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We present the analytical results of the two-loop QCD amplitudes for hadronic tW production, focusing
on the leading color and light fermion-loop contributions. The calculation of the two-loop integrals is
performed using the method of canonical differential equations. The results have been expressed in terms of
multiple polylogarithms and checked by comparing the infrared divergences with the predictions from
anomalous dimensions. Combining these with the one-loop squared amplitudes we have computed
previously, we obtain the hard function relevant to a next-to-next-to-leading order Monte Carlo calculation.
We find that the hard function varies slowly in the region with small top-quark velocity but increases
dramatically in the region with large top-quark velocity. After performing phase space integration
and convolution with the parton distribution function, the leading color hard function gives a correction
of about 5.4% to the leading order cross section, while the light fermion-loop diagrams contribute
about −1.4%.
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I. INTRODUCTION

Single top production can be used to study the electro-
weak interaction of the top quark, which is important for
the precision test of the Standard Model (SM) and the
search for new physics beyond the SM. In particular, the
associated production of a top quark with a W boson is
sensitive to the Wtb coupling, which has drawn a lot of
attention in the community. Recently, precision measure-
ments of the inclusive and differential cross sections of this
process have been performed by both ATLAS and CMS
collaborations at the Large Hadron Collider (LHC) withffiffiffi
s

p ¼ 13 TeV [1–4]. More precise experimental results
will be available in the near future after the launch of the
LHC Run 3.
Besides the precision measurements, high precision

theoretical predictions are indispensable in extracting useful
information from experimental data. At hadron colliders, the
QCD corrections are often significant in making reliable
predictions, such as reducing the scale uncertainties and

modeling the real processmore properly. For tW production,
the next-to-leading order (NLO) correction was obtained
more than 25 years ago [5], and it was also investigated later
in [6–9]. Much effort has been devoted to the studies on the
effects beyondNLOQCD corrections, e.g., the expansion to
next-to-next-to-next-to-leading order in the threshold limit
[10–13] and the all-order threshold resummation [14],
which increase the NLO cross section further by a sizable
amount on the order of 10%. To provide kinematic distri-
butions with higher-order QCD effects, the prediction with
parton showers interfaced with the NLO cross section was
explored [15–17].
Unfortunately, the next-to-next-to-leading order (NNLO)

QCD prediction of tW production has not been obtained yet.
A full NNLO correction consists of the double-real, real-
virtual, and double-virtual contributions. In the double-real
and real-virtual corrections, it is necessary to define a scheme
to clearly distinguish the process of tW production from that
of top-quark pair production. This issue has been discussed
at NLO [18] and deserves a detailed investigation at NNLO.
However, this topic is beyond the scope of this paper, which
aims at only the double-virtual contribution. At the cross
section level, the double-virtual correction includes the
one-loop squared amplitude and the interference between
two-loop and tree-level amplitudes. The former has
been computed analytically in our previous work [19]. In
this paper we present the dominant contribution to the
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double-virtual correction, i.e., the leading color and the light
fermion-loop results.
This paper is organized as follows. In Sec. II we describe

the basic setup and the details in the calculation of two-loop
bare amplitudes. We discuss the procedure used to deal
with the UV and IR divergences in the bare amplitude
in Sec. III. The finite part of the squared amplitude is
considered as the hard function, which could be used in a
NNLO Monte Carlo calculation. The numerical results for
the leading color and light fermion-loop contributions to
the NNLO hard function are presented in Sec. IV. Finally,
we conclude in Sec. V.

II. TWO-LOOP CALCULATION

A. Kinematics and notations

The tW associated production gðk1Þ þ bðk2Þ→Wðk3Þ þ
tðk4Þ possesses two different massive external particles
with k23 ¼ m2

W and k24 ¼ ðk1 þ k2 − k3Þ2 ¼ m2
t . The initial-

state particles are massless, i.e., k21 ¼ k22 ¼ 0. The
Mandelstam variables are defined by

s ¼ ðk1 þ k2Þ2; t ¼ ðk1 − k3Þ2; u ¼ ðk2 − k3Þ2; ð1Þ

which have the relation sþ tþ u ¼ m2
W þm2

t .
The tree-level scattering amplitude is given by

Mð0Þ ¼ egsta4;2ffiffiffi
2

p
sin θW

�
ūðk4Þ=ϵ�3PLð=k3 þ =k4Þ=ϵ1uðk2Þ

s

þ ūðk4Þ=ϵ1ð=k2 − =k3 þmtÞ=ϵ�3PLuðk2Þ
u −m2

t

�
; ð2Þ

where ta4;2 is the SUð3Þ generator with color indices in the
subscript corresponding to the top and bottom quarks. The
polarization vectors for the gluon and the W boson are
denoted by ϵμ1 and ϵ

�μ
3 , respectively. Here, PL ¼ ð1 − γ5Þ=2

is the left-handed projection operator.
We do not consider the decay of the top quark and theW

boson yet, and thus we sum over the polarization states of
the gauge bosons in the amplitude squared. Specifically, we
apply the equation

