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We study the stability of fluctuations around a homogeneous non-Abelian electric field background that
is of a form that is protected from Schwinger pair production. Our analysis identifies the unstable modes
and we find a limiting set of parameters for which there are no instabilities. We discuss potential
implications of our analysis for confining strings in non-Abelian gauge theories.
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I. INTRODUCTION

In pure non-Abelian gauge theory, the gauge fields carry
non-Abelian electric charge. Hence a non-Abelian electric
field is susceptible to decay via the Schwinger pair pro-
duction of gauge field quanta [1–11]. However, confining
electric field tube configurations do not decay, leading to a
quandary—how are electric flux tubes stable to Schwinger
pair production? This question was raised and investigated
in [12]. The essential idea is that there are many gauge
inequivalent ways of constructing an electric field in non-
Abelian theory [2]. The straightforward embedding of the
Maxwell gauge field in the non-Abelian theory is indeed
unstable to Schwinger pair production. However, other
inequivalent gauge fields, that nonetheless produce the same
electric field, are protected against quantum dissipation.
Such gauge field configurations are candidates for describ-
ing confining electric flux tubes.
In a quantum theory, there will be fluctuations about the

electric field background and these fluctuations will ulti-
mately be quantized. It is therefore of interest to determine
the fluctuation eigenfrequencies and eigenmodes, and espe-
cially to determine if there are any unstable fluctuations. The
stability of non-Abelian gauge field configurations has been
of widespread interest in the literature, though mostly in the
context of Coulomb electric fields [13,14] or Maxwellian
fields embedded in non-Abelian theory [15,16], and mag-
netic fields [17]. Stability of gauge fields is also relevant
to heavy ion collisions [18–22]. The stability of a homo-
geneous non-Abelian electric field has recently been
addressed in Refs. [23,24] and a number of unstable modes

were found. However those analyses did not eliminate
fluctuations that were inconsistent with their adopted gauge
conditions; neither did they account for extra conditions
imposed by the reality of the gauge fields. Indeed, we shall
see that these conditions are critical for the stability analysis.
The earlier analyses were also limited to either a special
point in the parameter space of the background electric field
[23] or to only the zero momentum modes [24].
We start by describing the homogeneous electric field

in SU(2) non-Abelian gauge theory in Sec. II. Then we
consider small fluctuations around the background electric
field in Sec. III, expand the fluctuations in modes in Sec. IV.
The modes get classified according to whether they are
longitudinal or transverse, and whether they are orthogonal
to the electric field. The transverse-orthogonal (TO) modes
are discussed in Sec. V while the transverse-nonorthogonal
(TN) and longitudinal (L) modes are discussed together in
Sec. VI as they are coupled. Our results are summarized in
Sec. VII where we also discuss their potential implications.
Unstable TO modes are found to exist in the infrared and

depend on the parameters entering the background con-
figuration, and an interesting limit is found for which the
unstable TO modes are absent. The analysis for the TN and
L modes is significantly more complicated and we limit
ourselves to some special cases, for example to large and
small wave numbers, and for wave vectors parallel to and
orthogonal to the electric field. Our results again show
some unstable modes in the infrared and once more, just as
in the case of TO modes, we find that there are no unstable
modes in the special limit of background parameters. The
reader not interested in the technicalities of the analysis can
find details about the electric field background in Sec. II
and then proceed to the conclusions in Sec. VII.

II. ELECTRIC FIELD BACKGROUND

Consider the SUð2Þ pure gauge theory,

L ¼ −
1

4g2
Wa

μνWμνa þ jaμWμa; ð1Þ
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where g is the gauge coupling, μ, ν ¼ 0, 1, 2, 3 are Lorentz
indices and a ¼ 1, 2, 3 is the color index. The current jaμ is
an external current which will be specified below. The field
strengthWa

μν is given in terms of the gauge potentialWa
μ by

Wa
μν ≡ ∂μWa

ν − ∂νWa
μ þ ϵabcWb

μWc
ν: ð2Þ

The gauge field equations of motion are

DνWμνa ¼ jμa; ð3Þ

where

DνWμνa ≡ ∂νWμνa þ ϵabcWb
νWμνc: ð4Þ

We wish to consider the stability of a class of gauge
fields that give rise to homogeneous electric fields that we
treat as a background. The gauge fields are

A�
μ ≡ A1

μ � iA2
μ ¼ −ϵe�iΩt

∂μz; A3
μ ¼ 0; ð5Þ

where ϵ and Ω are parameters that label members of the
class, and z is the spatial z coordinate. The electric field is
gauge equivalent to [12]

