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The connection between the spin distribution and the topological structure of the baryon is an open and
important problem. Here we address it using QCD in (1þ 1) spacetime dimensions, which is exactly
solvable at large number of colors N. It is found that the distribution of chirality inside a baryon is
drastically different from a chirality distribution inside states with zero baryon number, “mesons.” This
difference is shown to arise from the topological structure of the baryon—at large N, all of the baryon’s
chirality is concentrated near x ¼ 0, whereas in a meson state it vanishes in the small x limit. Our results
illustrate how the constituent features of the baryon reemerge and are tied to the topological features of the
bosonized solitonic solution. Possible implications for QCD in (3þ 1) dimensions and for deep inelastic
scattering experiments are discussed.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the established
fundamental theory of strong interactions. Nevertheless,
the ways in which the properties of hadrons and their
interactions emerge from this microscopic theory remain
poorly understood. Two of the most interesting open
problems are the confinement of quarks and the distribution
of the baryon’s spin among its constituents. The latter is
usually addressedwithin the partonmodel that does not fully
take into account the nonperturbative structure of the baryon
(which only enters through the initial conditions in the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) par-
ton evolution equations). This lack of connection between
the nonperturbative and perturbative sides of the problem
may in fact be at the origin of the difficulties in theoretical
understanding of the spin distribution inside the proton, or
the “proton spin puzzle” (see [1–6] for reviews).
In this paper, we address the connection between the

nonperturbative structure of the baryon and the spin (or
rather, chirality) distribution inside of it using QCD in
(1þ 1) dimensions, QCD2. This model is exactly solvable
in the limit of large number of colors N and is known to
share many properties with QCD4, including confinement,
mass gap generation, and spontaneous breaking of chiral
symmetry [7–10].

While the notion of spin is absent in one spatial
dimension, what is often meant by the “spin” structure
of the proton in high-energy interactions, even in four
spacetime dimensions, is really its chirality content, which
is perfectly well-defined in two spacetime dimensions.
Furthermore, at high energy, dimensional reduction leads
to the separation of transverse and longitudinal degrees of
freedom, so that (1þ 1)-dimensional dynamics may be
more relevant for understanding QCD4 than naively
expected. Crucially, large N QCD2 is an exactly solvable
model, valid at all energy scales, which will allow us to
address the effect of hadron topological structure on the
chirality distribution.
Indeed, the internal topology of the baryon may affect

the chirality distribution inside of it. It has long been
known [11,12] that baryons can be described as topologi-
cal solitons. The importance of this topological structure
for the spin distribution has already been addressed in the
context of the Skyrme model [13]. It has been found that
the chirality of valence quarks does not contribute to the
spin of the baryon, and all of it arises from the topology of
the Skyrmion solution. However in (3þ 1) dimensions, the
Skyrme model represents an effective low-energy descrip-
tion of QCD—therefore its validity at short distances, and
thus the relevance for the interpretation of the data from
deep inelastic scattering (DIS) can be questioned. In
contrast, in QCD2 the topological description applies at
all energy scales, and will allow us to investigate the effect
of baryon topology on its chirality distribution from first
principles.
In the ’t Hooft limit (N → ∞, g2N fixed), QCD2 reduces

to an interacting sine-Gordon model [14–16]. In this
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bosonic description, the baryon emerges as a topological
soliton solution—a kink. In this work, we apply ideas from
[17] to describe the quantum soliton state in terms of its
constituents. This decomposition is analogous to the parton
model in QCD4, but fully takes account of the topological
structure of the soliton. We then use this decomposition to
evaluate the chirality distribution inside the soliton.
This paper is organized as follows. We motivate our

calculation from the proton spin problem point of view in
Sec. II A. We then review some properties of QCD2 and of
the sine-Gordon model in Secs. II B and II C. Section III
contains the original results of this work. In Sec. III A we
extend the results of [17] on quantum solitons to the sine-
Gordon model. We then use these results in Sec. III B to
define and compute the matrix elements of axial current,
representing a (1þ 1) analog of the polarized structure
function g1ðxBÞ (xB is the Bjorken x). We conclude in
Sec. IV with a discussion of these results and their possible
implications for the (3þ 1)-dimensional QCD and the spin
structure of the baryons. For the sake of self-completeness,
in the Appendix there is a pedagogical review of deep
inelastic scattering and of the proton “spin crisis.”

II. THE PROTON SPIN, THE TOPOLOGY,
AND THE SINE-GORDON MODEL

A. Motivation

Before moving on to (1þ 1) dimensions, let us briefly
recall the role chirality distributions play in spin distribu-
tions. We refer the interested reader to the Appendix and
references therein for more detailed information about 3þ 1
spin physics.
The matrix elements describing the interaction of

hadrons with the electromagnetic field are parametrized
in terms of structure functions which need to be measured
experimentally or evaluated in lattice simulations. Of its
spin dependent parts, the proton polarized structure func-
tion g1ðxBÞ is of particular interest [see Eq. (A10) for its
definition and Eq. (A2) for the kinematic definition of the
Bjorken xB]. It is experimentally measured in polarized
deep inelastic scattering. Moreover, perturbative QCD
relates its first Mellin moment to the axial charges of the
nucleon:

Z
1

0

dxBg1ðxBÞ ¼
1

12
a3 þ 1

36
a8 þ 1

9
a0; ð1Þ

where the axial charges a3, a8, a0 are related to the matrix
elements of the corresponding QCD currents over the
proton state:

2Msμak ∝ hp; sjjμðkÞ5 jp; si: ð2Þ

With a3 and a8 inferred from independent experiments,
polarized DIS provides a measurement of the axial charge

a0 and polarized quark distributions. In other words, it
probes the chirality distribution inside a hadron. It is yet
unknown how the different internal structures of baryons
and mesons affect their chirality distributions. To make
progress toward answering this question, we will study this
question in the (1þ 1)-dimensional sine-Gordon model,
which is exactly solvable.

