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The chiral soliton lattice (CSL) is a lattice structure composed of domain walls aligned in parallel at
equal intervals, which is energetically stable in the presence of a background magnetic field and a finite
(baryon) chemical potential due to the topological term originated from the chiral anomaly. We study its
formation from the vacuum state, with describing the CSL as a layer of domain-wall disks surrounded by
the vortex or string loop, based on the Nambu-Goto-type effective theory. We show that the domain wall
nucleates via quantum tunneling when the magnetic field is strong enough. We evaluate its nucleation rate
and determine the critical magnetic field strength with which the nucleation rate is no longer exponentially
suppressed. We apply this analysis to the neutral pion in the two-flavor QCD as well as the axionlike
particles (ALPs) with a finite (baryon) chemical potential under an external magnetic field. In the former
case, even though the CSL state is more energetically stable than the vacuum state and the nucleation rate
becomes larger for a sufficiently strong magnetic field, it cannot be large enough so that the nucleation of
the domain walls is not exponentially suppressed and promoted, without suffering from the tachyonic
instability of the charged pion fluctuations. In the latter case, we confirm that the effective interaction of the
ALPs generically includes the topological term required for the CSL state to be energetically favored. We
show that the ALP CSL formation is promoted if the magnetic field strength and the chemical potential of
the system is slightly larger than the scale of the axion decay constant.
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I. INTRODUCTION

The domain wall is a field configuration connecting two
vacua and is identified as a two-dimensional topological
defect. If the system has a periodic potential with (infinite)
degenerate vacua, which typically appears for the pseudo
Nambu-Goldstone bosons (pNGBs) associated with the
spontaneous breaking of a global U(1) symmetry, it allows
a stack of parallel domain walls, well known as the chiral
soliton lattice (CSL). This state universally appears from
condensed matter physics to high-energy physics. The CSL-
type magnetic structure has been originally studied in chiral
magnets [1] and experimentally observed [2] (see Ref. [3] for
review). In high energy physics, it has been shown, based on a

low-energy effective theory that takes into account the chiral
anomaly [4,5], that the ground state of QCD at finite baryon
chemical potential μB under a sufficiently strong magnetic
field is the CSL of π0 meson [5–7] (see also Refs. [8–14] for
related works). As other examples, the rotation-induced CSL
[15–18], Floquet-engineered CSL [19], the CSL inQCD-like
theory [20,21], and the CSL-like pattern formation via
nonequilibrium process [22] have also been discussed.
There are three important elements in theories that have

the CSL state as the ground state, (i) a pNGB (referring to
ϕ) associated with the spontaneous breaking of a global
symmetry G, (ii) an explicit breaking of the symmetry G
which leads to a periodic cosine-type potential, and (iii) a
total derivative term of ϕ.1 With these ingredients, the low
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1In the main text, we suppose that the origin of the total
derivative term is the chiral separation effect (CSE) [4,23–25],
but it does not always have to be the case. Depending on the
underlying physics of the system, the origin of the total derivative
termvaries. For example, the chiral vortical effect [26–31] leads to a
rotational counterpart of the total derivative term discussed in
Refs. [15,16]. In chiral magnets, the total derivative term of the
magnon originates from the so-called Dzyaloshinskii-Moriya
(DM) interaction [32,33].
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energy effective theory for the pNGB becomes the Sine-
Gordon theory with the total derivative term. In the usual
Sine-Gordon theory, the domain wall interpolating between
the minima of the cosine-type potential appears. Such a
field configuration is topologically protected, but energeti-
cally unfavorable compared to the trivial vacuum state. The
total derivative term decreases the tension of the domain
wall, and it can be negative for a sufficiently large external
background field. Consequently, the domain wall is ener-
getically more favorable than the vacuum state.
A fact that a field configuration is energetically favorable

does not mean that such a configuration is formed instanta-
neously. Noting that the domain walls are topologically
stable, we expect that the CSL form with a nontrivial
dynamics associated with a change of topological numbers.
The first way to form the CSL that one can imagine would
be the Kibble-Zurek mechanism [34,35]. However, it
requires the symmetry restoration with, e.g., a high-temper-
ature environment and does not describe the defect for-
mation from the vacuum state. In order to see the CSL
formation at zero-temperature, we need to describe it as a
quantum tunneling, which we would like to explore in
the present paper.2 Generally, it is difficult to calculate the
nucleation rate of topological defects starting from the
infinite dimensional quantum field theory. However, in
Ref. [37] a genius way to calculate it by describing the
system in terms of the Nambu-Goto (NG) theory so that the
problem becomes one-dimensional quantummechanics has
been proposed. Although this method was originally
invented for the quantum creation of the topological defects
in the (quasi) de Sitter background, it has been noticed that
it can be useful for other phenomena such as the Schwinger
effect or the vacuum decay through the bubble nucleation
[38,39]. In this paper, with adopting this method, we
evaluate the single domain wall as well as the CSL
formation rate. Noting that the formation of a domain wall
spread to the spatial infinite would be unlikely to occur
from the viewpoint of causality, we describe the system as a
domain-wall disk surrounded by a vortex or string loop.
The dynamics of the domain-wall disk can be then
described by quantum mechanics for the radius of the
disk, R. We show that when the tension of the domain wall
is negative, the domain-wall disk with the radius R2 [see
Eq. (2.34)] nucleates via quantum tunneling whose rate
depends on the external magnetic field strength as well as
the chemical potential of the system. We find that the
nucleation rate is exponentially suppressed below the
critical magnetic field amplitude Bc [see Eq. (2.39)].
Therefore, we emphasize that, even when the CSL state
is more energetically favorable than the vacuum, the
formation of the domain wall is not promoted instanta-
neously as long as B < Bc.