Ea
i ¼ ϵΩδa3δiz ð6Þ

and the amplitude of the electric field is

E ¼ ϵΩ: ð7Þ

As shown in Ref. [2], gauge fields with distinct values of
Ω2, even for the same value of E, are gauge inequivalent.
In the two dimensional parameter space ðϵ;ΩÞ, the

electric field is constant whenever ϵΩ is constant. We will
find that the limit ϵ → 0, Ω → ∞ but with E ¼ ϵΩ held
constant to be of interest from the point of view of stability.
The external currents jaμ in (1) are chosen such that the

background is a solution of the classical equations of
motion. Therefore,

jμa ¼ DðAÞ
ν Aμνa ð8Þ

which gives

j�μ ≡ j1μ � ij2μ ¼ −ϵΩ2e�iΩt
∂μz; j3μ ¼ −ϵ2Ω∂μt: ð9Þ

For the purposes of the stability analysis we simply assume
that this is an external current, though it is possible that the
currents can arise semiclassically as discussed in Ref. [12]
and summarized in Sec. VII.

III. FLUCTUATIONS

We now consider small perturbations around the back-
ground,

Wa
μ ¼ Aa

μ þ qaμ: ð10Þ

Inserting this into the equations of motion, (3), and working
to linear order in the perturbations qaμ we get

∂νqμνa þ ϵabcðAb
νqμνc þ qbνAμνcÞ ¼ 0; ð11Þ

where

qaμν ¼ ∂μqaν − ∂νqaμ þ ϵabcðAb
μqcν − Ab

νqcμÞ ð12Þ

and

Aa
μν ¼ ∂μAa

ν − ∂νAa
μ þ ϵabcAb

μAc
ν ð13Þ

which, with our chosen background,

A�
μ ¼ −ϵe�iΩt

∂μz; A3
μ ¼ 0; ð14Þ

gives

A�
μν ¼ �iEe�iΩtð∂μz∂νt − ∂νz∂μtÞ; A3

μν ¼ 0: ð15Þ

We will be adopting temporal gauge (Wa
0 ¼ 0), so qa0 ¼ 0.

IV. MODE EXPANSION

We first define fluctuations in a “rotating frame”, Qa
i , as

follows:

q1i þ iq2i ≡ eiΩtðQ1
i þ iQ2

i Þ; q3i ≡Q3
i ð16Þ

where Qa
i are real. Next we expand Qa

i in spatial and
temporal Fourier modes as follows:

Qa
i ¼

Z
d3k
ð2πÞ3 e

−iωkteik·xpa
i;k; ð17Þ

where pa
i;k are the Fourier amplitudes.

While ωk can in general be complex, the reality of the
fields Qa

i constrain physical values of ωk and pa
i to satisfy,

ω�
k ¼ −ω−k; ðpa

i;kÞ� ¼ pa
i;−k: ð18Þ

In what follows we will consider a single k mode and drop
the k subscripts, e.g., we write ωk simply as ω.
Inserting the Fourier expansion into (11) gives three

constraint equations (the Gauss constraints) and nine
equations of motion for the nine components of pa

i . The
constraints are

ωk · p1 − iΩk · p2 þ ϵΩp3
z ¼ 0; ð19Þ

ωk · p2 þ iΩk · p1 − iϵωp3
z ¼ 0; ð20Þ

ωk · p3 þ iϵωp2
z − 2ϵΩp1

z ¼ 0; ð21Þ
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and the equations of motion are

ð−ω2 þ k2 −Ω2Þp1 þ i2ωΩp2 − ðk · p1Þk ¼ 0; ð22Þ

ð−ω2 þ k2 −Ω2 þ ϵ2Þp2 − i2ωΩp1 − ðk · p2Þk
− ϵð−ik · p3 þ ϵp2

zÞẑþ iϵp3
zk − i2ϵkzp3 ¼ 0; ð23Þ

ð−ω2 þ k2 þ ϵ2Þp3 − ðk · p3Þk − iϵðk · p2Þẑ
þ i2ϵkzp2 − iϵp2

zk − ϵ2p3
z ẑ ¼ 0; ð24Þ

where we have now employed the vector notation pa ¼
ðpa

1; p
a
2; p

a
3Þ and k · pa ¼ kipa

i . It is straightforward to
check that any solution of Eqs. (19)–(24) with ω�

k ¼ −ω−k
will also satisfy ðpa

i;kÞ� ¼ pa
i;−k, i.e., Eqs. (19)–(24) are

consistent with the reality conditions in (18).
The variables pa have a natural decomposition in a basis

of spatial vectors fk̂; n̂; ξ̂g (see Fig. 1) where

k̂ ¼ k
k
; n̂ ¼ ξ̂ × k̂; ξ̂ ¼ ẑ − ck̂

s
: ð25Þ

For convenience, we have denoted c≡ k̂ · ẑ ¼ cos θ and
s ¼ jẑ × k̂j ¼ sin θ where θ is the angle between k̂ and ẑ.
Then we have the useful relation

