771717787871 22118615655240 × 10−2 47701881516419234

ω (rad)
4.5455776282658893 3.3140211927096511153 2.4647099564304789
41560697014080119 63630142379896 × 10−1 72887554769833421

M (rad)
3.1415926535897932 1.0469124253667905 5.2366647183200991
38462643383279503 41597336550216426 85998260190091934
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FIG. 4. Simulated time series of LSun
12 .
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maximum of the range is approximately 3 × 109 m in
magnitude and the maximum of the range acceleration is
approximately 6 × 10−7 m=s2 in magnitude.
To estimate the spectrum of the intersatellite observations,

we use the mp.fft function in the Matlab Multiprecision
Computing Toolbox [25] developed by ADVANPIX. By
using the rectangular window, according to Eq. (11), the
linear spectrum of the range LSun

12 is estimated, as shown in
Fig. 6. From Fig. 6, it can be seen that all the amplitudes
above 8.8 × 10−23 m associated with the integer multiples of
the orbital frequency may be estimated.
The capability of estimating the amplitudes in the range

8.8 × 10−23 m to 8.1 × 106 m is verified below. It is well
known that when the eccentricity e of the orbit is smaller
than the Laplace limit (which is about 0.6627), the

position of the satellite may be expressed as a power
series of e. Here, we consider the X-component of the
orbit as an example. This term can be expressed in a series
of the form [26]

X¼Xc0ða;i;e;Ω;w;M0Þþ
X∞
k¼1

½Xckða;i;e;Ω;w;M0Þcosknt

þXskða;i;e;Ω;w;M0Þsinknt�; ð15Þ

where n is the orbital angular frequency, Xckða; i; e;Ω;
w;M0Þ and Xskða; i; e;Ω; w;M0Þ are respectively the coef-
ficients of cosðkntÞ and sinðkntÞ. The linear spectrum at the
kth multiples of the orbital frequency is in theory given by

LSXðfk ¼ kf0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
ck þ X2

sk

q
; k ¼ 1; 2;…: ð16Þ

Without loss of generality, we consider only the
X-component of the position of satellite 1. The linear
spectrum is estimated, as shown in Fig. 7. The theoretical
value of the linear spectrum is also shown in Fig. 7. In
Fig. 7, we present all the terms of the series that k ≤ 16 in
Eq. (16). The difference in the theoretical and estimated
values of the linear spectrum is calculated and shown in
Fig. 8. To clearly understand the difference, we also list the
differences in Table V. From Table V, it can be seen that the
maximum difference is approximately 7.5 × 10−24 m.
Thus, it can be inferred that if the sampling is coherent,
we may accurately estimate the amplitudes in the range
6.6 × 10−23–1.49 × 1011 m in magnitude. Therefore, it can
be inferred that the linear spectrum estimation of the
simulated intersatellite range signal is highly reliable.
The linear spectrum of the range acceleration L̈Sun

12 is
also estimated according to Eq. (11) using the rectangular
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window, and the same is shown in Fig. 9. From Fig. 9, it is
clear that all the amplitudes above 3.9 × 10−37 m=s2 are
estimated, and from 8 × 10−7 Hz above in the frequency
band, the estimation of the linear spectrum of the range
acceleration is bounded by the numerical accuracy.
In the second situation, the sampling interval is set to

Δt ¼ 50 s, and the sampling duration is NΔt where N ¼
½6T=Δt� is the largest integer, i.e., N ¼ 3786983, such
that NΔt < 6T.
When the rectangular window is used as that in situation

1, the linear spectrum of the intersatellite range LSun
12 is

estimated, as shown in Fig. 10. To illustrate the impact of

noncoherent sampling, the linear spectrum estimation of
LSun
12 in situation 1 is also shown in Fig. 10. From Fig. 10, it

can be seen that in situation 2, only the first six amplitudes
associated with the first six multiples of the orbital
frequency can be well estimated. The frequency compo-
nents with amplitudes smaller than 0.3 m cannot be
estimated. Thus, the noncoherent sampling has a significant
impact on the spectral estimation.
For a more accurate spectral estimation, we must choose

an appropriate window function. For the selection of
window function, we need to consider several requirements:
accuracy of the amplitude estimation, peak sidelobe level,
decay rate, etc. Here, we consider the window functions of
the form
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FIG. 8. The absolute value of the difference between the
theoretical value and the estimated value of the linear spectrum
of the X-component of the position of satellite 1.

TABLE V. The absolute value of the difference between the
theoretical value and the estimated value of the linear spectrum of
the X-component of the position of satellite 1.

