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The sole static electromagnetic property of a spin-1
2
Majorana fermion is its anapole moment. Though

they cannot couple to single real photons, these particles can interact with electric currents through virtual
photons. If a Majorana fermion is immersed in a background current, there is an energy difference between
the spin states of the fermion; the higher energy state has its anapole moment antialigned with the current.
In this paper, we address the ability of a system of initially unpolarized Majorana fermions to achieve some
degree of polarization relative to a static background current. In considering processes that allow the
Majorana fermion’s spin to flip to the lower-energy state, we focus upon two irreversible processes: the
spontaneous emission of two real photons and the emission of a single real photon emitted in virtual
Compton scattering. Both of these processes involve coupling to photons via the fermion’s polarizabilities.
We compute the spin-flip transition rates for these processes using a low-energy expansion of the
Hamiltonian and construct a toy model to showcase how these rates depend upon the underlying parameters
within a model. Applying these ideas to a thermal dark matter (DM) model, we find that when the DM
thermally decouples from the Standard Model plasma in the early universe, two-photon emission is
negligible but partial polarization for the DM medium can proceed via virtual Compton scattering if
sufficient currents exist.
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I. INTRODUCTION

The self-conjugate nature of Majorana fermions severely
restricts their coupling to the electromagnetic field.
For a spin-1

2
Majorana fermion, its charge, electric dipole

moment, and magnetic dipole moment must vanish iden-
tically. Its sole static electromagnetic property is the ana-
pole moment [1,2]. A classical model of the anapole exists:
a toroidal current distribution; see, for example, Ref. [3].
This system has a nonzero anapole moment along its
symmetry axis, and additionally, its charge and electric
and magnetic dipole moments vanish. As a result, the
classical torus does not interact with static electric or
magnetic fields, but it does experience a torque in the
presence of an external current density, which acts to align
the torus’s anapole moment with the current. This notion
carries over faithfully to the realm of particle physics.
Majorana fermions do not couple to single real photons for
the same reasons that the classical torus does not respond to

electric or magnetic fields. But, as with the torus, the
interaction Hamiltonian between a fermion’s anapole
moment, a, aligned with the particle’s spin and an external
current density, J, is given by Hanapole ¼ −a · J [4]. From
this Hamiltonian, we see that particles with anapole
moments aligned with a background external current
are in a lower energy state than those with moments
antialigned with the current. The background current
results in an energy difference between these two states
by an amount ΔE ¼ 2aJ.
Suppose a system of initially unpolarized identical spin-1

2

Majorana fermions were subjected to a uniform constant
current density. Assuming sufficient interaction, the system
will come into thermal equilibrium after some time and
exhibit a degree of polarization according to the Boltzmann
distribution, nð↑Þ=nð↓Þ ¼ expðΔE=TÞ (assuming spin-up
fermions are aligned with the current). The timescale over
which this occurs is dependent upon the interaction rate for
processes that admit a spin flip of the Majorana fermion.
The dominant mode of interaction is through the exchange
of a single photon with the current, which, at the individual
particle level, is a reversible process. The ability to polarize
the system via such reversible processes crucially relies upon
sufficient interactions with the environment to achieve
thermalization. But, in addition to reversible interactions,
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there are also effectively irreversible processes that allow the
Majorana fermion to flip to the lower-energy state with the
anapole moment aligned with the external current. We will
study these subdominant irreversible processes in this paper
and take up the reversible anapole interactions in sub-
sequent work.
For a Majorana fermion with anapole moment antia-

ligned with an external current, photon emission is one
irreversible mechanism in which the fermion can flip its
spin to the lower energy state; however, spontaneous
emission of a single photon is not possible because ana-
poles cannot couple to a single real photon. But a Majarona
fermion can couple to two real photons via its model-
dependent electric and magnetic polarizabilities [5].
Through these polarizabilities, spontaneous emission of
two photons is possible.
Generically, a spin-1

2
fermion has sixteen independent

polarizabilities, which can be classified by how the two-
photon interaction transforms under parity (P) and time
reversal (T ) transformations. There are six polarizabilities
that are separately invariant under P- and T -transforma-
tions [6] and an additional four polarizabilities that are P-
odd and T -even [7]; the remaining six polarizabilities are
P-odd and T -odd [8]. The Majorana fermion’s self-con-
jugate nature constrains this list somewhat, requiring the
four P-odd and T -even polarizabilities to vanish [9]. This
leaves a dozen modes through which Majorana fermions
can interact with two real photons. In this work, we will
focus upon only those which are P- and T -even because
the other couplings are likely to be suppressed (given that
they require P- and T - violation). Of these six P- and T -
even polarizabilities, two are spin independent—the famil-
iar electric and magnetic polarizabilites, while four are spin
dependent [10,11]. It is these spin-dependent polarizabil-
ities, that will admit a spin flip of the Majorana fermion via
the spontaneous emission of two real photons.
The study of particle polarizabilities has a long history in

nuclear physics in the context of real Compton scattering
(RCS) [6–8,12–22] because photons can be used as a clean
probe of nucleon structure. More recently, virtual Compton
scattering (VCS) has emerged as an additional probe
[23–33]. In VCS, the incoming photon that interacts with
the target nucleon is virtual with four momentum satisfying
q2 ¼ −Q2 < 0 rather than q2 ¼ 0 as in RCS. In the low
energy limit, one may describe VCS via an effective
interaction using generalized polarizabilities which are
now functions of the initial photon’s four momentum,
Q2. Focusing upon only theP- and T -even interactions, the
ostensibly ten generalized polarizabilities [23] can be
reduced to six after applying charge conjugation and
crossing symmetries [29]. These six terms should match
up with the RCS polarizabilities in the limit in which the
initial photon becomes real, but care must be taken in how
this limit is realized. The low energy expansion of the
VCS amplitude developed by Gorchtein [33] provides a

scheme that continuously connects the VCS and RCS
polarizabilities.
Given the presence of a background current, a Majorana

fermion can undergo single photon emission by coupling to
charged particles through its generalized polarizabilities in
VCS. The charged particles can interact with the Majorana
fermion via a virtual photon, and the Majorana fermion can
emit a real final-state photon in the process. As with RCS,
some of the generalized polarizabilites are spin dependent
and, thus, able to effect a spin flip. We will compute the
transition rate for this process as well as spontaneous two-
photon emission.
In what follows, we first introduce the effective anapole

interaction between the Majorana fermion and background
current and construct a toy model to show how this
interaction emerges from a more complete theory. We then
consider the effective interaction between two real photons
and the Majorana fermion. Focusing upon RCS in the
low-energy limit, we compute the Majorana fermion’s
polarizabilities. With these, we determine the spontaneous
two-photon emission rate for a fermion undergoing a spin
flip to the lower energy state. Finally we move on to a
discussion of the low-energy expansion of the VCS ampli-
tude. We follow Gorchtein’s scheme in Ref. [33] to deter-
mine the generalized polarizabilities for our toy model.
Gorchtein uses the Breit frame, sowe shift the results over to
the lab frame in order to allow us to compute the interaction
rate for spin-flip under single photon emission. This process
is not spontaneous, sowe also determine the rate atwhich the
Majorana fermion’s anapole moment transitions from
aligned to antialigned with the current through VCS.
The ability of a current to polarize a collection of