B. QCD2 in the ’t Hooft limit: The sine-Gordon model

In order to gain better knowledge about the chirality
distribution inside hadrons, we will move on to (1þ 1)
dimensions and compute this distribution explicitly in
QCD2 in the ’t Hooft limit. In this section, we give a brief
overview of the features of this model that are relevant for
our computation. In particular, we recall that its bosonic
representation is an interacting sine-Gordon model.
Consider a non-Abelian gauge field Aμ ∈ SUðNÞ min-

imally coupled to one flavor of fermion q in the fundamental
representation of SUðNÞ,

LQCD2
¼ −

1

4
TrFμνFμν þ iq̄γμð∂μ − igAμÞq −mq̄q; ð3Þ

with Fμν the gluon field strength tensor and m the mass of
the fermion. The theory was first considered in the context
of the large N expansion [7]. It was later realized that this
theory, as was already known for the Schwinger model [18],
also admits a dualized bosonic form [19,20]. We refer the
interested reader to [9,21,22] and references therein for
more details and reviews on QCD2.
In this work, we will focus on the largeN, weak coupling

’t Hooft limit defined by

N → ∞; g → 0; N · g2 ≡ λ ¼ const: ð4Þ

As shown in [20] and in agreement with the spectrum
originally derived in [23], the leading order Lagrangian is
nothing but the interacting sine-Gordon model

L ¼ 1

2
ð∂μϕÞ2 −m02 cos

�
ϕ

f

�
; ð5Þ

with f ¼
ffiffiffiffi
N
4π

q
. m0 is a low-energy parameter which

depends on N, g, and m; it vanishes when m vanishes.
Keeping in mind that its precise relation to the original
parameters is renormalization-scheme dependent, we will
use in this work the relation derived in [20]

m02 ¼
�
Nm

�
gffiffiffi
π

p
�ðN−1Þ=N�2N=ð2N−1Þ

; ð6Þ

which corresponds to renormalizing the Hamiltonian by
normal ordering with respect to the new mass parameterm0.
As we shall clarify in the next section, for 1=f ≠ 2

ffiffiffi
π

p
, the
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sine-Gordon model is equivalent to a model of interacting
fermions.
From the bosonization perspective, each color of the

original fermion is mapped onto a bosonic phase degree of
freedom ϕa. The bosonic field ϕ which dominates the
physics at large N is the sum of these different phases. Note
that this mode ϕ is precisely the one associated with axial
rotation of the original fermion. As remarked in [24], the
Lagrangian (5) can be thought of as the low-energy chiral
effective theory of (3). In this context, the specific value of
f (which corresponds to a specific interaction strength) is
obtained through ’t Hooft anomaly matching; it is fixed by
the anomaly coefficient of QCD2.
Let us recall this argument, following [24]. Consider for

simplicity QCD2 with one flavor of massless quarks. In the
low-energy effective theory there is a massless free bosonic
field (the “pion field”). The theory is invariant under a shift
symmetry of this field that corresponds to the axial
symmetry of the fermionic theory. Explicitly,

ψ → eiαγ
5

ψ ⇔ ϕ → ϕþ 2αf: ð7Þ

The generator of this symmetry is Q5 ¼
R
j05ðxÞdx, so the

axial current on the bosonic side is defined as

jμ5 ¼ 2f∂μϕ: ð8Þ

Anomaly matching is performed by evaluating a matrix
element hjμ5ðpÞjν5ð−pÞi both in the IR (free massless boson)
and UV (massless quarks) theories. In the IR, the free
massless boson theory gives

hjμ5ðpÞjν5ð−pÞi ¼ 4f2
pμpν

p2
: ð9Þ

In the UV, this matrix element gets a contribution from the
anomalous quark loop. The result is proportional to the
number of quarks’ colors N:

hjμ5ðpÞjν5ð−pÞi ¼
N
π

pμpν

p2
: ð10Þ

By matching the anomaly in the IR and UV limits we

obtain f ¼
ffiffiffiffi
N
4π

q
which is indeed the value used above in the

sine-Gordon Lagrangian (5). It also matches the value
obtained from bosonization [20] and agrees with the
scaling of the pion decay constant in QCD4.

C. Properties of the sine-Gordon model

The sine-Gordon model, given by the Lagrangian in
Eq. (5), is very well-studied due to its classical and
quantum integrability; we refer the interested reader to
[14,15,25] and references therein. One of the intriguing
properties of the (bosonic) sine-Gordon model is that it is

the bosonic dual of the massive Thirring model, given by
the Lagrangian [14,15]

L ¼ ψ̄iγμ∂μψ −mT ψ̄ψ −
1

2
gðψ̄γμψÞ2: ð11Þ

The coupling constant g of the Thirring model is related to
the period of the sine-Gordon boson, which is defined by f
in Eq. (5),

1þ g
π
¼ 4πf2: ð12Þ

In particular, f ¼ 1
2
ffiffi
π

p corresponds to g ¼ 0, namely a

free fermion. In our case of large N, f ¼
ffiffiffiffi
N
4π

q
and it

corresponds to a finite (large) coupling constant in the
Thirring model.
Another relevant property of the sine-Gordon model is

the appearance of topologically nontrivial classical solu-
tions—kinks and antikinks. The solution to classical
equations of motion of the Lagrangian (5) which describes
a stationary kink located at the point x ¼ 0 is

ϕcðxÞ ¼
ffiffiffiffiffiffiffi
4N
π

r
arctan e

ffiffiffi
4π
N

p
m0x: ð13Þ

Classical mass of the kink is computed by calculating the
energy of this solution. The Hamiltonian corresponding to
our Lagrangian (5) is