ẑ ¼ sξ̂þ ck̂: ð26Þ

Next write

pa ¼ αak̂þ βan̂þ γaξ̂: ð27Þ

The fαag modes, with polarization in the k̂ direction, are
longitudinal. The fβag modes are polarized in the n̂
direction and are transverse and also polarized orthogonal
to the electric field. The fγag modes are transverse and
polarized in the ξ̂ direction which is at an angle π=2 − θ to
the electric field. We shall call fαag the L modes, the fβag
as the TO modes, and the fγag as the TN modes. Note that

for θ ¼ 0, the TN modes are also orthogonal to the electric
field and coincide with TO modes.
The constraints and equations of motion in (19)–(21) and

(22)–(24) can be written in terms of the nine functions
fαa; βa; γag. The constraints are

ωkα1 − iΩkα2 þ ϵΩcα3 þ ϵΩsγ3 ¼ 0; ð28Þ

ωkα2 þ iΩkα1 − iϵωcα3 − iϵωsγ3 ¼ 0; ð29Þ

ωkα3 þ iϵωcα2 þ iϵωsγ2 − 2ϵΩcα1 − 2ϵΩsγ1 ¼ 0: ð30Þ

Note that the constraints do not involve the fβag functions.
The equations of motion are

ð−ω2 −Ω2Þα1 þ i2ωΩα2 ¼ 0; ð31Þ

ð−ω2 −Ω2 þ ϵ2s2Þα2 − i2ωΩα1 − ϵ2csγ2 þ iϵksγ3 ¼ 0;

ð32Þ

ð−ω2 þ ϵ2s2Þα3 − iϵksγ2 − ϵ2csγ3 ¼ 0; ð33Þ

ð−ω2 þ k2 −Ω2Þβ1 þ i2ωΩβ2 ¼ 0; ð34Þ

ð−ω2 þ k2 −Ω2 þ ϵ2Þβ2 − i2ωΩβ1 − i2ϵkcβ3 ¼ 0; ð35Þ

ð−ω2 þ k2 þ ϵ2Þβ3 þ i2ϵkcβ2 ¼ 0; ð36Þ

ð−ω2 þ k2 −Ω2Þγ1 þ i2ωΩγ2 ¼ 0; ð37Þ

ð−ω2 þ k2 −Ω2 þ ϵ2c2Þγ2 − i2ωΩγ1 þ iϵksα3

− ϵ2csα2 − i2ϵkcγ3 ¼ 0; ð38Þ

ð−ω2 þ k2 þ ϵ2c2Þγ3 − iϵksα2 þ i2ϵkcγ2 − ϵ2scα3 ¼ 0:

ð39Þ

The fβag functions do not appear in the constraint
equations, nor do they depend on the fαa; γag. Hence,
they can be treated separately. In the next subsection we
will first consider the fβag problem and in the following
subsection come to the more complicated fαa; γag
problem.

V. TO MODES (βa)

The equations for βa can be written as a matrix equation,
MX ¼ 0,

M ¼

0
B@

−κ2 −Ω2 i2ωΩ 0

−i2ωΩ −κ2 −Ω2 þ ϵ2 −i2ϵck
0 þi2ϵck −κ2 þ ϵ2

1
CA; ð40Þ

where κ2 ≡ ω2 − k2 and XT ¼ ðβ1; β2; β3Þ.