Majorana fermions is intrinsically interesting, but it could
have consequential relevance to neutrino physics or dark
matter (DM) models [34–40]. Because we only consider
Majorana fermions that are nonrelativistic, our results are
not directly applicable to neutrinos, though generalizing
our results to relativistic particles could be an interesting
avenue to pursue. But, for DM thermal relics, once the
universe cools to the point at which the DM decouples from
the plasma of Standard Model particles, local electric
currents could result in regions of polarized DM that
would persist to present day. Using reasonable parameters
for the toy model, we estimate the rate at which two-photon
emission and VCS occur around the time that DM
decouples from the thermal bath. We find that two-photon
emission is essentially forbidden in this era, but the VCS
process could be appreciable in the presence of a suffi-
ciently large, yet still nonrelativistic, current.
This possibility has implications for indirect DM detec-

tion experiments. In such experiments, the detection of
high-energy Standard Model particles could be ascribed to
DM annihilation, if the detected particles have no other
astrophysical origin. Majorana fermions can rather gen-
erically annihilate into photons if they are in an s-wave
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state [37,41], though sometimes this mode is naturally
suppressed [34,35,38]. Regardless, nonobservation of high-
energy photons from DM annihilation results in an upper
bound on the annihilation cross section. However, if a
region of DM were partially polarized in the early universe
by a background current, this polarization would persist to
the present, and the polarization would suppress s-wave
annihilation because this mode requires the two annihilat-
ing DM particles to have opposite spins. In such a region,
an indirect detection experiment would result in an overly
stringent bound on the annihilation cross section if the
analysis assumed an unpolarized DM medium.

II. ANAPOLE MOMENT AND TOY MODEL

When considering the electromagnetic interactions of a
Majorana fermion, χ, we take an effective field theory
approach, expressing the Lagrangian density in terms of the
electromagnetic field strength tensor, Fμν ¼ ∂

μAν − ∂
νAμ.

For the single-photon interaction represented in Fig. 1, the
effective Lagrangian is

Lanapole ¼ faðq2Þχ̄γμγ5χ∂νFμν: ð1Þ

The static anapole moment is determined in the limit of
vanishing photon momentum, q → 0; that is, we set
fa ≔ faðq2 ¼ 0Þ. A few remarks are in order. First,
reflecting the fact that Eq. (1) is an effective Lagrangian,
the anapole moment has mass dimension ½M�−2. Second, it
is clear from the structure of the Lagrangian term that the
interaction vanishes for real, transverse photons given that
q2 ¼ 0 and ϵ · q, where ϵμ is the photon’s polarization
vector, viz. Aμ ¼ ϵμe−iq·x. Finally, the derivative of the field
tensor can be replaced with an external density Jμ ¼ ∂νFμν,
highlighting the coupling between the Majorana fermion’s
anapole moment and an external current.
For our calculations, we will be working in the low-

energy limit. The Majorana fermion will be nonrelativistic,
jpj; jp0j ≪ mχ , and momentum transfer will be small
jqj ≪ mχ . In this regime, the full Dirac four-spinor is
not needed to describe the particle dynamics. In the low
energy limit, the spatial parts of the Lagrangian, Eq. (1),
dominate resulting in the anapole interaction Hamiltonian

Hanapole ¼ −faσ · J; ð2Þ

which acts on Pauli spinors, ξ. In this two state system, the
energy difference between spinors antialigned and aligned
with the current is ω0 ¼ 2faJ.
A particle’s anapole moment fa is a model-dependent

quantity whose parameter dependences can only be deter-
mined from a more fundamental theory. It is useful to
consider a toy model to see how model parameters enter
into the effective coupling for the anapole moment and for
the polarizabilities that follow. For our toy model, we
suppose the Majorana fermion couples to a charged
scalar, ϕ, and a Dirac fermion, ψ . In order for the anapole
moment to be nonzero, the coupling must be parity
violating. For our toy model, we assume maximal parity
violation. Explicitly, we take the interaction term in the
Lagrangian density to be

Lint ¼ gψ̄
1

2
ð1 − γ5Þχϕ� þ H:c:: ð3Þ

To simplify our expressions, we will also assume that the
mass of the scalar particle dominates the fermion masses.
The anapole moment can be determined from the one-

loop Feynman diagrams in Fig. 2. For the computation, we
use the Feynman rules for Majorana fermions developed in
Refs. [42,43]. In particular, we must consider both ori-
entations of the Dirac fermion flow in loop diagrams. Per
the effective Lagrangian in Eq. (1), the anapole vertex has
the form ifaðq2γμ − =qqμÞγ5; therefore, to determine the
anapole moment, it is sufficient to compute the diagrams in
Fig. 2 out to order Oðq2Þ. We execute the calculations in
Mathematica using PACKAGE-X 2.0 developed in Ref. [44].
The resulting moment is then given by

fa ≈
eg2

ð4πÞ2M2
ϕ

�
1

3
log

�
M2

ϕ

m2
ψ

�
−
1

2

�
; ð4Þ

where we keep only the leading terms in Mϕ ≫ mχ ; mψ .
We note that the structure of this anapole moment is similar
to the charge radius of the neutrino in the analogous
limits [45].

FIG. 1. Anapole vertex for a Majorana fermion.

(a) (b)

FIG. 2. One-loop diagrams that determine the Majorana fer-
mion’s anapole moment.
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III. SPONTANEOUS TWO-PHOTON EMISSION

A. Effective Hamiltonian

To compute the interaction of the Majorana fermion with
real photons, we introduce an effective Hamiltonian that
couples two photons via the fermion’s polarizabilities. At
low energies, the interactions can be expressed rather
simply in terms of the photons’ electric and magnetic field
components. For the P- and T -invariant interactions, two
of these interaction terms are spin independent, while the
remaining four are spin dependent and involve derivatives
of the fields. Following the parametrization for the spin-
dependent terms laid out in Ragusa [10,11], we write the
low-energy expansion (LEX) of the Hamiltonian as

Hpol ¼ −
1

2
4πðαEE · Eþ βMB ·BÞ þ 4π

1

2
γ1E

· ½σ × ð∇ ×BÞ� − 4πðγ2 þ γ4ÞB · ½∇ðσ ·EÞ�

þ 4πγ3E · ½∇ðσ ·BÞ� þ 4π

�
1

2
γ2 þ γ4

�
B

· ½σ × ð∇ ×EÞ�; ð5Þ

where the coefficients represent the various polarizabilities.
This Hamiltonian is appropriate both for real Compton
scattering, as in Fig. 3(a), and the emission of two photons,
Fig. 3(b).
Particle polarizabilities can be easily understood within

the context of classical electromagnetism. In a two-photon
interaction with the Majorana fermion, one can heuristi-
cally think of one photon’s electric or magnetic field
inducing an electric or magnetic dipole with which the
second photon can interact. The simplest examples are
the spin-independent polarizabilities. For instance, in the
presence of an electric field, an electromagnetic object
will typically deform; the positively charged constituents
feel a tug in the direction of the field while the negatively
charged bits feel a tug in the opposite direction. To leading
order, the field induces an electric dipole in the same
direction of the field, p ¼ αEE. This dipole will lower the
energy of the system via its interaction with the field
∼ − p · E, resulting in a potential term in the Hamiltonian