Frequency Difference (m)

f0 0
2f0 3.308722450212110699485634768279851 × 10−24

3f0 8.259689222026082007382962769936885 × 10−25

4f0 8.090620552819114757247121103825478 × 10−25

5f0 2.397685159225087536843772837108281 × 10−25

6f0 1.528100499388421068153769956087734 × 10−25

7f0 7.501270947435645429966724828186219 × 10−24

8f0 2.523247864693961216172754610036539 × 10−25

9f0 1.377291231064335447511938586139621 × 10−25

10f0 2.818487843088533426788679629718897 × 10−25

11f0 8.867036894584720284255704007236360 × 10−25

12f0 3.813998971773728920589104835802704 × 10−25

13f0 2.289576234173273516340985540293231 × 10−24

14f0 4.373621447240115375992387282167479 × 10−25

15f0 2.034121706875663642893762447701344 × 10−25

16f0 2.433281991324140099685669910187225 × 10−25
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FIG. 9. Linear spectrum estimation of range acceleration L̈Sun
12

between satellite 1 and satellite 2 when only the central
gravitational field of the Sun is considered in situation 1.
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w½n� ¼
XM
k¼0

a½k� cos
�
−i2π

nk
M

�
; n ¼ 0;…; N − 1; ð17Þ

where M þ 1 is the number of coefficients of the window
function. To obtain clearly visible peaks at two adjacent
frequencies f1 and f2 (assume that f2 > f1), the fre-
quency interval f2 − f1 should satisfy the condition of
f2 − f1 ≥ 2ðM þ 1Þfres, or at least satisfy f2 − f1 ≥
ðM þ 1Þfres [27]. In this case, the minimum value of
the interval between two frequency is the orbital fre-
quency. The number of coefficients of the window
function should be less than six. From the linear spectrum
of situation 1, it is clear that the amplitudes decay very
quickly. Therefore, to suppress the leakage effect of low
frequency components on high frequency components,
there are tight requirements on the peak sidelobe level and
decay rate. Given these requirements, a window of five
coefficients (i.e., 5-FD) [28] with lower peak sidelobe
level and fast decay rate is introduced to estimate the linear
spectrum in situation 2. This window function is defined
by [28]

w½z� ¼ 0.2734375 − 0.4375 cosðzÞ þ 0.21875 cosð2zÞ
− 0.0625 cosð3zÞ þ 0.0078125 cosð4zÞ: ð18Þ

By using the window function defined in Eq. (18), the
linear spectrum of the armlength LSun

12 is estimated and
shown in Fig. 11. The linear spectrum of LSun

12 in situation
1 is also shown in Fig. 11 for the purpose of comparison.
We see that the amplitudes above 1 × 10−12 m are well
estimated.
The linear spectrum of the range acceleration L̈Sun

12 in
situation 2 is also estimated using the 5-FD window
function, as shown in Fig. 12. We have indicated the result

in Fig. 9 in the same figure for an easier comparison. It can
be seen that the amplitudes above 1 × 10−26 m=s2 are well
estimated.

C. Effect of major bodies in the solar system

In this section, we will analyze the influences of the
major bodies on the intersatellite observation of the Taiji
mission. The equation of motion of the satellite is described
by Eq. (9). The duration of the integration time is from
January 1, 2030, to January 1, 2036, and the sampling
interval is set to 50 s. The equation of motion is solved
using DOP853 based on 34 significant digits, and the
verification of the accuracy of integration is as presented in
Sec. III B. Using the initial conditions shown in Table IV,
we can integrate from Eq. (9) the states of the satellites, and
then determine the range and range acceleration according
to Eqs. (1) and (3), respectively.
The time series of range L12 and range acceleration

L̈12 between satellite 1 and satellite 2 are shown in Figs. 13
and 14, respectively. From Figs. 13 and 14, it is clear that
the maximum values of L12 and L̈12 are about 3 × 109 m
and 2 × 10−6 m=s2 in magnitude, respectively.
It is easy to infer from Figs. 13 and 14 that the orbit is not

strictly periodic. This will lead to more serious leakage
during the spectrum estimation of L12 and L̈12. Because of
the limitations of the finite sampling duration, it is difficult
to achieve highly accurate spectrum estimation, and thus,
we seek to give an upper bound estimation of power
spectrum of the signals.
Based on the window function defined by Eq. (18), the

linear spectrum of L12 is estimated according to Eq. (11).
The result is shown in Fig. 15, where the red solid line
represents the linear spectrum of L12. In Fig. 15, due to
leakage, the peaks at orbital frequencies can still be
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FIG. 11. Linear spectrum estimation for range LSun
12 using the