FIG. 1. The triad of orthonormal vectors fk̂; n̂; ξ̂g and the
direction of the electric field along ẑ. The vectors k̂, ξ̂, and ẑ are in
a plane while n̂ is normal to the plane.
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To find the eigenvalues, we set the determinant of the
matrix to zero. This yields a cubic equation in λ≡ ω2,

PðλÞ≡ λ3 − λ2ð3k2 þ 2ϵ2 þ 2Ω2Þ
þ λð3k4 þ 4ϵ2s2k2 þ ϵ4 þ ϵ2Ω2 þΩ4Þ
− ðk2 −Ω2Þ½ðk2 þ ϵ2 −Ω2Þðk2 þ ϵ2Þ − 4ϵ2c2k2� ¼ 0:

ð41Þ
The cubic equation can be solved explicitly to obtain the
eigenvalues, however the expressions are opaque. We get
more insight by considering a different approach.
The cubic equation in (41) will have three roots and can

be written as

ðλ − λ1Þðλ − λ2Þðλ − λ3Þ ¼ 0: ð42Þ
Note that the roots λ1, λ2, and λ3 for k and −k are identical
since k2, c2 and s2 are unchanged due to the sign flip.
Hence, for example, λ1;k ¼ λ1;−k. Together with the reality
condition of (18) this relation implies,

ω2
1;k ¼ ω2

1;−k ¼ ðω�
1;kÞ2: ð43Þ

Hence eigenfrequencies of physical modes satisfy

ωk ¼ �ω�
k; ð44Þ

i.e., physical eigenfrequencies are purely real or purely
imaginary. In terms of λ, only the real roots of (41) are of
physical interest.
Next, consider the polynomial as in (41) but without the

λ independent term,

P̃ðλÞ≡ λ3 − λ2ð3k2 þ 2ϵ2 þ 2Ω2Þ
þ λð3k4 þ 4ϵ2s2k2 þ ϵ4 þ ϵ2Ω2 þ Ω4Þ:

Then,

P̃ðλÞ≡ λðλ − λþÞðλ − λ−Þ; ð45Þ
where λ� are obtained by solving a quadratic that involves
k (as k2 and s2) and the parameters ϵ and Ω. We can check
that the real parts of all three roots of P̃ are non-negative.
Therefore, P̃ has the shape shown in Fig. 2.
Next let us return to the cubic in (41) which can be

written as

FIG. 2. The cubic curve P̃ðλÞ (the middle curve) and the cubics
PðλÞ for C > 0 (upper curve) and for C < 0 (lower curve). The
zero root of P̃ shifts to negative λ for C > 0 and to positive λ for
C < 0. The root can become complex for sufficiently large and
negative C.
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FIG. 3. Stability plots for the TO modes for ϵ2 ¼ Ω2=2 (top),
ϵ2 ¼ Ω2 (middle) and ϵ2 ¼ 3Ω2=2 (bottom). The colored region
indicates the domain of instability where C > 0. As ϵ is decreased
the two triangular regions in the ϵ2 < Ω2 plot (top) shrink and
approach the k2 ¼ Ω2 vertical line as ϵ2 → 0.
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PðλÞ ¼ P̃ðλÞ þ C; ð46Þ
where

C ¼ −ðk2 −Ω2Þ½ðk2 þ ϵ2 −Ω2Þðk2 þ ϵ2Þ − 4ϵ2c2k2�
¼ −ðκ − Ω2Þðκ − κþÞðκ − κ−Þ; ð47Þ

where κ ≡ k2,

κ� ¼ 1

2
½Ω2 þ 2ϵ2c2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2 þ 2ϵ2c2Þ2 − 4ϵ2ðϵ2 −Ω2Þ

q
� ð48Þ

and c2 ≡ cosð2θÞ. If C > 0, the P̃ curve shifts upwards (see
Fig. 2) and the λ ¼ 0 root of P̃ shifts to the left, i.e., λ < 0.
This indicates an instability. On the other hand, if C < 0,
there is no instability.
It is simplest to analyze the case with ϵ2 ¼ Ω2 for then

κ� ¼ Ω2

2
½ð4c2 − 1Þ � j4c2 − 1j�: ð49Þ

For c2 > 1=4, κ− ¼ 0 and κþ ¼ Ω2ð4c2 − 1Þ. Then for
c2 > 1=2 we obtain an instability (C > 0) for Ω2 < k2 <
Ω2ð4c2 − 1Þ and for 1=4 < c2 < 1=2 modes are unstable
if Ω2ð4c2 − 1Þ < k2 < Ω2. For the opposite case of
c2 < 1=4, κ− ¼ 4c2 − 1 < 0 and κþ ¼ 0. Then the insta-
bility occurs for 0 < k2 < Ω2. This explains the instability
domains shown in Fig. 3 in the ϵ2 ¼ Ω2 case.
The analysis and results are similar for ϵ2 < Ω2 as is

clear from Fig. 3. With c ¼ 0, we find that C > 0 for
Ω2 − ϵ2 < k2 < Ω2. Essentially, as ϵ2 is reduced the domain
of instability shrinks towards a vertical line along k2 ¼ Ω2.
An interesting limit is ϵ → 0 andΩ → ∞with ϵΩ ¼ E held
constant. In this limit, there are no unstable TO modes.
The analysis is a bit more involved for ϵ2 > Ω2. First

consider c2 ¼ 0 (c2 ¼ −1). Then (48) gives κ� ¼ −ϵ2;

