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Oscillons are long-lived, spatially localized field configurations, which are supported by attractive
nonlinearities in the scalar potential. We study oscillons comprised of multiple interacting fields, each
having an identical potential with quadratic, quartic and sextic terms. We consider quartic interaction terms
of either attractive or repulsive nature. In the two-field case, we construct semianalytical oscillon profiles
for different values of the potential parameters and coupling strength using the two-timing small-amplitude
formalism. We use analytical and numerical techniques to explore the basin of attraction of stable oscillon
solutions and show that, depending on the initial perturbation size, unstable oscillons can either completely
disperse or relax to the closest stable configuration. We generalize our analysis to multifield oscillons and
show that the governing equations for their shape and stability can be mapped to the ones arising in the two-
field case. Finally, we study the emergence of multicomponent oscillons in one and three spatial
dimensions, both numerically and through Floquet theory.
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I. INTRODUCTION

Oscillons are part of a large family of solitonlike
structures. The stability of these solutions can be traced
back to nonlinear terms in the theory, since a linear theory
will in general force rapid dispersion of any localized wave
packet. In general, solitons can be classified according two
characteristics. They are either completely static (ignoring
propagation) or oscillate during their lifetime. Furthermore,
their stability is either due to some conserved charge or to
interactions between nonlinearities and dispersive effects.
Among such nonlinear dynamics, oscillons [1–10],

localized long-lived objects, have attracted significant
attention in the early Universe cosmology community.
Oscillons can arise in scalar field models where the
potential is quadratic near the minimum and becomes
shallower than quadratic (“flattens out”) at larger field
values. Currently, inflationary models that are preferred by
observations are models that contain plateau-type potentials
[11–14], which satisfy the necessary condition needed
to support oscillons. Furthermore, numerical simulations

have shown that the postinflationary fragmentation of the
inflaton in such models leads to copious production of
oscillons [15].
Recently oscillons have seen renewed interest.

Numerical simulations have revealed that oscillon forma-
tion after inflation is accompanied by the generation of
significant amounts of gravitational waves [16–24]. Since
gravitational waves can be one of the very few tools able to
probe the end of inflation, the dynamics of oscillon
formation, evolution and stability are becoming an essential
part of early Universe cosmology.
Our current understanding of fundamental physics sug-

gests that multiple scalar fields are likely to be present at
high energies. In spite of this, most of the work on oscillons
has focused on single-field models, ignoring decay chan-
nels of oscillons to other fields and—more interesting—the
dynamics that can lead to oscillons comprised of multiple
fields. Numerical simulations have uncovered two-field
oscillons arising after hybrid inflation [25] and in an SUð2Þ
gauged Higgsed model [26], for which a semianalytical
construction of the observed oscillons was given in
Ref. [10], along with a detailed study of their parameter
dependent stability. The analysis of oscillons in an Abelian
Higgs model can be found in Refs. [27,28]. While a type of
composite Q-balls has been found in Ref. [29] and further
studied in Ref. [30], their comparison to composite
oscillons is beyond the scope of the present work.
Finally, oscillons were found in an SUð2Þ ×Uð1Þ model
[31,32], inspired by the electroweak sector of the Standard
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Model. In the case of the SU(2) Higgsed oscillon, a
particular mass ratio between the Higgs and W fields
was required for the oscillon to be stable. In particular,
oscillons where the Higgs mass was almost twice the W
mass were found to be stable over very long timescales.
This observation (which was examined in detail in
Ref. [10]) can be taken to imply that rather special
conditions need to exist for multifield oscillons to arise.
The current work aims to provide a detailed look into

the conditions for the existence and stability of multi-
component oscillons, albeit in a simplified model. We
organize our presentation as follows. In Sec. II we describe
the two-field model that we consider. In Sec. III we use the
small-amplitude two-timing analysis to construct solutions
for composite oscillons, comprised of the two fields
oscillating in a phase-locked configuration. Section IV
contains the stability analysis of oscillons against long-
wavelength perturbations, which is an extension of the
Vakhitov-Kolokolov criterion in the case of two interacting
fields with identical potential structure, going beyond the
specific potential that we chose. In Sec. V we find
qualitative and quantitative estimates for the lifetime of
stable oscillons that were found in previous sections,
following the methods developed in Refs. [33–35]. In
Sec. VI we generalize our analysis to a model containing
an arbitrary number of interchangeable interacting fields.
Finally, Sec. VII explores the emergence of multifield
oscillons from a variety of initial conditions. We provide
our conclusions and outlook on future work in Sec. VIII.

II. MODEL

We consider a model of two identical real scalar fields,
each with a quadratic-quartic-sextic potential and a two-to-
two interaction term, which can be either attractive or
repulsive. This form of the potential was first analyzed for
single-field oscillons in Ref. [6], where a large sextic term
was introduced to stabilize three-dimensional oscillons in a
symmetric quadratic-quartic potential. We ignore the
expansion of the Universe1 and restrict ourselves to an
action consisting of the two scalar fields on a Minkowski
background with metric signature (−, þ, þ, þ):

S ¼ −
Z

d3x dt

�X
I¼1;2

�
1

2
∂μϕ

I
∂
μϕI þ 1

2
m2ðϕIÞ2

−
λ

4
ðϕIÞ4 þ g

6
ðϕIÞ6

�
−
Λ
2
ðϕ1Þ2ðϕ2Þ2

�
: ð1Þ

Before proceeding, it is worth noting both the restrictions
that the action of Eq. (1) poses, as well as some theoretical
motivation for considering it. We draw our example from
the well-motivated area of α attractors, specifically the

T-model potential. Since metrics on hyperbolic spaces can
be formulated in many different forms, following Möbius
transformations [36], we follow the metric definition used
in Refs. [37–39]:

ds2 ¼ dχ2 þ e2bðχÞdϕ2; ð2Þ

where bðχÞ ¼ log ðcoshðβχÞÞ. The two-field potential for
the T model in this field basis is

Vðϕ; χÞ ¼ αμ2
�
coshðβϕÞ coshðβχÞ − 1

coshðβϕÞ coshðβχÞ þ 1

�
ðcoshðβχÞÞ2=β2 ;

ð3Þ

where β ¼ ffiffiffiffiffiffiffiffiffiffi
2=3α

p
.

For a small value of α, the potential around the origin is
expanded as

Vðϕ; χÞ ≃ μ2

6
χ2 −

μ2

54α
χ4 þ 17μ2

9720α2
χ6 þ μ2

6
ϕ2

−
μ2

54α
ϕ4 þ 17μ2

9720α2
ϕ6

þ μ2

6
ϕ2χ2 −

μ2

16α2
ϕ2χ2ðϕ2 þ χ2Þ þ � � � ; ð4Þ

where we included terms up to sextic order in the fields and
neglected higher order contributions in α in each term. For
that we assume that the parameter α, which is inversely
related to the field-space curvature, is small. We see that
this expansion has the characteristics that we consider in
the action of Eq. (1): two scalar fields with identical
potential parameters, a negative quartic term and a very
large sextic term (for α ≪ 1), as well as a quartic coupling.
Reference [37] reported the formation of oscillons during
two-field preheating after inflation on a T-model potential,
but did not provide a detailed analysis of their properties.
Of course, the true T-model expansion differs from the
idealized action of Eq. (1), in that it contains sextic
interaction terms and it provides less freedom for choosing
the various potential coupling strengths (see Fig. 1).
Furthermore, the analysis of the T model must also take
into account the noncanonical kinetic structure, leading to
the derivative couplings

Lkin ⊃
χ2

3α
ð∂ϕÞ2 þ 2χ4

27α2
ð∂ϕÞ2 þ � � � : ð5Þ

Oscillons in systems with noncanonical kinetic terms have
been considered in the literature for single-field systems
[8]. In the present work, we instead focus on the symmetric
sextic potential of Eq. (1) and consider canonical kinetic
terms for the two fields. An extension of the current
analysis to realistic α-attractor models, taking into account
the intricacies of derivative couplings, can reveal interesting

1We will present numerical results for an expanding Universe
in one spatial dimension in Sec. VII.
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phenomenology for this family of well-motivated and
observationally relevant models and is left for future work.

III. TWO TIMING ANALYSIS

In this section we construct approximate profiles of two-
field oscillons and compare them to the single-field oscillons
found in Ref. [6]. Equation (1) contains several physical
parameters, such as themass of the two fieldsm, the coupling
Λ and self-couplings g and λ. It is convenient to work with
dimensionless space-time variables and fields. This is done
by the rescalings xμ → exμ ¼ xμm, ϕI → ϕ̃I ¼ m−1λ1=2ϕI ,
g → g̃ ¼ ðm=λÞ2g andΛ → Λ̃ ¼ ð1=λÞΛ. The Lagrangian is
then rewritten as

L ¼ λ

m4

�X
I¼1;2

�
1

2
∂μϕ̃

I
∂
μϕ̃I þ 1

2
ðϕ̃IÞ2 − 1

4
ðϕ̃IÞ4 þ g̃

6
ðϕ̃IÞ6

�

−
Λ̃
2
ðϕ̃1Þ2ðϕ̃2Þ2

�
: ð6Þ

For simplicity, in what follows we define fϕ̃1; ϕ̃2g≡ fϕ̃; χ̃g
and drop all tildes. TheLagrangian ofEq. (6) leads to a system
of two coupled equations of motion for ϕ and χ. In this work
we focus our attention on spherically symmetric solutions
ϕðx⃗; tÞ → ϕðr; tÞ, leading to the equations of motion,

∂
2
tϕ −

�
∂
2
r þ

2

r
∂r

�
ϕþ ϕ ¼ ϕ3 − gϕ5 þ Λϕχ2;

∂
2
t χ −

�
∂
2
r þ

2

r
∂r

�
χ þ χ ¼ χ3 − gχ5 þ Λχϕ2: ð7Þ

In d spatial dimension the above equations are altered
by the substitution 2

r ∂r →
d−1
r ∂r.

2 The attentive reader will

immediately notice that these equations are symmetrical under
exchangeof the fields,meaning that sendingχ ↔ �ϕ in either
of the equations gives back the other. This greatly simplifies
the analytical search for oscillons which is more difficult (if at
all possible) in general multicomponent systems.
It is well established in the literature that oscillons live on

long timescales and large spatial scales [40–42]. This
suggests a perturbative approach to extract oscillon sol-
utions from the equations of motion, known as the small-
amplitude two-timing analysis. The idea is that oscillons
exhibit behavior on two timescales, one capturing the
natural frequency of the free field theory and one capturing
the correction to this frequency characteristic for the
nonlinear potential. Furthermore, we attempt to capture
oscillons which are slowly varying in space, hence are
“broad.” This behavior is found by introducing new time
and space variables,

τ ¼ αϵ2t; ρ ¼ ϵr; ð8Þ
where α is a free parameter and ϵ ≪ 1. While we expect all
spatial variation to occur on the scale of ρ, the time
variation occurs on two scales: t and τ. The (double) time
derivatives in Eq. (7) must now be interpreted as full
time derivatives, leading to the equations

∂
2
tϕþ 2αϵ2∂t∂τϕ − ϵ2

�
∂
2
ρ þ

2

ρ
∂ρ

�
ϕþ ϕ

¼ ϕ3 − gϕ5 þ Λϕχ2 þOðϵ4Þ;

∂
2
t χ þ 2αϵ2∂t∂τχ − ϵ2

�
∂
2
ρ þ

2

ρ
∂ρ

�
χ þ χ

¼ χ3 − gχ5 þ Λχϕ2 þOðϵ4Þ: ð9Þ
Lastly, we assume that the amplitude of the oscillon profile
also scales with the expansion parameter ϵ, allowing us to
compute the effects of the nonlinearities order by order.
We therefore consider solutions of the form

FIG. 1. The T-model potential for χ ¼ 0 (blue solid) and ϕ ¼ 0 (red dashed), along with the sextic Taylor expansion (green dotted).
The brown dot-dashed curve shows the quadratic term, which is steeper than the total potential, allowing in principle for oscillon
formation in both ϕ and χ fields. The vertical lines show the field value of ϕ at the end of inflation.