5-FD window function when the sampling interval is set to 50 s.
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estimated but they are no longer as pronounced as those
when only the gravitational field of the Sun is considered.
From Fig. 15, it can be easily seen that in the frequency
band 1 × 10−6–4 × 10−6 Hz, the upper bound of the
linear spectrum are determined by the decay rate of the
window function, which is approximately 1 × 10−3 m at
1 × 10−6 Hz, and it then decreases to about 4 × 10−14 m at
4 × 10−6 Hz. In the frequency band 4 × 10−6–0.01 Hz,
the linear spectrum is actually constrained because of the
numerical accuracy; the value is smaller than 1 × 10−14 m.
To analyze the impact of the armlength generated by the

gravitational fields of the major bodies in the detection
frequency, we also calculate the linear spectral density of
L12. Based on the window function defined by Eq. (18), the
linear spectral density of L12 is estimated according to
Eq. (13). The result is shown in Fig. 15, where the blue

solid line represents the linear spectral density of L12. In
Fig. 15, we also plot the requirement of Taiji (blue dashed
line) for the range, as shown in Table I, and the requirement
of LISA (blue dash-dot line) for the range. For the LISA
mission, the requirement for the ranging noise is [6]

S1=2IFO ≤ 10 × 10−12
mffiffiffiffiffiffi
Hz

p ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2 mHz

f

�
4

s
;

0.1 mHz ≤ f ≤ 0.1 Hz: ð19Þ

According to Fig. 15, the intersatellite range due to
major bodies in the solar system is dominant in the very
low-frequency band. However, it decreases rapidly when
the frequency becomes larger, and its value is nearly
1 × 10−13 m=

ffiffiffiffiffiffi
Hz

p
at 0.1 mHz. Because the result may

be seen as an upper bound, we numerically verify that the
impact of the gravitational field of major bodies in solar
system on the range L12 for both the Taiji and LISA
missions may be neglected in the detection frequency band.
To estimate the linear spectrum of L̈12, we still use the

5-FDwindow function. The result is shown in Fig. 16, where
the red solid line represents the linear spectrum of L̈12. To
study the impact in the range acceleration generated by the
gravitational fields of the major bodies in the detection
frequency, we also calculate the linear spectral density of
L̈12. Based on the window function defined by Eq. (18), the
linear spectral density of L̈12 is estimated according to
Eq. (13). The result is shown in Fig. 16, where the blue solid
line represents the linear spectral density of L̈12. In Fig. 16,
where we also plot the requirement of the range acceleration
of Taiji (blue dashed line) as shown in Table I and of LISA
(blue dash-dot line). For the LISA mission, the requirement
for the ranging acceleration noise is given by [6]
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FIG. 14. Simulated time series of L̈12.
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5-FD window function. Total influence of gravitational fields of
the Sun and ten other major bodies are considered.
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S1=2a ≤ 3×10−15
m=s2ffiffiffiffiffiffi
Hz

p ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
0.4mHz

f

�
2

s

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
f

8mHz

�
4

s
; 0.1mHz≤ f ≤ 0.1 Hz; ð20Þ

According to Fig. 16, the intersatellite range acceleration
because of major bodies in the solar system is dominant in
the very low-frequency band. However, it decreases rapidly
when the frequency becomes larger, and its value is nearly
5 × 10−23 m=s2=

ffiffiffiffiffiffi
Hz

p
. Similar to the result of the analysis

of range, the impact of the gravitational field of the major
bodies in solar system on the range acceleration L̈12 for
both the Taiji and LISA missions may be neglected in the
detection frequency band.
Because the spectral estimation results for the other two

arms are similar to those for the arm between satellites 1
and 2, they are not shown in this paper.
In the latter part of the study, we will also estimate the

linear spectrum and the linear spectral density of the
relative acceleration along the line-of-sight direction of
the two satellites caused by each celestial body alone. The
relative acceleration of the pth body along the line of sight
between satellite 1 and satellite 2 may be calculated as
follows:

a12;p ¼ r⃗2 − r⃗1
L12

· ða⃗2;p − a⃗1;pÞ; ð21Þ

where a⃗1;p and a⃗2;p represent the gravitational accelerations
of the pth body on satellite 1 and satellite 2, respectively.
Based on the 5-FD window function defined in Eq. (18),

the linear spectrum of the relative accelerations a12;p of

each body is estimated, as shown in Fig. 17. The linear
spectrum of the total relative acceleration

P
p a12;p of all

bodies is also shown in Fig. 17. The linear spectral density
is also estimated, as shown in Fig. 18. The linear spectral
density of the total relative acceleration