−ϵ2 þ Ω2 and both roots are for negative κ. From (47)
we then see that C > 0 for 0 < k2 < Ω2 as is also seen in
Fig. 3. Next consider c2 ¼ 1 (c2 ¼ þ1). Then (48) gives

κ� ¼ 1

2
½Ω2 þ 2ϵ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω4 þ 8ϵ2Ω2

p
�: ð50Þ

Now κþ > Ω2 but κ− may be larger or smaller than Ω2. If
κ− < Ω2, then from (47) we see that C > 0 for 0 < k2 < κ−
and also for Ω2 < k2 < κþ but C < 0 for κ− < k2 < Ω2.
Hence, we see the gap in the instability domain in Fig. 3 at
c2 ¼ 1. If, on the other hand, κ− > Ω2, then C > 0 for 0 <
k2 < Ω2 and then again for κ− < k2 < κþ.
The shapes of the unstable regions can be understood in

terms of the roots of C in (47), namely 1 and κ�. For
example, in the case ϵ2 > Ω2, for c2 ¼ 0, there is one real
root (κ ¼ Ω2) and κ� are negative. As c2 increases, κ�
become complex. At some critical value of c2 the imagi-
nary part of κ� vanishes. This is at the minimum of the
parabolic shape in the plot of Fig. 3 and can occur for
k2 < Ω2 or k2 > Ω2 depending on the value of ϵ2=Ω2. The
left edge of the parabola is given by κ−, and the right edge is
given by κþ. For yet larger c2, κþ becomes larger than Ω2.
The unstable region is when two of the factors in (47) are
positive and one is negative. Note that the transition is
continuous between each of the cases under consideration,
that is, starting with ϵ2 < Ω2 and increasing ϵ, the upper
edge of the unstable region in k2 < Ω2 moves upward with
decreasing slope until it gradually changes into the left edge
of the parabola for ϵ2 > Ω2.

VI. TN AND L MODES (fαa;γag)
Equations (31)–(33) and (37)–(39) can be written in

matrix form MX ¼ 0 with XT ¼ ðα1; α2; α3; γ1; γ2; γ3Þ and

M¼

0
BBBBBBBBB@

−ω2−Ω2 i2ωΩ 0 0 0 0

−i2ωΩ −ω2−Ω2þ ϵ2s2 0 0 −ϵ2cs iϵsk

0 0 −ω2þ ϵ2s2 0 −iϵsk −ϵ2cs
0 0 0 −ω2þk2−Ω2 i2ωΩ 0

0 −ϵ2cs iϵsk −i2ωΩ −ω2þk2−Ω2þ ϵ2c2 −i2ϵck
0 −iϵsk −ϵ2cs 0 i2ϵck −ω2þk2þ ϵ2c2

1
CCCCCCCCCA
: ð51Þ

The eigenvectors are also required to satisfy the con-
straints in (28)–(30) as we will discuss further after
considering some special cases.

A. Special case: c= 1

For c ¼ 1, the matrix in (51) becomes block diagonal in
three blocks, the first is the fα1; α2g 2 × 2 block with two
degenerate eigenvalues ω2 ¼ Ω2, the second block is the

fα3g 1 × 1 block with eigenvalue ω2 ¼ 0, and the third
fγ1; γ2; γ3g block is given by the matrix in (40) with c ¼ 1.
Then the analysis in Sec. V for the TO modes applies
immediately (with c ¼ 1). This is expected since for c ¼ 1
there is no distinction between TO and TN modes.
The constraint equations with c ¼ 1 read,

ωkα1 − iΩkα2 þ ϵΩα3 ¼ 0; ð52Þ
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ωkα2 þ iΩkα1 − iϵωα3 ¼ 0; ð53Þ

ωkα3 þ iϵωα2 − 2ϵΩα1 ¼ 0; ð54Þ

Note that the γa are unconstrained. On the other hand,
(52)–(54) over-constrain the eigensolutions in the fα1; α2g
sector with ω ¼ �Ω, and in the fα3g sector with ω ¼ 0,
and neither of these two eigensolutions are physically
admissible.