2Additionally, in d dimensions the rescalings of the fields will
also be different.
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ϕðx; tÞ ¼
X
n¼1

ϵnϕnðρ; t; τÞ;

χðx; tÞ ¼
X
n¼1

ϵnχnðρ; t; τÞ: ð10Þ

Inserting Eq. (10) into Eq. (9), the lowest order equations in
ϵ are

∂
2
tϕ1 þ ϕ1 ¼ 0;

∂
2
t χ1 þ χ1 ¼ 0; ð11Þ

which are identical to the harmonic oscillator equation and
capture the main oscillatory behavior of the oscillon. The
equations in the next nontrivial order in ϵ are

∂
2
tϕ3 þ ϕ3 ¼

�
∂
2
ρ þ

2

ρ
∂ρ

�
ϕ1 − 2α∂t∂τϕ1

þ ϕ3
1 − ϕ5

1 þ Λϕ1χ
2
1;

∂
2
t χ3 þ χ3 ¼

�
∂
2
ρ þ

2

ρ
∂ρ

�
χ1 − 2α∂t∂τχ1

þ χ31 − χ51 þ Λχ1ϕ2
1: ð12Þ

Notice that we used the fact that g is large and have
therefore written g ¼ 1=ϵ2. The solutions to the harmonic
oscillator Eq. (11) are trivial. Therefore we can write ϕ1 ¼
RefAðρ; τÞe−itg and χ1 ¼ RefBðρ; τÞe−itg, where Aðρ; τÞ
and Bðρ; τÞ are complex functions.3 Inserting this solution
into Eq. (12) and eliminating secular terms gives us the
envelope equations of the system of oscillons:

2iα∂τAþ
�
∂
2
ρ þ

2

ρ
∂ρ

�
Aþ 3

4
jAj2Aþ Λ

2
jBj2A

þ Λ
4
A�B2 −

5

8
jAj4A ¼ 0;

2iα∂τBþ
�
∂
2
ρ þ

2

ρ
∂ρ

�
Bþ 3

4
jBj2Bþ Λ

2
jAj2B

þ Λ
4
B�A2 −

5

8
jBj4B ¼ 0: ð13Þ

These equations are of the nonlinear Schrödinger type [43].
They control the behavior of the oscillon on long timescales
and large spatial scales. To find solutions of these equations
that are localized in space we insert the “oscillon ansatz.”
Since by assumption the oscillon is just some localized
structure oscillating in time we should look for solutions of
the form Aðρ; τÞ ¼ aðρÞeic1τ and Bðρ; τÞ ¼ bðρÞeic2τ,
where a and b are real functions determining the spatial
character of the oscillon. Due to the symmetry of the
potential we can also set c1 ¼ c2 ¼ c. Inserting this into
Eq. (13), we obtain the profile equations of the oscillons:

−αaþ
�
∂
2
ρ þ

2

ρ
∂ρ

�
aþ 3

4
a3 þ 3Λ

4
b2a −

5

8
a5 ¼ 0;

−αbþ
�
∂
2
ρ þ

2

ρ
∂ρ

�
bþ 3

4
b3 þ 3Λ

4
a2b −

5

8
b5 ¼ 0; ð14Þ

where we set c ¼ 1=2. A few remarks about the parameter
c are now in order. c is in essence a free parameter, as long
as it is not too large. This is because it can always be
absorbed into a redefinition of ϵ. We do require it to be
positive, since the oscillon should behave as a; b → 0 for
ρ → ∞, since they are localized solutions. We can therefore
set c ¼ 1=2 without loss of generality.
An interesting property arising due to the symmetry of

the system now becomes apparent. Namely, any localized
solution aðρÞ of the equation

−αaþ
�
∂
2
ρ þ

2

ρ
∂ρ

�
aþ 3

4
ð1þ ΛÞa3 − 5

8
a5 ¼ 0 ð15Þ

directly solves the system of Eq. (14) if we set a ¼ b. We
arrive at the same equation if we instead choose a ¼ −b,
meaning that the two fields oscillate out of phase. It is
worth noting that in the one other case in the literature,
where two-field oscillons were constructed using the two-
timing analysis, Ref. [10], the masses of the two fields were
chosen to have a 2∶1 ratio, meaning that for half the period
of the light field, they were in phase, and for the other half
they were out of phase.
The difficulty of finding oscillon solutions in the coupled

system of Eq. (14) is therefore greatly reduced and can be
related to the solutions for single-field oscillons in a
quartic-sextic potential, which were studied in Ref. [6].

A. Oscillon profiles

In order to solve Eq. (15), we must first define the
boundary conditions. At large distance from the origin,
far away from the oscillon core, the nonlinear terms
become subdominant, hence Eq. (15) can be approximated
as ∂

2
ρaþ ð2=ρÞ∂ρa ≈ αa, leading to aðρÞ ∝ e−

ffiffi
α

p
ρ=ρ.

Finally, we require regularity at the origin. Equation (15)
can be rewritten as

dEρ

dρ
¼ −

2

ρ

�
∂a
∂ρ

�
2

; ð16Þ

where

Eρ ¼
1

2

�
∂a
∂ρ

�
2

−
1

2
αa2 þ 3

16
ð1þ ΛÞa4 − 5

48
a6 ð17Þ

would be the conserved energy for a one-dimensional
system with the same potential. The right-hand side of
Eq. (16) is nonpositive, hence the energy of any solution Eρ

will decrease as ρ → ∞. Since the energy of a localized
solution must be zero in the far-distance regime [this can be

3Note that this procedure is equivalent to going to the non-
relativistic limit, where a real scalar field can be written as the real
part of a complex wave function Ψðx; tÞ exp−imt.
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seen by inspecting Eq. (17)] we conclude that Eρ ≥ 0 at
ρ → 0. It is best to think about this in terms of the
trajectories of solutions in phase space ða; ∂ρaÞ. Since
we are interested in functions that are smooth at the origin,
all trajectories start on the ∂ρa ¼ 0 axis. Any trajectory will
continuously intersect curves with Eρ ¼ const, and the
constant value of these curves must decrease as ρ → ∞.
The Eρ ¼ 0 curve then defines the boundary between
localized and nonlocalized solutions. Namely, a localized
solution must intersect this curve in the origin. The require-
ment that the oscillon is smooth at the origin, meaning
∂ρajρ¼0 ¼ 0, and the fact that Eρ ≥ 0 there, leads to
α < αc ≡ ð27=160Þð1þ ΛÞ2, generalizing the constraint

found in Ref. [6] for single-field oscillons,4 or equivalently
Λ ¼ 0. For α → αc the oscillon becomes infinitelywidewith
an amplitude a2ðρ ¼ 0Þ → ð9=10Þð1þ ΛÞ.
It turns out that only a countable set anðρÞ of localized

trajectories can be drawn in phase space [44]. Here n is the
amount of nodes of the solution. We conclude that there is
exactly one zero-node solution of the profile equation, and
thus one zero-mode oscillon for every choice of ϵ and α. We
do not pursue solutions with n ≥ 1, since they will have a
higher energy than their zero-node counterpart, and thus are

FIG. 2. Left: oscillon profiles as a function of the rescaled radius ρ for repulsive fields with Λ ¼ −0.5 and α ¼ 0.005, 0.01, 0.025,
0.03, 0.037 (blue, red, green, brown and black, respectively). Right: oscillon profiles for attractive fields with Λ ¼ 0.5 and α ¼ 0.045,
0.09, 0.22, 0.27, 0.33 (blue, red, green, brown and black, respectively). We see the emergence of a flattop shape in both cases.
Furthermore, we compute that αc ¼ 0.042 for Λ ¼ −0.5 and αc ¼ 0.38 for Λ ¼ 0.5, leading to aðρ ¼ 0Þ ≃ 0.67 and aðρ ¼ 0Þ ≃ 1.16,
respectively, meaning that oscillons can acquire larger amplitudes in a system with attractive interactions.

FIG. 3. The height-width relation for the oscillon for Λ ¼ −0.5, −0.2, 0, 0.2, 0.5 (blue, red, green, brown and black, respectively) in
three and one spatial dimensions (left and right, respectively). We see that fields which interact repulsively lead to a smaller range of
oscillon amplitudes, leading to no oscillons for Λ → −1. On the contrary, attractive interactions allow for taller, as well as wider,
oscillons. The colored dots show the point where the oscillons change their stability properties in 3D, as explained in Sec. IV.

4We must note that our definition of the parameter α is related
to the square of the parameter α used in Ref. [6].
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expected to be unstable. We used both the shooting and
relaxation methods in order to find the corresponding
oscillon profiles and check our results. Figure 2 shows some
characteristic profiles for Λ ¼ �0.5. For the one-dimen-
sional case, Eq. (15) can be solved analytically to give

ϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

10
ð1þ ΛÞ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

1þ u coshð2 ffiffiffi
α

p
rÞ

s
; ð18Þ

where u2 ¼ 1 − α=αc. For Λ ¼ 0 we recover the results
of Ref. [6].
Figure 3 shows the width and height of the oscillons as a

function for various interaction strengths between the two
fields, attractive or repulsive, rescaled by the small-ampli-
tude parameter ϵ. We see that in the noninteracting case of
Λ → 0, we recover the single-field results of Ref. [6].
Furthermore, fields which interact repulsively lead to a
smaller range of oscillon amplitudes, ending in no oscillons
for Λ → −1, as is also evident by the form of
αc ∼ ð1þ ΛÞ2. On the contrary, attractive interactions
allow for oscillons with a larger amplitude.
Figure 4 shows several characteristic values for the

height and width of oscillons as a function of the coupling
strength Λ. We see that the spread of oscillon heights,
calculated as the difference between the minimum height
for stable oscillons and the maximum height, grows withΛ,
being almost double for Λ ¼ 0.5 compared to Λ ¼ −0.5.
The spread of the width is infinite, since arbitrarily wide

oscillons can exist in theory. For larger values of the
interaction strength Λ, narrower oscillons exist. In particu-
lar, the minimum width for oscillons with Λ ¼ −0.5 is
almost triple the corresponding value for Λ ¼ 0.5.