− 1
2
αEE2. The contribution from the spin-independent

magnetic polarizability, βM, is similar, contributing to
the system energy an amount − 1

2
βMB2. Higher order

interactions between the particle and (derivatives of)
the electromagnetic field can result in spin-dependent
polarizabilities [10,11]. Because these moments involve
derivatives of the fields, their contribution to the
Hamiltonian will be Oðω3Þ, with ω the photon energy.
For a spin-1

2
particle, the two leading order spin-dependent

electric dipole moments are − 1
2
γ1σ × ð∇ × BÞ and

−γ3∇ðσ ·BÞ, and the corresponding spin-dependent mag-
netic dipole moments are ðγ2 þ γ4Þσ × ð∇ ×EÞ and
−ð1

2
γ2 þ γ4Þ∇ðσ ·EÞ. The coefficients γj are known as

the spin-dependent polarizabilities. We note that our
seemingly peculiar expressions for these coefficients are
consistent with a prevailing definition of the spin-depen-
dent polarizabilities in the literature, e.g., in Ref. [16].
Before moving on to discuss two-photon emission, we

will make a few comments on the RCS process. Our
reasons are twofold. First, we will explicitly show that our
expression is consistent with the leading order LEX of the
RCS amplitude found in the literature. Second, we would
like to have an expression for the RCS Hamiltonian matrix
element that can be more easily compared to that for the
VCS Hamiltonian. One challenge in the literature has been
to show that the VCS result limits to the RCS case
whenever the incident photon becomes real. In Ref. [33],
Gorchtein finds an appropriate linear combination of fields
such that the matrix element for the RCS Hamiltonian is
recovered from his expression for the VCS Hamiltonian in
the appropriate limits. We will show this for the non-Born
terms in our work. To facilitate this comparison, we will
write a matrix element for the RCS Hamiltonian in terms of
the photon momentum and polarization three-vectors,
enforcing the transverse condition q · ϵ ¼ 0 ¼ q0 · ϵ0 and
the on-shell condition q2 ¼ 0 ¼ q02; that is, we will write
the Hamiltonian in terms of the Fourier modes of the fields.
Our expression will be valid in both the center-of-mass
frame and the Breit frame. The Breit frame requires the
incoming and outgoing fermion three-momenta satisfy
p0 ¼ −p, and this fact forces the incident and outgoing
photon energies to be the same q0 ¼ q00≕ω.
To set our notation, we work with the quantized vector

field

AμðxÞ ¼
X
λ

Z
d3k
ð2πÞ3

1ffiffiffiffiffiffi
2ω

p

× ½ϵμðk; λÞak;λe−ik·x þ ϵ�μðk; λÞa†k;λeik·x�; ð6Þ

where we sum over polarization states λ. We work in a
gauge with A0 ¼ 0 so that the polarization vectors are
purely spatial. The electric and magnetic fields are found
through the usual relations: E ¼ − ∂

∂tA and B ¼ ∇ ×A.

(a) (b)

FIG. 3. Two-photon interactions with a Majorana fermion by
virtue of the particle’s polarizability. (a) Real Compton scattering.
(b) Two-photon emission.
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For the RCS process, the initial and final real photons have
momentum and polarization ðq; ϵÞ and ðq0; ϵ0Þ, respectively.
Omitting some normalization factors, we express the RCS
Hamiltonian matrix elements in terms of the electromag-
netic field Fourier components

hq0; ϵ0jHpoljq; ϵi
∼ ½ω2αE þ ðq · q0ÞβM�ϵ · ϵ0� − βMðq · ϵ0�Þðq0 · ϵÞ
þ iω½ω2γ1 − ðq · q0Þðγ2 þ 2γ4Þ�½σ · ðϵ0� × ϵÞ�
þ iωγ2ðϵ0� · ϵÞ½σ · ðq0 × qÞ�
þ iωγ4fðq0 · ϵÞ½σ · ðϵ0� × qÞ� − ðq · ϵ0�Þ½σ · ðϵ × q0Þ�g
þ iωγ3fðϵ · q0Þ½σ · ðϵ0� × q0Þ� − ðϵ0� · qÞ½σ · ðϵ × qÞ�g:

ð7Þ

This expression is consistent with the low-energy behavior
of the RCS matrix element in Ref. [16], as applied to a
Majorana fermion with vanishing charge and static dipole
moments.

B. Polarizabilities in the toy model

Polarizabilities are model-dependent quantities, so we
turn again to the model introduced in Sec. II to examine
how model parameters can enter into these coefficients. A
sample of the one-loop Feynman diagrams that contribute
to the RCS process is shown in Fig. 4. Again, we execute
the calculations in Mathematica using the package devel-
oped in Ref. [44]. We compute the amplitude to Oðω3Þ in
the Breit frame and then extract the polarizability coef-
ficients through comparison with the expression in Eq. (7).
Keeping only the leading order terms in this limit, we find
the Majorana fermion’s spin-independent polarizabilities,
αE and βM, and spin-dependent polarizabilities, γj, in the
Breit (or CM) frame to be

αE ≈
e2g2

ð4πÞ3
mχ

M4
ϕ

�
2

3
log

�
M2

ϕ

m2
ψ

�
−
5

6

�
; ð8Þ

βM ≈
e2g2

ð4πÞ3
mχ

M4
ϕ

�
2

3
log

�
M2

ϕ

m2
ψ

�
−
13

6

�
; ð9Þ

γ1 ≈ −
e2g2

ð4πÞ3
1

3

1

M2
ϕm

2
ψ
; ð10Þ

γ2 ≈
e2g2

ð4πÞ3
1

M4
ϕ

�
2

3
log

�
M2

ϕ

m2
ψ

�
−
3

2

�
; ð11Þ

γ3 ≈
e2g2

ð4πÞ3
1

6

1

M2
ϕm

2
ψ
; ð12Þ

γ4 ≈ −
e2g2

ð4πÞ3
1

6

1

M2
ϕm

2
ψ
; ð13Þ

where we consider the approximation in which the scalar
mass dominatesmψ ; mχ ≪ Mϕ. These values are consistent
with the independent calculation in Ref. [9].

C. Rate of spontaneous two-photon emission

We now turn to the spontaneous emission of two
photons, Fig. 3(b), from a Majorana fermion immersed
in a steady background current J. We take the current to be
in the z-direction. Spin-down Majorana fermions, ξ−, will
have an energy of ω0 ¼ 2faJ greater than a spin-up, ξþ,
counterparts. We will assume that the Majorana fermion is
at rest relative to the current both before and after photon
emission; that is, we neglect recoil effects which are small
because mχ ≫ ω0. Shifting the calculation to the particle
rest frame (from the previously discussed Breit or CM
frame) has one additional implication. The polarizability
coefficients that appear in the low-energy Hamiltonian,
Eq. (5), for two-photon interactions are frame dependent;
however, the corrections to the polarizabilities incurred in
boosting from the Breit frame to the particle’s rest frame are
subdominant and thus negligible when considering only
leading order terms. Given this, we employ the polar-
izabilities calculated in Eqs. (8)–(13).
To compute the transition rate for spontaneous emission

of two photons, we use Fermi’s golden rule

d6Γspont ¼ 2πjhfjHpoljiij2ρf : ð14Þ

Here the initial state is a spin down Majorana fermion with
p ¼ 0, and the final state consists of a spin-up fermion with
p0 ¼ 0 along with two photons with momenta and polar-

izations q1, q2 and ϵðαÞ1 ; ϵðβÞ2 , respectively. For our calcu-
lations, we will sum over final photon polarizations, α and
β, and integrate over the density of photon final states

