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We postulate a supplemental power counting within the heavy quark effective theory (HQET) that results in
a small, highly constrained set of second-order power corrections, compared to the standard approach. We

determine all B — D) form factors, both within and beyond the standard model to O(a,/m, ;. 1/ m?,),

under truncation by this power counting. We show that the second-order power corrections to the zero-recoil

normalization of the B — D) [y matrix elements (I = e, u, 7) are fully determined by hadron mass parameters
and are in good agreement with lattice QCD (LQCD) predictions. We develop a parametrization of these form
factors under the postulated truncation, that achieves excellent fits to the available LQCD predictions and

experimental data, and we provide precise updated predictions for the B — D)z decay rates, lepton flavor

universality violation ratios R(D*)), and the Cabibbo-Kobayashi-Maskawa matrix element |V, |. We point
out some apparent errors in prior literature concerning the O(1/m.m,,) corrections and note a tension between
commonly used simplified dispersive bounds and current data.
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I. INTRODUCTION

The heavy quark effective theory (HQET) [1-4] under-
pins key foundations in our theoretical understanding of
exclusive semileptonic b — clv decays (I = e, u, 7). HQET
allows for a hadronic model-independent and high-precision
determination of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix element |V ,| from fits to exclusive semileptonic
decay measurements to light leptons, B — D™ £0 (£ = e, ).
Furthermore, one may obtain model-independent precision
predictions for ratios testing lepton flavor universality
violation (LFUV),

I'[B — D11

Wy =22
R(D™) B — D™¢p)’

(1.1)

both within and beyond the standard model (SM). The
current HFLAV arithmetic-averaged SM predictions are
R(D) =0.299(3) and R(D*) = 0.258(5) [5-9].
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These ratios have provided tantalizing hints for lepton
flavor universality violation over the past decade: When
combined, they currently exhibit 36 [5] (or more [10])
tension with SM predictions. Anticipating future measure-
ment precision at the percent level for R(D™)) (see
Ref. [10] for a review), similarly precise SM predictions
are warranted. Moreover, |V ;| recovered from exclusive
B — D*¢fv measurements currently exhibits a 3¢ tension
compared to the measured value from inclusive B — X .[v
decays [5], with the magnitude of the deviation near the
O(10%) level (also see [11]). Because the extraction of
|V (currently) relies on extrapolation to the zero-recoil
point, at which the hadron velocities are equal and
phase space vanishes, the exclusive measurement of
|V is particularly sensitive to the parametrization of the
B — D™ form factors.

In the SM, B — D (B — D*) transitions are described
by two (four) form factors, for a total of six. (There are
20 form factors for B*) — D) decays in the SM and
34 if one further includes all possible new physics (NP)
interactions.) The O(1/m,;) and O(a,) HQET correc-
tions to the B — D) matrix elements in the SM have
been known for three decades [12-15], and explicit
O(1/m 4, a) results for all NP matrix elements were
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TABLE 1. Number of B — D™ form factors and Isgur-Wise
functions entering at each fixed order in HQET. The residual
chiral (RC) expansion is developed in this work, which we
compare to the vanishing chromomagnetic (VC) limit. (For
details of the counting rules see Sec. IITE.)

Isgur-Wise functions

Fixed-order

HQET order wave functions All RC expansion VC limit
1/m?, 1 1 1 1
1/m!, 6 3 3 1
1/m?2 6 20 1 3
1/m?, 30 32 3 4

recently derived [7]. At first order in the heavy quark (HQ)
expansion, six first-order wave functions are described by
three subleading Isgur-Wise functions, while the one-loop
O(ay) perturbative corrections are calculable (see, e.g.,
Ref. [7] for their closed-form expressions). The O(1/m? )
corrections have also been known for three decades [16].
Considering O(1/m?) alone [all corrections at O(1/m? )],
6 (30) possible second-order wave functions are described
by an overcomplete basis of 20 (32) subsubleading Isgur-
Wise functions (hereafter, mi , denotes m2, m2, and m.my).
The counting is summarized in Table I. Finally, the
O(a; x 1/m,,) corrections are also long known (see,
e.g., Ref. [14] for a review).

The expected size of the O(1/m,), O(1/my), and O(a;)
corrections are about 20%, 5%, and 10%, respectively
(as the approximate small parameter is ~Aqcp/m.p Or
~a, /). The second-order corrections at O(1/m?) can also
be expected to contribute at the ~5% level. Moreover, in the
zero-recoil limit the B — D* form factor, F(1) (defined
below), has vanishing first-order corrections, but its result-
ing value at O(a,, 1/m,,,) differs at the 5% level from
lattice QCD (LQCD) predictions [17]. These observations
lead to the following possibilities: (a) given that second-
order or higher corrections must fix the F (1) tension, it is
possible the HQ expansion of the B — D*) matrix ele-
ments could be “badly behaved,” such that 1/m? terms may
be unexpectedly large; or (b) while second-order power
corrections must be important at zero recoil because of the
vanishing first-order corrections at the phase space point,
they are otherwise subdominant and the data beyond zero
recoil will be predominantly described by first-order
corrections. The latter is the approach used in Ref. [7]
that performed the first combined and self-consistent
analysis of B — D¢y decays at O(ay, 1/m,,;). In this
approach, only the shape of the differential distributions
was used to constrain the subleading Isgur-Wise functions.

Recent analyses that attempt to quantify the effect of
second-order power corrections [9,18,19] treat the six
O(1/m?) wave functions (or a subset of them) as nuisance

parameters in phenomenological fits. These analyses fur-
ther make use of theoretical inputs from model-dependent
calculations, such as QCD sum rules (QCDSR) or light
cone sum rules (LCSR). Such studies typically estimated
that the HQ expansion appears well-behaved at O(1/m?).
In addition, the constrained structure of the HQET for
Ay, = A v decay has permitted its far simpler O(1/m?)
contributions [20] to be extracted from combined fits to
data and LQCD results [21,22]. These were found to be
compatible with a well-behaved HQ expansion, too.

In this paper, we propose a supplemental power counting
within the HQ expansion that allows one to truncate, in a
well-defined manner, the number of subsubleading Isgur-
Wise functions to 3 instead of 32 in the B — D) system,
and to just a single subsubleading Isgur-Wise function at
O(1/m?) alone. This approach provides a predictive set of
second-order power corrections in B — D) v decays that
can be tested with available data, without using additional
model-dependent QCDSR or LCSR inputs. Specifically,
we show that one may formally power count in insertions of
the transverse residual momentum operator of the HQET
mass-subtracted states, |, and we develop a conjecture
that terms entering at third order or higher in this power
counting should be suppressed. We refer to the resulting
expansion as the “residual chiral” (RC) expansion.

The goal of this work is to derive the set of
O(ay x 1/m,,, 1/m?,) corrections to the B — D) form
factors, in both the SM and beyond, under truncation at
second order in the RC expansion. As a point of compari-
son to the RC expansion, we also consider the vanishing
chromomagnetic (VC) interaction limit [16,23-25], which
also dramatically simplifies the number of subleading and
subsubleading Isgur-Wise functions. We then confront the
RC expansion and VC limit results with available exper-
imental measurements and LQCD predictions, and obtain
precise results for |V,| and SM predictions for R(D™)).

These objectives require the assembly of a wide range of
theoretical and phenomenological components. First, to
ensure self-consistent conventions we carefully (re)develop
the formal elements of the general HQ expansion that are
required when working at second order, and then we
develop the RC conjecture, showing how it constrains
and simplifies the structure of the power corrections (Sec. II
and Appendices A—C). Second, we proceed to apply this to
the B — D™ system, deriving the corrections up to and
including O(a, x 1/m,;,1/m?2,) under truncation by the
RC expansion, incorporating zero-recoil and normalization
constraints, and removing redundant higher-order terms
(Sec. III and Appendices D and E). We note apparent sign
errors or inconsistencies for several O(1/m.m;) wave
functions derived in Ref. [16]. Third, we construct a
parametrization of these corrections, implementing the
1S short-distance mass scheme for heavy quark masses
and an analytic structure for the leading Isgur-Wise
function that respects the HQ expansion at second order
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(Sec. IV). These results are encoded in the HAMMER library
[26,27]. We show that the tremendous simplification of the
second-order power corrections under the RC expansion
constrains most zero-recoil corrections to be a combination
of the hadron mass parameters, 4; and 4,. We investigate
the zero-recoil predictions for various form factors and their
ratios, and find that the value of (1) is in good agreement
with LQCD results (Sec. V). Finally, in Sec. VI, the
parametrizations of both the RC expansion and the VC
limit are fitted against all available experimental measure-
ments and LQCD data, examining various fit scenarios that
consider different combinations of experimental and LQCD
inputs and different assumptions. The latter includes fits
that truncate at lower order in HQET and fits that constrain
only the shape of the distributions, as done in Ref. [7]. To
properly identify optimal parameter subsets that describe
the data and avoid potential overfitting, we employ a nested
hypothesis test (NHT) prescription.