IV. STABILITY ANALYSIS

It has been shown repeatedly in the literature that no true
breather solutions like the oscillon can exist in nonlinear
systems (with the notable exception of breathers in the one-
dimensional Sine-Gordon model). In general there will
always be (classical) outgoing radiation in the tails of the
oscillon. Classically, this radiation is exponentially sup-
pressed, which is why oscillons can be extremely long-
lived [45]. Quantum mechanical radiation might play a
more important role in real physical systems [46], but is
beyond the scope of our present work. Radiation will in
general perturb the oscillon system and it is therefore
necessary to assess the stability of oscillons with respect to
small perturbations. In the model we are investigating, let
us consider small fluctuations δðx; tÞ;Δðx; tÞ ≪ OðϵÞ
added to the oscillon solutions as

ϕðx; tÞ ¼ ϕoscðx; tÞ þ δðx; tÞ;
χðx; tÞ ¼ χoscðx; tÞ þ Δðx; tÞ: ð19Þ

Plugging these into Eq. (7), the equations of motion for
the two fields, and keeping only terms linear in δ and Δ
leads to5

∂
2
t δþ δ −

�
∂
2
r þ

2

r
∂r

�
δ − 3ϕ2

oscδþ 5gϕ4
oscδ − Λχ2oscδ − 2ΛϕoscχoscΔ ¼ 0;

∂
2
tΔþ Δ −

�
∂
2
r þ

2

r
∂r

�
Δ − 3χ2oscΔþ 5gχ4oscΔ − Λϕ2

oscΔ − 2Λχoscϕoscδ ¼ 0: ð20Þ

FIG. 4. The height and width of three-dimensional oscillons for the point of marginal stability (blue), the point corresponding to the
minimum oscillon width (green) and the point corresponding to the maximum oscillon height (red). The black curve corresponds to the

rescaled asymptotic oscillon height
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
10
ð1þ ΛÞ

q
.

5The terms that were ignored here (the terms only involving ϕosc and χosc) can by nature of the two-timing analysis not source
instabilities. However, in Sec. V we will show that these terms are a source of outgoing radiation.
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Since the exact shape of the initial perturbation is in essence
unpredictable, a full linear stability analysis would require
solving Eq. (20) for arbitrary initial conditions. This
requires solving the full Floquet matrix for the coupled
nonlinear system. It turns out that, for this system, there is a
useful simplification if we only consider perturbations that
are about the same size as the oscillon itself. This is in
essence an extension of the Vakhitov-Kolokolov (VK)
criterion that has been used to assess stability of single-
component oscillons [6].

A. Extension of the VK criterion

In Sec. III we have already shown that this system
supports oscillons of the form

ϕoscðx; tÞ ¼ ϵRefaðϵxÞeitð1−ϵ2

2
Þg ¼ ϵaðϵxÞ cosωt;

χoscðx; tÞ ¼ ϵRefbðϵxÞeitð1−ϵ2

2
Þg ¼ ϵbðϵxÞ cosωt; ð21Þ

where the frequency6 is ω ¼ 1 − αϵ2=2. The symmetry of
the system dictates that we have aðρÞ ¼ �bðρÞ, as we have
discussed in Sec. III. This allows us to turn Eq. (21) into a
single-variable system in order to derive and extend the VK
criterion, similarly to what was done in Ref. [6] for single-
field oscillons. Within the validity of the VK criterion,
oscillons are stable with respect to long-wavelength per-
turbations if and only if dN=dα > 0, where

N ¼
Z

a2ðρÞd3ρ: ð22Þ

We present the details of the derivation in Appendix A.
Figure 5 shows the regions of stability, based on Eq. (22).

B. Oscillon dynamics and decay

Having constructed two-field oscillon solutions and
extended the VK criterion to examine their stability, we
move to numerically demonstrate our results and under-
stand the relevant timescales of interest. As a benchmark
case of unstable oscillons, we use profiles corresponding to
α ¼ 0.04αc and ϵ ¼ 0.08, for both attractive (Λ ¼ 0.5) and
repulsive (Λ ¼ −0.2) interactions. which we perturb using
the most unstable mode functions computed in Sec. IV.
However, while the perturbation shape is given, the
perturbation amplitude is a free parameter. We define the
perturbation amplitude as the relative size of the oscillon
and perturbation mode function at the origin

δmagn: ¼
δðr ¼ 0; t ¼ 0Þ

ϕoscðr ¼ 0; t ¼ 0Þ ; ð23Þ

and consider various values for δmagn:. We investigate both
the effect of placing the perturbation on both fields (with
equal magnitude), and the effect of placing the perturbation
on only one of the two fields and initializing the other field
in the “perfect” oscillon configuration.
Figure 6 shows the time evolution of the oscillon’s

energy density at the origin and width as a function of slow
time τ ¼ ϵ2t. First of all, it is evident that the slow time
controls the relevant timescales for the oscillon dynamics.
The time of decay of the oscillon seems to occur at a similar
order of magnitude in slow time. This can be traced back to
the evolution Eq. (13) for the complex functions Aðρ; τÞ
and Bðρ; τÞ, which are of the nonlinear Schrödinger type,
and control the dynamics of the oscillon envelope, on top of
the fast oscillations, which occur on a timescale ofOðm−1Þ.
We see that the magnitude of the initial perturbation plays a
crucial role for the ultimate fate of the oscillon: small
fluctuations δmagn: ≪ 1% lead to a new semistable point for
the width and height of the localized configuration. On the
other hand, for larger δmagn: the initial localized wave
packet simply disperses. We must note here that initializing
the two fields out of phase a ¼ −b and using the corre-
sponding perturbation derived using Eq. (A12) gives
indistinguishable curves, and thus we do not plot them
for clarity. This however confirms our analysis that the
phase of the two fields in the initial oscillon configuration,
0 or π, does not affect the subsequent dynamics. We will
show numerically in Sec. VII that the phase relation
between the components of the oscillon arises dynamically

FIG. 5. Schematic representation of the Vakhitov-Kolokolov
stability criterion for two-field oscillons. We plot the quantity N,
defined in Eq. (22), as a function of the phase-shift parameter α
for Λ ¼ −0.5;−0.2, 0, 0.2, 0.5 (blue, red, green, brown and
black, respectively). The vertical dashed lines correspond to the
value of αc for each case, while the solid (dotted) branches
correspond to stable (unstable) oscillons.

6In several oscillon studies, the frequency is taken to be of the
form ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c · h2

p
, where h is the oscillon height and c is

someOð1Þ constant. This matches our expression to lowest order
in perturbation theory when h ∝ ϵ ≪ 1, which is true in the
context of the small amplitude analysis used to construct oscillon
solutions.
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when they form, leading to phase-locked fields, oscillating
either in or out of phase.
Furthermore, one can ask whether having the exact form

of the most unstable modes computed in the previous
section is a necessary condition for oscillon decay. In
single-field oscillons, one can see that any perturbation can
be decomposed in a basis of eigenfunctions of the operator
H1H2 [see Eqs. (A9) and (A10)], meaning a generic
perturbation will include a component along the unstable
mode. In two-field systems, it is interesting to see how an
initial perturbation is transferred from one field to the other.
To check the validity of our analysis, we perturbed only the
ϕ field, leaving the χ field profile identical to the perfect
oscillon solution. Perturbing one of the fields with δmagn:

while leaving the other field intact leads in some cases to a
similar evolution as perturbing both fields with δmagn:=2.
For the specific cases that we plotted, this occurs for
Λ ¼ 0.5 when perturbing one of the fields with δmagn: ¼
0.2%, leading to almost indistinguishable evolution from

perturbing both fields with δmagn: ¼ 0.1%. We do not plot
both these simulations in Fig. 6, because the results are
visually identical (instead only one of these cases is
plotted). This indicates that due to the interaction of the
two fields and the symmetry of the system, a small initial
perturbation is quickly distributed evenly among the two
fields. In other cases we observed the complete dispersion
of one field and the relaxation of the other towards a stable
single-field oscillon solution (see lower panels of Fig. 6). In
particular this occurred for Λ ¼ −0.2, when we perturbed
only one of the two fields by δmagn: ¼ 0.1%. From our
numerical investigation it remains clear that the symmetric
multifield oscillons failing the VK criterion contain unsta-
ble modes and will in general decay. However, when
perturbed outside the ϕ ¼ �χ Ansatz, the dynamics can
either restore or destroy the equality between the two fields.
We will see that for Λ > 0 the two-field configuration is a
strong attractor of the system. We note that it is not
necessary to perturb the oscillon with the exact form of

FIG. 6. Upper panels: the evolution of the oscillon peak energy density (left) and width (right) as a function of time tðm−1Þ for
Λ ¼ 0.5, α ¼ 0.04αc and ϵ ¼ 0.08. We perturb the oscillon by the most unstable mode with amplitude δmagn ¼ −0.5%; 0.05%; 0.5%
(green, magenta and red, respectively). The brown curve corresponds to perturbing only one of the two fields with δmagn ¼ 0.2% and
initializing the other field as the perfect oscillon profile. The data for both fields is plotted for this curve (dashed and dotted line) but the
difference is not perceivable since the fields quickly attract and undergo simultaneous collapse. Lower panels: the same simulation for
Λ ¼ −0.2 with again α ¼ 0.04αc. Here the curves correspond to δmagn ¼ −0.1%; 0.01%; 0.1% (green, magenta and red, respectively).
We again plotted brown curves in a scenario where we only perturbed one of the fields with δmagn ¼ 0.1%. The fate of the two oscillons
differs as one of the fields eventually disperses (dotted) while the other settles into a stable single-field oscillon (full). It is clear however
that all of these multifield oscillons contain unstable modes.
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the perturbation given by the stability analysis of this
section, since unstable oscillons will eventually decay if
perturbed, albeit on slightly different timescales and with
different final state, depending on the details of the
perturbation. Finally, we also perturbed the oscillon with
negative δmagn: (meaning that the unstable mode is
“flipped”). We observed that this leads to a collapse
instability more often than the positive δmagn: case. This
highlights the sensitivity of the fate of the unstable oscillons
on the initial conditions. Finally, we perturbed oscillons
that are characterized as stable by the two-field version of
the VK criterion in various ways, seeing no decay over the
total run of the simulation, lasting several hundred units of
“slow time” τ ¼ ϵ2t.
It is now important to understand this behavior. Figure 7

shows the trajectories of several perturbed oscillons on the
height-width curve for oscillons7 for Λ ¼ 0.5 and
Λ ¼ −0.2. We see that unstable oscillons will surely move
away from their initial configuration if perturbed. However,
their ultimate fate is not unique. It is known that localized
solutions of the three-dimensional nonlinear Schrödinger
equation are unstable and undergo a collapse instability,
meaning that their width becomes smaller and their
amplitude becomes larger. For oscillons that are “mildly

perturbed,” δmagn: ≪ 1%, this is exactly what we see at first:
the unstable oscillons follow the height-width relation, on
which their amplitude increases and their width decreases.
This is the regime, where one can safely neglect the sextic
term in the initial Lagrangian, equivalently the jAj4A term
in Eq. (13). Once the oscillon amplitude grows enough, so
that the jAj4A term becomes important, the oscillon is
stabilized, which occurs near the minimum of the height-
width curve. Beyond this point, the oscillon solution
satisfies the VK criterion. Because our simulation box
does not allow for the energy to escape (it does not possess
absorbing boundary conditions), the oscillon will never
truly reach the “ideal” shape, and will instead stay in the
vicinity of the first stable point on the height-width curve.
Oscillons that are perturbed by a large amount, which puts

them too far away from the height-width curve, do not
undergo this slow collapse instability, which would take
them to a stable configuration. Using different perturbation
types on the initial oscillon configuration amounts to
examining the basis of attraction for two-field oscillons,
finding the approximate size of the initial perturbation below
which the oscillon is allowed to “rearrange” itself into a stable
configuration and above which the oscillon is completely
destabilized. An important question remains, as to the
oscillon configurations that arise naturally after inflation:
it is not known if a universe that is governed by the
Lagrangian of Eq. (1) during preheating will be dominated
by single ormultifield oscillons.We are currentlyworking on
the corresponding three dimensional lattice simulations
required to address this point and will present the results
in a subsequent publication.