H¼
Z

dx

�
1

2
ð∂tϕÞ2þ

1

2
ð∂xϕÞ2þm02

�
1− cos

� ffiffiffiffiffiffi
4π

N

r
ϕ

���
:

ð14Þ

Note that for convenience we added a constant term
compared to the Lagrangian (5), which of course does
not affect the physics but makes the vacuum energy set to
zero, so the energy we are computing is just the mass of the
kink. The classical kink profile satisfies a Bogomol'nyi-
Prasad-Sommereld (BPS) condition, which relates its
gradient energy to its potential energy:

1

2
ð∂xϕcÞ2 ¼ m02

�
1 − cos

� ffiffiffiffiffiffi
4π

N

r
ϕc

��
: ð15Þ

The BPS condition arises from the fact that the stationary
kink solution minimizes energy in the given topological
sector. By plugging the solution (13) into the Hamiltonian
(14) we obtain the classical mass of the kink

Mkink ¼ 4

ffiffiffiffi
N
π

r
m0: ð16Þ

It is also instructive to compute the vector charge of the
kink. Using bosonization, the vector current reads
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jμ ¼
ffiffiffiffi
N
π

r
ϵμν∂νϕ ð17Þ

and leads to the total vector charge

Q ¼
ffiffiffiffi
N
π

r
½ϕðx → ∞Þ − ϕðx → −∞Þ�: ð18Þ

We see that the fermionic vector charge is mapped onto a
topological charge in the bosonic language. Moreover, for
the kink solution (13) this gives charge N; this shows that
the kink consists of N quarks and represents a bosonic
description of a baryon.
Note also that in (1þ 1) dimensions the axial and vector

currents are related to each other,

jμ5 ¼ ϵμνjν: ð19Þ

In other words, the vector charge density is the axial current
density. The vector charge in our model is the topological
charge, which thus defines the axial current. We have seen
that in (3þ 1) QCD, the axial current matrix element over a
nucleon state is related to the nucleon’s spin. We see that in
our model the role of spin is played by chirality which
arises from the topology of the field configuration.
We have so far only discussed classical profiles. A

legitimate question to ask is how quantum corrections
affect these solutions. A remarkable property of the sine-
Gordon model is that it is “one-loop exact” [15,25]. In the
case of the kink one-loop correction only amounts to
shifting its mass (16) (see [25]),

M1−loop
kink ¼

�
1 −

1

2N

�
Mkink: ð20Þ

In the limit N → ∞ we are considering, it is thus enough to
consider classical kinks.

III. CHIRALITY OF TOPOLOGICAL SOLITONS IN
THE SINE-GORDON MODEL: EXACT RESULTS

A. Solitons as quantum states

In order to consider the matrix element of axial current in
a baryon state, we first need to define what a baryon state is.
As explained in the previous section, on the bosonic side,
the baryons are mapped onto classical topological solitons.
In this section, we will quantize these solitons. Namely, we
will construct quantum states whose expectation values are
the classical soliton solutions. To achieve this, we follow
the method of [17], where solitonic states and encoding of
topology in these states were studied in a scalar ϕ4 theory.
Explicitly, we seek a state jkinki such that

hkinkjϕ̂ðxÞjkinki ¼ ϕcðxÞ; ð21Þ

where ϕ̂ is the field operator and ϕc is the kink solution
defined in (13). Consider the Fourier decomposition of
ϕcðxÞ,

ϕcðxÞ ¼
Z

dk
2π

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp ðαkeikx þ α�ke

−ikxÞ; ð22Þ

where αk are Fourier coefficients and ωðkÞ is a yet
unspecified function of k that will play the role of a
dispersion relation. This formula is introduced to mimic a
free field expansion in Fourier space. Explicitly, taking the
Fourier transform of (13), we have1

αk ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πNωðkÞ

p i
2k

1

cosh

� ffiffiffiffi
N
4π

q
πk
2m0

� : ð23Þ

This suggests the following decomposition of our field
operator:

ϕ̂ðxÞ ¼
Z

dk
2π

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp ðasolk eikx þ asol†k e−ikxÞ; ð24Þ

with asolk an operator satisfying the property

hkinkjasolk jkinki ¼ αk: ð25Þ

As this expansion suggests, the operators asolk , asol†k are a set
of annihilation and creation operators. Indeed, we can
define the momentum operator conjugate to ϕ̂ by

π̂ðxÞ ¼
Z

dk
2π

ð−iÞ
ffiffiffiffiffiffiffiffiffiffi
ωðkÞ
2

r
ðasolk eikx − asol†k e−ikxÞ ð26Þ

provided that

½asolk ; asol†k0 � ¼ 2πδðk − k0Þ ð27Þ

so that the canonical commutation relation

½ϕ̂ðxÞ; π̂ðx0Þ� ¼ iδðx − x0Þ ð28Þ

is satisfied.
It is important to emphasize that the operators asolk and

asol†k are not the creation and annihilation operators of the
noninteracting theory. In particular, they do not diagonalize
the Hamiltonian on their associated vacuum.

1In the following result we have neglected a contact term
proportional to δðkÞ which arises due to the fact that our kink is
not centered around ϕ ¼ 0. A redefinition of ϕ by a constant shift
would get rid of the contact term explicitly, but we prefer to use a
more conventional sine-Gordon Lagrangian. We just note that
none of our results will depend on this contact term so it is
dropped from here on.
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From Eq. (25), we see that the kink state we are looking
for is nothing but a combination of coherent states of these
creation and annihilation operators. Indeed, the state jαki,

jαki ¼ e−
1
2
jαkj2eαka

sol†
k j0solk i ð29Þ

¼ e−
1
2
jαkj2

X∞
nk¼0

αnkkffiffiffiffiffiffiffi
nk!

p jnki; ð30Þ

is a coherent state associated with asolk , asolk jαki ¼ αkjαki.
The state j0solk i is the vacuum state annihilated by asolk .