X
i

ϵ�μi ðk3Þϵνi ðk3Þ ¼ −gμν þ kμ3k
ν
3

m2
W

ð3Þ

for the W boson, and

X
i

ϵμi ðk1Þϵ�νi ðk1Þ ¼ −gμν þ nμkν1 þ nνkμ1
n · k1

ð4Þ

for the gluon, where nμ denotes a lightlike vector. We have
chosen a physical gauge for the gluon, so we do not need
to consider the contribution from ghost particles in the
external states. In practice, we can simply neglect the

second term in the above equation because of the Ward
identity.
In this work, we calculate the interference between the

two-loop, denoted by Mð2Þ, and tree-level amplitudes,
which can be decomposed according to the color and
flavor structures,

Að2Þ ¼ 2Re
X

spin;color

Mð0Þ�Mð2Þ ¼ N4
cAþ N2

cBþ Cþ 1

N2
c
D

þ nl

�
N3

cEl þ NcFl þ
1

Nc
Gl

�

þ nh

�
N3

cEh þ NcFh þ
1

Nc
Gh

�
; ð5Þ

where nl and nh are the total numbers of light and heavy
quark flavors, respectively, and A;B;C;D; E; F;G are the
corresponding coefficients. Notice that we do not perform a
color average for the initial states in the squared amplitude.
Therefore, the leading contribution is proportional toN4

c (or
N3

c for fermion-loop contributions). The following terms
are suppressed by N2

c in sequence. The fact that color-
summed squared amplitudes can be expanded in a series of
1=N2

c, rather than 1=Nc, has been discussed in detail at the
one-loop level in [20]. In our case, this expansion pattern
can be understood. TheWtb vertex does not affect the color
flow and thus can be omitted in the analysis of color
structure.1 As a result, the structure of a color-summed
squared amplitude is represented by the vacuum graph; see
Fig. 1 for a few examples. When analyzing the color factors
of squared amplitudes, the four-gluon vertex in a graph is
replaced by two three-gluon vertices, and any three-gluon
vertex is substituted by a difference of two fermion loops
due to the identity

ifabc ¼ 2ðTr½tatbtc� − Tr½tatctb�Þ: ð6Þ

Now, all the color structure in the graph is a combination of
traces of multiple color generators ta. Applying the SUðNcÞ
Fierz identity

taijt
a
kl ¼

1

2
δilδkj −

1

2Nc
δijδkl ð7Þ

to contract the color indices carried by each gluon propa-
gator, the resulting color structure consists of only δii, each
of which contributes a factor of Nc.

2 The leading color (or
color planar) contribution is obtained by taking only the
first term in Eq. (7). The second term not only contains a

1This means that the quark flavor does not change along the
fermion line.

2This can be illustrated by decomposing every vacuum graph
to several fermion loops after replacing each gluon with either a
quark-antiquark pair or simply dropping it.
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factor of 1=Nc but also reduces the number of δii (or
fermion loops in a graph) due to the color flow topology.
When there is a three-gluon vertex, one of the terms in
Eq. (6) gives rise to the leading color contribution, while
the other generates a graph with two fewer fermion loops.
In any case, the expansion is in a series of 1=N2

c. In QCD,
this factor is of the same magnitude as the strong coupling
and serves as a good perturbative expansion parameter. In
addition, the result at each order in this expansion is gauge
invariant and could be calculated independently. Due to the
simple topology of the Feynman diagrams contributing to
the leading color,3 the calculation of this part is notably
easier than the full two-loop corrections. Therefore, we
constrain ourselves to present the result at leading color in
this paper, i.e., the coefficient A in Eq. (5). As the number
of light quarks in the loop is larger than Nc and the needed
master integrals are almost the same, we also provide the
result proportional to nl. In summary, we have calculated
the following gauge invariant contribution to two-loop
squared amplitudes:

Að2Þ
L:C:þnl

≡ N4
cAþ nl

�
N3

cEl þ NcFl þ
1

Nc
Gl

�
: ð8Þ

B. Bare two-loop amplitudes

All the two-loop Feynman diagrams for the process
gb → Wt are generated by using FeynArts [21]. There are
199 two-loop Feynman diagrams in total, of which 73
diagrams contribute to the leading color and 20 diagrams
have a light fermion loop. Some typical two-loop Feynman
diagrams are displayed in Fig. 2. We compute the inter-
ference between two-loop and tree-level amplitudes
directly, and thus there are no Lorentz indices remaining
in the spin-summed result. The traces of Dirac matrices are
performed using the package FeynCalc [22]. We use the
conventional dimensional regularization scheme to deal
with both the UV and IR divergences; i.e., the space-time
dimension is extended to d ¼ 4 − 2ϵ. The anticommuting
γ5 scheme is adopted following Ref. [23]. The traces
containing two γ5 matrices are trivial due to γ25 ¼ 1 after

moving the two γ5 matrices adjacent to each other. The traces
with a single γ5 matrix are vanishing in our problem because
there are only three independent momenta involved. More
detailed discussions can be found in Ref. [19].
As a consequence, we obtain the squared amplitude as a

linear combination of a large number of scalar Feynman
integrals with rational coefficients depending on the kin-
ematic invariants s, t, u and the space-time dimension d.
We find that all the squared amplitudes contributing to the
leading color can be expressed in terms of the integrals
appearing in the Feynman diagrams shown in Fig. 2.
Explicitly, they are given by