FIG. 4. One-loop diagrams that contribute to the real Compton
scattering amplitude. Both orientations of fermion flow within the
loop are considered, and the diagrams with the “crossed” photons
lines are not shown.
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ρf ¼
Y2
j¼1

d3qj
ð2πÞ3 : ð15Þ

Because the transition from initial to final state involves a
spin flip for the Majorana fermion, the spin-independent
terms in the Hamiltonian, Eq. (5), have vanishing matrix
element. As such, there are four contributions to the
amplitude coming from the spin-dependent terms. As an
example, let us consider in some detail just the first spin-
dependent electric polarizability: Hγ1 ¼ 4π 1

2
γ1E · ½σ ×

ð∇ × BÞ�. The matrix element for this process is

hfjHγ1 jii ¼ iγ1
πffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p ðω1ω
2
2 − ω2ω

2
1Þσfi · ðϵðβÞ�2 × ϵðαÞ�1 Þ;

ð16Þ

where we set σfi ¼ hξþjσjξ−i. To compute the total
transition rate for this, we integrate over the final phase
space of the photons and sum over photon polarizations.
For a transition mediated solely by the γ1 term in Eq. (5),
we compute a spin-flip rate

Γspontγ1
¼ 2γ21ω0

9

2835π
: ð17Þ

The other contributions to two-photon spontaneous
emission are computed in a similar fashion. Generally,
we must sum over these so that possible interfering terms
can be given proper account. After doing so (and summing
over photon polarization states), we find the spontaneous
two-photon emission transition rate to be

Γspont ¼ ð2γ21 þ 10γ22 − 3γ2γ3 þ 12γ23 þ 20γ2γ4

− 2γ3γ4 þ 12γ24 þ γ1γ2 þ 4γ1γ3 þ 3γ1γ4Þ
ω9
0

2835π
:

ð18Þ
From the model-depend polarizabilities, Eq. (13), we see

that at leading order γ2 is smaller than the remaining spin-
dependent coefficients by a factor of m2

ψ=M2
ϕ. For what

remains, we define γ ≔ γ3 and find γ1 ¼ −2γ along with
γ4 ¼ −γ. Neglecting γ2, we can approximate the transition
rate for this model as

Γspont ¼
32γ2ω9

0

2835π
: ð19Þ

IV. SINGLE-PHOTON EMISSION VIA VCS

A. Effective Hamiltonian

We now consider single-photon emission mediated by
the interaction with a charged particle, coupled to the
Majorana fermion via generalized polarizabilties. Though

spontaneous emission of a single photon is not possible, a
Majorana fermion can emit a single real photon in the
virtual Compton scattering process depicted in Fig. 5. Here,
the Majorana fermion interacts with a charged fermion,
represented by Ψ with charge e. The amplitude for this
process is

MVCS ¼ ieūðk0ÞγμuðkÞ
1

q2
T μν

VCSϵ
0�
νðq0; λ0Þ; ð20Þ

where T μν
VCS is the VCS tensor that encodes the physics

within the shaded vertex in Fig. 5 and q ¼ k − k0.
We can actually cast this amplitude in a more suggestive

form by projecting the Dirac bilinear from the charged
fermion, Ψ, onto a set of three orthogonal normalized
vectors, ϵμðq; λÞ,

ūðk0ÞγμuðkÞ ¼
X
λ

Ωλϵ
μðq; λÞ: ð21Þ

To do so, we first note that the off-shell photon momentum,
q, is orthogonal to Dirac bilinear, ūðk0Þ=quðkÞ ¼ 0, because
on-shell spinors satisfy =kuðkÞ ¼ mΨuðkÞ. Given this,
two of the of the vectors, ϵμðq; λ ¼ �Þ, can be chosen to
be wholly spatial. Setting qμ ¼ ðω;qÞ, these two basis
vectors are ϵμðq; λ ¼ �Þ ¼ ð0; ϵ�Þ with the spatial part
orthogonal to the photon’s three-momentum, ϵ� · q ¼ 0.
For normalized ϵ�, then these two four-vectors have
norm ϵμðq; λ ¼ �Þϵμðq; λ ¼ �Þ ¼ −1. The third vector,
ϵμðq; λ ¼ 0Þ, must be timelike because the off-shell pho-
ton’s momentum is spatial, q2 ≔ −Q2 < 0, viz. jqj > ω.
Then, the longitudinal polarization vector is given by
ϵμðq;λ¼ 0Þ ¼ 1ffiffiffiffiffi

Q2
p ðjqj;ωq̂Þ. This has norm ϵμðq; λ ¼ 0Þ×

ϵμðq; λ ¼ 0Þ ¼ þ1. The Dirac bilinear can then be decom-
posed as in Eq. (21) where the coefficients are Ωλ ¼
ð�Þūðk0ÞγμuðkÞϵμðq; λÞwith theþ sign taken for λ ¼ 0 and
− for λ ¼ �. With this change, we can write the VCS
amplitude as

MVCS ¼
ie
q2

X
λ

Ωλϵμðq; λÞT μν
VCSϵ

0�
νðq0; λ0Þ: ð22Þ

FIG. 5. Single-photon emission from a Majorana fermion via
virtual Compton scattering.
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In Fig. 5, the subdiagram involving the two photons and
Majorana fermion is identical to that of RCS, in Fig. 3(a),
except for the fact that the incident photon is virtual.
Because the incident photon can have a longitudinal mode,
the contraction between ϵμðq; λÞ and qμ is not necessarily
zero; viz., ϵ · q ≠ 0. This can result in additional structures
present in the low-energy expansion of the VCS
Hamiltonian, but in the end, one should be able to recover
the RCS Hamiltonian in the limit in which the incident
photon becomes real. With an appropriate linear combi-
nation of terms, this limiting process has been achieved by
Gorchtein [33].
To develop the LEX for the VCS Hamiltonian, Gorchtein

finds it convenient to work in the Breit frame, which
requires that the Majorana fermion’s momentum pre- and
postinteraction satisfy p0 ¼ −p. This choice renders the
same value for initial and final photon energies, ω, which
could not be achieved in, say, the center-of-mass frame

because q2 ≠ 0. Also, Gorchtein opts to work in the
Coulomb gauge with spatial polarization vectors. Recall,
above in the Lorenz gauge, the longitudinal mode
ϵμðq; λ ¼ 0Þ was timelike with ϵ · q ¼ 0. Gauge invariance
allows us to redefine this vector so that it only has spatial
components. This does not impact the overall VCS ampli-
tude by virtue of the Ward identity, qμT μν ¼ 0. From