Correspondingly, jnsolk i ¼ ðasol†k Þnkffiffiffiffiffi
nk!

p j0solk i is the state with

occupation number nsolk ; the state of “n solitonic constitu-
ents” with momentum k. We then easily see that the state

jkinki ¼ ⊗
k
jαki ð31Þ

satisfies the sought-after property (21).
Before moving on, it will be instructive to study some

properties of this kink state. First, let us show that, upon
imposing the correct dispersion relation ωðkÞ, the energy
of the kink is recovered by summing the energies of its
constituents. The classical Hamiltonian of the sine-Gordon

model is given by Eq. (14). It consists of kinetic energy,
gradient term, and potential term. The potential term is
nonquadratic and in general prevents from diagonalizing
the Hamiltonian operator by introducing creation/annihi-
lation operators. However, in the kink state, the BPS
condition (15) is satisfied, and the potential term can be
traded for another gradient term. We assume that the
Hamiltonian is normal ordered with respect to the solitonic
constituent creation-annihilation operators, so that the
vacuum energy is zero. As a result, on the kink state,
the BPS condition vastly simplifies the Hamiltonian:

hĤikink ¼ hkinkjĤjkinki

¼ hkinkj
Z

dx

�
1

2
ðπ̂Þ2 þ ð∂xϕ̂Þ2

�
jkinki: ð32Þ

Note that this expression resembles a free Hamiltonian
except for the coefficient of the gradient term. This
difference can be traced back to the use of the BPS
condition to convert the cosine term into the gradient
term. Now using the expressions (24) and (26) we obtain
an expression for the expectation value of the Hamiltonian
over the kink state in terms of creation and annihilation
operators:

hĤikink ¼
�Z

dk
2π

�
ðasolk asol−k þ asol†k asol†−k Þ

�
k2

2ωðkÞ −
ωðkÞ
4

�
þ 2asol†k asolk

�
k2

2ωðkÞ þ
ωðkÞ
4

�	

kink

: ð33Þ

We are now in a position to choose ωðkÞ such that the
unwanted contributions cancel from the Hamiltonian. It
leads to2

ωðkÞ ¼
ffiffiffi
2

p
jkj: ð34Þ

This expression for the dispersion relation shows again
that the excitations created by asol†k are not free particle
excitations. They are “corpuscular constituents” which
make up coherently our quantum soliton state.
With this dispersion relation at hand, the Hamiltonian

(33) can be rewritten in terms of occupation number
operator N̂sol

k ¼ asol†k asolk . The kink mass (16) can therefore
be calculated by summing the energies over all the
constituents with the corresponding average occupation
numbers Nk ¼ jαkj2,

Mkink ¼
Z

dk
2π

ωðkÞNk ¼
Z

dk
2π

ωðkÞ · jαkj2: ð35Þ

Plugging in (23), we indeed recover the expression for the
kink mass (16).
As first realized in [17], an interesting feature of

expressing a kink as a quantum state is the possibility of
understanding the appearance of topology at the corpus-
cular level. This is done by splitting the Fourier coefficients
(23) into “topology” and “energy” parts [remember that a
contact term in αk is dropped; see the discussion under a
footnote before Eq. (23)]

αk ¼ tkck; tk ¼
i

ffiffiffiffiffiffiffiffiffiffi
ωðkÞp
k

; ck ¼−
ffiffiffiffiffiffiffi
πN
2

r
1

cosh
ffiffiffiffi
N
4π

q
πk
2m0

:

ð36Þ

Equivalently, the field configuration in position space is
represented as a convolution of topology and energy

ϕcðxÞ ¼
ffiffiffiffi
N
π

r
ðsign � sechÞ

� ffiffiffiffiffiffi
N
4π

r
m0x

�
þ π

2
; ð37Þ

where the sign function is defined as � 1
2
depending on the

sign of the argument. It is easy to verify that the presence of
2Note that this result differs by a factor of

ffiffiffi
2

p
from the one

given in [17].
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the sign function is crucial to get a nonzero topological
charge. In Fourier space, it translates into a singularity at
k ¼ 0. In this language, topology can be understood as a
condensation of constituents in the zero mode. It reflects
the global aspects of topological configuration and will
play a crucial role in the rest of this work. The additional
constant π

2
is at the origin of the contact term and is

irrelevant for our computation.
We also note that, surprisingly, the energy part of our

sine-Gordon soliton is made of a nontopological soliton of
the inverted λϕ4 of [17]. In this theory, the soliton profile
takes the form

ϕn−tðxÞ ¼
mffiffiffi
λ

p sechðmxÞ; ð38Þ

with m the bare mass of the theory. This suggests that such
a decomposition between energy and topology is indeed
meaningful and may help shed some new light on the
structure of topological states.

B. Axial current on the light cone

To make contact with the traditional parton model, let us
now formulate our model in the infinite momentum frame.
This will allow us to neglect the baryon mass, in accord
with the parton model. To go to the infinite momentum
frame, we will make a boost with β → 1. The field profile
becomes

ϕbðx; tÞ ¼
ffiffiffiffiffiffi
N
4π

r
4 arctan e

ffiffiffi
4π
N

p
m0γðxþβtÞ

⟶
β→1

ffiffiffiffiffiffi
N
4π

r
4 arctan e

ffiffiffi
4π
N

p
m0γ

ffiffi
2

p
xþ ; ð39Þ

where we have defined light-cone coordinates x� ¼ 1ffiffi
2

p

ðt� xÞ and the γ parameter is as usual γ ¼ 1ffiffiffiffiffiffiffiffi
1−β2

p . For a

proton on the light cone we consider a decomposition of the
field operator into light-cone constituents:

ϕ̂ðxþÞ ¼
Z

dkþ
2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
kþ

q ðakþeikþx
þ þ a†kþe

−ikþxþÞ: ð40Þ

Following the same steps outlined above for a stationary
kink, we could introduce a boosted kink state as a coherent
state of such constituents with the corresponding coeffi-
cients αkþ . Similar to Eq. (22) αkþ could be calculated as the
light-cone Fourier coefficients of the classical field con-
figuration. As a result, we obtain

αkþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
kþNπ

q
i

2kþ

1

cosh

� ffiffiffiffi
N
4π

q
πkþ

2
ffiffi
2

p
γm0

� : ð41Þ

It is instructive to rewrite this expression using as a
variable Bjorken xB. Note that theþ component of proton’s
momentum is pþ ¼ ffiffiffi

2
p

γMp where Mp is the proton mass
given by the expression (16). Since solitonic constituents
play the role of partons, xB ¼ kþ

pþ
. Therefore, the light-cone

Fourier coefficients can be rewritten in terms of xB as

αkþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
NxBpþπ

q
i

2xBpþ

1

cosh ½NxB�
: ð42Þ

We see that the constituent occupation number

Nkþ ¼ jαkþj2 ¼
πNffiffiffi
2

p
xBpþ

1

cosh ½NxB�2
ð43Þ

has a logarithmic divergence at small xB due to the kink’s
topological structure.
We are now ready to calculate the matrix element of the

axial current in the state of an infinitely fast proton.
Remembering from the bosonization dictionary that jμ5 ¼ffiffiffi

N
π

q
∂
μϕ and using properties of coherent states in position

space we get

hkinkjj5þðxþÞjkinki ¼
ffiffiffiffi
N
π

r
2

ffiffiffi
2

p
m0γ

cosh

� ffiffiffiffi
8π
N

q
γm0xþ

�

¼ pþ

2 cosh

�
πpþ
2N xþ

� : ð44Þ

Going to the momentum space and expressing the results in
terms of Bjorken xB we get from the above

hkinkjj5þðxBÞjkinki ¼ N
1

cosh ½NxB�
: ð45Þ

This expression shows that the matrix element of the axial
current is dominated by the low xB region, xB ∼ 1

N. We
illustrate this in Fig. 1. For large enough N there is a strong
suppression of the region xB ∼ 1 while at the same time the
small xB region is enhanced.
This behavior at low xB can be understood as arising

from the nontrivial topology of the baryon. We can show
this explicitly by considering the decomposition of our
soliton state (37) into an energy component and a topo-
logical component. Rewriting it in the infinite momentum
frame, we have
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ϕbðxþÞ ¼
ffiffiffiffi
N
π

r
ðsign � sechÞ

�
πpþxþ

2N

�
: ð46Þ

To mimic the meson wave function, we remove the baryon
topology by replacing the sign function by a δ-function and
consider only the energy part:

ϕn−t
b ðxþÞ ¼

ffiffiffiffi
N
π

r
1

cosh

�
πpþxþ
2N

� : ð47Þ

Of course, this solution is not a classical solution of the
equation of motion; it is meant to provide a caricature of the
meson wave function that does not possess the baryon
topology.
Going through the steps outlined above, we find the axial

current in the coherent state corresponding to this non-
topological “mesonic” soliton:

hnontop:jj5þðxBÞjnontop:iðxBÞ ¼
2N2xBi

π coshðNxBÞ
: ð48Þ

We see that at small xB this expression vanishes, in stark
contrast to the case of the baryon. Comparing the left and
right panels of Fig. 1, we clearly see that the xB → 0 region
contains only the topological contribution. The energy
contribution vanishes at small xB.

IV. DISCUSSION

In the traditional parton model, parton distributions are
sensitive to the nonperturbative hadron structure only
through the initial conditions for the evolution equations.
The perturbative QCD evolution is then completely
decoupled from the hadron structure and is identical for

baryons and mesons. There is, however, an important
question about the role of nonperturbative effects, and in
particular the effect of baryon topology on parton distri-
butions. Addressing this question is very hard in real
(3þ 1)-dimensional QCD, but we have solved the problem
of parton distributions inside baryons exactly using QCD2

in the ’t Hooft limit.
In this limit, QCD2 reduces to the interacting sine-Gordon

model. As we saw in the previous section, its topological
solitons are dual to baryons. Moreover, they can be realized
as quantum coherent states. We have evaluated the matrix
element of the axial current on such states on the light cone.
The soliton wave function can be exactly decomposed in a
convolution of a topological and a nontopological contri-
bution.We have shown that the main contribution (at leading
order in 1=N, where N is the number of colors) to the
“baryon” expectation value of j5þðxBÞ comes from the
region xB < 1

N. We have also explicitly demonstrated that
this enhancement at xB ¼ 0 originates from the topology of
the soliton.
These results provide new insights on the baryon

structure at large N. Even though they have been obtained
through bosonization, they are consistent with the picture
of N quarks moving in a mean field created by weak ∼1=N
binary potentials, with N2 quark pairs contributing to the
average Hartree potential [12]. We find that this picture
describes not only the mass of baryons at large N, but also
their chirality distributions—namely, each quark carries
∼1=N fraction of the baryon’s chirality. Our results
illustrate how the constituent quark picture of the baryon
reemerges and is tied to the topological features of the
bosonized solitonic solution.
One may wonder whether our results obtained in QCD2

are relevant in the real (3þ 1)-dimensional world. The
potential relevance of these results for spin physics follows