B. Special case: c= 0

With c ¼ 0, we have s ¼ 1, and the matrix in (51)
becomes block diagonal in the fα1; α2; γ3g and the
fα3; γ1; γ2g blocks. The 3 × 3 matrix for the first block is

M1 ¼

0
B@

−ω2 −Ω2 i2ωΩ 0

−i2ωΩ −ω2 −Ω2 þ ϵ2 iϵk

0 −iϵk −ω2 þ k2

1
CA ð55Þ

with constraints,

ωkα1 − iΩkα2 þ ϵΩγ3 ¼ 0; ð56Þ

ωkα2 þ iΩkα1 − iϵωγ3 ¼ 0; ð57Þ

and the matrix for the second block is

M2¼

0
B@
−ω2þϵ2 0 −iϵk

0 −ω2þk2−Ω2 i2ωΩ
iϵk −i2ωΩ −ω2þk2−Ω2

1
CA ð58Þ

with the constraint,

ωkα3 þ iϵωγ2 − 2ϵΩγ1 ¼ 0: ð59Þ

We now discuss these 3 × 3 blocks separately.

1. fα1;α2;γ3g block

In this block, gauge fields of the first two colors are
oscillating in the longitudinal direction, whereas the third
has amplitude in the transverse direction and orthogonal to
the background electric field.
A straightforward procedure would be to first solve the

eigenproblem for M1 and then check for the eigenvectors
that satisfy the constraints. However we find it simpler to
first solve the constraints (56)–(57) and then deal with the
eigenproblem.
The constrains in (56)–(57) can be used to eliminate two

of the three variables, say α2 and γ3, while the third variable
can be absorbed in the normalization of the resulting
eigenvector. Hence we seek an eigenvector of the form,

V1 ≡
0
B@

α1

α2

γ3

1
CA ¼

0
B@

2ϵωΩ
−iϵðω2 þΩ2Þ
kð−ω2 þΩ2Þ

1
CA: ð60Þ

Insertion inM1V1 ¼ 0 shows that there is no solution for ω
for ϵ ≠ 0, k ≠ 0. Hence these modes are overconstrained
and absent. For k ¼ 0, M1V1 ¼ 0 gives

ðω2 −Ω2Þ2 − ϵ2ðω2 þΩ2Þ ¼ 0 ð61Þ

which has the roots

ω2
� ¼ Ω2 þ ϵ2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ω2 þ ϵ2

2

�
2

þ Ω2ðϵ2 −Ω2Þ
s

: ð62Þ

Therefore, ω2
− < 0 if and only if Ω2 < ϵ2 and k ¼ 0.

2. fα3;γ1;γ2g block

In this block, the gauge field of the third color oscillates
in the longitudinal direction, whereas the first two colors
oscillate transversely and orthogonal to the background
electric field.
Now the constraint (59) reduces the eigenvector to be of

the form,

V2 ≡
0
B@

α3

γ1

γ2

1
CA ¼

0
B@

2ϵΩα3
ωðkα3 þ iϵγ2Þ

2ϵΩγ2

1
CA: ð63Þ

ImposingM2V2 ¼ 0we find the solution ω2 ¼ ϵ2 provided
k2 ¼ ϵ2 þΩ2, and this mode is stable. For k ¼ 0 there is a
solution with ω2 ¼ ϵ2.
An unusual feature of the first of these two modes is

that it has nontrivial spatial dependence but it exists only
for a fixed value of k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ Ω2

p
and the direction of k

is perpendicular to the electric field, while the mode is
polarized along the electric field and in the longitudinal
direction. This mode represents fluctuations in the homo-
geneity of the electric field but with a definite wavelength.

C. Special case: k2 ≫ Ω2;ϵ2

We now consider the ultraviolet limit k2 ≫ Ω2; ϵ2. The
constraints (28)–(30) now give

α1 ¼ 0 ¼ α2 ¼ α3 ð64Þ

and only the fγag represent physical modes with the
dispersion relation ω2 ¼ k2. There are no unstable modes
in this limit.
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D. Special case: k → 0

The problem simplifies in the k → 0 limit as the fα3; γ3g
block decouples from the fα1; α2; γ1; γ2g block.
The 2 × 2 matrix for the fα3; γ3g block is

M3 ¼
 
−ω2 þ ϵ2s2 −ϵ2cs

−ϵ2cs −ω2 þ ϵ2c2

!
ð65Þ

and the constraint reduces to cα3 þ sγ3 ¼ 0. M3 has
eigenvalues ω2 ¼ 0 and ω2 ¼ ϵ2 but only the latter is
consistent with the constraint. Thus there are no unstable
modes in the fα3; γ3g block.
The 4 × 4 matrix for the fα1; α2; γ1; γ2g block is