As concrete examples, we consider the following two
realistic physical systems to which the effective theory is
expected to be applied, namely, (i) the neutral pion in the
two-flavor quantum chromodynamics (QCD) and (ii) axion-
like particles (ALPs) [40–46] at a finite chemical potential
under an external magnetic field. In the former case, the
properties of the CSL composed of the π0 meson associated
with the spontaneous chiral symmetry breaking have been
studied in Ref. [6]. There it has been pointed out that a too
strong magnetic field causes a tachyonic instability of the
charged pion fluctuation, which determines the upper
bound of the magnetic field strength for the CSL. We
find that the pion domain-wall as well as the pion CSL
formation rate becomes larger for stronger magnetic fields,
but at the upper bound of the magnetic field strength
suggested by the stability against the charged pion fluc-
tuation the formation rate is still exponentially suppressed
even though the CSL state is more energetically favorable
than the QCD vacuum. In the latter case with an ALP, we
find for the first time that the total derivative term required
for the CSL appears in the effective field theory from the
Chiral Magnetic Effect (CME) [23,25] and the CSL is a
ground state for a sufficiently large external magnetic field.
Compared to the case of the neutral pion, we do not have to
worry about the instability of associated fields in the ALP
sector if they are sufficiently heavy, if any. As a result, there
will be no exponential suppression factor in the nucleation
rate if the magnetic field and the chemical potential is
slightly larger than the axion decay constant.
This paper is organized as follows. In the next section,

we review the CSL and describe it in terms of the NG-type
action. Then we estimate the formation rate of a single
domain-wall as well as the CSL. In Sec. III, we apply the
results of Sec. II to the physically well-motivated system,
that is, the neutral pion in the two-flavor QCD and the ALP.
Section IV is devoted for the conclusion and discussion.

II. NUCLEATION RATE OF THE CHIRAL
SOLITON LATTICE

This section considers the nucleation of the CSL. Since
the CSL is a topological defect, it is topologically distinct
with the trivial field configuration and can be generated by
the Kibble-Zurek mechanism [34,35] or through quantum
tunneling. Here we are interested in its nucleation at zero
temperature, we shall study the latter. While a quantum
field theoretic investigation is quite involved, here we adopt
a quantum mechanical approach where the CSL is
described by the Nambu-Goto-type action with a one
dimensional parameter, that is, the radius of the wall, as
has been first studied in Ref. [37] and also recently adopted
in Refs. [38,39]. In the following, we first review the nature
of the CSL and develop its description by the Nambu-Goto-
type action. Then we evaluate the nucleation rate for the
single disk and the CSL.

2See also Ref. [36] for the phenomenological study on the CSL
formation in the chiral magnets.
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A. Chiral soliton lattice (CSL)

We start with reviewing the CSL with a simple toy
model. We consider a system in the uniform background
magnetic field B with the spontaneous chiral symmetry
breaking whose low-energy dynamics can be described by
the effective field theory of pNGB ϕ, which will be
identified as a neutral pion or an ALP. Hereafter we neglect
fields other than pNGB that may exist in theories of our
interest unless otherwise stated, since they are supposed not
to be directly associated with the CSL. For instance, we
focus on a situation in which they are much heavier than
pNGB. The effective Lagrangian of the pNGB up to the
leading order is that of the Sine-Gordon theory, given by

L ¼ f2

2
ð∂μϕÞ2 þ f2m2ðcosϕ − 1Þ þ μ

4π2
B · ∇ϕ; ð2:1Þ

where f and m are the decay constant and the mass of the
pNGB, respectively. The first term is the kinetic term, and the
second is the potential associated with the explicit chiral
symmetry breaking. The constant f2m2 is an offset to zero
the energy of the vacuum at ϕ ¼ 0. The third term is
introduced, for example, with the following reason. Here
we suppose a system with Nf species of massless U(1)
charged Dirac fermions ψ i with their chemical potentials μ

being coupled to the conversed charge j0 ≡PNf

i ψ̄ iγ
0ψ i.

This system exhibits the so-called chiral separation effect

(CSE), where the axial vector currents j5≡PNf

i ψ iγ
5γψ i are

induced in the direction of the magnetic field as [4,23–25]

j5 ¼
μ

2π2
B; ð2:2Þ

where the gauge coupling is absorbed by the magnetic field.
We shall note that this transport phenomenon is related to the
chiral anomaly [25,31,47] and does not receive any renorm-
alization. Hence, the CSE appears independently of the
energy scale. In particular, in phases where the chiral
symmetry is spontaneously broken, the anomaly matching
condition tells that the CSE should be reproduced by the
effective interaction of the resultant pNGBs, such as the
mesons and axions, which leads to the third term in Eq. (2.1).
Note that under the chiral transformation ψ → eiγ

5θψ the
NGB in the low energy effective theory transforms as
ϕ → ϕþ 2θ.
Under the chiral rotation with a position-dependent

θ ¼ θðxÞ, the action changes as δS ¼ R
d4xð∂μθðxÞÞjμ5 ¼

1
2

R
d4xð∂μδϕÞjμ5 from the Noether’s theorem. Thus, we

have S ¼ 1
2

R
d4xð∂μϕÞjμ5 in the low energy regime.

The effective Hamiltonian coming from Eq. (2.1) is now
given as,

H ¼ f2

2
½ð∂tϕÞ2 þ ð∂xϕÞ2 þ ð∂yϕÞ2 þ ð∂zϕÞ2�

þ f2m2ð1 − cosϕÞ − μ

4π2
B∂zϕ; ð2:3Þ

where we have set B ¼ ð0; 0; BÞ without loss of generality.
In order to minimize the Hamiltonian, ϕ should not depend
on t, x, and y so that it becomes

H ¼ f2

2
ð∂zϕÞ2 þ f2m2ð1 − cosϕÞ − μ

4π2
B∂zϕ: ð2:4Þ

Note that in the equation of motion,

∂
2
zϕ ¼ m2 sinϕ; ð2:5Þ

the topological term does not appear. Its solution with the
boundary condition ϕð−∞Þ ¼ 0;ϕð∞Þ ¼ 2π is the so-
called domain wall:

ϕDWðmzÞ ¼ 4 arctan½expðmzÞ�: ð2:6Þ

Substituting Eq. (2.6) into Eq. (2.4), the energy of this
single soliton per unit area in the x-y plane can be
calculated as

EDW ≡
Z

∞

−∞
dzH½ϕDWðzÞ� ¼ 8mf2 −

μB
2π

: ð2:7Þ

We can see that while the topological term does not appear
in the equation of motion, it appears in the energy. In the
absence of topological term, the energy of this single
domain wall is, of course, larger than the vacuum energy 0
(or the energy of the trivial configuration ϕ ¼ 0). On the
other hand, as the magnetic field B increases and exceeds
the critical magnetic field,

BDW ¼ 16πmf2

μ
; ð2:8Þ

the sign of E1 changes from positive to negative. In such a
case, the domain wall is not only topologically stable but
also energetically favorable, which opens up the possibility
to form it as a quantum vacuum decay.
The fact that the single domain wall is more stable than

the vacuum state ϕ ¼ 0 tells that the ground state of the
system at B > BDW would be a parallel stack of this domain
walls. Since the wall-wall interaction would generate a
positive energy, there should be an appropriate distance
between the walls to minimize the energy. The configura-
tion of such a state, called the chiral soliton lattice (CSL), is
determined as follows. One of the general solutions of
Eq. (2.5) that satisfies ϕð0Þ ¼ −π is given as
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Z
ϕ=2þπ=2