P
p a12;p of all

bodies is also shown in Fig. 18. From Fig. 17, it can be
seen from the comparison of the total relative acceleration
with the relative acceleration of each body, the total
relative acceleration may be slightly smaller than the
relative acceleration from some single body in a special
band. For example, in the vicinity of the two multiples of
the orbital frequency, the total acceleration is slightly
smaller than that of Earth, which means that there may
be cancellation among the relative accelerations of the
celestial bodies. However, from Fig. 17, it can also be
easily seen that the distribution of the relative acceleration
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FIG. 16. Linear spectrum (the red solid line) and linear spectral
density (the blue solid line) estimation for range acceleration L̈12,
using the 5-FD window function. Total influence of gravitational
fields of the Sun and ten other major bodies are considered.
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FIG. 17. Linear spectrum estimation for line-of-sight relative
acceleration a12;p caused by each celestial body.
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caused by each major body in frequency domain.
According to the contribution of each major body to the
total accelerations at the low frequency band in the range
3.17 × 10−8–1 × 10−7 Hz, we may sort by value from
largest to smallest: the Earth, Venus, Jupiter, Mars,
Moon, Saturn, Mercury, Uranus, Neptune, and Pluto. To
clearly see the contribution of each major body in the
frequency band 1 × 10−7–3 × 10−6 Hz, we refer to the
paragraph from Fig. 17, which is shown in Fig. 19. From
the figure, it can be seen that although the contribution
from Earth in time domain is the largest (see Fig. 20), in
frequency domain, the Earth contributes the most in the
frequency band 3.17 × 10−8–1 × 10−7 Hz and Venus con-
tributes the most in 1 × 10−7–8 × 10−7 Hz, and Mercury
contributes the most in 8 × 10−7–3 × 10−6 Hz.
The same result may be seen from Fig. 18 mainly

because the LSD is proportional to the LS.
The motion of the Moon relative to the Earth can be

approximated as a periodic motion, the period of which is a
synodic month (≈3.92 × 10−7 Hz). Thus, in principle, the
Earth-Moon system will induce a resonance and a series of
periodic perturbations with frequencies equal to harmonics
of the synodic month. From Fig. 19, it can be easily seen
that the relative acceleration caused by Earth and Moon has
peaks at the first seven harmonics of the synodic month,
thus the results from the numerical simulation are consistent
with those from the theoretical analysis. However, in 3.92 ×
10−7–8 × 10−7 Hz and 8 × 10−7–2.74 × 10−6 Hz, Venus
and Mercury have larger impacts than Earth-Moon system,
respectively. Therefore, the impact of Earth-Moon system
cannot be clearly seen from the linear spectrum of L12 when
the gravity of all celestial bodies are included in the force,
which is easily to be seen in Fig. 15.

D. Effect of small celestial bodies

Finally, we discuss the combined effect of the gravita-
tional fields of the 344 asteroids outlined in JPL DE430 on
the relative acceleration along the line of sight between two
satellites. The relative acceleration a12;ast along the line of
sight between satellites 1 and 2 is calculated according to
Eq. (21), where a⃗1;ast and a⃗2;ast represent the accelerations
of satellite 1 and satellite 2 because of the 344 asteroids,
respectively. The time series a12;ast is calculated, as shown
in Fig. 21. The linear spectrum (the red solid line) and
linear spectral density (the blue solid line) are estimated, as
shown in Fig. 22. From Fig. 21, it can be seen that the total
contribution of the gravitational fields of these asteroids to
a12;ast is smaller than 1.5 × 10−14 m=s2 in magnitude. From
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FIG. 19. Local magnification of linear spectrum estimation for
line-of-sight relative acceleration a12;p caused by each celestial
body.
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FIG. 20. Simulated time series of line-of-sight relative accel-
eration a12;p caused by each celestial body.
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Fig. 22, it can be clearly seen that the total influence of the
344 asteroids outlined in JPL DE430 is significantly less
compared to the limits required by either Taiji or LISA.
Likewise, the spectral estimations for the other two arms

are similar to that for a12;ast, and thus they are no longer
shown in this paper.

V. CONCLUSION

This paper presents a detailed analysis of whether
disturbances due to the gravitational fields of the major
celestial bodies in the solar system affect the detection of
gravitational waves in the sensitive frequency band of the
Taiji mission. To resolve this question, a high-precision
orbit propagator capable of producing accuracies of

approximately 0.03 pm in scales of 1 AU is first developed.
With this propagator, the range and range acceleration
between two satellites due to the gravitational fields of
celestial bodies are then simulated. Through the use of fast
Fourier transform with the suitable window function, the
linear spectrum and linear spectral densities of the range and
range acceleration are analyzed. Given the base require-
ments of the Taiji mission for the noises of range and range
acceleration, and based on the results obtained for the linear
spectral densities, we determine that the influences of the
gravitational fields of the celestial bodies are considerably
lower than the corresponding limits for noise required by the
Taiji mission. The low level of the orbital perturbation from
solar system bodies shown here means that the subtraction
of the perturbation from a LISA / Taiji data series is not
necessary. With the promise that Taiji offers for the
progression of science and technology, we hope our study
would constitute foundational knowledge for the detection
of gravitational waves in the heliocentric orbit through Taiji,
LISA, and similar missions, particularly going to lower
frequencies. Such as some missions presented in the ESA
Voyage 2050 program [29] which go beyond the LISA low
band edge of 100 μHz to reach μHz and lower frequencies
where such gravitational perturbations may be more
important.
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