V. OSCILLON LIFETIME

It is a well-known fact that oscillons are not exactly
stable, but eventually lose their energy through an expo-
nentially suppressed radiative tail [47,48]. To make an
assessment of the (cosmological) importance of the stable
oscillons that were found in the previous sections we wish
to find an estimate of their lifetimes. To do this we follow
the analyses performed in Refs. [33–35]. The core reason
why oscillon solutions are in general not stable (classi-
cally), even though they are long-lived, is that plugging in
an oscillating solution ∼Φ0 cosðωtÞ into an equation of
motion with nonlinear terms will in general lead to terms
that are proportional to higher harmonics ∝ cosðjωtÞ with
j > 1. In general, these terms can be made to cancel out
using some perturbative procedure (e.g., the two-timing
analysis); but since in practice these perturbative techniques
must end at some finite order and do not converge,
there will always be residual terms of higher harmonics
in the equations of motion. These terms will act as
a source for radiative modes of the oscillon solution.8

FIG. 7. The height and width of oscillons undergoing decay for
Λ ¼ 0.5 and Λ ¼ −0.2. These simulations were performed with
ϵ ¼ 0.08. We plot the curves of oscillons undergoing collapse
(δmagn ≪ 1%) where different colors correspond to different
values of α with α ¼ 0.04 (cyan), α ¼ 0.06 (magenta), α ¼
0.08 (purple) for Λ ¼ −0.2 and α ¼ 0.04 (yellow), α ¼ 0.07
(red), α ¼ 0.09 (green) for Λ ¼ 0.5. For α ¼ 0.04 we also plot
curves corresponding to dispersion (dark yellow and dark cyan).
Here α is given in terms of αc. We also plot the perfect oscillon
curves for Λ ¼ −0.2 (brown) and Λ ¼ 0.5 (black) and indicate
the point of stability under VK with a gridline. It is clear that the
oscillon configurations decay until they either disperse com-
pletely or find a new point of stability.

7In this plot, the height and width curve is derived from the
energy density, not the profile of the oscillons. It is thus related to
the one shown in Fig. 3, but is not identical to it.

8A class of arbitrarily long-lived oscillons was recently
discussed in Ref. [45].
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In order to estimate the decay rate of the oscillons constructed in Sec. III we follow the methods of Refs. [33–35]. To study
the relevant radiative modes we perturb our oscillon solutions ϕ ¼ ϕosc þ δ, χ ¼ χosc þ ξ, plug these into the equations of
motion and linearize to obtain

½∂2tϕosc −∇2ϕosc þ V;ϕðϕosc; χoscÞ� þ ½∂2t δ −∇2δþ V;ϕϕðϕosc; χoscÞδþ V;ϕχðϕosc; χoscÞξ� ¼ 0;

½∂2t χosc −∇2χosc þ V;χðχosc;ϕoscÞ� þ ½∂2t ξ −∇2ξþ V;χχðχosc;ϕoscÞξþ V;χϕðχosc;ϕoscÞδ� ¼ 0: ð24Þ

In the above equations we use the notation V;ϕðϕosc; χoscÞ≡ ∂ϕVðϕ; χÞjϕ→ϕosc;χ→χosc
for derivatives of the potential with

respect to the fields. We now plug in our oscillon solutions ϕosc ¼ Φ0 cosðωtÞ and χosc ∼ X0 cosðωtÞ, where ω ¼ 1 − αϵ2=2.
By virtue of the two-timing analysis, all terms proportional to cosðωtÞ in the first square bracket of Eq. (24) cancel and we
obtain

∂
2
t δ −∇2δþ δ − ð3ϕ2

osc − 5gϕ4
osc þ Λχ2oscÞδ − 2Λϕoscχoscξ ¼

�
1

4
Φ3

0 þ
1

4
ΛΦ0X2

0 −
5

16
gΦ5

0

�
cosð3ωtÞ − 1

16
gΦ5

0 cosð5ωtÞ;

∂
2
t ξ −∇2ξþ ξ − ð3χ2osc − 5gχ4osc þ Λϕ2

oscÞξ − 2Λϕoscχoscδ ¼
�
1

4
X3
0 þ

1

4
ΛX0Φ2

0 −
5

16
gX5

0

�
cosð3ωtÞ − 1

16
gX5

0 cosð5ωtÞ:

ð25Þ

Focusing on the solutions where the two fields within the oscillon oscillate in phase Φ0 ¼ X0 (the case where Φ0 ¼ −X0 is
analogous), we add Eq. (25) and introduce the new radiative mode Ψ ¼ δþ ξ (in the case where the oscillons oscillate out
of phase we would introduce Ψ ¼ δ − ξ) to obtain the single equation

∂
2
tΨ −∇2ΨþΨ − ð3ð1þ ΛÞϕ2

osc − 5gϕ4
oscÞΨ ¼

�
1

2
Φ3

0 þ
1

2
ΛΦ3

0 −
5

8
gΦ5

0

�
cosð3ωtÞ − 1

8
gΦ5

0 cosð5ωtÞ: ð26Þ

We are thus interested in wavelike solutions Ψradðr; tÞ of Eq. (26). Using the symmetry of our system we can then deduce
that half the amplitude of this wave comes from the oscillon in the ϕ field and the other half from the oscillon in the χ field.
Notice however that this calculation is equivalent to calculating the radiative mode of an oscillon in a single field with a
slightly altered quartic term in the potential

VðϕÞ ¼ 1

2
ϕ2 −

1

4
ð1þ ΛÞϕ4 þ g

6
ϕ6: ð27Þ

As suggested in Ref. [33], when calculating the outgoing radiation of an oscillon in this type of potential, ignoring the
space-time-dependent effective mass term in the equation of motion for the perturbative mode will not alter the final result
significantly. Thus we ignore the time-dependent coupling of Ψ on the left-hand side of Eq. (26) and obtain the simpler
equation

∂
2
tΨ −∇2Ψþ Ψ ¼

�
1

2
Φ3

0 þ
1

2
ΛΦ3

0 −
5

8
gΦ5

0

�
cosð3ωtÞ − 1

8
gΦ5

0 cosð5ωtÞ: ð28Þ

As was shown in Ref. [33], this equation can be solved by expanding Ψðr; tÞ ¼ P∞
j¼1ΨjðrÞ cosðjωtÞ. Obviously only

Ψ3ðrÞ and Ψ5ðrÞ will not vanish in this specific case. The rate of energy loss of the oscillon is dE=dt ¼ 4πr2T0r, where T0r
is the Poynting vector in our spherically symmetric setup. By averaging over time in the far distance regime,

hT0ri ¼ h_ξ∂rξi þ h_δ∂rδi ¼
1

2
h _Ψ∂rΨi: ð29Þ

Following Ref. [33] we obtain the following analytic expression for the outgoing radiation at large radii:

Ψradðr; tÞ ≈
1

4πr
ðS3ðk3Þ cosðk3r − 3ωtÞ þ S5ðk5Þ cosðk5r − 5ωtÞÞ; ð30Þ
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where kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjωÞ2 − 1

p
and S3ðkÞ and S5ðkÞ are the

Fourier transforms of the terms on the right-hand side of
Eq. (28) proportional to the third and fifth harmonic,
respectively. Thus

S3ðkÞ ¼
Z

d3r
�
1

2
Φ3

0 þ
1

2
ΛΦ3

0 −
5

8
gΦ5

0

�
e−ik·r

¼
Z

∞

0

dr4πr
sinðkrÞ

k

�
1þ Λ
2

Φ3
0 −

5

8
gΦ5

0

�
ð31Þ

and

S5ðkÞ¼−
Z

d3r
1

8
gΦ5

0e
−ik·r¼−

Z
∞

0

dr4πr
sinðkrÞ

k
1

8
gΦ5

0:

ð32Þ

We find, similarly to Ref. [9], that S3 ≫ S5. The analytic
expression for the radiative modes of the oscillon given by
Eq. (30) leads to the following expression for the decay rate
of the oscillon:

Γosc ¼
1

16πEosc

X
j¼3;5

SjðkjÞ2ωjkj: ð33Þ

By using the oscillon amplitude Φ0 ≡ ϵaðϵrÞ, which
corresponds to the solution of Eq. (15), we computed the
value of Γosc using the method described above. We con-
firmed that the multipeak structure of Γ found in Ref. [9]
persists for different values of Λ, either positive or negative.
In general, the oscillon lifetime increases as one decreases the
small parameter ϵ. In our construction, this corresponds to
increasing the strength of the sextic term. Figure 8 shows the
results derived by numerically integrating Eq. (33) for three-
dimensional oscillons, using the value ϵ ¼ 0.1. For Λ ¼ 0
we recover the results of Ref. [5]. We see that the decay rate
increases for Λ > 0 compared to the single-field case
(Λ ¼ 0) and correspondingly it decreases for Λ < 0.

The maximum value of Γ increases from Λ¼0 to Λ¼0.2
and Λ ¼ 0.2 to Λ ¼ 0.5 by around 1 order of magnitude.

VI. GENERALIZATION TO MANY FIELDS

In this section we generalize our model to a system of N
interacting fields. Following the two-field analysis, we
choose the following action where the fields exhibit an
“exchange” symmetry:

S ¼ −
Z

d3xdt

�XN
I¼1

�
1

2
∂μϕI∂

μϕI þ
1

2
m2ðϕIÞ2

−
λ

4
ðϕIÞ4 þ

g
6
ðϕIÞ6

�
−
X
I≠J

Λ
2
ðϕIÞ2ðϕJÞ2

�
: ð34Þ

We briefly repeat the derivations presented above for two-
field oscillons, showing that the profile equations are
solved by zero modes of Eq. (15) with an altered cubic
term. Furthermore, we show how to extend the VK criterion
to apply to the N-field system.