0

dθ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2 sin2 θ
p ¼ zm

k
: ð2:9Þ

Note that both sides of the equation above are zero when
ϕ ¼ −π and z ¼ 0, and the solution is a function of zm=k,
with kð0 < k < 1Þ being the parameter that characterizes
the solution. In terms of the Jacobi’s amplitude function
am, it is rewritten as

1

2

�
ϕk

�
zm
k

�
þ π

�
¼ am

�
zm
k

; k

�
: ð2:10Þ

Equivalently, ϕ is also given by the Jacobi’s elliptic
function:

cos

�
1

2
ϕk

�
zm
k

��
¼ sn

�
zm
k

; k

�
: ð2:11Þ

In the equations above, it has been assumed that ∂zϕ > 0
and μB > 0 without a loss of generality, such that
μB∂zϕ > 0.3 Note that the parameter k is now identified
as the elliptic modulus. Using the complete elliptic integral
of the first kind KðkÞ, the periodicity of this solution is
given by

l ¼ 2kKðkÞ
m

; where 2KðkÞ ¼
Z

π

0

dθ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2sin2θ
p ;

ð2:12Þ

with shifts of Δϕ ¼ 2π and Δz ¼ l, which corresponds to
the distance between the walls. The minimization of the
energy of each wall with period l ¼ lðkÞ per unit area in the
xy plane,

ECSL ≡
Z

lðkÞ=2

−lðkÞ=2
dzH½ϕkðzÞ�

¼ 4mf2
�
2EðkÞ
k

þ
�
k −

1

k

�
KðkÞ

�
−
μB
2π

; ð2:13Þ

optimizes the free parameter k for given parameters, μ, B,
m, f. The optimal condition is given by [6]

EðkÞ
k

¼ μB
16πmf2

; ð2:14Þ

where EðkÞ is the complete elliptic integral of the second
kind, which determines the elliptic modulus for the CSL,
k ¼ kCSL, and hence the wall distance l for given param-
eters, μ, B, m, f. Note that its left-hand side is bounded
from below as EðkÞ=k > 1ð0 < k < 1Þ. Not the vacuum
solution but the CSL is the ground state if Eq. (2.14) has a

solution for 0 < k < 1, and hence the critical magnetic field
strength for the CSL to be the ground state,BCSL, is equal to
Eq. (2.8),

BCSL ¼ BDW ¼ 16πmf2

μ
: ð2:15Þ

In a large magnetic field limit of B ≫ BCSLðk → 0Þ, in
which pNGB mass is neglected, the solution minimizing
the Hamiltonian is given by

ϕðzÞ ≃ μBz
4π2f2

: ð2:16Þ

Then, the period reads

l ≃
8π3f2

μB
: ð2:17Þ

B. Nambu-Goto action for the wall-string system

We have reviewed that the ground state of the Sine-
Gordon theory becomes the CSL state due to the topo-
logical term. This suggests that the CSL with finite
topological numbers can be formed from the vacuum state.
Here, we argue the domain wall formation through the
quantum-mechanical tunneling. It is easy to imagine that
not the infinite domain wall in x-y plane is generated
instantaneously but a disklike domain wall with a finite size
surrounded by a vortex or a string loop [48–50], as shown
in Fig. 1, is generated first and eventually expands. Such a
system can be formed through spontaneous breaking of the
chiral symmetry in the QCD [48–50] or a that of Uð1ÞPQ in
models with ALPs [51–53]. Infinite dimensional quantum
field theoretic approach on the formation of such a field
configuration is quite involved, and hence we adopt the
thin-wall approximation so that the field configuration can
be described by one-dimensional Nambu-Goto-like action
as has been studied in Refs. [37–39]. In this subsection, we

FIG. 1. Schematic picture of the domain wall disc with the
string on the edge. The blue part corresponds to the domain wall,
the red the string. The parameter θ parametrizes the string on the
edge of the wall.

3Instead, a solution is given by 1
2
ðϕkðzmk Þ þ πÞ ¼ −amðzmk ; kÞ

when ∂zϕ < 0 and μB < 0.
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construct this one-dimensional effective action for the wall-
string system.
Here we consider the wall-string system in the

Minkowski background,

ds2 ¼ ημνdxμdxν ¼ −dt2 þ dΩ3; ð2:18Þ

where dΩ3 is the line element on the three-dimensional
Euclidean space. The Nambu-Goto like effective action
[54] of the domain-wall disk surrounded by an edge can be
divided into the wall (void) part and string (edge) part as

S ¼ Swall þ Sstring

¼ −σ
Z
W
d3ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det hab

p
− T

Z
∂W

d2ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γαβ

q
; ð2:19Þ

where σ and T are the wall and string tensions, hab and γαβ
are the induced metrics on the three-dimensional world
volume for the wall and two-dimensional world sheet for
the string, respectively.
Let us first investigate the former, the wall action. The

induced metric on the wall is given by

hab ¼ ημν
∂Xμ

∂ζa
∂Xν

∂ζb
; ð2:20Þ

where XμðζÞ is the three-dimensional world volume of the
domain wall embedded in the bulk spacetime, W, with ζa

(a ¼ 0, 1, 2) being the coordinate covering W. Here ζ0 is
chosen to be timelike whereas ζ1;2 are chosen to be
spacelike. Since we are interested in the disklike configu-
ration where the wall is perpendicular to the z axis while
rotational symmetric in the x-y plane, it is natural to take
the coordinate on the wall to be fζag ¼ fτ; χ; θg and the
trajectory to be fXμg ¼ ftðζÞ; rðζÞ;ΘðζÞ; z ¼ z0g. Fixing
the gauge as τ ¼ t, χ ¼ r, and θ ¼ Θ, the induced metric is
given as

hab ¼ diagð1;−1;−r2Þ; ð2:21Þ

wherewehave taken the cylindrical coordinate system for the
background Minkowski metric, ds2 ¼ dt2 − dr2 − r2dθ2−
dz2. The tension of the wall is calculated by integrating the
energy density along the z-axis. For the single domain wall
solution Eq. (2.6), we obtain