ϵμðq; λ ¼ 0Þ, we subtract jqj
ω

ffiffiffiffiffi
Q2

p qμ defining the longitudinal

polarization vector as ϵ̃μðq; λ ¼ 0Þ ¼ −
ffiffiffiffiffi
Q2

p
ω ð0; q̂Þ. We

note that this new vector, ϵ̃μðq; λ ¼ 0Þ, is no longer
normalized nor orthogonal to qμ. Going forward, we will
use the three spatial polarization vectors fϵ�; ϵ0g, dropping
the tilde notation for the longitudinal mode.
With these conventions, Gorchtein determines the lead-

ing order contribution to the VCS Hamiltonian matrix
element in a LEX is

HVCS ∼ 4παEðQ2ÞE · E0 þ 4πβMðQ2ÞB ·B0

þ 4πi½γ1ðQ2Þ − γ2ðQ2Þ − 2γ4ðQ2Þ� 1
2
fσ · ½E × ðq0 ×B0Þ� − σ · ½E0 × ðq × BÞ�g

þ 4πiγ2ðQ2Þ 1
2
fσ · ½q0 × ðE0 × BÞ� − σ · ½q × ðE ×B0Þ�g

þ 4πi

�
1

2
γ2ðQ2Þ þ γ3ðQ2Þ þ γ4ðQ2Þ

�
fðσ ·BÞðq · E0Þ − ðσ · B0Þðq0 · EÞg

− 4πi

�
1

2
γ2ðQ2Þ þ γ4ðQ2Þ

�
ðσ · ΔÞfB · E0 þ E ·B0g; ð23Þ

where the spin-independent, αEðQ2Þ; βMðQ2Þ, and spin-dependent, γjðQ2Þ, generalized polarizabilities are functions of the
initial photon’s invariant “mass”, Q2, and Δμ ≔ q − q0 ¼ p0 − p. Gorchtein’s definitions of γjðQ2Þ mirror their analogues
in common RCS parameterizations, e.g., see Ref. [16]. To aid comparison with RCS, we will write this expression wholly in
terms of the electromagnetic Fourier modes (still within the Breit frame)

HVCS ∼ ðω2αE þ ðq · q0ÞβMÞϵ · ϵ0� − βMðϵ0� · qÞðϵ · q0Þ

þ iω

�
1

2
ðjqj2 þ jq0j2Þγ1 − ðq · q0Þðγ2 þ 2γ4Þ�½σ · ðϵ0� × ϵÞ

�

þ iωγ2ðϵ0� · ϵÞ½σ · ðq0 × qÞ�
þ iωγ4fðϵ · q0Þ½σ · ðϵ0� × qÞ� − ðϵ0� · qÞ½σ · ðϵ × q0Þ�g
þ iωγ3fðϵ · q0Þ½σ · ðϵ0� × q0Þ� − ðϵ0� · qÞ½σ · ðϵ × qÞ�g

− iω
1

2
γ1ðϵ · qÞ½σ · ðϵ0� × qÞ� þ iω

�
1

2
γ2 þ γ4

�
ðϵ · qÞ½σ · ðϵ0� × q0Þ�; ð24Þ

where we suppress the Q2 dependence of the generalized
polarizabilities. Note that the last two terms in Eq. (24)
vanish for a transverse photon. Additionally, if the incident
photon were real, then in the Breit (and COM) frame, we
would have jqj2 ¼ jq0j2 ¼ ω2.

B. Generalized polarizabilities in the toy model

Before computing the spin-flip transition rate mediated
by the VCS vertex, we first compute the generalized
polarizabilities for the toy model introduced in Sec. II.
The Feynman diagrams that contribute to the generalized
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polarizabilities are the same as those in RCS; see Fig. 4.
The only modifications are that we set q2 ¼ −Q2 and
q · ϵ ≠ 0. We work in the Breit frame so that we may easily
compare the resulting polarizabilities with those from RCS.
As before, we use PACKAGE-X 2.0 in Mathematica to
compute the diagrams [44] and carry out the low energy
expansion. We treat both q and q0 as small variables and

carry all computations out to fifth order in these small
quantities before truncating. To simplify expressions, we
also assume Mϕ ≫ mψ ; mχ , keeping at most terms that
are OðM−4

ϕ Þ.
For our toy model, we find the LEX of the VCS tensor in

the Breit frame to be

T μν
VCSϵμϵ

0�
ν ¼

e2g2

ð4πÞ2
�
m2

χ

M4
ϕ

��
4

3
log

�
M2

ϕ

m2
ψ

�
−
5

3

�
ω2 þ

�
4

3
log

�
M2

ϕ

m2
ψ

�
−
13

3

�
q · q0

�
ðϵ · ϵ0Þ

−
m2

χ

M4
ϕ

�
4

3
log

�
M2

ϕ

m2
ψ

�
−
13

3

�
ðϵ0� · qÞðϵ · q0Þ

þ iω

�
−
2

3

mχ

m2
ψM2

ϕ

�
1

2
jqj2 þ 1

2
jq0j2 − q · q0

��
½σ · ðϵ0� × ϵÞ�

þ iω
mχ

M4
ϕ

�
4

3
log

�
M2

ϕ

m2
ψ

�
− 3

�
ðϵ0� · ϵÞ½σ · ðq0 × qÞ�

− iω
1

3

mχ

m2
ψM2

ϕ

fðϵ · q0Þ½σ · ðϵ0� × qÞ� − ðϵ0� · qÞ½σ · ðϵ × q0Þ�g

þ iω
1

3

mχ

m2
ψM2

ϕ

fðϵ · q0Þ½σ · ðϵ0� × q0Þ� − ðϵ0� · qÞ½σ · ðϵ × qÞ�g

− iω
2

3

mχ

m2
ψM2

ϕ

ðϵ · qÞ½σ · ðϵ0� × qÞ� þ iω
2

3

mχ

m2
ψM2

ϕ

ðϵ · qÞ½σ · ðϵ0� × q0Þ�:
�

ð25Þ

In the limit in which the incident photon becomes real, viz.
q2 ¼ 0 and ϵ · q ¼ 0, we find the VCS amplitude is
equivalent to the RCS amplitude, with the VCS generalized
polarizabilities collapsing to the RCS ones calculated
above; that is, αEðQ2 ¼ 0Þ, βMðQ2 ¼ 0Þ, and γjðQ2 ¼ 0Þ
correspond to their RCS counterparts in Eqs. (8)–(13).
However, the additional structures that are present for the
longitudinal modes of the incident photon, those propor-
tional to ϵ · q, do not bear out the expectations from
Gorchtein’s LEX in Eq. (24). From Eq. (24), we expect
the new VCS terms, relative to the RCS amplitude, to
be iωð− 1

2
γ1Þðϵ · qÞ½σ · ðϵ0� × qÞ� þ iωð1

2
γ2 þ γ4Þðϵ · qÞ×

½σ · ðϵ0� × q0Þ�. Referring to the polarizabilities in our toy
model, Eqs (10)–(13), it is clear that we need to add two
additional terms to Eq. (23): 4πiγ5ωðϵ · qÞ½σ · ðϵ0 × qÞ� and
4πiγ6ωðϵ · qÞ½σ · ðϵ0 × q0Þ�. In our toy model, these

new coefficients are found to be γ5 ≈ − e2g2

ð4πÞ3
1
2

1
M2

ϕm
2
ψ
and

γ6 ≈
e2g2

ð4πÞ3
1
2

1
M2

ϕm
2
ψ
.