FIG. 1. Left panel: The matrix element of the axial current inside a baryon as a function of Bjorken x for different numbers of colorsN.
For large N, the xB ∼ 1 region is suppressed while the xB → 0 region is enhanced. Right panel: Same as left panel, but for a meson. The
xB → 0 region contribution vanishes, reflecting the lack of baryon topology.
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from the operator product expansion (OPE) (A12) that
relates the hadronic tensor in polarized DIS to the expect-
ation value of the axial current. However, the relation (19)
between the axial and vector currents that locks the axial
current to the vector charge and many of the derivations in
Sec. III linking the matrix element of the axial current to the
topology of the baryon are specific to (1þ 1)-dimensional
theory. Nevertheless, we believe that our results may be
relevant for the real QCD, for the following reasons. First,
in (3þ 1) dimensions, there is also a linking of the UVand
IR regions, through the chiral anomaly, with a correspond-
ing anomaly matching; this is reminiscent of the anomaly
matching in Eqs. (9) and (10). Because of this, the polarized
structure functions, even at large momentum transfer, are
sensitive to the IR description of the hadron, and thus to its
topology. Second, at high energies the transverse and
longitudinal degrees of freedom factorize, so our
(1þ 1)-dimensional treatment may be more relevant for
high-energy interactions in the (3þ 1)-dimensional world
than naively expected.
One of the big differences between QCD2 and QCD4 is

the absence of dynamical gluons in QCD2. In the real
(3þ 1)-dimensional QCD, the dynamical gluons are
known to contribute to the polarized structure functions
via the chiral anomaly [26,27] that links the short and large
distances [28]. As a result, the matrix element of the axial
current measured in DIS becomes sensitive to the large
distance, nonperturbative hadron structure [29–34]. How
would the topological structure of the baryon affect the
gluon distributions in QCD4? One possible mechanism is
offered by the presence of “baryon junctions” in the wave
functions of the baryons that are required by the gauge
invariance [35]. These junctions have been found to
provide an efficient nonperturbative mechanism for baryon
stopping [36], but their implications for the polarized gluon
distributions were never studied.
What are the phenomenological consequences of our

results? Our main prediction is the dramatic difference
between the spin distributions inside baryons and mesons.
Since the singlet axial current contributes to the polarized
structure function g1ðxBÞ, we expect that this structure
function at small xB is enhanced for baryons and suppressed
for mesons. This prediction can be tested in experiments,
since meson structure functions can be accessed through the
diffractive DIS with a baryon in the target fragmentation
region separated by a rapidity gap from the inelastic final
state. The polarized structure functions of baryons and
mesons can also be measured in lattice QCD (see e.g.
[37–41]).
Another interesting direction is suggested by the Gribov-

Lipatov reciprocity relation [42] between the fragmentation
functions and parton distributions. For quark fragmentation
to protons, the corresponding fragmentation function
Dp=qðzÞ is softer than for mesons [43]. Through the
reciprocity relation, this implies a softer quark distribution

in Bjorken x inside the proton, in accord with our findings.
It would be interesting to extend the present study to spin-
dependent quark fragmentation functions ΔDp=qðzÞ into
protons and vector mesons in semi-inclusive DIS.
Recently, the relation between the parton model and the

hadron structure has been reexamined from the viewpoint
of quantum information. Namely, the parton distributions
were argued to arise from the reduced density matrix
obtained from the pure density matrix of the hadron by
tracing over the degrees of freedom that are unobservable in
DIS. This approach predicts the emergence of the max-
imally entangled state at small x [44–46] that can be viewed
as an alternate picture of saturation [47–49] and is
supported by the recent analyses [50,51] of the DIS data
from HERA [52]. From this viewpoint, the present work
can be viewed as a first step in the extension of this
approach to polarized structure functions, where the chiral
anomaly plays a crucial role. It would be interesting to
extend our study by explicitly evaluating the entanglement
entropy and exploring its relation to the polarized structure
functions. Another future direction would be to try and
extend our approach to the (3þ 1)-dimensional QCD on
the light cone; one way to proceed would be to use the
Nf ¼ 1 baryon model proposed in [53]. Within QCD2, it
would be interesting to study the effect of 1=N corrections
and consider the theory with several quark flavors.
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APPENDIX: PROTON SPIN

This appendix contains a brief overview of the proton
spin problem and its connection to gauge field topology,
and the ways in which the proton spin distributions are
measured in polarized deep inelastic scattering. Our nota-
tions follow [2].
The “proton spin” measured in DIS experiments is

defined through the matrix element of the axial vector
current:

2Msμ ¼ hp; sjΠ̄γμγ5Πjp; si; ðA1Þ

where jp; si is the proton state with spin s and Π is the
fermionic proton operator; see also [54] for a more detailed
discussion. In the experiment with polarized particles, a
nonvanishing matrix element of the axial current manifests
itself through the cross section dependence on polarization.
The process most studied in this context is polarized deep
inelastic scattering ⃗lþ p⃗ → ⃗lþ X, where ⃗l is a polarized
lepton and X represents the sum over all possible channels.
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The corresponding cross section depends both on the
polarization of the proton and of the initial lepton.
The leading contribution to DIS is shown in Fig. 2. Given

an incoming lepton with four-momentum k and energy E
in the target rest frame, scattering off a hadron of mass
M with a momentum transfer q ¼ k − k0 and energy loss
ν ¼ E − E0, with k0 and E0 the four-momentum and energy
of the outgoing lepton, one can define dimensionless
Bjorken x and inelasticity y as

xB ¼ Q2

2Mν
¼ Q2

2p · q
; ðA2Þ

y ¼ ν

E
; ðA3Þ

withQ2 ¼ −q2. The corresponding differential cross section
can be expressed in terms of the leptonic and hadronic
tensors, lμν and Wμν (to be defined below), as

d2σ
dxBdydϕ

¼ e4

16π2Q4
lμνW

μν
λλ ; ðA4Þ

where ϕ is the azimuthal angle of the scattered lepton.
The leptonic and hadronic tensors are defined in terms of

the correlation functions of the electromagnetic current jμ

by computing the diagram on Fig. 2(a) (see [2] for a
detailed derivation):

lμν ¼
X
sf

hk0; sfjjνl ð0Þjk; slihk; sljjμl ð0Þjk0; sfi; ðA5Þ

Wμν
λλ0 ¼

1

4π

Z
d4xeiqxhp; λ0j½jμðxÞ; jνð0Þ�jp; λi: ðA6Þ

This decomposition fully splits the electromagnetic
sector contribution from the QCD contribution. The tensor
lμν can be directly computed in perturbation theory. On the
other hand, the hadronic tensor Wμν