A. Two-timing analysis

After rescaling the fields and spatial-temporal dimen-
sions in the same way as was done in Sec. II, the action of
Eq. (34) results in N equations of motion for the N fields.
The equation for the ith field (assuming spherical sym-
metry) is

∂
2
tϕi−

�
∂
2
r þ

2

r
∂r

�
ϕiþϕi ¼ϕ3

i −gϕ5
i þ

X
j≠i

Λϕiϕ
2
j : ð35Þ

Introducing the by now familiar two-timing analysis varia-
bles ρ ¼ ϵr and τ ¼ αϵ2t, the equations become

∂
2
tϕi þ 2αϵ2∂t∂τϕi − ϵ2

�
∂
2
ρ þ

2

ρ
∂ρ

�
ϕi þ ϕi

¼ ϕ3
i − gϕ5

i þ
X
j≠i

Λϕiϕ
2
j þOðϵ4Þ: ð36Þ

Finally looking for solutions ϕi ¼ ϵϕ1;i þ ϵ2ϕ2;i þ � � �, we
can write down the OðϵÞ and Oðϵ3Þ equations

OðϵÞ∶∂2tϕ1;i þ ϕ1;i ¼ 0 ð37Þ

Oðϵ3Þ∶∂2tϕ2;i þ ϕ2;i ¼
�
∂
2
ρ þ

2

ρ
∂ρ

�
ϕ0;i − 2α∂t∂τϕ1;i

þ ϕ3
1;i − ϕ5

1;i þ
X
j≠i

Λϕ1;iϕ
2
1;j; ð38Þ

where we have again used g ¼ 1=ϵ2. The rest of the
derivation is entirely analogous to the one in Sec. III so
we will not repeat it here. The procedure results in N profile
equations:

FIG. 8. The decay rate of oscillons computed using Eq. (33) for
ϵ ¼ 0.1, as a function of the frequency parameter α for
Λ ¼ −0.5;−0.2, 0, 0.2, 0.5 (blue, red, green, brown and black,
respectively). The solid (dotted) branches correspond to stable
(unstable) oscillons according to the VK criterion.
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�
∂
2
ρþ

2

ρ
∂ρ

�
ai−αaiþ

3

4
a3i −

5

8
a5i þ

3

4
Λ
X
j≠i

aia2j ¼0: ð39Þ

We thus need to find a set ofN functions aiðρÞ that solve this
system of equations. As before, the symmetry in the model
greatly simplifies this question. We need to find localized
solutions of the equation�
∂
2
ρþ

2

ρ
∂ρ

�
a−αaþ3

4
ð1þΛðN−1ÞÞa3−5

8
a5¼ 0: ð40Þ

Then, setting any n < N number of aiðρÞ ¼ aðρÞ and the
remaining ajðρÞ ¼ −aðρÞ solves the system in Eq. (39).
Notice that Eq. (40) has the same form as Eq. (15) with an
altered cubic term. It will therefore have localized solutions,
which are related to the ones for the two-field model by
substituting the coupling strengthΛ in the two-field casewith
the “effective” coupling strength ΛðN − 1Þ in the multifield
case. This is a proof of existence for such a solution, not
uniqueness.

B. Stability analysis

For brevity, we move the full derivation of the stability of
these N-field oscillons to long wavelength perturbations to
Appendix A. Note however that performing the two-timing
analysis and using the ansatz ϕ0;i ¼ RefAiðx; tÞe−itg is
equivalent to working in the nonrelativistic limit. In this
limit, the Lagrangian has a conserved charge proportional to

Q ¼ i
Z

ddx
X
i

ðA�
i

_ðAiÞ − Ai
_ðA�
i ÞÞ; ð41Þ

which reduces to the following after inserting the symmetric
oscillon solution:

Q ¼ Nfields · αϵ2
Z

ddx · aðxÞ2: ð42Þ

Since the oscillon has a conserved charge, we can apply the
VK criterion directly. To summarize, the oscillon is stable
when ∂Q

∂αϵ2
> 0. This is just an alternate and equivalent formof

the VK criterion that was given earlier in Eq. (22). The
criterion for stability therefore still holds after a generaliza-
tion of our model to N fields.
To conclude, we constructed oscillons in a model with N

fields. Since we work in the nonrelativistic limit it is simple
to show that the VK criterion still applies. Although we
have not performed a detailed analysis of the lifetime of
these oscillons, the result is expected to be analogous to the
two-field case. Namely, the computation of the radiation
tail of these oscillons can be mapped to an equivalent
calculation for single-field oscillons with an altered cubic
term in the potential, as done in Sec. V for the two-
field case.

VII. OSCILLON EMERGENCE AND DYNAMICS

Despite the mathematical construction and stability
analysis of two-field oscillons, the question of their
emergence in realistic scenarios and hence their cosmo-
logical consequences remains. In this section we provide a
combination of simulations in one and three spatial
dimensions, in both an expanding and a static background.
The full three-dimensional simulations of oscillon forma-
tion after inflation and their GW signatures will be
presented in a subsequent publication.

A. Dynamical emergence in 1 + 1D

To investigate the formation of oscillons in this model we
performed a series of one-dimensional simulations of
preheating-like scenarios on an expanding background.
One of the fields, ϕ, was initialized as a homogeneous
condensate, akin to the inflaton at the end of inflation. The
other fields of the model χ; θ;… were then initiated in their
vacuum, akin to spectator fields at the end of inflation. The
simulations were strongly inspired by those performed in
Ref. [49]. We see a clear sequence of events, leading from
an oscillating ϕ condensate to a collection of composite
oscillons.

(i) Parametric self-resonance leads to a fragmentation
of the inflaton condensate and the formation of
single-field oscillons.

(ii) Parametric resonance of the spectator field(s) by the
single-field oscillons leads to exponential growth of
the spectator, akin to preheating and Floquet theory.

(iii) Once the spectator field acquires a large enough
value, nonlinear interactions between the two (or
more) fields lead to phase-locked long-lived con-
figurations: composite oscillons.

Figure 9 shows the energy density on the one-dimen-
sional lattice at early and late times. The oscillons appear to
become narrower, because we plot our data on a comoving
grid. Furthermore, we clearly see the above stages of
oscillon formation and evolution. In the left panel, the ϕ
condensate has fragmented into localized configurations
(oscillons), while the χ field remains small; we initialized
the χ field with hχ2ki ¼ Oð1=2kÞ. The right panel clearly
shows spikes of the χ field, positioned at the same locations
as ϕ field oscillons. Interestingly, not all ϕ oscillons lead to
an efficient amplification of the χ field. Furthermore, we
see that the energy density spikes of the two fields are not
equal in size. In fact, two-field composite oscillons in one
spatial dimension exhibit a persistent energy exchange
between the two fields, which we will describe more later.
Figure 10 shows the characteristics of the oscillons in the

one-dimensional simulation. In the top left panel we see the
distribution of ϕ overdensities on the height-width plane.
The formation of two populations is evident. A large
number of overdensities closely follows the single-oscillon
height-width curve. Furthermore, the early-time population
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of overdensities is largely or solely on this curve. For later
times, we see a splitting between the single and two-field
oscillon curves. The fact that the oscillons who deviate
from the single-field curve do not follow exactly the two-
field one is explained by the presence of a “breathing”
mode between the two fields (see Sec. VII B). The final
number of two-field oscillons is almost half that of their
single-field counterparts. The lower panels of Fig. 10 show
the distribution of oscillons in equal bins of core energy

density (amplitude). The left panel shows early times, with
the orange curve corresponding to the initial stages of the
emergence of ϕ − χ oscillons. For later times (right panel)
we see that the distribution is largely constant. Due to the
finite bin size and the oscillon breathing mode, some
oscillons will inevitably enter and exit adjacent bins,
leading to small changes. However, the overall shape is
indeed stable, allowing us to reach significant conclusions.
Large amplitude oscillons are comprised of almost equal
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FIG. 9. The energy density in the box for a two-field simulation, involving the fields ϕ and χ (blue and red, respectively) for t ¼ 1750

ðm−1Þ (left) and t ¼ 4500 ðm−1Þ (right). The ϕ field starts with fluctuations on top of a classical homogeneous configuration (emulating
the inflaton), while the χ field is comprised solely of fluctuations initially.

FIG. 10. Upper left: the height width relation for overdensities in the ϕ field (circles and triangles, respectively) for t ¼ 1500, 2500,
3300, 4000, 5200, 6700 ðm−1Þ (purple, brown, blue, red, green). The solid (dashed) line corresponds to the Λ ¼ 0 (Λ ¼ 0.5) analytical
profiles. Upper right: the number of single- and double-component oscillons (blue and red, respectively). The total number is in black.
Lower panels: the number of one- and two-component oscillons (solid and dashed lines, respectively) in equal bins of height for
t ¼ 1500, 25000, 5200, 6700 ðm−1Þ (blue, orange, green and brown, respectively).
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populations of one- and two-component configurations.
Small amplitude oscillons on the other hand are almost
entirely single field. This can be easily understood as
follows: Parametric resonance for χ is strongly sensitive to
the amplitude of the pumping field ϕ. It is thus much more
efficient for the χ field to be excited in regions of large ϕ
field, leading to a more efficient production of large field
two-component oscillons. We will return to this point in
Secs. VII B, VII C and VII D. Finally, we checked the
relative phase of the two fields in the two-field oscillons
and found no preference for either in-phase or out-of-phase
configurations.
Figure 11 shows the formationofmulticomponent oscillons

in a simulation involving three scalar fields. The system
exhibits a similar evolution as in the two-field case, with theϕ
fragmentation followed by single-field oscillon formation,
which then leads to excitation of the spectator fields and the
eventual emergenceof composite oscillons.As in the two-field
case, not all single-field oscillons lead to multifield configu-
rations. Interestingly the number of two- and three-component
oscillons is nearly the same and the total number of multi-
component oscillons is nearly equal to the number of two-
component oscillons that emerged in the two-field simulation.