IL:C:n1;n2;…;n9 ¼
Z

ddq1
iπd=2

ddq2
iπd=2

e2γEϵ
D−n8

8 D−n9
9

Dn1
1 Dn2

2 � � �Dn7
7

; ð9Þ

where q1 and q2 are loop momenta andDi with i ¼ 1;…; 7
denote the denominators of the propagators in each
Feynman diagram in Fig. 2.4 The other two denominators
D8 and D9 are added in order to provide a complete basis
for all possible Lorentz invariant scalar products formed by
two loop momenta and three external momenta.
All of these integrals are then reduced to a small set of

basis integrals, called master integrals, using the relations
generated by integration-by-parts (IBP) identities. We have
made use of the package FIRE [24] in this step. After
considering the symmetry between different topologies, all
the two-loop master integrals can be categorized into only
two integral families, as displayed in Fig. 3.5 The denom-
inators for P1 are given by

D1 ¼ q21; D2 ¼ q22; D3 ¼ ðq1 − k1Þ2;
D4 ¼ ðq1 þ k2Þ2; D5 ¼ ðq1 þ q2 − k1Þ2;
D6 ¼ ðq2 − k1 − k2Þ2; D7 ¼ ðq2 − k3Þ2 −m2

t ;

D8 ¼ ðq1 þ k1 þ k2 − k3Þ2 −m2
t ; D9 ¼ ðq2 − k1Þ2;

ð10Þ

FIG. 1. Typical color structure of the squared amplitudes at LO, NLO, and NNLO.

3Here the terminology “topology” includes the information on
the masses of internal propagators.

4Here we abuse the notation of Di. In principle, each Feynman
diagram has a set of seven denominators. They are not the same in
other diagrams.

5Here we do not include the master integrals that can
be factorized as two one-loop integrals, which are easy to
calculate [19].
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and the denominators for P2 are

D1 ¼ q21; D2 ¼ q22; D3 ¼ ðq1 − k2Þ2;
D4 ¼ ðq1 − k3Þ2 −m2

t ; D5 ¼ ðq1 þ q2 − k2Þ2; D6 ¼ ðq2 þ k1Þ2;
D7 ¼ ðq2 − k2 þ k3Þ2 −m2

t ; D8 ¼ ðq1 − k1 − k2Þ2; D9 ¼ ðq2 þ k1 − k2Þ2: ð11Þ

There are 31 and 38 master integrals in the P1 and P2
integral families, respectively. We have calculated them
using the method of differential equations [25,26]. Taking
the derivative of one master integral with respect to a
kinematic variable, e.g., s, the result can be written as a
linear combination of the master integrals since all integrals
in a family can be reduced back to the basis. These
differential equations incorporate almost all the information
about the integrals. One can choose a proper kinematic
point where the integrals are relatively easier to compute
either analytically or numerically, and derive the values at
other kinematic points by solving the differential equations.
The latter is simplified if a canonical basis can be found,
i.e., the differential equations can be transformed to a form
in which the dimensional regulator ϵ is decoupled from the
kinematic variables [27]. This is called the ϵ form or d ln
form. A formal solution to this differential equation is given
in terms of Chen iterated integrals [28]. If the involved
symbol letters, i.e., the arguments of the d ln form, are
polynomials of the integration variables, the solution can be
expressed as multiple polylogarithms [29], which are
defined as GðxÞ≡ 1 and

Ga1;a2;…;anðxÞ≡
Z

x

0

dt
t − a1

Ga2;…;anðtÞ; ð12Þ

G
0⃗n
ðxÞ≡ 1

n!
lnn x: ð13Þ

The number of elements in the set ða1; a2;…; anÞ is
referred to as the transcendental weight of the multiple
polylogarithms. For the two-loop amplitudes, we need
multiple polylogarithms up to transcendental weight four,
and we use PolyLogTools [30], which relies on the GiNaC
package [31,32], to perform efficient numerical evaluation
of these functions. The analytical results of the P1 integral
family have been obtained by two of the authors [33], while
the master integrals in the P2 family have been calculated in
[34], and also independently checked by [35].
Then, we consider the squared amplitude containing a

light fermion loop. Using the same method as discussed
above, we reduce all the scalar integrals to a set of master
integrals. In addition to those already appearing in the P1
and P2 integral families, another integral family with two
massive propagators, as shown in Fig. 4, should be taken
into account. Explicitly, this is defined as

FIG. 2. Typical two-loop leading color Feynman diagrams for tW production. The thick black and red lines stand for the top quark and
the W boson, respectively.

FIG. 3. Unfactorized two-loop master integral topologies rel-
evant to the leading color contribution. The thick black and red
lines stand for the top quark and the W boson, respectively. The
other lines denote massless particles.