λλ0 is difficult to evaluate

because of the nonperturbative nature of the strong inter-
action. To study it further, it is useful to decompose the
hadronic tensor into an irreducible set of Lorentz structures,
the so-called structure functions. In order to proceed, we
first need to specify the polarization of the target proton.
The most general polarization state for a spin 1=2 target in
its rest frame can be described by the following density
matrix:

ρ ¼
X1=2

λ;λ0¼−1=2

Aλλ0 jλihλ0j: ðA7Þ

In this case, it is convenient to write the matrix A in terms of
Pauli operators

A ¼ 1

2

�
1þ 1

M
s⃗H · σ⃗

�
; ðA8Þ

where we used the fact that TrðAÞ ¼ 1 and the factor of M
is introduced for dimensional reasons.
The relation between the four-vector sμ in (A1) and s⃗H

is established in the rest frame of the target through
sμ ¼ ð0; s⃗HMÞ; the polarization of the target is fully deter-
mined by this quantity. Assuming the polarization of the
hadron is fixed, the hadronic tensor of interest becomes

Wμν ¼
X
λλ0

Aλλ0W
μν
λλ0 : ðA9Þ

We are now ready to define the structure functions. Taking
into account current conservation qμWμν ¼ qνWμν ¼ 0

together with the transformation properties of Wμν under
time reversal and parity transformations [which are derived
from (A6); see for instance [2] ], the most general Lorentz
covariant hadronic tensor for deep inelastic scattering on a
polarized spin 1=2 target is

(a) (b)

FIG. 2. (a) Deep inelastic scattering. (b) The photon-parton interaction vertex ξ ∈ ½0; 1� is the momentum fraction of the parton.
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Wμν ¼
�
−ημν þ

qμqν
q2

�
F1 þ

1

p · q

�
pμ −

p · qqμ
q2

�

×

�
pν −

p · qqν
q2

�
F2 þ

i
p · q

ϵμνρσqρsσg1

þ i
ðp · qÞ2 ϵμνρσq

ρðp · qsσ − s · qpσÞg2: ðA10Þ

The functions F1, F2, g1, g2 are called the structure
functions. They depend on the relativistic invariants
p2 ¼ M2; p · q;Q2 ¼ −q2. It is conventional to express
this dependence in terms of Q2 and the dimensionless
variable xB. The functions g1 and g2 are sensitive to the
polarization of the target and are often referred to as
polarized structure functions.
When considering high energies and large momentum

transfers, a particularly useful tool is the operator product
expansion (OPE), which allows one to represent two point
correlators, such as Wμν, as an expansion in local oper-
ators.3 The power counting for the expansion of Wμν is
done in terms of the “twist” of a given operator

t ¼ dimension − spin ðA11Þ

and the leading order are twist two operators. In particular,
the OPE allows us to understand the different structure
functions in terms of contributions from local operators.
In particular, at leading order, the part of the operator
expansion of Wμν contributing to g1 (i.e. with the appro-
priate symmetries) is [54]

Wμν ∼
Q2→∞

2ϵμνλρ
pλ

Q2

�
CNS

�
j3ρ5 þ

1ffiffiffi
3

p j8ρ5

�
þ 2

ffiffiffi
2

p
ffiffiffi
3

p CSj0ρ5

�
;

ðA12Þ

where jaμ5 ¼ q̄γμγ5Taq is the QCD axial current with Ta

(a ¼ 1;…; 8) being the generators of SUð3Þ, normalized so
that TrðTaTbÞ ¼ 1

2
δab; T0 ¼ 1=

ffiffiffi
6

p
. CNS and CS are Wilson

coefficients which can be computed in perturbation theory.
This relation provides a direct link between the structure
function g1 and the miscroscopic QCD axial current. In
other words, measurements of g1 can be interpreted as
probing the axial charge content of the proton. This is also
why measurements of g1 are often referred to as probing the
spin structure of the proton; as for free fields the axial
charge is related to spin.
So far the discussion has been generic. We will now

restrict ourselves to a particularly interesting limit in which
DIS is often considered, the so-called Bjorken limit. In this
case, the momentum transfer Q2 is sent to infinity while
keeping xB fixed. Asymptotic freedom then suggests that

the physics can be described in terms of free quarks and
gluons. This results in the structure functions depending
only on xB, a phenomenon known as “Bjorken scaling.”
This is indeed the case at leading order, and the OPE and
other perturbative QCD methods can be used to system-
atically compute corrections. Scaling, taken literally, leads
to the “naive parton model,” where DIS cross sections are
computed by considering a lepton scattering off a quark
which carries a momentum fraction ξ of the proton.
The parton model is usually formulated in a frame where

the target nucleon has infinite momentum, the so-called
infinite momentum frame (IMF). In this frame the target
mass can be neglected, so that the nucleon has 4-momentum
(assuming that it moves in the z-direction) pμ ¼ ðp; 0; 0; pÞ
and the parton has exactly a fraction ξ of this momentum:
ðξp; 0; 0; ξpÞ. By computing the scattering of a virtual
photon and a free quark, represented in Fig. 2 (see for
instance [2]), one can easily find the contribution of a
single quark with momentum fraction ξ to the distribution
functions