B. Single to multifield oscillons in 1 + 1D

The results of Sec. VII A showcased the two-stage
formation of composite oscillons on an expanding back-
ground for the one-dimensional case. In order to better
understand the transition from single to multifield oscil-
lons, we focus on simulating single-field oscillons on a
static background, which allows us to fully control the
initial conditions and compare the numerical results to
theoretical predictions. The decay into a multifield con-
figuration can be understood in the context of Floquet
theory. Although obtaining analytical results can be chal-
lenging in a nonhomogeneous background such as an

oscillon, we show in Sec. VII D that significant intuition
is gained by working in the homogeneous limit.
We initialize the ϕ field as an oscillon that is stable in the

single-field theory (withΛ ¼ 0) and draw the fluctuations of
the χ field from aGaussian distribution with hχ2ki ¼ 1=2k, as
in our lattice simulations. Alternatively, initializing the
secondary field as a small perturbation of the same shape
as the oscillon does not change the outcome of the simulation
(although it somewhat accelerates the decay into a multifield
configuration). Wewill demonstrate this last point later on in
this section.
Figure 12 shows the evolution of the system for Λ ¼ 0.5

and g ¼ 1=ϵ2 ¼ 5: from a single-field oscillon with α ¼
0.99αc to a phase-locked two-field configuration. The
upper panels show the evolution of the width and height
(in energy density space) of the two fields. We clearly see
the growth of a localized χ configuration, which backreacts
on the ϕ oscillon, leading to a composite oscillon. We see
that after t ≃ 1500ðm−1Þ the amplitude and width of the two
fields oscillate around an average value, which is common
for both. Inspecting the data we can postulate the existence
of “breather” modes: stable perturbations atop the perfect
oscillon solution that oscillate between the two fields
(similarly to how we construct unstable modes in
Appendix A). It seems that fewer of such breather modes
exist in higher dimensions (see Sec. VII C).
The oscillation frequency behaves similarly. Initially,

since the χ field is comprised of random fluctuations, one
cannot speak of a single “coherent” frequency. As insta-
bilities build up over time however, the two fields “lock” up
into a single shared frequency as can be seen in the bottom
panels. The localized energy in each field also exhibits
strong oscillations of up to 40% around the average value.
While the two components of the oscillon exchange energy
with each other, the total configuration is still stable. This is
strongly reminiscent of the behavior exhibited by oscillons

FIG. 11. Left: the energy density in an enlarged part of the box for a three-field simulation, involving the fields ϕ, χ and θ (blue, red
and green, respectively) for t ¼ 3300 ðm−1Þ. The ϕ field starts with fluctuations on top of a classical solution (emulating the inflaton),
while the χ and θ fields are comprised solely of fluctuations initially. Right: the number of one-, two- and three-component oscillons
(blue, red and green, respectively). The sum of two- and three-component oscillons is shown in brown and the total number of oscillons
in black.

VAN DISSEL and SFAKIANAKIS PHYS. REV. D 106, 096018 (2022)

096018-14



in the SUð2Þ gauged Higgs model [10], where stable two-
field oscillons discovered in the reduced spherical Ansatz
exhibit similar exchange of energy with a period much
larger than the natural period of oscillation of the fields
themselves.
Before concluding this section, we would like to explore

the dependence of the evolution on the initial conditions for
χ, by altering them in two ways: by drawing a different
sample from the same aforementioned Gaussian distribution
on the one hand and by initializing χ as a small “bump”with
similar width to the ϕ oscillon, but very small amplitude on
the other hand.
We see in Fig. 13 that drawing a different sample from

the same Gaussian distribution leads to a similar evolution
with a phase-locked final state, albeit with the fields
oscillating out of phase (in contrast to the situation of
Fig. 12). This verifies our assumption in the analytical
construction of the oscillon, where we distinguished
between in and out of phase oscillons, while at the same

time showing that these two phase configurations are the
attractors of the system, depending only on the initial
conditions.
On the other hand, by closely looking at the initial (linear)

evolution of the χ field we see two stages: a small bump
arising from the noise and the bump growing exponentially.
This can be seen clearly in Fig. 14; where we note similar
behavior for the 1D and 3D systems. By initializing the χ
field as a bump, we circumvent the first stage, without losing
any information about the dynamical evolution of the two-
field system. In what follows, this is exactly what we did in
order to increase numerical efficiency.
Finally, we performed a numerical simulation for three

fields. In Fig. 15 we show the evolution of a system
initialized as a single-field oscillon in the primary field ϕ,
interacting with two fields initialized as small perturba-
tions. We again see that at late times the three fields
oscillate around a common value for the width and height,
forming a phase-locked three-field oscillon with internal
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FIG. 12. The evolution of various quantities in our simulations for theϕ field (blue) and χ field (red). Top left: the evolution of the height of
the energy density at the origin. Top right: the evolution of the width of the two fields defined as the distance where the energy density has
decreasedby a factor of1=e.Middle left: the evolutionof the localized energy in the two fields.Middle right: Theoscillation frequency of the
two fields. Bottom panels: the amplitude of the fields at the origin at early (left) and late times (right). It is clear that the single-field oscillon
evolves into a two-field configuration, where the fields are phase locked (oscillating in phase) and share common characteristics.

SYMMETRIC MULTIFIELD OSCILLONS PHYS. REV. D 106, 096018 (2022)

096018-15



breathing modes between the fields. In the particular
example plotted we observed a phase-locked state after t ∼
5000ðm−1Þwhere initially one of the fields is oscillating out
of phase with the other two fields. However we should
report that due to the presence of the breathing modes a
spontaneous change in behavior is also possible, where a
different type of phase locking is suddenly reached.

C. Single to multifield oscillons in 3 + 1D

We now move to the anagolous three-dimensional case,
anticipating full lattice simulation of preheating in three
dimensions. Deferring the full lattice simulation for a future
publication, we instead start with a single-field spherically
symmetric oscillon and study the transition to the multifield
configuration, similarly to Sec. VII B.
Specifically we initialize the ϕ field in the single-oscillon

configuration with ϵ ¼ 0.1, 0.2 and several values of α and
the χ field as a small localized overdensity (bump), as
described in Sec. VII B. In Fig. 16 we show the evolution of
the width and height of the single-field oscillon towards the
two-field solution at the end of the simulation. Clearly,
similarly to the one-dimensional case, the oscillon moves

towards a composite structure. As can be seen from the
error bars, we see the resulting configuration is much closer
to the analytically constructed form of a two-field oscillon
than its one-dimensional counterpart. In other words, the
internal breathing mode exists, but suppressed. We believe
that the larger size of the internal breathing mode for one
spatial dimension is connected to the increased stability for
one-dimensional oscillons, compared to their three-dimen-
sional counterparts. Otherwise, the results are qualitatively
equivalent to the one-dimensional case as represented in
Fig. 12. It is noteworthy that we need to initialize the
oscillon with a value of α much closer to αc in order to see
decay to a two-field solution in 1D: αi ∼ 0.95αc in 1D and
αi ∼ 0.45αc in 3D, where the subscript i indicates the initial
value of α of the background oscillon. This fact can be
understood heuristically from the point of view of Floquet
theory.

D. Analysis of results in terms of Floquet theory

In this subsection we explore the emergence of the
multifield oscillons as observed in the previous sections
using semianalytic techniques. We do this explicitly for two

FIG. 14. The evolution of energy density (time moves from bottom to top) of the secondary field starting from Gaussian initial
conditions. It is clear that, although the initial configuration is very noisy, the field aligns into a smooth configuration as the relevant
modes get amplified due to Floquet instabilites. Left: 1-dimension with αinit ¼ 0.99αc, ϵ ¼ 0.45. Right: 3-dimensions with αinit ¼ 0.5αc
and ϵ ¼ 0.2. In both cases Λ ¼ 0.5.

FIG. 13. Time slices of the fields ϕ (full) and χ (dotted) at different times t ¼ 1900; 6000; 8000ðm−1Þ (blue, red and green,
respectively). The parameters are the same as those in Fig. 12, but with a different Gaussian initialization for the field χ. Contrary to
Fig. 12 the fields condense into an out-of-phase configuration.
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FIG. 16. The evolution of the perfect single-field oscillon, initially localized on the Λ ¼ 0 curve (blue) towards a two-field
configuration falling approximately on the Λ ¼ 0.5 curve (brown), agreeing with our theoretical predictions. For the final state, we
average over the two fields and over various time slices to account for the effect of the breathing modes (hence, the error bars). The dots
correspond to various initial conditions with α ¼ 0.4; 0.45; 0.5; 0.55; 0.6; 0.65; 0.7ðαcÞ (bottom to top). Left: ϵ ¼ 0.2. Right: ϵ ¼ 0.1.
Note that in both cases only the single-field oscillon with α ¼ 0.4αc (blue dot) does not evolve towards a composite solution.

FIG. 15. The decay of a single-field oscillon to a three-field composite oscillon. Although the presence of breathing modes does not
allow the system to settle into a perfect symmetric state, all fields seem to oscillate around a common configuration. Top: the evolution of
the height and width of the primary (red) ϕ oscillon and the two secondary oscillons (blue and red) that are formed after being initialized
as a small perturbation. Bottom: the field configurations (both in field space and energy density) at t ¼ 10000ðm−1Þ of the primary field
(blue) and the two secondary fields (green and red). Here we used α ¼ 0.99αc as initialization of the primary field and ϵ ¼ 0.2.
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fields, but the intuition naturally extends to more fields. To
first order in perturbations, the equation of motion of the
secondary field χ is

χ̈ −∇2χ þ χ − Λϕ2χ ¼ 0: ð43Þ
Since χ is a small perturbation at early times, this equation
governs its dynamics. Also, to first order in ϵ we write
ϕ ¼ ϵΦ0ðxÞ cosðωtÞ. Switching to Fourier space and apply-
ing the convolution theorem we obtain

χ̈k þ k2χk þ χk − ϵ2Λ cosðωtÞ2
Z

ddk
ð2πÞd Ψðk − k0Þχk0 ¼ 0;

ð44Þ

where ΨðkÞ is the Fourier transform of ½Φ0ðxÞ�2. This
equation can in principle be solved using Floquet theory,
where the solutions are of the form χkðtÞ ¼ eμktPðtÞ, where
PðtÞ is a periodic function. However the inhomogeneity of
the background oscillon couples all different k modes
through the convolution term which makes the challenge
of finding the Floquet exponents impossible. To understand
the basic dynamics, we investigate the constant amplitude
limit Φ0ðxÞ ¼ Φ0ð0Þ, and incorporate the effect of the
spatial extent of the oscillon heuristically. In this limit the
wave numbers decouple and it is a simple exercise to find
the Floquet exponents μk. In Appendix B we show how to
find an approximate solution for the functions χkðtÞ. They
are of the form χkðtÞ ∝ RefcosðωtÞeiμkτg, where τ ¼ ϵ2t is
slow time and

μ2k ¼
1

4

�
αþ k2

ϵ2
−
3

4
ΛΦ2

0

��
αþ k2

ϵ2
−
1

4
ΛΦ2

0

�
; ð45Þ

where Φ0 is the rescaled height of the background oscillon
at the origin and ω ¼ 1 − αϵ2=2 its frequency. If Eq. (45)
has imaginary solutions the corresponding mode will grow
exponentially. Equation (45) makes it explicit that a two-
field configuration will not emerge for repulsive inter-
actions (negative Λ), so in what follows we focus on
attractive interactions. Note that if we find an unstable
mode for some ϵ1 (g ¼ 1=ϵ2 is the parameter multiplying
the sextic term in our Lagrangian) at a wave number k1, a
different choice of ϵ2 will have an unstable mode with the
same Floquet exponent at k2 ¼ ϵ2