FIG. 4. Integral topology appearing in the light fermion-loop
contribution. The thick black and red lines stand for the top quark
and the W boson, respectively. The other lines denote massless
particles.
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In1;n2;n3;n4;n5;n6;n7;n8;n9 ¼
Z

ddq1
iπd=2

ddq2
iπd=2

e2γEϵ
½q22�−n6 ½ðq2 − k1 þ k3Þ2�−n7 ½ðq2 − k2 þ k3Þ2�−n8 ½ðq1 − k3 þ k2Þ2�−n9

½q21 −m2
t �n1 ½ðq1 − k1Þ2 −m2

t �n2 ½ðq1 − k3Þ2�n3 ½ðq1 þ q2 − k1Þ2�n4 ½ðq2 − k4Þ2�n5
:

ð14Þ

Since the result of this integral family is still unknown, we
present more details here. We choose the following
canonical basis:

g1 ¼ ϵ2m2
tM1;

g2 ¼ ϵ2uM2;

g3 ¼ ϵ2ððu −m2
t ÞM3 − 2m2

tM2Þ;
g4 ¼ ϵ3ðt −m2

t ÞM4;

g5 ¼ ϵ3ðu −m2
WÞM5;

g6 ¼ ϵ3ð1 − 2ϵÞðt −m2
WÞM6;

g7 ¼ ϵ3ðt −m2
t Þðu −m2

t ÞM7; ð15Þ

where

M1 ¼ I0;2;0;2;1;0;0;0;0; M2 ¼ I2;0;0;2;1;0;0;0;0;

M3 ¼ I1;0;0;2;2;0;0;0;0; M4 ¼ I0;1;1;1;2;0;0;0;0;

M5 ¼ I1;0;1;1;2;0;0;0;0; M6 ¼ I1;1;1;1;1;0;0;0;0;

M7 ¼ I1;1;1;1;2;0;0;0;0: ð16Þ

The corresponding topology diagrams are displayed
in Fig. 5.

The differential equations for the canonical basis
g ¼ ðg1;…; g7Þ can be formulated as

dgðx; y; z; ϵÞ ¼ ϵðdÃÞgðx; y; z; ϵÞ ð17Þ

with

dÃ ¼
X10
i¼1

Rid lnðliÞ: ð18Þ

The letters are given by

l1 ¼ x; l2 ¼ x − 1;

l3 ¼ y; l4 ¼ y − 1;

l5 ¼ z; l6 ¼ z − 1;

l7 ¼ x − z; l8 ¼ xy − z;

l9 ¼ 1þ z − x − y; l10 ¼ y − z; ð19Þ

with

x ¼ t
m2

t
; y ¼ u

m2
t
; z ¼ m2

W

m2
t
: ð20Þ

The rational matrices Ri are

FIG. 5. Topology diagrams for the master integrals defined in Eq. (14). The thick (thin) black lines stand for the massive (massless)
quark, and the thick red lines represent the W boson. The black dot indicates one additional power of the corresponding propagator.
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R1 ¼

0
BBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

−1 0 0 2 0 0 0

0 0 0 0 0 0 0

−1 0 0 2 0 0 0

0 0 0 0 0 0 0

1
CCCCCCCCCCA
; R2 ¼

0
BBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 −4 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −4

1
CCCCCCCCCCA
;

R3 ¼

0
BBBBBBBBBB@

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 4 0 0 0 0 0

0 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1
CCCCCCCCCCA
; R4 ¼

0
BBBBBBBBBB@

0 0 0 0 0 0 0

0 −2 −1 0 0 0 0

0 −4 −2 0 0 0 0

0 0 0 0 0 0 0

0 1 1
2

0 0 0 0

−2 1 − 1
2

0 0 0 0

0 0 0 0 0 0 −4

1
CCCCCCCCCCA
;

R5 ¼

0
BBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 2 0 0

0 1 0 0 2 0 0

0 0 0 0 0 0 0

1
CCCCCCCCCCA
; R6 ¼

0
BBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 −1 − 1
2

0 −3 0 0

0 0 0 0 0 0 0

0 −1 − 1
2

0 −3 0 0

1
CCCCCCCCCCA
;

R7 ¼

0
BBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 1 1
2

3 3 0 1

1
CCCCCCCCCCA
; R8 ¼

0
BBBBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 − 1
2

1
4

− 1
2

− 1
2

− 1
2

1
2

3 − 3
2

3
4

− 3
2

− 3
2

− 3
2

3
2

1
CCCCCCCCCCCCA

;