Several important observations ensue from our analysis:
(i) Under the NHT prescription, we identify optimal
parameter sets for the RC expansion including O(1/m?)
terms, which achieve excellent agreement with the data
with relatively few parameters and without using any
QCDSR (or LCSR) inputs. We obtain

R(D) = 0.288(4),
|V| = 38.7(6) x 1073

R(D*) = 0.249(3),
(1.2)

These results can be compared to other recent results
[17,18,28-31]. (ii)) While the inclusion of zero-recoil sec-
ond-order power corrections in the RC expansion is crucial to
good fits, the inclusion of second-order power corrections
beyond zero recoil is not. This supports the approach used in
Ref. [7]. (iii)) The slope-curvature relation developed by
Ref. [32] is in tension with the data and leads to large upward
biases in R(D). (iv) The VC limit, in contrast to the RC
expansion, produces poor fits because of its structure at zero
recoil, but using only shape information yields good fits.

II. THE RESIDUAL CHIRAL EXPANSION
A. General HQET preliminaries

The standard construction of HQET follows from a
reorganization of the QCD Lagrangian for a heavy quark O
with mass m,, in terms of the mass-subtracted fields

i(x) — eimewaiQ(x)'

The parameter v is a heavy quark velocity—defined up to
reparametrization freedom [33] via py = mgv + k, in
which k ~ Agcp is a residual momentum—and the pro-
jectors T, = (1 & #)/2. This yields

Locp = O%iv-DQY + 04ip, 0" + Q%ip, 0%
- Q"(iv- D+ 2my)Q". (2.2)

(2.1)

Here D* is a gauge covariant derivative of QCD, and the
transverse derivative D, = D* — (v - D)v*. Because of the
mass subtraction in the phase of Q ~ e~"P¢**, the derivative
D ~k~Agcp, so that in the heavy quark regime,
mg > Aqgcp, one may integrate out the double heavy
field QY yielding an effective theory for the light field
QY with order-by-order corrections in 1/mg. This HQET
Lagrangian reads

Lyger = Q4iv-DQOY + 04ip o

1 : ”
oD +amg PO

(2.3)

Writing Lyger = D ,—0 £1/(2mg)" to second order,

Ly = Q%iv-DQY, (2.4a)

Ly =-04p,p, 0% =-0%|D*+ aQ(ﬂ)gdaﬂGaﬂ (O
(2.4b)

L, = QK[DU’U DD, |0

= 90" [vyDG* — iv,05,D'G¥|Q". (2.4c)

Here the field strength igG* = [D* DF), ¢* = L[y y/],
and we have made use of the equation of motion,
iv-DQ" = 0, in the free effective theory.' The coefficient
of the £, chromomagnetic operator ag(u) is renormalized
by the strong interactions, where yu is an arbitrary matching
scale of QCD onto HQET. Its deviation from unity is
important when considering corrections at O(a,/m,) and
higher. Therefore, it can consistently be neglected every-
where except when discussing the O(a,/m) radiative
corrections, for which we use

ag() =1+ =CF (w). (2.5)
with C2(u) = —(3/2)[In(mg/pu) —13/9] [35] (see also
Refs. [14,36]), and except for explicit evaluation of the
A, parameter [see Egs. (A9) and (A10)]. The renormaliza-
tion of the coefficients of the £, terms can be neglected
at O(a;/myg).

At any order in 1/mg, one may compute Lagrangian
corrections to a particular HQET correlator via an operator
product involving the £;. In addition, the quark source term
JQ for a QCD correlator can be expressed with respect to
mass-subtracted quantities via JQ =J"(Q, + Q_) =
T noer @Y, with J¥ = e™ov* ] The time-ordered corre-
lators of full QCD will then match onto time-ordered

'In the full effective theory, the equation of motion receives
corrections, such that beyond leading order iv-DQY ~
1/2mg)p, P, 0% +---. As usual in any perturbation theory,
consistent power counting in 1/m, mandates the use of the free
equation of motion at each order in 1/m,, (see, e.g., [34]).
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HQET correlators determined by functional derivatives
with respect to J", order-by-order in 1/mg. Applying
the equations of motion from Eq. (2.2), the source term
becomes

jQ_jv[l+iv-D~¢-2inl)l]Q3r
_ g P PPN
—J[1+H_(2mQ 4m2Q+ >}Q+, (2.6)

keeping terms to second order, and noting the second-order
term arises via I1_v-Dp, Q" = —II_PPQ" because of
the Q' equation of motion. Expanding the current factor

Jnoer = 1 + H_ZJ,,/QmQ)", (2.7)

n=1

then 7, = ip, and J, = —P . We define the conjugate

T =1" T (2.8)
Here j (j ) indicates action of the derivatives to the left
and right, respectively: it is always the case that 7 (7) acts
to the left (right).

In this work, we are interested in computing the matrix
elements for exclusive heavy-quark hadron transitions, via
matching onto HQET. For a b — ¢ transition (i.e., Q = ¢ or
b) involving hadrons H;, — H_, the QCD matrix elements
of interest are (H_.|cI'b|H},), where I is any Dirac matrix.
The matching onto HQET corresponds to equating the
QCD matrix element to the path integral computed in
HQET,

H,|cTh|H 1 o
(HC|eTBIHy) gy L / D& Dt DB Db,
A /mH[me Z
xexp [ d'xCher + Luourlo)}
X EijﬁQETFjHQETbmHZ% (2.9)
|
<Hc | cI'b | Hh

> NI 1
-~ T~ (HY|c'TbhY |HY
N (HY [e4ThY | b>+2mc

in which Z is the partition function of the free theory
generated by L, As is the usual practice, we use a
notational convention that labels charm parameters with
primes while beauty parameters are unprimed. At any order
in 1/m.,, one may read off from Eq. (2.9) the HQET
correlators that contribute to the hadronic matrix element.
Note the corrections to the source term induce corrections
to the HQET current ¢4 Th" : the current corrections.

A particularly important application of Eq. (2.9) is the
matching of the QCD correlator involving the HQET
Hamiltonian (H|Q%iv - DQ" |H) onto HQET, from which
one may derive the hadron mass expansion,

H

- Am
mH=mQ+A+2mZ+---,

AmY = =4y = dyag ()i (u).

(2.10)

In Appendix A we present this derivation from first
principles, including precise definitions of the HQ mass
parameters B, 1;, and 4, and pertinent conventions used in
this work that are important to a self-consistent derivation
of the second-order power corrections. In Eq. (2.10) we
have explicitly restored the renormalization factor for the
chromomagnetic operator. For a pseudoscalar (P) and
vector (V) meson, furnishing a heavy quark doublet with
brown muck spin-parity s* = %‘, the factors dp = 3 and
dy = —1, respectively.

The HQET eigenstates of Ly, |H"), are normalized such
that

(HY (K)|HY (k) = 20°8,, (22)°6* (k= K).  (2.11)

Note this normalization choice differs from that in Ref. [16],
which normalized the HQET states with respect to an HQ
mass scale, mgy + B. Similarly the matching (2.9) is defined
with respect to normalized QCD states. To second order,
Eq. (2.9) then becomes

(H|(e.J + L] o e)TbY |Hp)

1 -y v v v
+5—— (HZ [ T(T b + DY o Ly)|HY)

2m;,

1 / o= - —_n A 1 - y y
+— (HY (e T + Ly o ¢ + L4 o e T4 +§£’1 o L o e )TbY|HY)

2
4me

1 . , , 1 .
+ 5 (H[e{ T (LT 5bY + by o Lo + 11T b4 o L, 5040 Ly o Ly)|Hp)

4m3,
1

+ 4m.my,

(HE (@ T4 + L4 o eT(TbY + by o Ly)|Hp).

(2.12)
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The I1_ projectors on the 7 terms have been eliminated in

some terms by the Qﬁ"rw equation of motion. Here, the o
operator denotes an operator product. For instance,

L) oel(z) = i/d“x[','1 (x)e%(2)

= / d*x e (x) [Dz + gaaﬂGaﬁ} Py(x - z),
(2.13)

in which P,(x — z) is the (dressed) heavy quark two-point
function.

Of particular utility when working at second order is the
observation that the two-point function is Green’s function

iv- D¥Py(x — z) = —ill . 8*(x — 2); (2.14)

i.e., it generates a contact term. Such terms play a
particularly important role within Schwinger-Dyson rela-
tions, as discussed in Appendix B. At first order, these
relations constrain matrix elements arising from the
O(1/myg) current corrections with respect to B times the
leading-order matrix element, i.e., the well-known relation
in Eq. (B4). At second order, one obtains Eq. (BS), which
relates matrix elements arising from O(1/mg) current
corrections and the O(1/mgym ) mixed corrections, with
Amf times the leading-order matrix element and A times
the matrix element from O(1/m,) Lagrangian corrections.
In Appendix B we derive these relations from first
principles (cf. Appendix C of Ref. [16]).