M4 ¼

0
BBBB@

−ω2 − Ω2 i2ωΩ 0 0

−i2ωΩ −ω2 −Ω2 þ ϵ2s2 0 −ϵ2cs
0 0 −ω2 −Ω2 i2ωΩ
0 −ϵ2cs −i2ωΩ −ω2 − Ω2 þ ϵ2c2

1
CCCCA ð66Þ

and the constraint is

iωðcα2 þ sγ2Þ − 2Ωðcα1 þ sγ1Þ ¼ 0: ð67Þ
We solve (31) and (37) with k ¼ 0 to get

α2 ¼ −i
ðω2 þ Ω2Þ

2ωΩ
α1; γ2 ¼ −i

ðω2 þ Ω2Þ
2ωΩ

γ1; ð68Þ

which, together with (67), gives

ðω2 − 3Ω2Þðcα1 þ sγ1Þ ¼ 0: ð69Þ
Therefore, to satisfy the constraint we must either have
ω2 ¼ 3Ω2 > 0 or cα1 þ sγ1 ¼ 0.
Evaluation of the determinant of M4 on Mathematica

gives,

DetðM4Þ ¼ ðω2 − Ω2Þ2½ðω2 − Ω2Þ2 − ϵ2ðω2 þ Ω2Þ� ð70Þ
This has the root ω2 ¼ 3Ω2 but only if Ω2 ¼ ϵ2. In any
case, ω2 ¼ 3Ω2 > 0 and implies a stable mode. So we now
focus on the other case, namely

cα1 þ sγ1 ¼ 0: ð71Þ
Combining (71) with (68), and ignoring an overall nor-
malization factor, the Gauss constraint forces us to only
consider the eigenvector,

VT
4 ¼ ð2ωΩs;−iðω2 þ Ω2Þs;−2ωΩc; iðω2 þ Ω2ÞcÞ: ð72Þ

Requiring M4V4 ¼ 0 leads once again to (61) and to the
roots in (62). Therefore, ω2

− < 0 if and only if Ω2 < ϵ2 and
k ¼ 0 and the unstable eigenmode can be found by setting
ω ¼ ω− in (72).

E. Special case: Ω=E=ϵ, ϵ → 0

In Sec. V we have seen that there are no unstable TO
modes with Ω ¼ E=ϵ and ϵ → 0. Now we consider the TN
and L modes in this regime.

With ϵ → 0, the matrixM in (51) takes on a simple block
diagonal form. The fα1; α2g block has two degenerate
eigenvalues ω2 ¼ Ω2; the fα3g block has eigenvalue
ω2 ¼ 0; the fγ1; γ2g block has eigenvalues ω2 ¼
ðk�ΩÞ2; and the fγ3g block has eigenvalue ω2 ¼ k2.
The corresponding eigenvectors can be inserted into
Eqs. (28)–(30) to check if the Gauss constraints are
satisfied. However, since none of the eigenvalues for ω2

are negative, it is clear that there are no unstable TN and L
modes for these limiting parameters.

VII. CONCLUSIONS

We have considered the stability of a homogeneous
electric field background in pure SU(2) gauge theory.
The gauge fields underlying the electric field are taken
to be of the form in (5) and not of the Maxwell type; Aa

i ¼
−Etδa3δiz. This is because gauge fields of the Maxwell type
are unstable to Schwinger pair production while the gauge
fields in (5) are protected from decay due to this process
[12]. However, the gauge fields in (5) are not solutions of
the vacuum classical equations of motion; instead non-
vanishing currents are necessary. There are two ways to
explain these nonvanishing currents. The first is that they
are due to classical external sources in which case they are
simply postulated. The second way is that the classical
equations of motion should be replaced by equations that
take quantum effects into account and these “effective
classical equations” can contain sources. For example, in
the semiclassical approximation quantum fluctuations pro-
vide current sources for the background [12],

jμa ≡ ϵabch∂νqνbqμc − qνb∂μqcν þ 2qνb∂νqμciR
þ Ab

νhqνaqμb − 2qνbqμaiR þ Aa
νhqνbqμbiR

þ AμbhqbνqνaiR − AμahqbνqνbiR; ð73Þ

where qaμ are the quantum fluctuations in the background
Aa
μ and h·iR denotes a renormalized expectation value taken
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in the quantum state of qaμ. For stable modes, the quantum
state might be given by simple harmonic oscillator states
for each of the eigenmodes of qaμ. However, the quantum
state of unstable modes will not be simple harmonic
oscillator states which is why it is important to perform
a stability analysis. We will comment further on the
unstable modes after summarizing our results.
The gauge field background in (5) is described by two