C. Rate of single-photon emission via VCS

With these generalized polarizabilities in hand, we can
now compute the spin flip transition rate for the Majorana
fermion in a background current J ¼ Jẑ that proceeds
via the VCS Hamiltonian, Fig. 5. As before, we note that

spin-down Majorana fermions, ξ−, will have an energy of
ω0 ¼ 2faJ greater than spin-up, ξþ, counterparts. We,
again, work in the rest frame of the Majorana fermion.
Because the generalized polarizabilities are frame depen-
dent, they will pick up corrections when boosting from the
Breit frame to the particle’s rest frame; in particular, there

are terms that are OðQ2

m2
χ
Þ. These corrections are subdomi-

nant, so we neglect them here. Additionally, the VCS
amplitude in the rest frame is modified because ω ≠ ω0,
which we accommodate.
The transition rate for the spin-flip process is give by

ΓVCS ¼ nΨvΨσVCS; ð26Þ

where nΨ is the number density of charged fermions
incident upon the Majorana fermion, vΨ their average
speed, and σVCS the total cross section for the VCS process.
To compute the total cross section, we sum over the final
photon polarization states λ0 and integrate over the final
available phase space for the charged fermion Ψ, real
photon, and Majorana fermion.
In our calculations, we will assume that the charged

fermion is relativistic so that the particle’s energy can be
equated with the magnitude of its momentum, EΨ ≈ jkj.
Likewise, for the charged fermion post-interaction, we will
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neglect the particle’s mass. Wewill also assume the charged
fermion to be unpolarized and sum over its final spin states.
After integrating over the Majorana fermion’s final momen-
tum, Δ, the cross section becomes

d6σVCS ¼
d3k0d3q0

ð4πÞ5vΨm2
χ jkjjk0jω0

× δ

�X
Ei − Ef

�				
X
λ0
MVCS

				
2

; ð27Þ

with the VCS amplitude expressed previously in Eq. (22),
assuming now that we average over (sum over) the initial
(final) charged fermion’s spin states. We have made some
additional kinematical simplifications. The Majorana fer-
mion is taken to be at rest initially, and post-interaction
we assume the impact on recoil to be minimal so that
p0μ ≈ ðmχ ;ΔÞ. Overall, momentum conservation in the
interaction yields k − k0 ¼ q ¼ q0 þ Δ while energy con-
servation simplifies to jkj ¼ jk0j þ ω0 − ω0.
The portion of the full VCS amplitude coming from the

VCS tensor can be cast in terms of the generalized polar-
izabilities using our results from Eq. (25). Recall, the
polarization vectors, ϵ, in Eq. (25) refer to the virtual photon
and, in fact, we sum over the three-polarization states for the
full VCS amplitude. Working in the Coulomb gauge, this
sum can be written as

P
λ Ωλϵ

μðq; λÞ ¼ K̃μ where K̃j ¼
ūðk0ÞγjuðkÞ − ūðk0Þγ0uðkÞω−1qj and the temporal compo-
nent vanishes by construction, K̃0 ¼ 0. The leading order
contribution to a spatial component of K̃ is given by the
second term, K̃j ≈ −ūðk0Þγ0uðkÞω−1qj; that is, the longi-
tudinal polarization of the virtual photon is dominant in this

process. Focusing only upon the spin-dependent processes
for the Majorana fermion, the square of the amplitude
becomes

jMVCSj2 ¼
				 12

e
q2

X
λ;s;s0

Ωλϵμðq; λÞT μν
VCSspinϵ

0�
ν

				
2

ð28Þ

≈ ðjkjjk0j þk0 ·kÞ
�
8πmχ

e
q2

�
2
				
X
λ0
f½γ5jqj2 þ

1

2
γ1jq0j2

− ðγ2 þ γ4Þðq · q0Þ�½σ · ðϵ0� × qÞ�
þ ðγ2 þ γ4Þðϵ0� · qÞ½σ · ðq0 × qÞ�

þ
��

1

2
γ2 þ γ4 þ γ6

�
jqj2 þ γ3ðq · q0Þ�½σ · ðϵ0� × q0Þ�

�				
2

;

ð29Þ

where s ðs0Þ indicate the initial (final) spin states of the
charged fermion, andwe neglect the charged fermion’smass.
The integration over the phase space of the of the final

photon is routine, shifting over to spherical coordinates for
the phase space variables. In terms of integration limits, the
minimum momentum transfer to the Majorana fermion
must be sufficient to produce a real photon of energy ω0 so
we require jqj ≥ ω0; this provides an upper limit for the
final-state photon’s energy, jk0j ≤ jkj − ω0. Finally, we
assume that the momentum, k, of the initial charged
fermion is randomly oriented as it would be in a plasma.
In our final expression for the cross section, we average
over all possible directions k. In the end, we find the
leading order contribution to the cross section is

σ ¼ e2

π

�
jkj6

�
1

528
γ21 þ

1

180
γ22 þ

1

280
γ23 þ

1

166
γ24 þ

43

540
γ25 þ

1

45
γ26 ð30Þ

þ 1

264
γ1γ3 þ

1

62
γ1γ5 þ

1

166
γ2γ4 −

1

97
γ2γ6 þ

1

62
γ3γ5 þ

1

83
γ4γ6

�
ð31Þ

þjkj5ω0

�
1

64
γ21 þ

1

30
γ22 þ

3

101
γ23 þ

6

163
γ24 þ

31

90
γ25 þ

2

15
γ26 ð32Þ

þ 5

159
γ1γ3 þ

8

83
γ1γ5 þ

6

163
γ2γ4 −

5

84
γ2γ6 þ

8

83
γ3γ5 þ

9

122
γ4γ6

��
ð33Þ

neglecting terms that are higher order in ω0.
1 For the toy

model, we again define γ ≔ γ3 ¼ e2g2

ð4πÞ3
1
6

1
M2

ϕm
2
ψ
, and then we

can write the cross section in terms of this parameter. The

resulting rate of spin-transition, from antialigned to aligned,
through the VCS channel is

ΓVCS ¼ αγ2nΨjkj5ð3.8jkj þ 17.7ω0Þ; ð34Þ

where α is the fine structure constant.

1Note, in Eq. (33) the coefficients to each term were evaluated
via numerical integration and then rationalized to a precision of
one part in ten thousand.
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One important distinction, relative to the two-photon
spontaneous emission process considered previously, is
that in the VCS process the spin of the Majorana fermion
can flip from aligned with the external current to anti-
aligned. That is, if the virtual photon from the charged
fermion, Ψ, is sufficiently energetic, namely ω > ω0, then
the Majorana fermion can be converted into the more
energetic antialigned state through single photon emission.
This process competes with the one in which the Majorana
fermion’s spin flips to the lower energy state. For a
collection of unpolarized Majorana fermions, it is the
difference between these two rates that determines the rate
at which the system can be polarized through the VCS
process. After computing the aligned-to-antialigned tran-
sition rate, we find the difference in spin-flip rates to be

ΔΓVCS ¼ 35.5αγ2nΨjkj5ω0; ð35Þ

to leading order for the toy model.