It is important to keep in mind that the notation Q = ¢ or
b here and throughout is merely a convenient reminder of
which HQET operator acts on the ingoing and outgoing
states. From the point of view of HQET, there is no
distinction between b’ and cf: The heavy quark flavor
symmetry is broken only by the masses m;, # m.. We will
therefore switch as convenient between writing QYT'QY%
and ¢4ThY.

B. Interaction operator basis
Writing the QCD current J- = ¢I'b, then a full operator
basis entering the QCD matrix elements (H.|cI'b|H,) is
JS:E’b, JP:Z'}/Sb,

Iy = ¢o™b,

JV = Z’]/ﬂb,

Ju = Cy*yib, (2.15)

where, again, ¢** = (i/2)[y*,7"]. The pseudotensor contri-
bution is determined by the identity 6*y> = =+(i/ 2)e"°6,,,
in which the sign is subject to a convention choice. For
B — D), the sign convention most often chosen is such that
oy’ = —(i/2)e"°c,,, which implies Tr[y*y*y’y°y’] =
+4ie"?°. This is the opposite of the sign convention often
used for B — D™ or A, — A

Perturbative corrections to the currents (2.15) may be
computed by matching QCD onto HQET local operators
[37-39] at a suitable matching scale y. We present the
general derivation of these corrections in Appendix C.

C. Modified power counting

We are interested in exploring whether it is possible to
develop a supplemental power counting, on top of the
heavy quark expansion, that may systematically reorganize
the second-order power corrections into a small set of
dominant terms, plus a larger set of subdominant contri-
butions that can be truncated.

The heavy quark expansion arises from a reorganization
of the QCD Lagrangian into the £, term that obeys heavy
quark spin-flavor symmetry, plus symmetry-breaking cor-
rections suppressed by powers of 1/m (and by ay). The
order of any given correction in the 1/m, expansion is
effectively determined by the number of insertions of
0" Q" into a QCD correlator of interest, which are then
integrated out to form the corresponding HQET matrix
element. This expansion does not assign any relative
importance to the local current corrections versus nonlocal
Lagrangian insertions that enter at each fixed order.
However, with respect to the structure of 1/m,. ;, corrections
in B — D™ decays, it has been hypothesized (albeit based
on model-dependent calculations, such as QCDSR) that
corrections from the chromomagnetic operator in the £;
Lagrangian may be numerically small compared to the
current corrections from 7, [23-25]. These expectations
are also supported somewhat by fits to B — D) data at
O(1/m,;) [7], and they are compatible with fits to B —
D** data, which find that first-order chromomagnetic
contributions are consistent with zero [40,41].

With this in mind, a distinguishing feature between a
current and a Lagrangian correction is the number of P |
insertions involved: there is one for the former, and two for
the latter, as follows immediately from Egs. (2.6) and (2.3).
Thus, one may contemplate an additional expansion
that resembles counting in P, /Agcp, in which each
Lagrangian insertion amounts to two powers of
D1 /Aqcp, while a current insertion involves just a single
power of P | /Aqcp. As we will see in this section and the
next, this counting can be related to an expansion in the
number of operator products inserted along the heavy quark
line, with the additional counting rule that a current
insertion counts for half that of a Lagrangian one.

Before discussing further such an expansion, which can
be fully defined within HQET (the low energy effective
field theory), it is useful to consider first the origin of the
difference in the number of P, ’s entering the current and
Lagrangian insertions. This is better understood by looking
at the matching between QCD and HQET. In particular,
apart from counting the number of insertions of Q” Q”, one
may additionally count the number of insertions of the
cross term Qiil) 1. Q" into a QCD correlator (after which

096015-5



FLORIAN U. BERNLOCHNER et al.

PHYS. REV. D 106, 096015 (2022)

TABLE II.  Orders at which current and Lagrangian corrections
(n > 1), as well as hadron mass parameters, enter in the heavy
quark and residual chiral expansions. The RC power counting for
A follows from the Schwinger-Dyson relation (B4) and for 1, ,
from Eq. (A8).

Correction or

parameter Associated HQ order P, power counting
Ly 1/ m% o°
L, 1/mp, 0?
T 1/m}, 0
A 1/ mIQ 0
M2 1/ sz 0*
P 1/mj, 0>

QY is integrated out to form an HQET correlator). This
counting is not the same as for 1/mg, because of the
equation of motion for QY. The cross terms break the
accidental U(1)? chiral symmetry, respected by the QY%
kinetic terms, to a diagonal U(1). Therefore, although there
is no small parameter in the QCD Lagrangian (2.2) that
parametrizes this chiral symmetry breaking, one may
nonetheless systematically organize the contributions to
any matrix element by power counting in the number of
insertions of the chiral symmetry breaking cross term that
enter into each correlator.

Referring to Eq. (2.2), one may implement this power
counting by introducing a chiral symmetry breaking
parameter 6, such that

ipj. - gipj_’

and determining the degree of 6 in any HQET correlator
after QV is integrated out. With respect to the heavy quark
expansion of the Lagrangian, it follows from Eq. (2.3) that
the leading term L, ~ 6°, while all the £,5; ~ 6*. In the
heavy quark expansion of the source term (2.6), however,
all the current correction terms 7,5, ~ 6. Moreover, all
product current correction terms from 7/,.7,—i.e., terms
at order 1/ (m’Q",m’é)—are then ~62. The 6 power counting

(2.16)

is summarized in Table II.

D. Operator product conjecture

Because pure current corrections act on one of the
external states, the single /)| term that is inserted by these
corrections amounts to inserting a factor ¥, (---)~
Aqcp (- - +) in the matrix element, where k; =k —(v-k)v
and (---) denotes powers of iv-k/(2mg) ~AQCD/mQ.2

*With some abuse of notation we track here only the transverse
momentum contributions originating from the Fourier transform
of d,. The same power counting would also apply to the soft
gluon interactions contained in the covariant derivative D | .

We similarly expect a current-current product correction to
involve a factor (- -)f K1 (---) ~ (- -)Agep (- - -). By con-
trast, a pure Lagrangian correction involves an operator
product with two P, insertions, producing a factor of
the form Q' (2) © £, ~ [ d*xP>(x = )P (- )P 0 (x).
This, in turn, entails an integral of the form
Jd*kR ()KL (v k)QY(k)e'™, which can be thought
of as a second moment of the (dressed) two-point function,
with respect to the transverse residual momentum, plus
higher-order HQET corrections.

Recalling, as mentioned in the previous section, that
corrections in B — D) decays from the first-order chro-
momagnetic operator are hypothesized to be numerically
small compared to the current corrections [23-25], and that
chromomagnetic contributions are consistent with zero in
fits to B — D** data [40,41], one might hypothesize that,
generally,

/ PR (0 )L (R < A2 (). (2.17)

A mixed current and Lagrangian correction involves
three P, ’s, yielding a factor ~ [d*kf, - K (-~ )KL/
(v-k)Q (k)e™*=, while a Lagrangian-Lagrangian operator
product correction yields a factor ~ [d*k[¥, (---)¥./
(v-k)]?Q% (k)e**. Given Eq. (2.17), this leads us to the
conjecture regarding the magnitudes of integrals of the
form

[ e - Bt e

~ EMHAGE (), (2.18)
with /=0 or 1 and m > 1, and treating ¢ as a small
parameter. That is, the greater the number of operator
products in a correlator, the smaller its value.

The conjectured e expansion in Eq. (2.18) requires at least
one operator product, and it is formally different from that of
the @ expansion, because at O(#?) the product current
corrections enter that do not involve an operator product.
Further, radiative corrections in HQET may induce mixing
under the renormalization group evolution (RGE), such that
the Wilson coefficient of an operator containing n time-
ordered operator products may induce a (@, /z-suppressed)
correction to one containing m < n [42].3 In the context of
the e power counting, this amounts to higher-order operators
generating contributions to lower-order ones. This, however,
is not a problem (and not dissimilar to what happens with
conventional perturbative expansions) as long as € is small,
which is the basic assumption motivating this expansion: itis
based on empirical evidence at O(1/mg) and ultimately

*We thank Mike Luke for pointing this out.
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involves a question about nonperturbative QCD dynamics
that can be determined only by comparing this constrained
expansion to experimental or lattice data.