parameters; ϵ and Ω. The electric field strength is given by
E ¼ ϵΩ. The results of the fluctuation analysis depend on
whether ϵ2 > Ω2 or ϵ2 ≤ Ω2. The fluctuations naturally split
into “TOmodes” that are transverse to the wave vector k and
orthogonal to the background electric field, “TNmodes” that
are transverse to k but not orthogonal to the electric field,
and “L modes” that are in the longitudinal direction.
The TO modes decouple from the TN and L modes. The

stability analysis of Sec. V shows that TO modes are stable
except in a range of k2 that depends on the angle θ between
the electric field and the wave vector k. The instability
regions depend on the background parameters and are
plotted in Fig. 3. There are two important results emerging
from our analysis. The first is that the region of parameter
space ðk2; c2Þ (c ¼ cos θ) where unstable modes exist
depends on the relation between ϵ2 and Ω2. The instability
region is smaller when ϵ2 < Ω2 and shrinks to zero as
ϵ2 → 0. Note that the electric field strength is given by
E ¼ ϵΩ and can be held fixed in the limit by also taking
Ω → ∞. The second is that unstable modes exist only for
small values of k2. For example, for ϵ ¼ Ω, there are no
unstable modes for k2 > 3ϵ2 for any value of c2.
The TN and L modes are coupled in general and the

analysis is more involved than for the TO modes. In Sec. VI
we discuss the stability of these modes in various parameter
regimes. The special cases of θ ¼ 0 and θ ¼ π=2 are
considered. For θ ¼ 0 the analysis is identical to that of
TOmodes,while forθ ¼ π=2 there is an instability if ϵ2 > Ω2

and k ¼ 0. There is also a special stable mode that corre-
sponds to oscillations of the background electric field
orthogonal to its direction, similar to a sound wave. We have
also considered the special case of large k2 and here themodes
are simply those of free massless waves with dispersion
ω2 ¼ k2. Finally, we examine the ϵ → 0 limit with E ¼ ϵΩ
held fixed and show that there are no unstable TN and L
modes, just as there are no unstable TO modes in this limit.
As mentioned in Sec. I, we were motivated to perform

this stability analysis because confining strings in QCD are
expected to be stable. The electric fields we have consid-
ered as backgrounds do not excite Schwinger pair pro-
duction but, as we have seen, have classical instabilities for
certain infrared modes. How do these classical instabilities
impact the possibility that the electric fields we have

considered are responsible for confining strings? The first
point we note is that there are no instabilities in the limit of
ϵ → 0 and E ¼ ϵΩ fixed. So it could be that the electric
field in a confining string corresponds to this set of
parameters. Then there are no unstable modes and the
quantum state for each mode is that of a simple harmonic
oscillator. The second point is that the instabilities we have
found are for a homogeneous electric field and only occur
for small values of k2, (k2 ≲ ϵ2 for ϵ2 > Ω2) that is, on large
length scales. In contrast, the electric flux in a string only
has support in a finite area—the string cross section—and
we do not expect any unstable modes on length scales
larger than the thickness of the string. (Though there is still
the question of the infinite extent of the string along the
electric field direction and whether the instabilities for
θ ¼ 0 will survive.)
A gauge field configuration for a flux tube configuration

that is protected from Schwinger pair production was
suggested in [12],

A�
μ ¼ −ϵe�iΩtfðrÞ∂μz; A3

μ ¼ 0; ð74Þ

where fðrÞ is a profile function for the string and r≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the cylindrical radial coordinate. We plan to

study the stability of the electric flux tube in future work.
If the configuration indeed turns out to be stable, the
quantum ground state of eigenfluctuations would be simple
harmonic oscillator ground states, that could then be used
to evaluate the semiclassical backreaction terms in the
gauge field equations of motion. However, lattice methods
would be required to demonstrate that the electric flux tube
exists in the full interacting quantum theory.
Another interesting question is if the homogeneity of the

electric field background we have considered is unstable to
developing into an inhomogeneous configuration. This is in
analogy to what happens in a Type II superconductor—a
homogeneous magnetic field is unstable to forming an
Abrikosov lattice [25]. If a similar instability occurs in our
case, we would obtain an Abrikosov lattice but of electric
flux tubes. This might be indicated by the unstable modes
we have identified that have spatial dependence that is
orthogonal to the background homogeneous electric field.
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