V. DISCUSSION

Because dark matter interactions are highly suppressed,
we anticipated at the outset of this calculation that the
ability to align with a background current the spins of a
collection of DMMajorana fermions, via either two-photon
spontaneous emission or single-photon emission through
VCS, is nearly impossible in all but the most extreme
environments. Present day, reasonable parameter estimates
for the size of the anapole moment and polarizabilities
show that the irreversible spin-flip transitions discussed
above are essentially forbidden in terrestrial experiments
and stellar environments. But, in the early universe, the
plasma density is so large that the differential spin-flip rates
for the VCS process could be significant if sufficiently large
currents exist.
In the very early universe when temperatures are much

greater than the DM mass, T ≫ mχ , reversible spin-flip
interactions can assist in polarizing a DM medium in the
presence of a background current. Because DM is in
thermal equilibrium with the thermal bath, one would
expect that the distribution of DM states would follow
the Boltzmann distribution with the ratio of states aligned
with a background current to those antialigned given by
nð↑Þ=nð↓Þ ¼ expðω0=TÞ. As the universe cools, T ≲mχ ,
DM becomes nonrelativistic, and because it interacts so
weakly, DM eventually decouples from the thermal bath.
At freeze out, the DM system is fully decoupled, and the
DM’s comoving number density essentially becomes con-
stant. After freeze out, irreversible processes like two-
photon emission and VCS are the only available mecha-
nisms for polarization. We examine these here.
The freeze out temperature, Tf, and relic DM density are

largely determined by the DM annihilation cross section.
For a large annihilation cross section, the DM stays in

thermal equilibrium until later times (that is, lower temper-
atures) resulting in greater DM annihilation, reducing the
ultimate relic density of the particle. Conversely, for smaller
annihilation cross sections, freeze occurs at a higher
temperature, and the relic DM density is greater. To
precisely determine the temperature at which thermal
DM begins to drop out of equilibrium one must solve
the Boltzmann equation, but reliable estimates of the freeze
out temperature and relic density, accurate to a few percent,
have been developed.
Before estimating the freeze out temperature, it is first

useful to expand the annihilation cross section as a power
series in velocity. Because DM is nonrelativistic at freeze
out, the lower velocity modes will be the most significant
annihilation channels. This expansion essentially encodes
the temperature dependence of the annihilation mode given
that hjvji ∼ T

1
2 for nonrelativistic particles. In many models,

a single annihilation mode dominates. In this case, we can
parametrize the thermally averaged annihilation cross
section as hσannjvji ¼ σ0x−n where we employ the dimen-
sional parameter x ≔ mχ

T and σ0 has no explicit temperature
dependence [46]. The s-wave annihilation mode corre-
sponds to n ¼ 0, p-wave to n ¼ 1, and so on. Assuming a
dominant annihilation mode, one may estimate that freeze
out occurs when

xf ≃ log ½0.076g−1
2� ðnþ 1ÞMPlmχσ0�

−
�
nþ 1

2

�
log½log½0.076g−1

2� ðnþ 1ÞMPlmχσ0��; ð36Þ

where g� represents the relativistic degrees of freedom at
freeze out and MPl is the Planck mass [46,47]. Once the
freeze out temperature is determined, one may estimate the
relative DM relic density present today

ΩDM ¼ 3.79s0

ρcritg
1
2�MPl

ðnþ 1Þxnþ1
f

σ0
; ð37Þ

where s0 represents the universe’s present entropy density
and ρcrit is the critical energy density [46,47]. We use
the values for the necessary astrophysical data found
in Ref. [48].
To determine the freeze out temperature for the toy

model, we must first examine its annihilation modes. The
s-wave annihilation of DM into two photons proceeds via
the polarizability terms in the LEX of the interaction
Hamiltonian, Eq. (5). In terms of kinematics, the initial
momenta of the DM particles are p ∼ p0 ∼ 0. Momentum
conservation results in two back-to-back final state real
photons with momenta q ¼ mχð1; q̂Þ and q0 ¼ mχð1;−q̂Þ;
additionally, the photons are transverse, q · ϵ ¼ q0 · ϵ0 ¼ 0.
Given these kinematic constraints, an examination of
the RCS Hamiltonian matrix elements in Eq. (7) suggests
that the only surviving term in the s-wave annihilation
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amplitude has the formMs∼m4
χ ½γ1þγ2þ2γ4�½σ ·ðϵ0�×ϵÞ�∼

g2e2 m4
χ

M4
ϕ
½σ ·ðϵ0�×ϵÞ�, using the polarizabilities in Eqs. (10)–

(13). A more refined treatment of the mass scales involved
in the process result in amplitudes with different mass
dependencies [41], but if the loop masses dominate the DM
mass, Mϕ; mψ ≫ mχ , then indeed the s-wave annihilation

amplitude scales asMs ∼
m4

χ

M4 whereM ∼Mϕ; mψ . With this
amplitude, the annihilation cross section for the s-wave

process scales as σs ∼
m6

χ

M8. We will see that this mass
dependence suppresses the s-wave annihilation mode
relative to the p-wave mode. We also note that even if
we have the alternate mass hierarchy Mϕ ≫ mχ ≫ mψ,
p-wave annihilation still dominates the s-process for large
[O (100 GeVs)] DM masses because the p-wave channel
has a multitude of kinematically available final states [41].
In p-wave annihilation, the nonrelativistic DM particles

couple via the anapole moment to a virtual photon which
pair produces charged particles like an electron and
positron. This annihilation cross section in the center of
mass frame has been worked out previously [34]

σpvrel ¼
2

3
αf2am2

χv2rel: ð38Þ

The mass dependence of the anapole moment in our toy
model is fa ∼ 1

M2
ϕ
, so the p-wave annihilation cross section

scales as σp ∼
m2

χ

M4
ϕ
. This mode dominates the s-wave cross

section, so we assume annihilation proceeds predominantly
through the p-wave mode. Expressing this is terms of the
dimensionless factor x, the thermally averaged cross
section is

hσpjvrelji ¼
2

3
αNff2am2

χhjvrelj2i ¼ σ0x−1 ð39Þ

with σ0 ¼ 4αNff2am2
χ . As in Ref. [34], the factor Nf

accounts for the sum over all the kinematically available
final states weighted by the square of the particles’ charges.
For instance, an electron-positron pair contribute a term of
1 to the sum, whereas an up-antiup pair contribute a term of
ð2
3
Þ2 × 3 to the sum, where the factor of 3 accounts for the

different color states. Because the p-wave annihilation
mode is much larger than the s-wave mode for reasonable
model parameters, we set n ¼ 1 in Eqs. (36) and (37).
After freeze out, the only mechanism by which polari-

zation of a DM medium can be achieved is via irreversible
processes like those discussed above. But this can only
happen if the spin-flip rate aligning the anapole moment
with the background current is much greater than the
universe’s expansion rate. When DM decouples, the uni-
verse is in a radiation dominated era, and the Hubble
parameter is given by [46]