The first occurrence of this phenomenon—higher-order
operators generating contributions to lower-order ones—is
at second order in the heavy quark expansion, at which,
for example, the operator product £; o £; induces an
O(a,/md) correction to the £, Wilson coefficient [43,44].
However, the £, Wilson coefficient or that of any other
term up to and including O(6?) cannot radiatively generate
contributions to O(e*) or higher-order operators. Moreover,
at O(6°) and beyond, the € and tree-level € power countings
coincide, so that the 8 expansion becomes a convenient tool
for tracking, within HQET, the conjectured € suppressions.
That is, from the conjectured e expansion in HQET, one
may deduce that O(6?) and lower-order terms dominate
those at O(6°) and higher, while any RGE-induced
counterterms from the latter will be captured by O(6?)
terms that are already present. Thus we may truncate the
expansion at O(6?). We refer to this as the residual chiral
(RC) expansion.

E. Modified heavy quark expansion

If one keeps terms up to and including O(#?), then all
the usual O(1/mg) terms are retained in Eq. (2.9).
However, at O(1/m,), while the second-order 7, correc-
tions and £, Lagrangian corrections are retained, the mixed
corrections involving J;£, ~ 6 and £, double insertions
LiL ~ 0" are neglected. At O(1/m? ,, 6%), Eq. (2.12) then
simplifies to '

(H.|cT'b|H)) iy :
W2<Hé ¢ TbY|Hy)
V c b
T (HY|(e4.T) + LY o )ThY |Hy)

1 S v v v
+5 —(HYE{T(T bl + DY o L£4)|H))
mip

1 ! /= N
o (HY (@ T4+ 4 0 )TbY |HS)

4m%
1 ’ ’ = s
+— (HY [eYT(I1_J,bY + bY o L,)|HY)
4my,
+ e (HERLTITT LG (219)

Because the two neglected types of O(1/ mé) corrections
are the sources of a large number of subsubleading Isgur-
Wise functions in B — D(*), tremendous simplification of

the second-order power corrections in B — D) ensues.
Similarly, for the hadron mass expansion parameters,
the Schwinger-Dyson relation (B4) implies A ~ 6, while

by definition Am4 ~6* and thus A, ~6* Thus the
Schwinger-Dyson relations (B5) at O(6?) simplify to

v =0 7 v v H, v v
(Hi [t (2) THIL DY (2)|[Hy) = — Amy < (HE |Jr (2)|H}).
(HY |eY (2)TTL T,bY (2) | Hp) = — Amy" (HY |Jr. (2)|H}),

(2.20)

writing the HQET current operator Ji-, (z) = & (z)T'b" (2).
These allow us to relate the IW functions associated with
second-order current corrections to 4;, times the leading
IW function.

One additional point of importance is that in this
expansion the O(6°) terms at second order—the terms
corresponding to mixed current and Lagrangian corrections
~JL,—vanish at zero recoil [16]. Thus, if the residual
chiral expansion is a good approximation, we may expect it
to be particularly useful at zero recoil because only O(6*)
corrections enter.

III. B —» D% FORM FACTORS

A. HQET matrix elements

The D and D* (or B and B*) mesons belong to a HQ
spin-symmetry doublet, formed by the tensor product of a
spin-1/2 heavy quark with brown muck in the s™ =1~
spin-parity state. This doublet, containing the pseudoscalar
(P) and vector (V) mesons with a single heavy quark, can

be represented as [37,45,46]

H > H(v) = L [Vy — P'7),

H' — H(v) =y°H"’ = [Vv¢ + Py,  (3.1)
in which ¢* denotes the polarization vector of the spin-1
state with velocity v. Here and hereafter X = y°Xy° for
any Dirac object X.

With reference to the reduced terms in Eq. (2.19) at
O(1/m?,,6%) the matching of HQET to the QCD matrix
elements becomes

D) |eI'b|B™ 7
(DTNBIBT) ey el (o) ()
2
3T, )T H, (1)
n=1
2 —
+ Z ngr[Hc(y’)FHE,”)(v, V)]
n=1
O
defining
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H(”)(v, ’L/) _ H+{P”[A4(ln)(—7/5) + vq)(ign)¢+ ign)e . 11/)}
+ H_{P”ﬁg")(—yS) + V"(lA,gnV—l- I:é")e ')},
(3.3a)
H(n)( ) {Pv 5 + Vv ( ¢/* +L )}H/
+{P”L4}/+V”( ¢"—|—L” I )}H
(3.3b)
Hy (0,0') = TL{P* P bty (=°)p?
+ PV (=) Mo + M g€ - v]
+ VUPY [Mod + M e - v']y
+ VOV My ¢ + Myse - €
+M13¢€/* v +M13¢/*€ . 7]/
+ M€ - ve- v MI. (3.3¢)

Here we have included in H EJIL]U only those terms relevant

for matching at O(1/m?,,6%). The full expressions are
given in Appendix G. The recoil parameter is defined as

m2 +m2 — ¢
w=uyp- v =B Db ., ¢ =(p-p) (34
FTER— =(p-p). (34
and the HQ expansion parameters,
A
= . 35
Ecb 2mc,b ( )

[As mentioned in Sec. I A, the ¢ and b subscripts on the
field representations in Eq. (3.2) are mere reminders of the
flavor of the hadron: the HQET is agnostic to this
distinction except via ¢, # ¢, and within perturbative
corrections.] Since we have normalized the HQET states
according to Eq. (2.11), then Eq. (3.2) need not include the
Zy factors present in Eq. (4.34) of Ref. [16].

Following convention, in Eq. (3.2) we have factored out
the leading Isgur-Wise function, &(w), from all terms.
Matching onto HQET, at leading order, the normalization
of the QCD matrix element for the conserved vector current
in the equal mass, zero-recoil limit

(H|Qy* Q|H) = 2m ", (3.6)
implies that (1) = 1. We discuss further zero-recoil con-
straints in Sec. [l D. As done in, e.g., Refs. [7,14,47] (but
not in Refs. [12,15]) we have further normalized terms in
the expansion with respect to A, such that all Isgur-Wise
functions are dimensionless.

We use the notation that hatted functions of w are
normalized to the leading Isgur-Wise function,

W(w) =W(w)/&(w),

for any Isgur-Wise function or form factor. In particular, the

(3.7)

f,,(") and M; denote linear combinations of higher-order
Isgur-Wise functions* normalized by &

B. Form-factor matching

We use the standard HQET definitions for the B — D)
form factors. The B — D matrix elements are

= hg(w+1), (3.8a)
mgip,

(D(P)[erblB(p)) _ D(P)IerrbIB(p)) _ (5 g
<D<p/)|§;”zif ) [y (v+ v ) +h_(v=2)], (3.8¢)
<D<p’)|ic:;‘;i|)3(p)> T —— (3.8d)

and for B — D*,
(D (P)leb|B(p)) _ (3.9a)
<D*(p’)}|§J;ZIJB(p)> — hple ), (3.9b)
(D*(p")ler"b|B( = ihyePe; vl (3.9¢)

— g, (0 + e
— hy, (€ - v)v* — hy, (" - v)v™],
(3.9d)
(D*(p')|ea*b|B(p)) _

mpimp

—ghvap [hr eq(v+ v’)ﬁ

+hr,ea(v=1")5+hy, (" v)vavp).
(3.9¢)

“In the notation of Ref. [16], AL\ = L,/&, A2 = ¢,/¢,
and A2M; = m; /€. We have added the superscript 1ndex to the
L’s in order to make clearer at which order they enter into the
power expansion. We use the standard numbering for the sub-
scripts of the iﬁ”), while our numbering for the M; is the same as
those used for the m; in Ref. [16].
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Here the A, are functions of w. While typically we are not

interested in B* — D) decays, because the B* decays to
By, the vector current matrix element for B* — D* is
important for mass normalization constraints at second
order: a generalization of Luke’s theorem. In particular, we
need also consider

(D*(p')|ey*b|B* (p))

=—c-"h(v+ 0¥+, (3.10)

which is the only form factor that contributes in the zero-
recoil, equal mass limit.
For the sake of writing the form factors in terms of I:E”)

and M, in a compact manner, it is convenient to define

L@ =1V v epl?,  Q=cb.  (3.11)

In this notation, the hatted B — D form factors [see
Eq. (3.7)] at O(ay, 1/m?,,6%) are

R ~(0 ~(0 W—l A
]’ls =1 + asCS + Q:Zcng <L(l ) _ z(t )W—_H> + gcng8’
A~ n w4+ 1 ~ (0 A~
I’l+ =1 + 7 CV] +T(CV2 + CV3) + Z €QL1 - €L€bM8y
Q=c,b
A . W+ 1 c (b
h_ = a > (Cv, = Cy,) + 8cL£1) - €bL4(; ),
],:lT = 1 + &S(CT] CTZ + CT;) + Z E'Q[I:g ) - I:A(‘Q ] + gcehMS (312)
QO=c,b
The hatted B — D* form factors at this order are
hp =14 a,Cp+ e[l + L w=1) + L) = £ w4+ 1)] + &, [L = L]
- 8c€b[M9 —(w— 1>M10]7
hy =14 a,Cy, + e [ =L+ &, L") = L) + e.e, M,
~ N ~(c ~(c w — 1 ~(b ~ (b W_l A
hAl = 1 + aSCA] + Ee <Lé ) - Lg )w——|—1> + &p <L(1 ) - LS‘ )W——|—1> + €L€bM9’
ilAz = &sCAz + Sc [[:gc) + iéc)] - SCSleo,
ha, = 1+ a,(Cp, +Cn,) + e L) =2 4 2 21 4 6, 1) = 1)
+ e.ep[Mo + M),
~ N w — 1 N ~ (b A~
th =1+ o |:CT] +T(C7~2 - CT3):| + £CL§ ) + Ep 5 ) - SCSbMQ,
~ w41 ~(c ~ (b
hTz = Oy 2 (CT2 + CT3) + ech ) - €bL4<‘ ),
hy, = a,Cr, + e[LY) = L] = e.e, 01, (3.13)

We have included here the leading perturbative corrections in &, = «,/z that are given in Eq. (C2). The higher-order
a,/m,, corrections are discussed in Appendix E. Finally, the B* — D* vector form factor

w+1

h
! 2

1 +a,|Cy, +

In Egs. (3.12)—(3.14) we have included only those M ; terms
relevant for matching at O(6?) in the RC expansion; the
additional 1/m_.m, terms that enter when all second-order
power corrections are considered are given in Eq. (G2).