σ ≡
Z

dzH ¼ 8mf2 −
μB
2π

: ð2:22Þ

Note that the tension is negative at B > BDW ¼ BCSL. Since
we consider the case where the disk radius can change with
time, the domain of r is given as 0 < r < RðτÞ. Con-
sequently, we get the Nambu-Goto-like action for the
domain-wall disk as

Swall ¼ −σ
Z
W
d3ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dethab

p
¼ −σ

Z
dτ

Z
RðτÞ

0

dr
Z

2π

0

dθr

¼ −πσ
Z

dτRðτÞ2: ð2:23Þ

Similarly to the wall part, the induced metric on the
string worldsheet is given by

γαβ ¼ ημν
∂Xμ

∂ξα
∂Xν

∂ξβ
; ð2:24Þ

where Xμ ¼ XμðξÞ describes the two-dimensional string
worldsheet ∂W with the radius R embedded in the bulk
spacetime as shown in Fig. 1 so that we can take
fXμg ¼ ftðξÞ; RðtðξÞÞ;ΘðξÞ; z ¼ z0g, with ξα (α ¼ 0, 1)
being the coordinate covering the ∂W, fξag ¼ fτ; θg. We
gauge-fix the coordinates as τ ¼ t and θ ¼ Θ, and empha-
size that R is a dynamical and depends on t: R ¼ RðtÞ ¼
RðτÞ on the ∂W. Then, its explicit form is calculated as

γαβ ¼ diagð1 − _R2;−R2Þ; ð2:25Þ

or

ds2worldsheet ¼ ð1 − _R2Þdτ2 − R2dθ2; ð2:26Þ

where the dot represents the derivative with respect to τ.
The string action is proportional to the worldsheet area:

Sstring¼−T
Z

dτdθ
ffiffiffiffiffiffi
−γ

p ¼−2πT
Z

dτR
ffiffiffiffiffiffiffiffiffiffiffiffi
1− _R2

p
; ð2:27Þ

where the string tension evaluated at far from the string
core, T, is the summation of the potential energy and the
gradient energy of the radial direction of the symmetry
breaking field or the order parameter and is calculated as
[55,56]

T ∼ 2π × 2f2 × ln
Rc

rc
; ð2:28Þ

where Rc and rc ∼ f−1 are cutoff length and string core size,
respectively. Here we have only taken into account the
classical contribution from the radial direction of the sym-
metry breaking field that does not couple to the magnetic
field. Thuswe regard that the string tension is independent of
the magnetic field throughout this paper. Once we take into
account light matter fields charged under the U(1) gauge
theory, however, there can arise a magnetic-field-dependent
contribution to the string tension through, e.g., the fermion
zero modes, but it is UV model-dependent. Since the
classical part would generally dominate over the whole
contribution in the tension, we expect that our analysis
would be valid, even if the string tension is affected by the
magnetic field, depending on the detail of the model.
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The potential energy stored inside of the core is estimated as
of order f2, whereas the gradient energy gives the logarithmic
factor. A naive choice of Rc would be the disk radius Rd.
However, in the wall-string system the field configuration
around the string is nontrivial and different from the string
without being attached to a wall, and hence careful numerical
study is needed for the estimate for the cutoff length or the
gradient energy. Instead, here we take Rc as a parameter
independent of the disk radius Rd throughout this paper,
leaving its precise determination for future study. In Ref. [57],
the authors have numerically shown T ∼ f2 ∼ const:, inde-
pendent of the disk radius as well as the magnetic field
strength, at a distance from a domain wall disk bounded by a
string loop. That is because unlike the strings without being
attached to a wall, the field configuration appears to expo-
nentially come close to that of the vacuum, in which there
exists no solitons, as being away from such a disk, regardless
of the value of the wall radius. In this case, one length scale
that could be related to the string configuration is the thickness
of the wall, rw ∼ 1=m. Hence another plausible estimate for
Rc would be the thickness of the wall, rw, which is
independent of Rd, but careful investigations are needed to
confirm this ansatz.4

C. Calculation of the decay rate

Now we are ready to evaluate the quantum mechanical
disk nucleation rate with the help of the Nambu-Goto-like
effective action. As we have discussed the field configu-
rations for the single domain-wall disk and the CSL-like
disk layer are different, we need carefully to take care of the
difference. We will first examine the single disk nucleation
and then discuss the CSL formation.

1. Nucleation of a single domain
wall disk from the vacuum

First we consider the tunneling process where a single
wall is created from the vacuum. From the discussion in the

previous section, the dynamics of a single domain-wall disk
is described by one-dimensional quantum mechanics of the
disk radius RðτÞ with the effective action,

Stot ¼ Swall þ Sstring ¼ −π
Z

dτð2T R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
þ σR2Þ:

ð2:29Þ
In order to study the dynamics of this domain wall system,
it is convenient to use the conserved energy,

E ¼ p _R − L; ð2:30Þ

where the Lagrangian L can be read from the action Stot,

L ¼ −πð2TR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
þ σR2Þ, and p is the momentum

conjugate to R,

p ¼ ∂L

∂ _R
¼ 2πTR _Rffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − _R2
p : ð2:31Þ

The conservation law can be rewritten as the following form,

_R2 þ
�

R2

ðϵ − σR2

2T Þ2
− 1

�
≡ _R2 þ 2VðRÞ ¼ 0; ð2:32Þ

where we have introduced ϵ ¼ E=ð2πTÞ. The first and
second terms can be identified as the kinetic and potential
terms of RðtÞ, respectively. Note that VðRÞ diverges for σ >
0 at R ¼ Rdiv ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵT=σ

p
with R1 < Rdiv < R2 and hence

nucleation rate is expected to be highly suppressed. We can
see that for T > −2ϵσ or T2 > −σE=π this potential has a
potential barrier between R ¼ 0 and ∞ as shown in Fig. 2.
Note that for σ < 0, the barrier height is finite and hence it is
possible for the quantum tunneling to happen. By solving
VðRÞ > 0 we find the starting and endpoints, R1 and R2 as

R1 ¼
(

T
σ ½−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϵσ=T

p � ðϵ > 0Þ
T
σ ½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϵσ=T

p � ðϵ < 0Þ
; R2 ¼

T
σ
½−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϵσ=T

p
�; ð2:33Þ

where we have taken σ < 0, which corresponds to take
B > BDW. The structure of the potential tells that the disk
radius R can change classically at 0 < R < R1 and R > R2.
If the initial disk radius is at 0 < R < R1, it can expand up
to R ¼ R1 and then recollapses to R ¼ 0. On the other
hand, for the initial condition R > R2, the disk radius
expands toward infinity.
Although the classical dynamics is forbidden in the

range R1 < R < R2, the domain wall disk can nucleate by

the quantum tunneling through the potential barrier. The
tunneling probability from R ¼ R1 to R ¼ R2 can be
evaluated as follows [58]. By performing a Wick rotation,
τ → −iτE, we obtain the Euclidean action,