Fq;ξ
1 ðxBÞ ¼

e2q
2
δðξ − xBÞ; ðA13Þ

Fq;ξ
2 ðxBÞ ¼ xBe2qδðξ − xBÞ ¼ 2xBF

q;ξ
1 ðxBÞ; ðA14Þ

gq;ξ1 ðxBÞ ¼
e2q
2
hqhHδðξ − xBÞ; ðA15Þ

gq;ξ2 ðxBÞ ¼ 0; ðA16Þ

where eq is the electric charge of the quark and hq is the
helicity of the free quark. The quantity hH denotes the
helicity of the target; in the IMF polarization of the target
becomes sH ¼ phH. In this picture, the structure functions
acquire an intuitive meaning. Defining q�ðξÞ as being the
probability distribution of a quark whose helicity is aligned/
antialigned to the proton’s, integrating over the momentum
fraction ξ, and summing over helicities, we obtain

Fpart:mod:
1 ðxBÞ ¼

X
q

e2q
2
ðqþðxBÞ þ q−ðxBÞ þ q̄þðxBÞ

þ q̄−ðxBÞÞ; ðA17Þ

Fpart:mod:
2 ðxBÞ ¼ 2xF1ðxBÞ; ðA18Þ

gpart:mod:
1 ðxBÞ ¼

X
q

e2q
2
ðqþðxBÞ − q−ðxBÞ þ q̄þðxBÞ

− q̄−ðxBÞÞ; ðA19Þ

gpart:mod:
2 ðxBÞ ¼ 0: ðA20Þ

3The OPE is a central tool of perturbative QCD; we refer the
interested reader to [55] and references therein.
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We see that in the Bjorken limit, xB can be interpreted as
the momentum fraction of a proton that a constituent parton
is carrying in the infinite momentum frame. The function
F1ðxBÞ is then simply the probability distribution of finding
a given quark in the hadron with momentum fraction xB.
The function g1ðxBÞ measures polarization asymmetries in
the quark distributions.
The integral of g1 over xB yields its first Mellin moment;

plugging in the quark charges, we get

Z
dxBg

part:mod:
1 ðxBÞ ¼

1

2

�
4

9
Δuþ 1

9
Δdþ 1

9
Δs

�
; ðA21Þ

where we have defined Δq ¼ R
dxBðqþðxBÞ − q−ðxBÞÞ. It

is useful to further rewrite it in terms of axial currents that
appear in Eq. (A12). The axial charges are defined as

2MsμgðaÞA ¼ hp; sjjμðaÞ5 jp; si: ðA22Þ

A frequently used convention is to reabsorb some of the
SUð3Þ normalization into the axial charges by defining [54]

a3 ¼ 2g3A; a8 ¼ 2
ffiffiffi
3

p
g8A; a0 ¼

ffiffiffi
6

p
g0A: ðA23Þ

In these terms, the parton model prediction for the first
moment of g1 yields the Ellis-Jaffe sum rule

Z
1

0

dxBg1ðxBÞ ¼
1

12
a3 þ 1

36
a8 þ 1

9
a0; ðA24Þ

where the axial charges a3 and a8 can be independently
inferred from low-energy data on neutron β-decay and
hyperon decay [assuming SUð3Þ symmetry] [56].
Assuming the validity of the parton model, a measurement
of the first moment of g1 is effectively a measurement of the
singlet axial charge a0 ¼ Δuþ Δdþ Δs.
The measurements of polarization asymmetries in the

final states in polarized DIS give a value of a0jQ2→∞ ¼
0.33� 0.06 [54]. This value is in sharp contradiction with
the value predicted by the constituent quark model. As
reviewed in [5], the most naïve nonrelativistic SUð6Þ
description of the proton yields a0 ¼ 1. More realistic
relativistic “bag” models predict a0 ≈ 0.6, still leaving a
discrepancy of a factor of 2.
A major ingredient which has been missing in our

discussion so far is how the gluons contribute to the proton

axial charge. In the partonic description, the gluons are
absent from the picture. This can be traced back to the OPE
for g1 (A12), where no gluonic operators are present at
leading order. Indeed, the only gluonic operator of twist
two is the topological charge density

QðxÞ ¼ αs
4π

TrðGμνG̃
μνÞ; ðA25Þ

where αs is the QCD coupling constant. As is well known,
this operator is a total derivative

QðxÞ ¼ 2∂μKμ; ðA26Þ

Kμ ¼
αs
8π

ϵμνλρ

�
Aν
a

�
∂
λAρ

a −
1

3
gfabcAλ

bA
ρ
c

��
; ðA27Þ

and as a result does not contribute in perturbation theory. It
is also well known that topological charge is precisely the
operator that nonperturbatively leads to an anomalous
nonconservation of the axial vector

∂μj
μ
5 ¼ NfQðxÞ; ðA28Þ

where Nf ¼ 3 is the number of flavors. As a result the
operator QðxÞ is expected to give a substantial nonpertur-
bative contribution to the axial charge. To describe this
effect, we can rewrite the anomaly equation (A28) as

∂μðjμ5 − 2NfKμÞ ¼ 0: ðA29Þ

This form suggests to introduce a similar decomposition for
the axial charge. In particular, we decompose a0 as

a0 ¼ ã0 −
αs
2π

NfΔg; ðA30Þ

with Δg an explicit contribution from the topological
gluonic operator and ã0 the remainder of the proton axial
charge.
This decomposition was suggested early on as a solution

to the “spin” crisis [29–31,57,58], and recently revisited in
[32,33]. Indeed, as suggested by this decomposition, the
topological gluonic configuration can potentially screen the
axial charge inside the proton. In this scenario, one expects
that ã0 corresponds to the net axial charge carried by quarks
inside the proton, in accord with the naïve quark model.
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