Q=c,b

(3.14)

|

In Appendix D we present a derivation of the first- and
second-order power corrections entering the B — D)
form factors, making use of the formalism and conventions
presented in Appendices A and B. For the first-order power
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corrections in Eq. (D1), we use the standard set of Isgur-
Wise functions, namely %3 and 7. The full expressions
for the second-order power corrections are shown in
Egs. (D17) and (D18). These involve the following:

(1) one Isgur-Wise function, @;, arising from current

corrections;

(ii) the mass parameters 4, , that enter the current cor-

rections via the Schwinger-Dyson relations (2.20);
(iii) three Isgur-Wise functions f;,; that enter via
second-order Lagrangian corrections.

The Isgur-Wise function @; is constrained at zero recoil
by the Schwinger-Dyson relations, such that it is conven-
ient to write the form factors in terms of [@;(w) — @;(1)]/
(w—1). This combination must be regular because of the
analyticity of the matrix elements [see discussion leading to
Egs. (D14) and (D15)]. To express this explicitly, we define
the quotient of an Isgur-Wise function with respect to
w=1,

Wiw) = [W(w) =W(1)]/(w=1),  (3.15)
which must be regular. By definition Wi(1) = W’(1), the
gradient at zero recoil.

C. Chiral corrections

A full assessment of potential percent-level corrections
to the form factors requires consideration of chiral correc-
tions, which originate from strong dynamics of the brown
muck at momentum scales below that of chiral symmetry
breaking, sensitive to the light mesons spectrum and the
heavy mesons mass differences. This dynamics may there-
fore be represented using heavy hadron chiral perturbation
theory (HHyPT) [48,49], under which the dominant chiral
corrections to the HQET matrix elements are generated by
loops containing a light pseudoscalar, P ==z, K, 7.
Schematically the structure of the chiral corrections can
be expanded in powers of the heavy mass scale My (e.g., a
heavy hadron mass) as

ZAn<W) log(m%//’tz) +Bn(wvﬂ) (316)

7 My ’
where log(m%/u?) denotes chiral logarithms of the light
meson masses and B, contain finite and counterterm
contributions. The scale u ~ O(1 GeV) is where HQET
is matched onto HHyPT. The expressions for B — D)
decays have been known for a long time [50-52]. The terms
A, and B, are in general different for B®, B*, and B,
decays.

At zero recoil, the leading and subleading corrections
vanish, and the leading nonzero contribution is proportional
to the hyperfine mass splitting Am3%, ~ A3 [51]. Because
23 ~ O(6*) in the RC expansion, the chiral corrections can
be neglected at zero recoil. Similarly, in the VC limit they
vanish because 4, — 0.

Away from zero recoil, both leading and subleading
corrections in powers of 1/M are present. Parametrically
the size of A,, B, is controlled by the chiral loop factor
(gpmp/47fp)* < 1%, where gp is the coupling of the light
meson P to the heavy hadrons and mp and fp are its mass
and decay constant. At the order of precision we are
interested in, only the leading corrections are important,
because the subleading ones contribute ~1% x Agep/mg
or ~1% x a,/x, which are both < 1% [52].

Importantly, the leading chiral corrections are universal
for any HQ current. As a result, they can be reabsorbed via
a redefinition of the leading-order Isgur-Wise function, up
to induced corrections of order ~1% x Agcp/mg or
~1% x a,/x that can be neglected. Because the leading-
order chiral corrections are flavor diagonal, but not flavor
universal, this reabsorption further induces isospin and
flavor SU(3) breaking, which distinguishes the leading-
order Isgur-Wise functions &, o(w) in B*? and &,(w) in B
decays, respectively.

The size of isospin corrections enter proportional to
the isospin mass splittings of light or heavy mesons
Amg g py/my, gy on top of the chiral loop factor sup-
pression, i.e., at the ~10~* level. Therefore, we need
only consider a single isospin-invariant leading-order
Isgur-Wise function &, o(w) =~ &(w) for the B™0 decays.
Flavor SU(3) breaking from the chiral corrections may be
sizable enough, however, to distinguish & (w) for B, decays
from &(w) in B decays. Explicit expressions for the leading
SU(3)-breaking contributions can be found in Ref. [50].
Additional SU(3) breaking contributions, parametrically as
large as m;/my ~ A/mg will be present at O(1/My) in the
HQET matrix elements themselves, and must also be

(%)

considered when relating B; — D; "’ Isgur-Wise functions

to those for B — D). Since B, — Dg*) decays are not
considered in this paper, we do not discuss them further.

D. Zero-recoil normalization constraints
and redefinitions

The mass normalization condition (3.6) implies that in
the equal mass limit the vector current matrix elements
satisfy, to all orders,

h+,1(1>|mc=mb =L (317)
In this limit, both the perturbative corrections and the power
corrections to /1, ;(1) vanish order-by-order. At first order,
Egs. (3.12) and (3.14) then imply L,(1) = L,(1) =0,
which is a part of Luke’s theorem [12]

(1) =75(1) =0. (3.18)

At second order, the mass normalization constraints for
pseudoscalar and vector mesons, respectively, require
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TABLE III.

Isgur-Wise functions and their parametrizations used in our fits, order-by-order in the HQ expansion, as used in Ref. [7],

and in the RC and VC expansions in this work. If one includes additional input on the quark masses, m,. ,, certain combinations of A and
A1 can be eliminated. In the VC case, c¢(w) enters proportional to the leading Isgur-Wise function and can be absorbed, except for
co(1) [see Eq. (3.28)]. Further, y; enters only when second-order terms are included, that prevent its reabsorption at O(1/m,.;,). (With

no constraints, 11 unknown functions parametrize the SM form factors at order 1/ m% , for B — D™ ¢p, and 6 when restricted to 1/m2.)

Expansions 1/m?, 1/m., 1/m2 only 1/mf’h
Ref. [7] Form factors E(w) . nw), xa(w), x3(w)
Parameters P’ A, (1), 7(1), 72(1), 25(1), 73(1)
Re Form factors  &(w) nw). 22 (w). 23(w) o (w) 9109). o), B (w)
Parameters pi. c. A1), i (1), (1), 25(1), 73'(1) A o 91 (1) A A, @4 (1), Ba(1), B5(1)
ve Form factors  ¢() ). ) . ) ). col1), es(w)
Parameters P2 C. A, (1), 7'(1), 21'(1) Po(1), co(1) Po(1), co(1), e5(1)
21:(12)(1) — Mg(1) = _@ +4pB,(1) Eq. (3.22) enter only at O(6?) or higher, and can therefore
f\ be neglected at O(6?). Furthermore, reparametrization
+24p5(1) =0, invariance ensures that the replacement (3.22) induces
£ R R M=y o» only O(ay/m2,) or higher-order corrections in the
207 (1) = My, (1) = Mp(1) = - A2 +4p,(1) O(ay/m;) terms (see Appendix E).
_3 ,3 (1) =0 (3.19) Since the second terms in Eq. (3.21) vanish at zero recoil
SRR : by construction, then at O(a,/mg.1/mp.6%) we can
which results in the zero-recoil constraints therefore extend Eq. (3.22) to
A yl " A F2e ey + 22+ ) (w=1)8 - & (3.23
while preserving 5(1) = 1. Note, however, one cannot
Just as in Eq. (D15), we therefore write generally redefine y,; to absorb f,3, because although
A A . P, and y, enter via an identical trace, as do f; and y3, each
Bi(w) = — + (w )ﬁt} (w), trace violates heavy quark spin symmetry. As a result,
4A %23 + €3 enters into the B — D* form factors with a
f}3(w) 8A2 + (w— 1)ﬂ3< ), (3.21) different prefactor than y, 5 + €, 3: Specifically, dy = —1

in which the quotient functions ﬂtij are regular near zero
recoil.