SE½R� ¼ π

Z
dτE

�
2TR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dR
dτE

�
2

s
þ σR2

�
: ð2:34Þ

The bounce solution for the Euclidean action satisfies the
conservation law with the flipped potential as4We thank M. Eto and M. Nitta for pointing out this fact.
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�
dR
dτE

�
2

− 2VðRÞ ¼ 0; ð2:35Þ

with the boundary condition VðR1Þ ¼ VðR2Þ ¼ 0. With
this solution, we can evaluate the bounce action. Since we
are interested in the domain-wall disk nucleation from the
nothing, we take the limit ϵ → þ0 so that

R1 ¼ 0; R2 ¼ −
2T
σ
: ð2:36Þ

As for the sign of a small ϵ, note that the conserved energy
is approximately given by the rest energy of a contribution
of the string tension plus the wall tension, E ≃ 2πRTþ
πR2σ ¼ jσjπRðR2 − RÞ, when the kinetic energy (expan-
sion of the radius) is small. As long as we focus on the
tunneling process between R ¼ 0 and R ¼ R2, E ∝ ϵ is
necessarily positive because the positive string tension
dominates over the conserved energy in the range of such
a small R. (A large wall withR > R2 cancels also the kinetic
energy such that E ∝ ϵ ¼ 0 owing to the negative tension.)
See Fig. 2 to show this tendency. Note that the zero initial
radius of the domain-wall disk means that there was no
domainwall at all. By solving the bounce equation for ϵ → 0
and changing the variables from the Euclidean time τE to the
disk radius R, the bounce action is evaluated as

B¼2×2πT
Z

R2

0

dR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðσR2=2TÞ2

q
¼16πT3

3σ2
; ð2:37Þ

where the factor 2 comes from the bounce trajectory,
R∶0 → R2 → 0. We can see that the tunneling action B
remains finite in the limit of ϵ → 0. Consequently, the
nucleation rate P that the domain-wall disk with the radius
R ¼ R2 ¼ −2T=σ nucleates is given by

P ≃Ae−B ¼ Ae−16πT
3=3σ2 ; ð2:38Þ

where the prefactor A counts for the effects of quantum
fluctuation around the bounce solution [37,58,59].
While the domain-wall disk nucleation rate is exponen-

tially suppressed for B ≫ 1, it is unsuppressed for B ≲ 1.
Noting that T ≃ 4πf2 lnðRc=rcÞ and σ ≃ 8mf2 − μB=2π,
we find that for a sufficiently large magnetic field,

B > Bc ¼
16πmf2

μ

�ðlnðRc=rcÞÞ3=2ffiffiffi
3

p 4π2f
m

þ 1

�
ð> BDWÞ;

ð2:39Þ

the nucleation rate is unsuppressed, which is the main result
of the present paper.
The prefactor A can, in principle, be calculated by

evaluating the quantum fluctuations around the saddle point
solution, but the calculation is rather involved in practice.
Instead here we resort to the dimensional analysis. The
action of the domain-wall disk bounded by the string has
the time transitional symmetry, and hence the wall pro-
duction can happen anytime. The zero mode corresponding
to the time-translation symmetry gives a contribution
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=ð2πÞp

to A. As with time translational symmetry,
the action also has the spatial translational symmetry so that
the wall disk production can occur anywhere. Thus there
appears a contribution of Vð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B=ð2πÞp Þ3 in A. Taking into
account the characteristic length scale of the domain-wall
disk, Rd ¼ R2 ¼ j2T=σj, we estimate A as

A ∝
�
B
2π

�
2 1

R4
d

: ð2:40Þ

Before proceeding, let us comment on the assumption
we have made. In the above discussion, we have assumed
that the system is well described by the domain-wall disk
surrounded by the string. In other words, we have assumed
that the thickness of the wall rw and the radius of the string

FIG. 2. Left panel: typical shape of the potential VðRÞ as a function of R is shown in the solid red line (σ=T ¼ −0.9 and ϵ ¼ 0.3). For
σ < 0 the barrier height is finite. The black dotted one represents the line for VðR ¼ 0Þ. VðRÞ is positive in the blue region at
R1 < R < R2, in which region classical dynamics is forbidden. Right panel: ϵ-dependence of the shape of the potential VðRÞ for
σ=T ¼ −0.9 is shown. The potential barrier tends to be higher for smaller ϵ, while the width of barrier ΔR≡ R2 − R1 ∼ R2 ∼ −2T=σ is
insensitive to ϵ.
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rc are infinitely thin. The former is evaluated as rw ∼ 1=m
while the latter is evaluated as rc ∼ 1=f. The thin-wall/
string approximation is valid if they are smaller than the
disk radius Rd. Noting that Rd ¼ 2T=jσj, the conditions
read

rc
Rd

∼
1=f

2 × 4πf2 lnðRc=rcÞ=ð8mf2j1 − B=BDWjÞ

∼
m

πf lnðRc=rcÞ
�

B
BDW

− 1

�
≪ 1; ð2:41Þ

rw
Rd

∼
1=m

2 × 4πf2 lnðRc=rcÞ=ð8mf2j1 − B=BDWjÞ

∼
1

π lnðRc=rcÞ
�

B
BDW

− 1

�
≪ 1: ð2:42Þ

With estimating the logarithmic factor with the cutoff
length for the string to be of order of the unity, we find
that the thin-wall approximation is valid for the magnetic
field strength slightly larger than BDW. Strictly speaking,
the wall disk nucleation rate evaluated in the above cannot
be used for much larger magnetic fields. In particular, the
critical magnetic field for the bubble nucleation Bc
[Eq. (2.39)] is likely much larger than BDW (for example,
Bc ∼ ðf=mÞBDW ≫ BDW for f ≫ m). However, in
Ref. [39] where the three-dimensional bubble domain wall
formation is studied with a Lorentzian formalism, the
exponential suppression factor of the nucleation rate for
a bubble with a larger radius is turned out to be the same to
that for the critical bubble. This is understood that the
classical expansion after the quantum tunneling to the
critical bubble is evaluated in a completely quantum
mechanical way. We expect the same argument follows
so that our estimate of the bounce action for the critical disk
(with Rd ¼ Rc) gives that for the disk with larger radius,
where the thin-wall approximation is better. Moreover, we
do not expect that the nucleation rate for the disk wall with
the radius smaller than the wall thickness is much more
enhanced than the estimate in the above, since the action of
the field configuration of such thick wall disk would be the
same order to the thin-wall approximation. Therefore we
expect that the bounce action Eq. (2.37) gives a good
estimate for the suppression factor for the total wall disk
nucleation rate even for the thin-wall approximation is not
good for Rd ¼ Rc.