R9 ¼

0
BBBBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 − 1
2

1
4

1
2

1
2

− 1
2

− 1
2

−3 3
2

− 3
4

− 3
2

− 3
2

3
2

3
2

1
CCCCCCCCCCCCA

; R10 ¼

0
BBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 0 0

0 0 0 0 3 0 0

1
CCCCCCCCCCA
: ð21Þ

The basis integral g1 is simple and can be calculated directly [36],

g1 ¼ −
1

4
− ϵ2

5π2

24
− ϵ3

11ζð3Þ
6

− ϵ4
101π4

480
þOðϵ5Þ: ð22Þ
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The boundary condition for g3 is chosen at u ¼ 0,

g3ju¼0 ¼ 1þ ϵ2
π2

2
− ϵ3

8ζð3Þ
3

þ ϵ4
7π4

40
þOðϵ5Þ: ð23Þ

The boundary conditions of other basis integrals gi can
be found using the regularity conditions. We know that
the integrals gi do not contain any branch cut starting at
the points corresponding to m2

W ¼ 0, s ¼ m2
t , u ¼ 0, or

t ¼ 0. Therefore, the derivatives of the integrals do not
have poles at these points, which can generate relations
among the integrals that appear as coefficients of
the poles.
With these boundary conditions, it is easy to obtain the

analytical results for the canonical basis. The integration
path from the boundary point to the physical point does
not cross over any branch cut in this case, and thus there is
no need to perform analytic continuation. Consequently,
the integrals in the above family are real in the relevant
physical region satisfying

s > ðmt þmWÞ2;
m2

t þm2
W − s − r
2

< t <
m2

t þm2
W − sþ r
2

;

0 < m2
W < m2

t ð24Þ

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − ðmt −mWÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − ðmt þmWÞ2

p
.

III. UV AND IR DIVERGENCES

A. Renormalization

After the calculation of two-loop Feynman diagrams, the
bare amplitude, denoted by Mbare, contains UV and IR
divergences. To cancel the UV divergence, we generate the
Feynman diagrams with the counterterms, which arise from
the renormalization of the couplings, masses, and field
strength. Then, the renormalized QCD amplitude is
obtained by

Mren ¼ Z1=2
g Z1=2

b Z1=2
t ðMbarejαbares →Zαsαs;mt;bare→Zmmt

Þ; ð25Þ

where Zg;b;t are the wave-function renormalization factors
for the external colored particles. The strong coupling αs
and top-quark mass are renormalized by the factors Zαs and
Zm, respectively. In our notation, the amplitude and
renormalization factors are expanded as a series of
αs=4π, e.g.,

Zx ¼ 1þ αs
4π

δZð1Þ
x þ

�
αs
4π

�
2

δZð2Þ
x :

The renormalized amplitude is

Mren ¼ Mð0Þ
bare þ

αs
4π

ðMð1Þ
bare þMð1Þ

C:T:Þ

þ
�
αs
4π

�
2

ðMð2Þ
bare þMð2Þ

C:T:Þ

¼ Mð0Þ
ren þ αs

4π
Mð1Þ

ren þ
�
αs
4π

�
2

Mð2Þ
ren ð26Þ

with the counterterm contribution

Mð1Þ
C:T: ¼ δZ1M

ð0Þ
ren þ δZð1Þ

m Mð0Þ;mt
C:T: ;

Mð2Þ
C:T: ¼ δZ2M

ð0Þ
ren þ δZ3M

ð1Þ
bare þ δZ4M

ð0Þ;mt
C:T:

þ ðδZð1Þ
m Þ2M0ð0Þ;mt

C:T: þ δZð1Þ
m Mð1Þ;mt

C:T: : ð27Þ

Here, Mð0Þ;mt
C:T: (Mð1Þ;mt

C:T: ) denotes the amplitude with an
insertion of a mass counterterm vertex in the tree-level

(one-loop) Feynman diagrams, while M0ð0Þ;mt
C:T: contains

two such mass counterterm vertices in the tree-level
Feynman diagrams. The definitions of δZi in Eq. (27)
are given by

δZ1 ¼
1

2
½δZð1Þ

g þ δZð1Þ
b þ δZð1Þ

t þ δZð1Þ
αs �;

δZ2 ¼
1

2
½δZð2Þ

g þ δZð2Þ
b þ δZð2Þ

t þ δZð2Þ
αs � þ

1

4
½δZð1Þ

g δZð1Þ
b

þ δZð1Þ
g δZð1Þ

t þ δZð1Þ
b δZð1Þ

t þ δZð1Þ
g δZð1Þ

αs

þ δZð1Þ
b δZð1Þ

αs þ δZð1Þ
t δZð1Þ

αs �

−
1

8
½ðδZð1Þ

g Þ2 þ ðδZð1Þ
b Þ2 þ ðδZð1Þ

t Þ2 þ ðδZð1Þ
αs Þ2�;

δZ3 ¼ δZ1 þ δZð1Þ
αs ;

δZ4 ¼ δZ1δZ
ð1Þ
m þ δZð2Þ

m : ð28Þ

Notice that those quantities in Eq. (26) should be
calculated in d-dimensional space-time and kept up
to Oðϵ0Þ.
We have adopted the on-shell scheme for the renorm-

alization of the wave functions and the top-quark mass. The
strong coupling αs is renormalized in the MS scheme. Up to
two loops, the relevant renormalization constants are given
by [37–40]
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Zg ¼ 1þ
�
αs
4π