The three Isgur-Wise functions f;, y,, and & arise from
the same leading-order trace, as can be seen by comparing
Egs. (3.2), (D2), and (D16). This trace conserves heavy
quark spin symmetry; therefore, these three Isgur-Wise
functions always enter in the same linear combination.
Based on this observation, when working at O(a,, 1/m,)
in the heavy quark expansion, it is common (see, e.g.,
Refs. [7,15]) to reabsorb y; into the leading-order Isgur-
Wise function via the replacement

E42(e.+ &)y — & (3.22)

The constraint y,(1) = 0 ensures that the normalization
condition £(1) =1 is preserved. The replacement (3.22)
induces O(1/m?2,) and O(a,/m,,;) corrections that must
be incorporated consistently when working at second order
in the power expansion. In the power counting of the
residual chiral expansion, however, because y; enters at
O(6?), then the O(1/m2,) corrections induced by

versus dp = 3, respectively. With this in mind, if one
neglects O(1/m.m;, 1/m?) or O(ay/m.,) corrections,
then one can absorb f, ; via the redefinitions

X2+ Py = 1o, X3+ e(w— l)ﬂg - x3 (3.24)

the latter of which preserves y3(1) = 0.

E. Summary of constrained form factors

Including all the zero-recoil constraints in Eqs. (D15)
and (3.21), and the redefinition (3.23), one finds finally
from Egs. (D1), (D17), and (D18)

(3.25a)
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~ (2 /11+3/12 A P
L = 5057+ = D[=4p + 123)
~(2 A= .
L5 = "0+ (w = D[4,
z’f(f):“'ﬁ%
A(z)_/ll(W‘Fl) AZ(W_S) Al
Lo ="~ P i
A(Q)_/ll(W‘l_l) /IZ(W_I) Al
Ls 3A2 a2 Do
22 24 A A
L6 W A2 + 4(W - 1)(/)1’ (3'25b)
o M4 —w) (w4 11) 25 220 =D(w=1)
Mg =" ~ —2(w=1)"¢; - ’
. e MH(5S—w) g (2 =1D(w-1)
M = —= =5, . 2 _1 - ’
. A w4 2= 1
My=-—5-—5—"+2 - ’
T
N Aw=2) HB-w) .
My, = 13[_\2 + 22[_\2 +2(w2 - 1)§h,
2B =w) (W —3w-2) 2y 2w—1)
M — _ — — —4 —1 ]
2TTRR Ry 0D
R )“1 le N 2ﬁ+1
BTN T Rw ) 2P
o 24(w=2) (W -2w—4) 4w +2)§] 42h+1)-2w (3.25¢)
MR ) Rwrl? | wtl (w+ 17 |

Additional wave functions [see Eq. (E3)] entering the
O(ay/m,;,) corrections are presented in Appendix E. Up
to and including second order in the power expansion and in
the residual chiral expansion, the B*) - D) form factors
are determined fully by seven Isgur-Wise functions: & at
leading order; }, 3 and # at first order; and (2)”1, ﬁz, and ﬁg at
second order. The relevant Isgur-Wise functions in the
residual chiral expansion are shown in Table III, including
the reduced set in the case that one truncates at O(1/m?) and
reabsorbs redundant Isgur-Wise functions via Eq. (3.24). In
the latter case the B*) — D) form factors are determined
fully by just a single Isgur-Wise function at second order.
Both of these countings—at O(1/m2) and O(1/m? ,)—
are also reflected in Table I. In this table, moving from
leading order to first order to second order, we only count
the new, independent Isgur-Wise functions entering at each
order (though 1/ mg’h counts functions also counted at

1/m?2). The counting of Isgur-Wise functions is performed
after redefinition of lower-order functions to absorb all
possible redundant higher-order ones, such as in Eq. (3.24).
Some redundant higher-order functions can be reabsorbed

[

in this manner only up to their value at zero recoil: these
vestigial constant terms are counted as independent func-
tions unless they are fully determined with respect to
known quantities, such as 4, ,, as happens for B15(1) in
Eq. (3.20) [cf. Eq. (3.28) below].

F. Vanishing chromomagnetic limit

Besides the RC expansion truncated at O(6?), we also
consider another Ansatz, in which the field strength G is
set to zero.” This vanishing chromomagnetic (VC) limit,
already considered in Ref. [16], also significantly reduces
the number of Isgur-Wise functions at O(1/m?,). It is

SPrior literature [53] considered the limit in which HQ spin
symmetry-violating matrix elements involving the field strength
G are neglected, which implies that some spin symmetry
conserving terms must also vanish for self-consistency (see
Appendix F). At second order in HQET, the difference between
this limit and G, — 0 amounts to contributions from B, [see
Eq. (D16)], which may be reabsorbed into C [see Eq. (F7)], and
is thus unphysical at this order.
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motivated by the smallness of ¥, 5 calculated using QCD
sum rules [24,25] and is also consistent with O(1/m,.,) fits
(see, e.g., Ref. [7]). For the sake of completeness and
consistency of notation, we revisit the derivation of this

|

limit in Appendix F, noting a few differences with respect
to Ref. [16].

The expressions for the nonvanishing .
VC limit are’

(1.2)

i

and M; in the

I:(ll) = I:gl) =21,
LV =2p-1, iV =-1, LV =- % (3.26a)
LY =19 =22,
1:22) = =2(71 + wiy — &3), I:gz) =-2(71 + W(Pg)» I:(52> = —4W¢g :;i_%l o ; (3.26b)
M, =M, = M, = 2d,, (3.26¢)
ity =200-1) |05 - 21 ity ==X @0 1),
MIO__ Ag—%jjzll, MUZ—Z(W—U@E)’ M12:2(W—1)[2@g+%+1],
My = =2p5 + 2;7:11’ Vi)y = —ivfp‘ui 4(2?;3)1)_2”, (3.26d)
Mys = 015 = 2(25 + f — 7). My = Moo = 2(05 = 1)
My; =My, = —2w. (3.26e)

w+1

Concerning the perturbative corrections, in the vanishing
chromomagnetic limit the O(a,) expressions remain the
same, while at O(a,/m,,) the terms proportional to C5”
vanish (see Appendix E), as they correspond to insertions
of the chromomagnetic operator. Finally, the effects of the
chiral corrections in the VC limit are the same as for the RC
expansion, as the zero-recoil effects proportional to A3
vanish altogether instead of being higher order.

The zero-recoil constraints in the equal mass limit,
h, (1) =1 and k(1) = 1, now impose a relation between
¢o(1) and dy(1), namely

2¢(1) 4 do(1) = 0. (3.27)

The Isgur-Wise functions y, c¢g, dy all involve the same
trace structure as the leading-order matrix element

6Though our definitions of the M ; form factors in Eq. (G1) are
the same as in Ref. [16], we find with respect to Eqs. (A5)—(A7)
of Ref. [16] a different sign for M, (as above); further M, is

swapped with Mo, and M, is swapped with M,5. The latter two
swaps are also present in Appendix B of Ref. [16].

|

parametrized by &(w). On the one hand, because of the
relation Eq. (F5), y; enters indirectly in terms originating
from different tensor structures. Therefore, even though 4
vanishes at zero recoil, it can no longer be fully reabsorbed
via a redefinition of the leading Isgur-Wise function £. On
the other hand, one can reabsorb ¢ and d;, into &, up to their
contribution at zero recoil, 2(e, — &,)%¢(1), to preserve the
normalization condition £(1) = 1. Explicitly this can be
achieved via the shift

Ew) + 2(w = 1)[(&} + 2)cg(w) + epecdy(w)] — E(w),
(3.28)

which induces only higher-order corrections at O(1/ mg b)-
In addition, if one is only interested in second-order
corrections at O(1/m?), then in a similar manner to
Eq. (3.24), 5 may be reabsorbed into 7 via

n+e.eq3 >0, (3.29)

up to induced O(1/m.my,) and O(a,/m,) corrections.
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After all these constraints and redefinitions, the form
factors now depend on five Isgur-Wise functions and one
zero-recoil constant only: £ at leading order; 77 and 7, at first
order; and at second order, @E) and é5 together with the zero-
recoil constant &y (1). The relevant Isgur-Wise functions for
the VC limit are shown in Table III, including the reduced
set in the case that one truncates at O(1/m?2) and reabsorbs
the redundant Isgur-Wise function via Eq. (3.29).