2. Simultaneously generated domain walls and effects of
background domain walls

Next we examine how the CSL forms. When multiple
domain walls are simultaneously created from the vacuum
and the CSL system is formed (see Fig. 3), a wall feels the
existence of the neighboring walls, and hence a nucleation
rate of one of the walls would be affected. In order to take
this effect into account, let us focus on a single wall which

constitutes the CSL and consider its tunneling process. The
critical difference to the single disk formation from the
vacuum studied in Sec. II C 1 is the wall tension, because
the wall feels the repulsive force originated from the other
background walls. Let us recall that the wall tension for the
domain wall layer [Eq. (2.10)] is given by Eq. (2.13),

σ̃ ¼ ECSL ¼ 4mf2
�
2EðkÞ
k

þ
�
k −

1

k

�
KðkÞ

�
−
μB
2π

; ð2:43Þ

and the minimization condition that optimizes the param-
eter k ¼ kCSL is given by (2.14). We note that σ < σ̃ < 0 is
satisfied.5 This is because repulsive forces working
between the walls increases the tension and hence an
isolated wall is energetically more favorable. By replacing
the wall tension σ by σ̃ in Eq. (2.38), we obtain the wall disk
nucleation rate, which is suppressed by the exponential
factor e−Bðσ̃Þ, where Bðσ̃Þ ¼ 16πT3=3σ̃2. Strictly speaking,
this rate is those for a single disk nucleated at the deficit of the
CSL with a distance of 2lðkCSLÞ, we suppose it gives a good
approximation for the CSL (with a finite boundary being
surrounded by strings) formation rate itself. The B-depend-
ence of B is shown in Fig. 4. Note that the production of the
domain wall is promoted whenB ⪅ 1 is satisfied. Supposing
that lnðRc=rcÞ is order of the unity, we find that a single wall
disk is easily nucleated for B≳ ð10–20ÞBDW while a fast
CSL formation requires relatively larger magnetic fields,
B≳ 103BDW. This is because the amplitude of the wall
tension is smaller for the CSL than that of the single disk,
which is energetically less favored. One may think that the
nucleation rate would not be so suppressed compared to the

FIG. 3. Schematic picture for the simultaneous nucleation of
the domain walls at the interval l is shown. We note that l is the
lattice space that minimizes the energy density of the domain
wall [6].

5The derivative of σ − σ̃ with respect to μB is
−EðkÞ=ð4πKðkÞÞ < 0 and limB→Bc

σ − σ̃ ¼ 0. Then, we get
σ < σ̃. Even though the amplitude of σ̃ is smaller than σ, the
number density of the wall in z-direction is larger, the total energy
density in the whole space is smaller for the CSL state.
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one from the vacuum until the domain wall separation
becomes comparable to the one for the CSL state.
However, the nucleation rate strongly depends on the
(absolute value of) domainwall tension. Since the interaction
between the domain wall is always repulsive due to the
gradient energy of the ϕ field, and hence the domain wall
tension itself increases as we decrease the lattice separationl
with staying negative for B > BDW. Note that even though
the CSL state has larger tension, it is energetically favored,
since the number density of the walls in z-direction is larger.
As we have discussed in the previous subsection, for such
strong magnetic fields, the thin-wall approximation does not
hold for the disk with the critical radius R ¼ R2 ¼ 2T=jσ̃j.
However, theCSLwith the infinite radius are formed through
the expansion of the one with a finite radius, for which the
thin-wall approximation holds at some point. Since the
suppression factor of the nucleation rate of the wall disk
with larger radius is expected to be the same, as has been
studied in Ref. [39], the estimate read from Fig. 4 would be
appropriate to evaluate the disk/CSL formation rate.
Before concluding this section, let us discuss how the

system evolves as a whole. Once a single domain-wall disk
forms quantum mechanically with a rate ∝ e−BðσÞ, it
expands classically because the potential VðRÞ monoton-
ically decreases at R > R2. If another disk has been created
in the same x-y plane, the disks will eventually collide and
merge each other. If BðσÞ < 1, the single wall production
rate in a x-y plane is large and the radius of the domain wall
becomes effectively infinite in the x-y plane quickly. If it is
also the case with Bðσ̃Þ < 1, the domain wall formation in
the z direction is not suppressed in spite of the repulsive
force of the background walls [60] so that the CSL forms
quickly with infinite in the x-y direction in a similar way to
the ordinary liquid/gas transition (in 2-dimension). On the

other hand, if BðσÞ < 1 < Bðσ̃Þ, the completion of the CSL
formation takes time while infinite domain walls with a
relatively large distances are formed relatively quickly
through the merger of the disks in the same x-y plane.
Even in the presence of disks, the nucleation rate in the
same x-y plane is not suppressed compared to the one from
the vacuum and they will merge relatively quickly to form
the domain wall with an infinite radius. On the other hand,
due to the repulsive force between walls in the z-direction,
the nucleated domain walls are hard to merge into other
walls along z-direction. Therefore, the bubble collision
along z-direction is expected to be rare and hence the phase
transition from the vacuum to the CSL is harder than that
from the vacuum to a wall which is infinitely distant to
other walls both in z- and x-y direction.

III. IMPLICATION FOR PHYSICAL
SPECIFIC SYSTEMS

The discussions in the previous section is based on a
simple toy model only with a pNGB, which catches up the
basic physics. Oncewe considermore realistic models, some
of the details are different, such as the definition of μ and j5,
while quantitative arguments are possible. In this section, we
take the neutral pion inQCDand axions in the earlyUniverse
as examples and discuss their phenomenology.