�
TFnhDϵ

�
−

4

3ϵ

�
þ
�
αs
4π

�
2

TFnhD2
ϵ

�
CF

�
−
2

ϵ
− 15

�
þ CA

�
35

9ϵ2
−

5

2ϵ
þ 13

12

�
−

16

9ϵ2
TFnl −

π2

9
β0

þ 4

3
β0 ln

�
μ2

m2
t

��
−
1

ϵ
þ 1

2
ln

�
μ2

m2
t

���
;

Zb ¼ 1þ
�
αs
4π

�
2

CFTFnhD2
ϵ

�
1

ϵ
−
5

6

�
;

Zt ¼ 1þ
�
αs
4π

�
CFDϵ

�
−
3

ϵ
− 4 − 8ϵ − 16ϵ2

�
þ
�
αs
4π

�
2

CFD2
ϵ

�
TFnh

�
1

ϵ
þ 947

18
− 5π2

�

þ TFnl

�
−

2

ϵ2
þ 11

3ϵ
þ 113

6
þ 5π2

3

�
þ CF

�
9

2ϵ2
þ 51

4ϵ
þ 433

8
− 13π2 þ 16π2 ln 2 − 24ζ3

�

þ CA

�
11

2ϵ2
−
127

12ϵ
−
1705

24
þ 49π2

12
− 8π2 ln 2þ 12ζ3

�

þ β0 ln

�
μ2

m2
t

��
−
3

ϵ
− 4þ 3

2
ln

�
μ2

m2
t

���
;

Zm ¼ 1þ
�
αs
4π

�
CFDϵ

�
−
3

ϵ
− 4 − 8ϵ − 16ϵ2

�
þ
�
αs
4π

�
2

CFD2
ϵ

�
β0

�
3

2ϵ2
−

5

4ϵ
−
143

8
þ 7π2

4

�
þ 4TFnlð−3þ π2Þ

þ CF

�
9

2ϵ2
þ 45

4ϵ
þ 199

8
− 5π2 þ 8π2 ln 2 − 12ζ3

�
þ CA

�
−

7

2ϵ
þ 77

4
− 6π2 − 4π2 ln 2þ 6ζ3

�

þ β0 ln

�
μ2

m2
t

��
−
3

ϵ
− 4þ 3

2
ln

�
μ2

m2
t

���
;

Zαs ¼ 1 −
αs
4π

β0
ϵ
þ
�
αs
4π

�
2
�
β20
ϵ2

−
β1
2ϵ

�
; ð29Þ

where

Dϵ ≡ eγEϵΓð1þ ϵÞ
�
μ2

m2
t

�
ϵ

;

β0 ¼
11

3
CA −

4

3
TFðnl þ nhÞ;

β1 ¼
34

3
C2
A −

20

3
CATFðnl þ nhÞ− 4CFTFðnl þ nhÞ; ð30Þ

with nl ¼ 5 and nh ¼ 1 for the process gb → Wt.

B. IR divergences

The renormalized amplitudes in Eq. (26) still contain IR
divergences, which have a general structure that depends
only on the properties of external particles. These diver-
gences can be factorized from the finite part of the
amplitudes because of the properties of the amplitudes
in the soft and collinear limits [41–47], i.e.,

Mren ¼ ZMfin; ð31Þ

where the factor Z encodes all the IR divergences of the
scattering amplitudes and has been computed to two loops
for general processes with massive particles. For single top

production, the IR divergences have been studied at three-
loop level [48]; see [49] for more general processes.
The IR divergences of the amplitudes in QCD can be

reproduced by the corresponding amplitudes in the soft-
collinear effective theory (SCET). As such, the IR divergen-
ces are transformed intoUVones since all the loop integrals in
the effective theory are scaleless and thus vanish in dimen-
sional regularization. These UV divergences are closely
related to the anomalous dimensions of effective operators
corresponding to the relevant process. For gb → Wt, the
anomalous dimension Γh up to two loops is given by

Γh ¼ T1 · T2γcuspðα̂sÞ ln
μ2

−s
þ T1 · T4γcuspðα̂sÞ ln

mtμ

m2
t − u

þ T2 · T4γcuspðα̂sÞ ln
mtμ

m2
t − t

þ γgðα̂sÞ

þ γqðα̂sÞ þ γtðα̂sÞ

¼ γcuspðα̂sÞ
2

�
−CA ln

μ2

−s
− CA ln

mtμ

m2
t − u

þ ðCA − 2CFÞ ln
mtμ

m2
t − t

�

þ γgðα̂sÞ þ γqðα̂sÞ þ γtðα̂sÞ; ð32Þ
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where Ti is the color charge associated with the external
particle i, as defined in [50]. The anomalous dimensions γcusp,
γg, γb, and γt are universal quantities in the sense that they are
independent of the hard scattering process. Their two-loop
expressions can be found in the appendix of [51]. Herewe use
the notation α̂s for the strong coupling with five light quark
flavors in its anomalous dimension. The matching to the
coupling αs involving heavy quarks in its renormalization is
given by αs ¼ ξα̂s with [45,52]