IV. PARAMETRIZATIONS AND PRESCRIPTIONS

A. 1S scheme and numerical inputs

Cancellation of the leading renormalon ambiguities
[54,55] from the mass parameter A against those in the
factorially growing coefficients in the a, perturbative power
series can be achieved by the use of a short distance mass
scheme. We use the 1§ scheme [56-58], which defines m/)’
as half of the perturbatively computed Y(1S) mass. It is
related to the pole mass via m}S = m,(1 —2a2/9+ ).
This may be inverted to express the pole mass

my(myS) ~mS(1+2a2/9+ ). (4.1)
The splitting of the bottom and charm quark pole mass

omy,. = m;, —m, is subject to a renormalon ambiguity
|

IN 1S

A— my,(m,> )ing —m.(m,>)inp
émbc
2 1S , 1S
/11 _ mh(mb )mc(mb )[ﬁ/lB _ th _5mhc] +
émbc

only at third order when one computes just the leading
ny dependence at high orders [59-61], so we fix
m.=my;,—om,.. Thus, when working at second order in
the HQ expansion, we may parametrize observables in
terms of m}S and 5m,..

In practice, however, because m})s and 6m,,,. are extracted
from fits to inclusive spectra at O(1/mJ)) [62-64], third-
order terms must be retained numerically in the expansion
of the hadron mass, even though we formally work to
second order in the expressions for the form factors. In
particular, the spin-averaged mass of the HQ pseudoscalar-
vector doublet, 71 = (mp + 3my)/4, can be written in the

1S scheme, defining m.(m}5) = my,(m}5) — 6my,,

_ x A P1
mg ~m,(mS) + A ,
BT 2my,(myS) - 4my (m)5)]?

_ A 14
iip = me(m)S) + A — — 1 4.2
7o =) F A D) Ao 4

noting from Eq. (A10) that the 4, dependence cancels. Here
we have included only the O(6?) contribution to the hadron
mass from Amli!, proportional to the parameter p;, as
defined in Ref. [65]. This leads to

P1
— [my(m}%) + m.(m}5)] + s 1S

dmy(my°Ym.(m, )’

pilmy(my®) + m(m,*)]

2my,(m}*)m(m}?)

(4.3)

That is, truncating the hadron masses at third order in the HQ power expansion and second order in the residual chiral
expansion, A and A, are parametrized in terms of m}5, 5my,, and p;.

The fits to inclusive B — X[ spectra and other determinations of m}S find that [64]

m!S = (471 +0.05) GeV,

which we use as inputs to our fits. For p; we use

p1 = (=0.1£0.2) GeV?, (4.5)

corresponding numerically to the range A; = (—0.3+

0.1) GeV?, commensurate with the ranges quoted in
Ref. [64].7 We choose the HQET to QCD matching scale

e = /i, ~2.5 GeV. (4.6)

"These somewhat arbitrary uncertainties, to be used in fit
inputs, should not be confused with the recovered uncertainties
from fit results, which determine the uncertainties in predictions
of, e.g., R(D(*)).

émy. = my, —m,. = (3.40 £ 0.02) GeV,

(4.4)

|
One may apply these inputs to Eq. (4.1), combined
with the renormalization group evolution a, =
as(a,(myz), mz; ) computed at four-loop order [66,67].
One finds

A (/’tbc) = 027’ (47)
up to small uncertainties that are negligible when working
at O(1/m?,,, a5/ m, ;). We shall therefore treat o (u,) as a
fixed external parameter.8

¥In Ref. [7] we used a, = 0.26 due to the slightly higher
scale choice. Both formally and numerically, the difference
between these choices only enters at higher order compared to
O(1/m2 a,/m,).
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At first order in the HQ expansion, cancellation of the
leading renormalon ambiguity amounts to replacing the pole
mass my,(m}5) by m}5 everywhere, except in O(1/m,;)
terms originating from the Schwinger-Dyson relation (B4),
i.e., that enter via the “=" relations defined in Eq. (A2). To
compare with the results of Ref. [ 7], we similarly enforce this
prescription here. Cancellation of higher-order renormalon
ambiguities is relevant only with the mclusmn of a? and
higher terms, which we do not consider.” There is, in
addition, a leading renormalon cancellation between the
Lagrangian O(a,/m, ;) corrections and certain terms at
O(1/m?,). It would affect terms originating from A x
O(1/m) matrix elements in the second-order Schwinger-
Dyson relations, but such terms vanish at O(6?).

Canceling the third-order power corrections from Am¥,
one may express A, via [62]

i) e = my) = mE(mp = mp)
2\tbe) = Zmbab</’tbc‘) _2mcac(/’tbc)
~0.11 +0.02 GeV2,

(4.8)

using the 1§ prescription and Eq. (2.5), in which we have
assigned an inflated ~20% uncertainty to 1, to absorb
possible higher-order renormalon effects. The fits to
inclusive B — X .£v decays [62—64], from which we obtain
the 1S inputs, use the leading log approximation for a (u).
This leads to an enhancement of the extracted A, by
approximately a factor (1 + 13a,/67) ~ 1.2, which is
formally higher order, O(a,/m? ). This difference is also
covered by the assigned uncertainties in 4,.

B. Leading-order Isgur-Wise function

Parametrizations that make use of unitarity plus
dispersion relations for the QCD matrix elements typically
apply the conformal transformation

V& - -V -4
Vi - ¢+ -

threshold  ¢* >

(q 40) (4.9)

which maps the pair-production

= (mHi + mpys)* to the boundary of the unit circle
|z] = 1, centered at ¢* = ¢3, while the interval ¢*> < ¢* <
> ismapped to the real axis (0 >)z(¢2, ¢3) > z > —1. Here
H!HY denotes the lightest pair of hadrons that couple to
current J, generating the QCD matrix element (H.|J|H,).
Thus there is in principle a different z for each current J.
At second order in the HQ expansion, the A,-induced
splitting of the pseudoscalar and vector meson masses in
the spin symmetry doublet means that the branch point

°Order o2 corrections will be included at zero recoil only for
F(1) in Sec. V B because 1/m,., corrections vanish there. While
at that order one should consider also second-order corrections in
the 1S expansion, these would multiply €., and therefore vanish

in F(1).

pz)Z2+...

q>y = (mg + mp)? for the B— D and B — D* vector
current, while for the B — D* axial-vector current it is
q% 4 = (mg- 4+ mp)®. That is, second-order corrections
to the hadron masses enter into the conformal transfor-
mation (4.9). The choice g3 = ¢% ,(1 — [I — ¢* /4% ;]'/*)=
qony minimizes |z(g*> = 0)|, and hence the range of z,
while for g3 =¢> simply z(w=1)=0. We define
2 = 2(4 gop)-

In the HQET representation of the matrix elements, the
Isgur-Wise functions are functions of the variable
w = v -v'. One may reexpress Eq. (4.9) as

W—w Wy — W
2o, w) = Lo TV (4.10)
VW =W = /Wy —w
In this form, the branch pointw = —1 for B — D, which

is the minimal possible branch point, but for B — D* both
w, yand w, 4, > —1. This leads to different z’s not only for
different currents but also for different hadrons in the same
HQ multiplet. However, because the Isgur-Wise functions
are universal by construction, a conformal transformation
z(w, wp) consistent with the HQET matching in Eq. (3.2)
should respect HQ symmetry, while higher-order correc-
tions in the HQ expansion itself reabsorb the differences in
the branch points of different matrix elements. Adopting
this construction, we therefore choose to parametrize the
leading-order Isgur-Wise function as a polynomial in the
optimized z, for B — D, with the minimal branch point at
w, = —1. Thus

&w)

=1-8a’p?z, + 16(2c.a* — p?a®)z> +--- (4.11)
&(wo)
in which the optimized conformal variable
Vw+1-12a ) , _wotl T+4rp
z,(W) =——=—=—, with a*= = :
VwH1++2a 2 2\/rp
(4.12)
By construction &' (wo)/&(wo) = —p3, &"(wo)/&(wo) =

=0. Numerically |z,| <0.032. Because £(1 )

nd z (wp) =
i Tollows [1—8ap*z*()

it follows from Eq. (4.11) that &(wg) =
16(2¢,a* — p2a?)z,(1)?]71.

Another convention in the literature is to expand the
leading-order Isgur-Wise function about zero recoil, via the
choice z = z(¢%, ¢%), such that &(w) = 1 — 8p?z + 16(2c —
and z(w) = (Vw + 1 —=v2)/(Vw+ 1 +V2).
By construction &(1) = —p? and &"(1) = c. Differen-
tiating Eq. (4.11) at w = 1, one may relate p> and ¢ to p?
and c,.