A. QCD

Let us first apply our result to that in 2-flavor QCD at the
finite baryon chemical potential μB under the external
magnetic field, where the low energy effective theory is
described by the neutral and charged pions. In this case, the
relevant effective action for the CSL is described by
Eq. (2.1) just by replacing μ with μB, ϕ with the neutral
pion π, f with the pion decay constant fπ , and m with the
pion mass mπ . From the same discussion in Sec. II A, the
CSL of the neutral pion becomes the ground state for
the magnetic field larger than the critical magnetic field,
Bπ0
CSL [Eq. (2.15)],

Bπ0
CSL ¼ 16πmπf2π

μB
: ð3:1Þ

On the other hand, as pointed out in Ref. [6], the charged
pion fluctuations around the CSL state are tachyonic when
the magnetic field strength is sufficiently large, B > Bπ�

BEC,
with

Bπ�
BEC ¼ m2

π

k2
ð2 − k2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 þ k4

p
Þ; ð3:2Þ

where k is the elliptic modulus satisfying the following
condition [see Eq. (2.14)]:

FIG. 4. The B-dependence of the bounce action B for the single
disk (red line) and the CSL (blue line) is shown. Since jσ̃j is
smaller than jσj, the bounce action for the single disk is smaller
than that for the CSL. The black dotted line shows
B=ðlnðRc=rcÞÞ3 ¼ 1. We emphasize that the point where it
interacts with the solid lines gives a critical magnetic field where
the nucleation rate is no longer exponentially suppressed.
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EðkÞ
k

¼ μBB
π�
BEC

16πmπf2π
: ð3:3Þ

Equation (3.3) determines k as a function of μB and Bπ�
BEC.

Solving Eq. (3.2) with this k, we can determine the μ
dependence of Bπ�

BEC. It has been shown that Bπ0
CSL < Bπ�

BEC
for the parameter space of the interest [6], and hence the
neutral pion CSL can exist stably for the magnetic fields in
this range.
The question is now whether the CSL can form quickly

via nucleation in this range of the magnetic fields. The
critical magnetic field for the single wall disk formation
(2.39) can be applied into this case by the replacement
m → mπ and f → fπ:

Bπ0
c ¼ 16πmπf2π

μB

				 ðlnðRc=rcÞÞ3=2ffiffiffi
3

p 4π2fπ
mπ

þ 1

				: ð3:4Þ

Figure 5 show these critical magnetic field strength as a
function of μB, together with the lines B ¼ 1 GeV2 and
μB ¼ 1 GeV,which indicates the upper bound of thevalidity
of the effective theory described by pions [61,62]. Here we
take the physical values fπ ≈ 93 MeV and mπ ≈ 140 MeV.
We can see thatBπ0

c > Bπ�
BEC is always satisfied.Moreover, in

the parameter space with μB < 1 GeV where the pion
effective theory is valid, Bπ�

BEC > Bπ0
CSL is always satisfied.

This suggests that for the parameter space of the interest,

Bπ0
CSL < B < Bπ�

BEC withB < 1 GeV2 andμB < 1 GeV, even
the singlewall disk nucleation rate, and consequently that for
the CSL, is exponentially suppressed, as long as our Nambu-
Goto like effective description gives a good estimate for the
nucleation rate.We conclude that in order for theCSL to form
quickly in theQCD system,we need amechanism other than
the topological defect formation through the quantum
tunneling.

B. Axionlike particle

Next we consider an axonlike particle (ALP) denoted as
a [40,42,46,63–65], which is a pseudo-Nambu-Goldstone
boson associated with a global U(1) symmetry breaking
and is often predicted in the low-energy effective field
theory of the string compactifications [40–45]. Hence,
ALPs are considered not only to be candidates of dark
sector but also to show imprints of quantum gravity. It is
characterized by the massma, and axion decay constant fa,
which is also described by the effective potential

VðaÞ ¼ m2
af2a

�
1 − cos

a
fa

�
; ð3:5Þ

with a canonical kinetic term, and the effective interactions
to the SM sector,

L ∋ −
g2Y
32π2

CY
a
fa

YμνỸμν þ
X
i

XiR

fa
ð∂μaÞψ†

iRσ
μψ iR

−
X
j

XjL

fa
ð∂μaÞψ†

jLσ̄
μψ jL; ð3:6Þ

where gY is the hypergauge coupling constant, Yμν is the
hypercharge gauge field strength, and ψ iR and ψ jL are
the right- and left-handedWeyl fermions, respectively.6 The
coefficients CY and XiR=L are determined by the UV
physics. Note that the last two terms are the axion-fermion
current coupling with

jμiR ≡ ψ†
iRσ

μψ iR; jμjL ≡ ψ†
jLσ̄

μψ jL: ð3:7Þ

Let us consider the case where the system has a uniform
background hypermagnetic field BY and the chemical
potentials for each fermions, μiR=L. In this case, the chiral
magnetic effect induces the fermion current,

jiR=L ¼ ð−1ÞλiR=L μiR=L
2π2

ðqigYÞBY; ð3:8Þ

where λiR ¼ 0 and λiL ¼ 1, respectively, and qi is the
hypercharge of the fermion ψ i, which leads to the topo-
logical term,

FIG. 5. The critical magnetic fields for the state, Bπ0
CSL (blue),

for the BEC, Bπ�
BEC (green), and for the single disk nucleation, Bπ0

c

(red) are shown as functions of μB. The region below the blue line
indicates the parameter space where the ground state is the QCD
vacuum. The area between the blue and green line is the
parameter space where the π0 CSL state is the ground state,
while in the region above the green line the CSL state is unstable
and the ground state becomes π� BEC state. In the region above
the red line, the nucleation of the domain walls is promoted
promptly without the exponential suppression. We emphasize,
however, this region lies above the green line, where the CSL is
no longer the vacuum state, as well as the black dotted line
(B ¼ 1 GeV2 and μB ¼ 1 GeV), which indicates the boundary of
the region where the chiral perturbation theory is valid.