ϵ1
k1. Since the oscillon

width scales like Rosc ∝ 1=ϵ, the range of validity of the
homogeneous approximation also changes with ϵ. This
explains why the decay of a single-field oscillon into a two-
field configuration does not seem to depend on the exact
value of the small parameter9 ϵ (see e.g., Fig. 16), though it

might depend α and Φ0 [these quantities are linked via the
oscillon profile equation; Eq. (14)]. This line of argument is
also valid in the full inhomogeneous Floquet analysis,
although it is impossible to find exact analytical expres-
sions for the Floquet exponents in this case. The reasoning
is confirmed in Fig. 17 where we plot the amplification of
the energy in the χ field at early times for some of the
simulations we performed in three dimensions. As
expected, the amplification of the field with respect to
slow time τ is independent of ϵ. We can use Eq. (B7) to find
a crude estimate of the amplification of the localized energy
which goes like Eχ ∝ jχk;0j2e2μkτ, where in general we
found μk ∼Oð0.1Þ in units of m, agreeing with what we
observe in Fig. 17.
Equation (45) is valid in both 1D and 3D. In Fig. 18 we

show the main instability band for different values of α and
wave number k, with Λ ¼ 0.5, for both three dimensions
(left) and one dimension (right). The numerics of the
previous sections have shown that in one dimension a
single-field oscillon settles into a two-field solution only
when α ≥ 0.95αc; while in three dimensions this happens
for α ≥ 0.45αc. This is merely a reflection of the invalidity
of the approximation we have taken here. Since the oscillon
has a width of order Rosc ∼ 1=ϵ, this approximation breaks
down for some k ≪ ϵ. Correspondingly, when for a given α
the oscillon solution is very wide, the approximation is
valid for a larger range of k modes. This helps us under-
stand the difference between the 1D and 3D simulations. In
Fig. 19 we plot the dependence of the width and height of
the oscillon solution on α. Clearly, the three-dimensional
solution has a larger width than the one dimensional
solution for α ∼ 0.45αc (also see Fig. 3). In Fig. 18 this

FIG. 17. The amplification in the localized energy of the
secondary field χ at early times in 3D on a log scale, with time
rescaled as τ ¼ ϵ2t and α ¼ 0.5αc (red), α ¼ 0.6αc (green), and
α ¼ 0.75αc (magenta). For each value of α we simulated three
different values of ϵ: 0.05 (solid) 0.1 (dotted) and 0.2 (dashed). As
expected, the amplification with respect to τ is independent of ϵ
since the different linetypes are parallel to each other. There is a
dependence on α which is allowed by Eq. (B7). Here we used
Λ ¼ 0.5.

9This may seem somewhat surprising since the height of the
background oscillon scales with ϵ. Note however that the actual
timescales of decay scale with ϵ2. So although the oscillon will
eventually decay to a two-field configuration, the process will
take more time for smaller ϵ.
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information is conveyed by the black line going through the
instability band: the approximation is only valid for wave
numbers that are to the right of this line. Note that the line
drawn here is merely schematic.

VIII. SUMMARY AND DISCUSSION

Despite the oscillons’ ubiquity in nonlinear scalar
field theories and their assumed presence in the early
Universe, very few multifield oscillons have been found

and studied. In the present work we explored a symmetric
system comprised of two interacting scalar fields and
showed how genuine two-field oscillon solutions can be
constructed.
We found two-field oscillon solutions in potentials with

either an attractive or a repulsive interaction term. They are
qualitatively similar to “flattop” oscillons found in Ref. [6],
with quantitative differences that depend on the sign and
strength of the interaction term. The oscillons that emerge
in the presence of an attractive nonlinearity can be both

FIG. 18. The instability bands for different wave numbers k and different background oscillons parametrized by α in the homogeneous
background approximation. Here we fixed Λ ¼ 0.5. The bands look somewhat similar in 3D (left) and 1D (right), however due to the
difference in shapes of the background oscillon, this approximation is valid over a larger region of parameter space in 3D. This is shown
schematically by the black dashed line: the approximation is valid for the parameter space to the right of the line, where the oscillons
are wider.

FIG. 19. The dependence of the features of the background oscillon on α for 3D (red) and 1D (blue). We see that in three dimensions
the asymptotic solution, where width ∼∞ and height ∼

ffiffiffiffiffiffiffiffiffiffi
9=10

p
, is approximately valid for smaller α. This explains our observations in

the previous sections since Eq. (B7) applies more accurately in this regime. Here we took Λ ¼ 0 but the same sort of relation is valid for
all couplings.
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taller (reaching higher central field values) and also
narrower (having smaller width) than their single-field
counterparts. In the case of repulsively interacting fields,
the range of possible oscillon amplitudes shrinks, until the
repulsive term is strong enough to completely forbid the
existence of oscillons, at least within the small amplitude
two-timing framework.
The stability of nonlinearity-supported localized struc-

tures can be assessed through the Vakhitov-Kolokolov
(VK) stability criterion. We formally extended the VK
criterion, in order to be used in two-field systems. We
checked the VK criterion against numerical simulations
(assuming spherical symmetry throughout the evolution),
finding excellent agreement between semianalytical and
fully numerical results. Our current proof holds for sym-
metric potentials and the generalization to arbitrary multi-
field oscillons is left for future work. Furthermore, we
explored the basin of attraction of stable oscillons, by
perturbing unstable initial configurations. We found that,
depending on the size of the initial perturbation, the
unstable oscillons can either completely disperse, or relax
to a stable oscillon configuration with a smaller width and
larger height.
Since oscillons are long-lived configurations albeit with

a finite lifetime (even classically), we adapted the methods
used in the literature to compute the emitted scalar radiation
and thus estimate the oscillon lifetime. The results we
found are qualitatively and quantitatively similar to the
single-field case, showing that the longevity of multifield
oscillons can be—at least—comparable to their single-field
counterparts. We showed that the results for the two-field
system can be naturally extended to models with an
arbitrary number of fields, where each field has the same
quadratic-quartic-sextic potential and all fields are pairwise
coupled. We were able to construct multifield oscillons,
under certain conditions for the couplings, and prove their
stability, by drawing formal analogies to the single-field
case. This opens the way for arbitrarily dense oscillons,
comprised of multiple fields.
Finally, we studied the emergence of these multifield

oscillons. We performed simulations on an expanding
lattice in one spatial dimensions, in a preheating-like
scenario. We showed that the fragmentation of the inflaton
proceeds in three distinct stages: the inflaton fragments into
single-field oscillons; the single-field oscillons amplify
fluctuations in the spectator field(s); composite oscillons
emerged. Prompted by these observations we analyzed the

decay of single-field oscillons into multifield oscillons,
both in one and three spatial dimensions, in Minkowski
space. The decay can be understood semiquantitatively
using Floquet theory. Since the emergence of multifield
oscillons in three spatial dimensions follows the one-
dimensional behavior in Minkowski space, we expect that
multifield oscillons will also form in full three-dimensional
simulations on an expanding lattice, which is left for a
future publication.
Overall, our current work provides analytical tools for

studying multicomponent oscillons and opens up several
avenues for future work, such as relaxing the symmetry
structure of the potential and the assumption of spherical
symmetry.
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APPENDIX A: THE VK CRITERION

We present the derivation of the VK stability criterion,
applied first to the case of two-field oscillons and after-
wards generalized to N fields.

1. Two fields

For clarity, we will separately analyze the two cases of
oscillons where the two fields oscillate either in phase
(a ¼ b) or out of phase (a ¼ −b).

a. Two-field system oscillating in phase

For oscillons comprised of the two fields oscillating in
phase, a ¼ b, the system of Eq. (20) becomes

∂
2
t δþ δ −

�
∂
2
r þ

2

r
∂r

�
δ − ϵ2a2ð3þ ΛÞcos2ðωtÞδþ ϵ45ga4cos4ðωtÞδ − ϵ22Λa2 cosðωtÞΔ ¼ 0;

∂
2
tΔþ Δ −

�
∂
2
r þ

2

r
∂r

�
Δ − ϵ2a2ð3þ ΛÞcos2ðωtÞΔþ ϵ45ga4cos4ðωtÞΔ − ϵ22Λa2 cosðωtÞδ ¼ 0: ðA1Þ
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While Eq. (A1) is rather complicated, the symmetries of the
initial Lagrangian allow us to simplify the stability analysis,
by introducing the new variable ξðx; tÞ ¼ δðx; tÞ þ Δðx; tÞ,
which reduces Eq. (A1) to

∂
2
t ξþ ξ −

�
∂
2
r þ

2

r
∂r

�
ξ − ϵ23a2ð1þ ΛÞ cos2ðωtÞξ

þ ϵ45ga4 cos4ðωtÞξ ¼ 0: ðA2Þ
This equation only depends on ξðx; tÞ, greatly simplifying
our calculations. Since we are interested in perturbations
that are about the same size as the oscillon itself we perform
the same change of variable as before r → ρ ¼ ϵr.
Furthermore, we expect perturbations to oscillate near
the oscillon frequency. To capture the growth or decay
of the perturbation we should also introduce a new “slow”
time variable τ ¼ ϵ2t. We also introduce a timescale related
to the corrected oscillation frequency of the oscillon
T ¼ ωt. As before we expect behavior on both timescales,
so ξðx; tÞ → ξðρ; T; τÞ, and partial time derivatives become
full derivatives. Looking for solutions that can be written as
a power series in ϵ ≪ 1,

ξðρ; T; τÞ ¼
X
n¼0

ϵnξnðρ; T; τÞ; ðA3Þ

allows for a perturbative analysis of Eq. (A2). The zeroth
and first order equations are respectively

∂
2
Tξ0 þ ξ0 ¼ 0 ðA4Þ

and

∂
2
Tξ1þξ1 ¼−

�
∂T∂τ−α∂2T −

�
∂
2
ρþ

2

ρ
∂ρ

�
−3a2ð1þΛÞðcosTÞ2þ5a4ðcosTÞ4

�
ξ0: ðA5Þ

The general solution of Eq. (A4) has the form

ξ0ðρ; T; τÞ ¼ uðρ; τÞ cosT þ vðρ; τÞ sinðTÞ; ðA6Þ

where the functions uðρ; τÞ and vðρ; τÞ capture the potential
growth of the perturbation on timescales of order τ. The VK
criterion provides a simple way to distinguish cases where
perturbations grow exponentially based on the form of the
oscillon itself. Namely, inserting Eq. (A6) into Eq. (A5) and

eliminating secular terms on the right-hand side leads to
equations for u and v:

∂τu ¼ H1v; ðA7Þ

∂τv ¼ −H2u; ðA8Þ

whereH1 andH2 are Hermitian, linear operators defined as

H1 ¼ α −
�
∂
2
ρ þ

2

ρ
∂ρ

�
−
3

4
ð1þ ΛÞa2 þ 5

8
a4 ¼ 0; ðA9Þ

H2¼ α−
�
∂
2
ρþ

2

ρ
∂ρ

�
−
9

4
ð1þΛÞa2þ25

8
a4¼ 0: ðA10Þ

Separating variables as uðρ; τÞ → uðρÞeΩτ and vðρ; τÞ →
vðρÞeΩτ the problem reduces to the linear equation