ξ ¼ 1þ αs
3π

TFnh
Dϵ − 1

ϵ
þOðα2sÞ: ð33Þ

Then, the Z factor can be obtained by

lnZ ¼ αs
4π

1

ξ

�
Γ0ð0Þ
h

4ϵ2
þ Γð0Þ

h

2ϵ

�

þ
�
αs
4π

�
2 1

ξ2

�
−3β̂0Γ

0ð0Þ
h

16ϵ3
þ Γ0ð1Þ

h − 4β̂0Γ
ð0Þ
h

16ϵ2
þ Γð1Þ

h

4ϵ

�

þOðα3sÞ; ð34Þ

where β̂0 is the LO β function for the coupling α̂s in SCET
and thus β̂0 ¼ β0jnh→0. We have defined Γ0

h ¼ ∂Γh=∂ ln μ.
With all the ingredients at hand, it is straightforward to
compute Z in the expansion form

Z ¼ 1þ αs
4π

Zð1Þ þ
�
αs
4π

�
2

Zð2Þ þOðα3sÞ: ð35Þ

The finite amplitude up to two loops can be written as

Mfin ¼ Mð0Þ
fin þ αs

4π
Mð1Þ

fin þ
�
αs
4π

�
2

Mð2Þ
fin ; ð36Þ

where

Mð0Þ
fin ¼ Mð0Þ

ren;

Mð1Þ
fin ¼ Mð1Þ

ren − Zð1ÞMð0Þ
ren;

Mð2Þ
fin ¼ Mð2Þ

ren þ ððZð1ÞÞ2 − Zð2ÞÞMð0Þ
ren − Zð1ÞMð1Þ

ren: ð37Þ

All the IR divergences are canceled order by order on the
right-hand side of the above equations, which serves as a
strong check of our calculations.
The hard function for tW production in SCET is

defined as jMfinj2. The perturbative expansion of the hard
function is

H ¼ Hð0Þ þ αs
4π

Hð1Þ þ
�
αs
4π

�
2

Hð2Þ; ð38Þ

where

Hð0Þ ¼ jMð0Þ
fin j2;

Hð1Þ ¼ Mð1Þ
finM

ð0Þ�
fin þMð0Þ

finM
ð1Þ�
fin ;

Hð2Þ ¼ Mð2Þ
finM

ð0Þ�
fin þMð0Þ

finM
ð2Þ�
fin þ jMð1Þ

fin j2: ð39Þ

We have obtained the result of jMð1Þ
fin j2 with full color

information in [19]. Similar to Eq. (5), the NNLO correc-
tions to the hard function can be written as

Hð2Þ ¼ N4
cHA þ N2

cHB þHC þ 1

N2
c
HD

þ nl

�
N3

cHEl þ NcHFl þ
1

Nc
HGl

�

þ nh

�
N3

cHEh þ NcHFh þ
1

Nc
HGh

�
: ð40Þ

In this work, we provide the analytical result of the leading
color contribution in Eq. (40), which is defined by

Hð2Þ
L:C: ≡ N4

cHA; ð41Þ

as well as the one including the light fermion-loop con-
tribution

Hð2Þ
L:C:þnl

≡ N4
cHA þ nl

�
N3

cHEl þ NcHFl þ
1

Nc
HGl

�
:

ð42Þ

IV. NUMERICAL RESULTS

When we present the numerical results in this section, a
factor e2g2s= sin2 θW has been extracted out in the hard
functions. The ratio between the mass of the W boson and
that of the top quark is fixed to be m2

W=m
2
t ¼ 3=14 as in

Ref. [19]. The renormalization scale μ is set to
mt ¼ 173 GeV. The phase space is parametrized with
the velocity βt and polar angle θ of the final-state top
quark in the center-of-mass frame of the initial-state
partons, assuming that the incoming gluon moves in the
z direction. The Mandelstam variables can be written as

s ¼ m2
W −m2

t þ 2Δ; t ¼ m2
t − Δð1þ βt cos θÞ;

u ¼ m2
t − Δð1 − βt cos θÞ ð43Þ

with Δ ¼ ðm2
t þmt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

W þ β2t ðm2
t −m2

WÞ
p

Þ=ð1 − β2t Þ. The
phase space constraints are 0 ≤ βt < 1 and −1 ≤ cos θ ≤ 1.
We generate a grid of 3360 points in these regions. The
numerical evaluation of the squared amplitudes at each
phase space point takes about a few minutes on a single
core, and the relative precision is around 10−10. When
performing phase space integration, one needs the values of
the squared amplitudes at points in the intermediate region.
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These can be easily obtained using an interpolation method.
We check that the derived values agree with the ones from
direct computation within an accuracy of at worst 10−3,
which is sufficient for a phenomenological study. The
numerical results of the two-loop amplitudes on this grid as
well as the analytical results are available from the authors
upon request.
We present the leading color result of the hard function in

this paper and expect that this represents the dominant
contribution, as we argued in Sec. II A. To illustrate this in
practice, we examine the one-loop squared matrix element