6Here we do not take into account the electroweak symmetry
breaking, but the same discussion applies to the system with the
spontaneously broken electroweak symmetry.
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Leff ¼
gY
2π2

�X
i

XiRqiμiR þ
X
j

XjLqjμjL

�
BY · ∇

�
a
fa

�
:

ð3:9Þ

Then with a similar discussion in Sec. II, we can see that the
axion CSL also forms, whose properties can be read off
with the replacement,

ϕ →
a
fa

; B → BY;

μ → μV ≡ 2gY

�X
i

XiRqiμiR þ
X
j

XjLqjμjL

�
: ð3:10Þ

Consequently, the same properties to the CSL formed by
neutral pion in the QCD, including the formation
rate, hold.7

The differences to the case of the CSL formed by pion in
QCD are, (i) we can freely take the axion mass and decay
constant, (ii) we do not have to worry about the tachyonic
instability due to the charged pion fluctuation, and (iii) the
cutoff scale of the theory would be the Planck scale Mpl or
the string scaleMstr. In the case ma ≪ fa ≪ Mstr, which is
often considered in conventional models or large volume
scenario [41,45,66,67], the critical magnetic field strength
for the single domain wall formation in Eq. (2.39) leads

BcY ≃
64π2f3a
μV

: ð3:11Þ

Then we identify that for sufficiently large μV , the critical
magnetic field strength is well below the cutoff scale
squared so that it seems that the CSL can easily form.
However, this gives BcY ≃ fa

ma
BDW ≫ BDW ¼ BCSL, which

makes the thin-wall approximation worse. See Eqs. (2.8)
and (2.42). On the other hand, if we consider a heavy ALP
and take ma ≲ fa ≪ Mstr, the critical magnetic field
strength is still approximated by Eq. (3.11), with being
smaller than the cutoff scale, while not much larger than the
critical magnetic field for the CSL BcY ≳ BCSL. In this case,
the thin-wall approximation is relatively good.
One might wonder that the ALP CSL can form in cos-

mology. Noting that at high temperature, T > 105 GeV,
when several Yukawa interactions become ineffective, there
aremany approximate conserved chargeswithin the SM[68–
71], one can in principle have large chemical potential,
μV ≃ T, without suffering from the baryon overproduction.
Then with our estimate in the above, we might expect the
axionCSL formation atT ≃ fa ≳ma ≫ 105 GeV ifwehave
strong magnetic fields B ≃ T2. However, the formation rate
for the CSL estimated in the above is the one at zero

temperature. In order to investigate the possibility of the
formation of the axion CSL in the cosmic history, we need to
develop its thermal formation rate, which is left for
future study.

IV. CONCLUSION AND DISCUSSION

The ground state of the sine-Gordon theory with the
background fermion chemical potential and magnetic
fields, whose effect is implemented by the total derivative
term (2.1) is not the vacuum state (ϕ ¼ 0), but the CSL
state, for sufficiently large magnetic field, B > BCSL [6].
However, it has not been clear how the vacuum state
changes to the CSL one. In this work, we tackled this
problem for the first time, in the best of our knowledge, by
adopting the Nambu-Goto like effective action for the
string-domain wall disk system in the sine-Gordon theory
with the topological term (2.1). The transition of the state
from the vacuum to the CSL is described by the quantum
mechanical tunneling of the radius of a domain-wall disk
surrounded by a string loop from Rd ¼ 0 to Rd ≠ 0, which
is a similar approach to the studies in Refs. [37–39]. In this
description, for B > BCSL the wall tension becomes neg-
ative due to the topological term. Since the effective
potential of the wall-disk radius R has the potential barrier
between R ¼ 0 and R → ∞, because of the combination of
the negative wall tension and the positive string tension, a
domain wall-disk with a finite radius can be formed not
classically but through the quantum tunneling. In Sec. II C,
we evaluated the nucleation rate of a single wall disk from
the vacuum state as well as from the environment where the
CSL has almost been formed, in terms of the bounce action
Eq. (2.37), which is the main result of the present paper. We
regard that the latter represents the rate for the complete
formation of the CSL. Due to the repulsive force acting
between the walls, which reduces the absolute value of the
wall tension, the bounce action for the disk nucleation in
the environment where the CSL has almost been formed is
found to be larger than that from the vacuum, and hence the
nucleation rate is more suppressed. With these estimates,
we determined the critical magnetic field for the disk
nucleation where the exponential suppression becomes
absent, B ≃Oð1Þ. Note that the thin-wall approximation
is turned out likely to be violated for the disk with the
critical radius for such large magnetic field strength.
However, we expect that it gives a good estimate for the
disk nucleation from the discussion in Ref. [39], where the
exponential suppression factor for the larger radius is
turned to be equal to that for the critical radius in the case
of the three-dimensional bubble nucleation. There it has
been identified as the whole quantum estimate of the rate
for the quantum tunneling followed by the classical
expansion.
Since our analysis is based on the sine-Gordon theory

with the total derivative term, the results in Sec. II C can be
applied to systems described by the same Lagrangian as

7We have supposed that a=fa → a=fa þ θ under Uð1ÞPQ by
an appropriate choice of chiral fermion charge.
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Eq. (2.1). In Sec. III A, we apply our analysis into 2-flavor
QCD at finite baryon chemical potential under an external
magnetic field. We found that within the scope of the low
energy effective theory, the formation of a single domain-
wall disk from the vacuum is exponentially suppressed,
∝ e−B;B ≫ 1. Therefore, even when the CSL is more
stable than the vacuum state at B > BCSL, the vacuum state
cannot be transformed into the CSL one quickly. However,
there may be loopholes in the above discussion. As we have
explained in the above, the thin-wall approximation for the
validity of the Nambu-Goto action is not a good approxi-
mation for the disk with a critical radius, R2. For example,
substituting fπ ≈ 93 MeV, mπ ≈ 140 MeV and B ¼ 2BDW
for Eqs. (2.41) and (2.41), the ratios of the vortex size rc as
well as the wall thickness rw to critical disk radius Rd ¼ R2

are evaluated as

rc
R2

∼ 0.5;
rw
R2

∼ 0.3; ð4:1Þ

where we have approximated the logarithmic factor to be
unity. Apparently, it is not sufficiently smaller than 1.
Therefore, the Nambu-Goto type effective action may not
be applicable in the CSL of QCD. Note that this argu-
ments also follows for the ALP CSL. The other potential
loophole is the effects of the charged pions. We have
considered the quantum nucleation of the topological
soliton with the topological number π1ðUð1ÞÞ ≃ Z so
far. Although the charged pions acquire masses by the
Landau quantization, sufficiently heavy to be neglected,
the actual configuration space of the mesons (π0, π�) is

SU(2) instead of U(1). Hence, while we expect that the
charged pions do not show nontrivial field configuration
during the disk formation process due to their heavy mass,
we do not exclude the possibility that the wall disk is
formed continuously from the QCD vacuum due to
π1ðSUð2ÞÞ ≃ 0 when we include the degrees of freedom
of the charged mesons. We leave more detailed inves-
tigation in future study. Note that in the case of ALPs,
which is studied in Sec. III B, we have considered a single
ALP and it is assumed that there exist no associated light
charged field in the theory. If this is the case in the string
theory, loopholes would not apply. However, in general
there may have to exist associated fields, e.g., lots of
ALPs, in string theory owing to the swampland con-
straints restricting the moduli space [72,73].
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