H ¼ 1.66g
1
2⋆
T2

MPl
: ð40Þ

In order for the DM to achieve some degree of polarization,
we require that the irreversible spin-flip rate is much greater
than the Hubble parameter around freeze out; Γ ≫ H.
Let us consider specific model parameters to see if this

inequality can be achieved. Collider experiments place
meaningful constraints on the size of possible anapole
moments for particles with masses on the order of hundreds
of GeVs. Using an effective-field-theory approach, a recent
study, Ref. [49], finds that the high-luminosity LHC runs
constrain the anapole moment for a 500 GeV particle to be
smaller than fa ¼ 2 × 10−6μN fm. Given this value for
the anapole moment, we can use Eq. (37) to directly relate
the DM’s anapole moment to the freeze-out temperature, if
we assume the entirety of the relic DM is due to this
Majorana fermion. Taking fa ¼ 2 × 10−6μN fm, we find
that freeze out occurs at Tf ¼ 17 GeV. Then, using
Eq. (36), this freeze out temperature and anapole moment
correspond to a DM mass of mχ ¼ 419 GeV. This is rea-
sonably consistent with the constraints from Ref. [49]. We
will also need to estimate the size of the polarizabilties. To
do so requires an assumption about the mass of the charged
fermion ψ to which the Majorana fermion couples. We set
mψ ¼ 100 GeV, which yields γ≔ γ3∼ 6.6× 10−13 GeV−4,
neglecting an Oð1Þ logarithm, logðMϕ=mψ Þ.
Turning our attention to spin-flip processes, we now

examine whether spontaneous two-photon emission is
viable at freeze out for DM with this particular anapole
moment. The rate depends heavily on the energy difference
between the two spin states, ω0 ¼ 2faJ, dictated by the
background current density. We will assume the current is
due to some net drift velocity of charged particles in the
relativistic thermal plasma, J ¼ enqvdrift. The factor nq is
the number density of charge carriers summed over all the
charged relativistic species weighted by the absolute value
of their charge; e.g., electrons are weighted by 1 while up
quarks have a weight of 2

3
.

Below the freeze out temperature of 17 GeV, the charged
relativistic species are exclusively fermionic, and the number
density for a single relativistic species of fermions is

n ¼ 3

4

ζð3Þ
π2

gT3 ð41Þ

where ζ is the Riemann zeta function and g is the degrees of
freedom for the particular species [46]. Around the freeze out
temperature, we have J ¼ 1.1vdriftT3 which yields an energy
difference ofω0 ¼ 18 MeV, taking vdrift ¼ 1 to represent an
upper limit on the drift speed. FromEq. (19), we find that the
two-photon spontaneous emission rate at freeze out is
Γspont ≤ 4.6 × 10−19 s−1, which corresponds to a transition
time that is on theorder of theHubble time.Comparing this to
the universe’s expansion rate at Tf ¼ 17 GeV, we find
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Γspont

H ∼ 8.3 × 10−28. Thus, the rate of spontaneous two-
photon emission is negligible around DM freeze out for
these model parameters.
We now consider the differential spin-flip rate for the

VCS process. In Sec. IV C, we assumed that VCS was
effectuated by a single charged fermion of momentum k,
though in the early universe VCS would be due to an
incoherent sum of interactions with various fermion species
in the relativistic plasma. To incorporate in the differential
spin-flip rate, Eq. (35), several flavors of fermions with
differing charges, we substitute for nΨ a sum over the
relativistic flavors of fermions, at the given temperature,
with each fermion’s contribution weighted by the square of
its charge. Additionally, the fermion momentum is given by
the thermal average [46]

hjkji ¼ 7π4

180ζð3ÞT: ð42Þ

Evaluating the degrees of freedom at 17 GeV, we compare
the differential spin-flip rate to the Hubble parameter

ΔΓVCS

H
¼ 28MPlfaγ2T9vdrift: ð43Þ

At freeze out for the model parameters under consideration,
we find that the differential spin-flip rate is sufficiently
large if vdrift ≫ 0.03.
The existence of such currents in the early universe

would break the homogeneity assumed in the cosmological
principle, but inhomogeneities must occur to seed the
formation of galaxies. In the literature, we find that the
production of electric currents in the early universe has
been discussed in the inflationary period [50], around the
electroweak phase transition [51,52], and around the QCD
phase transition [51,53–55]. These currents are expected to
dampen rather quickly, compared to the Hubble time [56],
but their ability to locally polarize DM does not rely on
long timescales.
It is beyond the scope of this present paper to determine

if sufficient currents exist to polarize a DM medium at
freeze out, but if they do exist, there are implications for
DM indirect detection experiments. Supposing a DM
medium were to be partially polarized at freeze out by
an electric current, the DM polarization in the local medium
will be locked in place because subsequent interactions
with the thermal bath will be too feeble to disrupt it. The
consequence of such polarized regions, present day, is the
suppression of the rate of s-wave annihilation which, by
definition, requires vanishing total angular momentum. For
a Majorana fermion, s-wave annihilation results in two
final state photons, coupled via the fermion’s polarizabil-
ities, and an indirect DM detection experiment could look
for high-energy photons as the annihilation products of
DM. If no photons were observed, the experiment places an
upper bound on the annihilation cross section as a function

of DM mass. However, if the detector were within a region
of partially polarized DM, the established bound on the
s-wave annihilation cross section would be an overestimate
if the DM medium were assumed to be unpolarized.

VI. CONCLUSION

In this paper, we studied the ability of background currents
to polarizeMajorana fermions through irreversible processes
involving photon emission. If a Majorana fermion has a
nonvanishing anapole moment, then a background current
results in an energy difference between states with spins
aligned and antialigned with the current. Because the other
static electromagnetic properties of a Majarona fermion
necessarily vanish, the ability of a Majorana fermion to flip
its spin in the presence of such a background current requires
higher order interactions.We focused upon two possibilities.
The first involved spontaneous two-photon emission which
proceeds via the particle’s polarizability. The second
involved emission of a single photon as would occur in
virtual Compoton scattering; this proceeds by virtue of the
particle’s generalized polarizabilities.
Both processes involve spin-dependent effective cou-

plings that carry mass dimension ½M�−4 with a GeV-mass
scale. As such, they are highly suppressed making the
transition rate from the state in which the anapole moment
is antialignedwith the current to the one inwhich it is aligned
vanishingly small in terrestrial experiments or stellar envi-
ronments. However, if DM is constituted by massive
Majorana fermions, the early universe allows for the pos-
sibility that these spin-flip interactions can occur at an
appreciable rate. We focused on the time at which DM
decouples from the thermal bath. By considering reasonable
parameter values for a thermal DM model, we find that
spontaneous two-photon emission is negligible at this time,
but single-photon emissionviaVCS can be appreciable. This
has consequences for present-day indirect DM searches. If a
region of DM were polarized by a background current at
freeze out, then the persistent polarization would suppress
s-wave annihilation, potentially confounding limits on
the annihilation cross section set by the indirect detection
experiment.
Our focus in this paper has been on irreversible inter-

actions that flip the spin of a Majorana fermion in a current.
If the Majorana fermions are not in thermal equilibrium,
then there are no other mechanisms by which a collection
of these particles can be polarized. However, if we consider
an earlier time in the universe before freeze out, Majorana
fermions interact sufficiently to thermalize, and reversible
interactions can facilitate the spin-flip transition. Because
these interactions occur via the anapole coupling and not a
polarizability, it is likely that the rate of interaction is
dramatically higher. The situation is akin to what occurs in
nuclear magnetic resonance (NMR) physics. The transition
rate for the proton’s magnetic dipole moment to align with a
∼10 T magnetic field via spontaneous emission of a single
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photon, an irreversible process, was found to be 10−22 s−1

[57]. But NMR relaxation times, due to reversible spin-spin
interactions or spin-lattice interactions, are on the order of
seconds. If our Majorana fermions can interact with the
thermal bath, then polarization might be more easily
achieved. Wewill pursue this line of thought in future work.
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