jMð1Þ
fin j2, which is known with full color dependence [19]. It

is convenient to define the ratio RL:C: ¼ jMð1Þ;L:C:
fin j2=

jMð1Þ
fin j2, which is a function of βt and cos θ. Then,

1 − RL:C: estimates the effect of 1=N2
c suppressed, dubbed

subleading color, contributions. The numerical result of
RL:C: is presented in Fig. 6. In the small βt region (βt ≤ 0.2),
RL:C: is around 1.15, insensitive to the variation of cos θ. As
βt increases, the dependence of RL:C: on cos θ becomes
stronger, and RL:C: can grow to 1.36 or decrease to 0.91 at
most. However, j1 − RL:C:j is less than 20% except for the
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FIG. 6. Ratio of the leading color contribution of jMð1Þ
fin j2 to the one with full color dependence. The left plot shows the βt distribution

with cos θ fixed at −1 (red), 0 (blue), 0.5 (cyan), and 1 (dark green). The right plot presents the ratio over cos θ with βt fixed at 0.1 (red),
0.5 (blue), 0.8 (cyan), and 0.9 (dark green).
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FIG. 7. Leading color (top panel) and the sum of leading color and light fermion-loop contributions (bottom panel) to the NNLO
hard functions.
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region with βt ≥ 0.8 and cos θ ≥ 0.8, which indicates that
the leading color result is the dominant contribution, as
expected.
Then, we turn to the leading color NNLO hard function.

As shown in Fig. 7, it changes very slowly in the region
with βt ≤ 0.7 and cos θ ≤ 0.6. For small βt, this flat region
extends to almost the whole cos θ range. But the leading
color hard function quickly becomes divergent for large βt
and general cos θ. This reflects the fact that the amplitude
develops new singularities in the limit mt → 0. One can
also observe the strongest divergence in the case of
cos θ ¼ 1. This behavior is due to the tree-level propagator
that contains 1=ð1 − βt cos θÞ. This kind of divergence
should cancel in the ratio Hð2Þ=Hð0Þ, as displayed in
Fig. 8. However, the divergences arising from higher-order
corrections, which are manifested in the logarithmic terms
lnð1 − β2t Þ, lnð1 − βt cos θÞ, and lnð1þ βt cos θÞ, survive in
the ratio. Though they are numerically large, the hadronic
cross section still drops dramatically as βt → 1 due to the
overwhelming suppression of the parton distribution func-
tion [19]. Therefore, we do not need to worry about the
divergent behavior in Fig. 8.
The light fermion-loop diagrams may also be important

due to the large value of nl. In Figs. 7 and 8, we also show
the numerical result of the hard function defined in
Eq. (42), which includes such additional contributions.
We find that the light fermion-loop diagrams provide
negative contributions and decrease the leading color result
by about 30% in most of the phase space. To be more

specific and realistic, we perform the convolution with
parton distribution functions6 and integrate over all phase
space, observing that the leading color and nl dependent
parts of the NNLO hard function contribute about 5.4% and
−1.4%, respectively, corrections to the LO cross section at
the 13 TeV LHC.

V. CONCLUSION

We have computed the two-loop virtual corrections to
tW production at hadron colliders, focusing on the leading
color and light fermion-loop contributions. Using the
method of differential equations, the results are obtained
in terms of multiple polylogarithms. After renormalization,
we find that the IR divergences exhibit a structure that is
fully determined by the anomalous dimensions, which are
known in the literature. The finite part of the two-loop
amplitude contributes to the hard function, which is an
essential ingredient for a NNLO Monte Carlo calculation.
Numerical evaluation of the one-loop squared amplitude
confirms that the leading color result gives the dominant
contribution. The leading color NNLO hard function shows
very weak kinematic dependence in the region where the
velocity βt of the top quark is small. But it increases
dramatically as βt approaches 1. This behavior is caused by
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FIG. 8. Same as Fig. 7 but normalized by Hð0Þ.

6We use CT14NLO [53] with LHAPDF6 [54] in practical
calculation, and the factorization and renormalization scales are
set at mt.
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two kinds of singularities. The first kind of singularity,
which arises due to the on-shell propagator, disappears after
normalization by the LO hard function, while the second
still exists as logarithmic terms. However, they do not have
a large impact on the hadronic cross section due to the
suppression of the parton distribution function in the region
of βt → 1. The light fermion-loop contribution is negative,
amounting to 30% of the leading color result. The sum of
the leading color and light fermion-loop contributions to
the NNLO hard function increases the LO cross section by
about 4% at the 13 TeV LHC.
Combined with the NNLO N-jettiness soft function

[55,56] and beam functions [57,58], it is now promising
to calculate the dominantNNLOQCDcorrection to the cross
section of tW production using the N-jettiness subtraction
method [59–61].

The analytical results of full color two-loop amplitudes
are difficult to obtain due to multiple elliptic curves, which
some master integrals beyond leading color may depend
on. However, it is feasible to calculate them numerically
thanks to the recent developments, such as the AMFlow
[62] and SeaSyde [63] packages or the method proposed in
[64]. We leave this to future work.
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