Ω2u ¼ −H1H2u: ðA11Þ

The question of whether the oscillon is stable to general
long-wavelength perturbations is thus reduced to an eigen-
value problem. If the operator −H1H2 has at least one
positive eigenvalue Ω2 > 0, perturbations can grow and the
oscillon will in general be unstable. If not, perturbations
simply oscillate, leading to an oscillon that is stable, within
the limits of the perturbative expansion used to construct it.
The problem can be solved using a similar procedure as
Vakhitov and Kolokolov [50]. We do not present the entire
proof here, as its intricacies will add little to the main goal
of analyzing two-field oscillons. The criterion for stability
states that maxðΩ2Þ < 0 if and only if dN=dα > 0, where
N is defined in Eq. (22).
Before proceeding, we must make a final remark about

the validity of this derivation. The criterion we presented
above only states whether perturbation of the form
ξðx; tÞ ¼ δðx; tÞ þ Δðx; tÞ will grow. In principle, the
growth of the perturbation might only be present in δ or
Δ. However, since the system is completely symmetric
under exchange of the fields, we can only conclude that, if
ξðx; tÞ grows, both δðx; tÞ and Δðx; tÞ will grow exponen-
tially. The criterion should therefore be valid for the full
two-field system and can be used as an indicator for the
stability of two-field oscillons, at least ones that are
comprised of interchangeable fields.

b. Two-field system oscillating out of phase

For oscillons comprised of the two fields oscillating out of phase, a ¼ −b, the system of Eq. (20) becomes

∂
2
t δþ δ −

�
∂
2
r þ

2

r
∂r

�
δ − ϵ2a2ð3þ ΛÞcos2ðωtÞδþ ϵ45ga4cos4ðωtÞδþ ϵ22Λa2cos2ðωtÞΔ ¼ 0;

∂
2
tΔþ Δ −

�
∂
2
r þ

2

r
∂r

�
Δ − ϵ2a2ð3þ ΛÞcos2ðωtÞΔþ ϵ45ga4cos4ðωtÞΔþ ϵ22Λa2cos2ðωtÞδ ¼ 0: ðA12Þ
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Now, instead of looking for unstable modes in the combi-
nation ξ ¼ δþ Δ, we introduce the corresponding variable
ψ ≡ δ − Δ. By now subtracting the equations in (A12), the
corresponding equation for ψ becomes

∂
2
tψ þ ψ −

�
∂
2
r þ

2

r
∂r

�
ψ − ϵ23a2ð1þ ΛÞcos2ðωtÞψ

þ ϵ45ga4cos4ðωtÞψ ¼ 0: ðA13Þ
We see that the equation of motion for ψ in the case of
a ¼ −b is identical to the one for ξ for a ¼ b. The rest of
the derivation follows exactly the same steps as before so
we will not repeat them here. Hence the stability of the
oscillon will be independent of the phase (0 or π) between
the two fields, resulting in exactly the same VK criterion as
before. Namely, there are unstable perturbations of the
oscillon if and only if dN=dα > 0, where N is defined
in Eq. (22).
In this section we have derived a nontrivial extension of

the VK criterion for assessing the stability of oscillons in
this coupled system to long wave-length perturbations

(perturbations about the same size as the oscillon). It is,
to our knowledge, the first time that the criterion has been
derived for multicomponent oscillons.
Figure 20 shows the most unstable modes computed by

solving the eigenvalue problem of Eq. (A11) using the
variational method for Λ ¼ −0.5 and Λ ¼ 0.5, correspond-
ing to repulsive and attractive interactions respectively. We
choose some values of α for each case, which giveΩ2 > 0 in
Eq. (A11) and thus lead to (radially) unstable oscillon
solutions. We see that the spatial size of the unstable
fluctuations is indeed similar to the width of the correspond-
ing oscillons (see e.g. Fig. 2).

2. N fields

By solving the profile equations of Eq. (39) we have
implicitly found oscillon solutions of the form ϕi;osc ¼
ϵai cosðωtÞ, where ω ¼ 1 − αϵ2=2. To assess the stability
of these solutions we add a small perturbation δi to the
oscillon solution; ϕi ¼ ϕi;osc þ δi. Plugging this ansatz into
Eq. (35), linearizing and ignoring source terms

∂
2
t δi −

�
∂
2
r þ

2

r
∂r

�
δi þ δi ¼

�
3ϕ2

i;osc − gϕ4
i;osc þ Λ

X
j≠i

�
ϕ2
j;osc þ 2ϕi;oscϕj;osc

δj
δi

��
δi: ðA14Þ

Now, assuming that aðρÞ is a solution of Eq. (40), we can set n < N of the ai ¼ a and (N − n) of the ai ¼ −a. This
configuration obviously solves the system of profile equations in Eq. (39). If ai ¼ a the equation for δi becomes (omitting
all factors of ϵ for clarity)

∂
2
t δi −

�
∂
2
r þ

2

r
∂r

�
δi þ δi ¼ ð3a2cos2ðωtÞ − ga4cos4ðωtÞ þ ΛðN − 1Þa2cos2ðωtÞÞδi

þ 2Λa2cos2ðωtÞ
X
j≠i

δj − 2Λa2cos2ðωtÞ
X

Δj; ðA15Þ

FIG. 20. Left: the profiles of the most unstable modes of the corresponding oscillons with Λ ¼ −0.5 and α ¼ 0.00028, 0.00071,
0.0025, 0.0046, (blue, red, green and brown, respectively). These are calculated numerically using the variational principle. Right: the
profiles of the most unstable modes of the corresponding oscillons with Λ ¼ 0.5 and α ¼ 0.0025, 0.0064, 0.0225, 0.04 (blue, red, green
and brown, respectively). The profiles were rescaled such that δðρ ¼ 0Þ ¼ 1. We see that the size of the unstable modes is similar to the
size of the oscillon profile, shown in Fig. 2.
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while for ai ¼ −a the same equation becomes

∂
2
tΔi −

�
∂
2
r þ

2

r
∂r

�
Δi þ Δi ¼ ð3a2cos2ðωtÞ − ga4cos4ðωtÞ þ ΛðN − 1Þa2cos2ðωtÞÞΔi

þ 2Λa2cos2ðωtÞ
X
j≠i

Δj − 2Λa2cos2ðωtÞ
X

δj; ðA16Þ

where we have renamed the perturbations δi → Δi if ai ¼ −a for clarity. Adding the n equations of the form (A15) and the
N − n equations of the form (A16) together respectively we obtain the equations

∂
2
tΩ −

�
∂
2
r þ

2

r
∂r

�
Ωþ Ω ¼ ð3a2cos2ðωtÞ − ga4cos4ðωtÞ þ ΛðN − 1Þa2cos2ðωtÞÞΩ

þ 2Λðn − 1Þa2cos2ðωtÞΩ − 2Λna2cos2ðωtÞK ðA17Þ

and

∂
2
t K −

�
∂
2
r þ

2

r
∂r

�
K þ K ¼ ð3a2cos2ðωtÞ − ga4cos4ðωtÞ þ ΛðN − 1Þa2cos2ðωtÞÞK

þ 2ΛððN − n − 1Þa2cos2ðωtÞK − 2ΛðN − nÞa2cos2ðωtÞΩ; ðA18Þ

where we have introduced variables Ω ¼ P
δi and K ¼ P

Δi. Finally, we subtract Eq. (A18) from Eq. (A17) and define
the variable Ξ ¼ Ω − K to obtain

∂
2
tΞ −

�
∂
2
r þ

2

r
∂r

�
Ξþ Ξ ¼ ð3ð1þ ΛðN − 1ÞÞa2cos2ðωtÞ − ga4cos4ðωtÞÞΞ: ðA19Þ

From here the derivation of the instability bands of Ξ is
analogous to the derivation performed in Sec. IVA. The
difference being that Λ → ΛðN − 1Þ with respect to
Eq. (A2). However, this is exactly the change that occurs
in the effective profile equation (40). The VK criterion
therefore still applies and the multifield oscillon is stable if
and only if dN=dα > 0, where

N ¼
Z

a2ðρÞd3ρ ðA20Þ

which is identical to Eq. (22).

APPENDIX B: APPROXIMATE
FLOQUET EXPONENTS

We provide an approximate analytic method for comput-
ing the Floquet exponents of the equation

χ̈k þ ðk2 þ 1Þχk − Λϵ2Φ2
0cos

2ðωtÞχk ¼ 0; ðB1Þ

which is just the limit of Eq. (44) in which the oscillon is
approximated as a homogeneous background. We can find
perturbative solutions by introducing two timescales: the
period T ¼ ωt ¼ ð1 − αϵ2=2Þt and the slow time τ ¼ ϵ2t.
We also assume that the solution has characteristic behavior

on both timescales, similar to the two-timing analysis,
meaning χkðtÞ ¼ χkðT; τÞ. Finally, we are interested in
modes for which k ¼ κϵ where κ ¼ Oð1Þ. Equation (B1)
becomes

ð1−αϵ2Þχ̈kþ2ϵ2 _χ0kþðϵ2κ2þ1Þχk−Λϵ2Φ2
0cos

2ðωtÞχk¼0;

ðB2Þ

where a dot denotes derivation with respect to T and a
prime denotes derivation with respect to τ. We look for a

perturbative solution χk ¼ χð0Þk þ ϵχð1Þk þ ϵ2χð2Þk þ � � �.
The Oðϵ0Þ gives the solution of χð0Þk

χð0Þk ¼ AðτÞ cosðTÞ þ BðτÞ sinðTÞ: ðB3Þ

The Oðϵ1Þ equation does not provide any additional
information. The Oðϵ2Þ equation is

χ̈ð2Þk þ χð2Þk ¼ αχ̈ð0Þk − 2_χ0ð2Þk − κ2χð0Þk þ ΛΦ2
0cos

2ðTÞ: ðB4Þ

By plugging in Eq. (B3) into the right-hand side of Eq. (B4)
and requiring that the zeroth-order perturbation does not
induce resonances in the second-order perturbation, we
obtain the following constraints on AðτÞ and BðτÞ:
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2B0 ¼ −
�
αþ k2 −

3

4
ΛΦ2

0

�
A

2A0 ¼
�
αþ k2 −

1

4
ΛΦ2

0

�
B: ðB5Þ

This system of equations can be trivially solved by
applying ∂τ on one of the two equations and using the
other to eliminate the first derivative term, leading to

A00 þ
�
αþ k2 −

3

4
ΛΦ2

0

��
αþ k2 −

1

4
ΛΦ2

0

�
A ¼ 0 ðB6Þ

with B obeying the same equation. The solutions are
AðτÞ; BðτÞ ∼ cosðμkτÞ; sinðμkτÞ. When μk is imaginary,

the trigonometric functions become hyperbolic trigono-
metric functions, which for late times grow as eIm½μk�τ. We
thus arrive at the result expected by Floquet theory, where
the Floquet exponents are given by

μ2k ¼
ðαþ κ2 − 3

4
ΛΦ2

0Þðαþ κ2 − Λ
4
Φ2

0Þ
4

: ðB7Þ

This is the expression given in the main body of text. In
Fig. 21 we compare the instability bands computed in this
approximation with the full numerical Floquet analysis of
Eq. (B1) for the case of ϵ ¼ 0.1 in three dimensions. As one
can see, the perturbative method highlighted in this section
agrees extremely well with the full computation.
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