In the fits below, we keep p? and c, as free parameters.
This differs from the approach of Ref. [32] (see also
Ref. [7]), in which one expands the B — D form factor
G(w) with respect to z, (using the same w, = —1 branch
point),
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G(w)
G(wo)

=1-8a’p?z, +16(2¢,.a* — p2a*)2 + -,

(4.13)

and then applies dispersive bounds to constrain the curva-
ture &, and the slope /2 (and higher coefficients) to lie in an
elongated ellipsoidal region. Further fixing ¢, to the central
value—the major axis—of the allowed region yields [32]

¢, = [(Vyy +16a2)p2 = Vyol/32a%,  (4.14)

with Vy; ~57 and V,5~7.5. As we discuss further in
Sec. VIF below, this approach leads to fit biases when

applied to current data. Because G(w) = &(w)[h, (w) —

pph_(w)], one may relate the coefficients of Egs. (4.11)
and (4.13) directly,

Pi = Pix t= = ,
hy(wo) — pph_(wo)
1 (wo) = pph” (w
=& +203(p2 = P2) — =+ +(%0) = Pl O), (4.15)
hy(wo) — pph_(wo

in which fz(i/‘”) (wp) can be expanded to arbitrary order in
HQET as desired. These relations allow the fitted p? and c,

parameters to be compared to the dispersive bounds for 2
and ¢, (see Sec. VIF).

C. Sub(sub)leading Isgur-Wise functions

We approximate the subleading Isgur-Wise functions (as
in Ref. [7] and elsewhere) as

W)= () +H(Mw=1),  f3(w) =5 (1) (w - 1),
Aw) = (1) +7'(1)(w - 1), (4.16)

expanding to linear order in w — 1. The remaining sub-
subleading Isgur-Wise functions after the redefinitions in
Egs. (D15) and (3.21) are ¢!, B,, and f%. To limit the
number of fit parameters, given the precision of the
available data, we treat these functions as constants

Piw) =@ (1), Bow)=pBo(1), Fi(w) =p5(1).

The relevant parameters for the residual chiral expansion
are shown in Table III. Applying the 1§ scheme, the full set
of Isgur-Wise parameters in our parametrization of the form
factors are

(4.17)

a(l), (1)
(4.18)

,057 Cys )?2(1>’ )?'2_3(1),
P, ). B,

in addition to the constrained parameters m}S, my,., p, and
A, per Eqgs. (4.4), (4.5), and (4.8).

Though f, and f; may be reabsorbed into y, and y3 via
Eq. (3.24) if one neglects O(1/m.m;) or O(ay/m,,)
corrections, at zero recoil many lower-order corrections

vanish or are constrained, such that higher-order correc-
tions could still have large effects (see Sec. V). However,
the gradient f%(1) does not contribute at w = 1, and one
may explicitly see from Egs. (3.12), (3.13), (E1), and (E2)
that at zero recoil y, and f, enter only via scf,gl’2> terms,
respectively. Thus, f,(1) is redundant with y,(1) at zero
recoil: the induced O(1/m.m;,) or O(a,/m, ) corrections
from applying Eq. (3.24) must be suppressed by w — 1.
Since the precision of current or near-future data is too low
for sensitivity to O(1/m.m;) or O(a,/m,,) corrections
beyond zero recoil, where lower-order corrections do not
vanish, as a practical matter both f,(1) and f4(1) may
therefore be neglected in fits.

V. ZERO-RECOIL PREDICTIONS
A. Form factors and ratios

The SM differential rates for B — D) [y with respect to
w have the well-known expressions in the massless lepton
limit

dF(B — D¢D) G%‘|Vcb|2’7Eme
dw 4873
X (w2 - 1)3/2

(14 rp)*G(w)?,
dT(B - D*¢D) G|V |*ndwms,
dw - 4873
x (W2 =)V (w+ 1) (1 = rpe )?
4w 1 =2wrp: + TD*
w+1l  (1-rp)?

(5.1a)

x |1+ F(w)?,

(5.1b)

where 7. = mpe /mp and ppw =~ 1.0066 [68] is the
electroweak correction (see, e.g., Ref. [10] for full expres-
sions including the lepton mass). The form factors

l_rD
1+1"D

Gw)=h, - h_, (5.2a)

+[(1=rp) + (w=1)(1 = R2)]2}

,, 4w >
X (l—rD*) +W—_H(l—2er*+rD*) s

(5.2b)
in which the form-factor ratios are
h hy, + rp:h
R =Y Ry(w) =" (53
hy hy

In addition,
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1+rpw—1
S‘(W):h+_1—r§w—+1 -
hy,(w=+1) = hy (w—rp) = hy, (1 —wrp)
Ro(w) = ]

(14 rpe)hy,
(5.4)
|

G(Dnger = 1+ &[Cyi + Cya(1 = pp) + Cy3(1 +pp)] =
+ L — pp L] + €L

parametrize the contributions that enter only proportional
to the lepton mass in the B — DIv and B — D*Iv rates,
respectively.

In HQET at O(1/m2,.,a,/m.,), the zero-recoil G(1)
and F(1) form factors have explicit expressions, defin-
ing pp = (1—rp)/(1 +rp),

2 (1
(sc - 5b)pDL4<1 )

D ppL ]+ ecey [, — B

—a,pplle. — gb)CVILz(l )+ 2(e.Cys3 — 8bCV2)[:(51)]’

A 2(2 22 > >
‘F(l)HQET ~1 + asCAl + 8%Lg ) + E%}LE ) + ECEb[Mz + Mg],

in which all functions are evaluated at w = 1. Note S;(1)

ratios at (’)(1/mg.b, ag/m.,) are

(5.5)

h, (1) = G(1)|,,-o- Similarly, the zero-recoil form-factor

N A A (b . -
Ri()yorr = 1+ a,[Cyy — Cay] - 5chc) - 5bL4(1 ) - ecepMyg — Mg

+ &Y{I:fll)[gb(CAl -

+L )[gbcv2+€ (Ca1 = Cyy + Cy3)]},

Ry(1)pger = 1+ &,(Caz + 1p-Cyo)
+e[(1+rp )¢ -

+ecep{Mig+ Mg+ (1 +rp )My — M) -

- fbl:é(tb

+Cusl(1=rp) LV + (1

+ e, {Canl(1 = 3rp ) LYY +

1—rp
1—|—rD*

Ro(1)goer = 1+ {=0,[Cpz + Cys] +

+ 0, (Cpp + CA3)[€bi4511) - gc(i‘gl) - 2Z‘(61))]}’

in which all functions are evaluated at w = 1 and we use the
notation IA,EQ) = lA,,(-1> + SQf,§2> as in Eq. (3.11).
The most precise LQCD predictions provide that [17]

G(1)igep = 1.054(9),  F(1) ocp = 0.906(13).  (5.9)

(The latter does not include the recent result F(1) =
0.909(17) [31].) Fits at O(ay, 1/m,), allowing the form-
factor ratios at and beyond zero recoil to self-consistently
float, obtain [7]

Ri(1)=132(3),  Ry(1)~0.88(3), (5.10)

- Cvz) - 8cCV3}
(5.6)
(1= rp)L§) = 28]
(1- FD*)[M3 —Mlo}}
—3rp ) +4L ]/2}
(1= rp)LM)/2 = C i}, (5.7)
L _2f ) i M Mg —2(M, — M
ec|Ls o | Teply +ecep Mg+ Mg—2(M; 19)]
(5.8)

with a correlation of —0.7, which can be compared to our
second-order fits in Sec. VL.

B. Residual chiral expansion

At zero recoil, as noted in Sec. II E, the RC expansion
receives only O(6*) corrections, so that the convergence of
the expansion might be tested by examining its zero-recoil
predictions at O(6?) versus LQCD data. At the same time,
the B — D) form factors necessarily have a higher HQ
symmetry at w = 1 (because the initial and final states are in
the same s = %‘ HQ doublet), so that the structure of the
form factors is more tightly constrained than forw > 1. Asa
result, one can expect higher sensitivity to O(1/m.m,) and

O(a,/m. ;) corrections, which must therefore be included.
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At O(6%), the full O(1/m?,,a;/m,,) expressions for the ﬁgl’z)(l) and M;(1) form factors can be read off from

Eqgs. (3.25) and Appendix E. This leads to

G()pe = 1+ a,[Cyy + Cya(1 = pp) + Cyz(1 + pp)] = (ec — &,)pp[27(1) — 1]

+ [2(3 —4pp) + €5(3 + 4pp) — 2¢.8) [W

A+ 312}

- &sgch[(zﬁ(l) - 1)CVI - 2CV3]

+ aseppp[(27(1) — 1)Cyy = 2Cyy), (5.11a)
R M= A+ 34
F(Dge 21+ a,Cy —1—.9%[ 12[-\2 2} + (2ecep + 35127){ 16/_\2 2]’ (5.11b)
N . 22 2(A + 34
Ri(1)pe 21+ a,Cyy — Cyy] +e.—&,(27(1) = 1) — 833—[_\12 - ei%
+ age.[Cyy — Cay — 207(1)Cy3]
+ a,e, [(27(1) = 1)(Car = Cyr) = 27(1)Cyr), (5.11c)
R2(1)RC >~ 1 + (AXS[CA3 + rD*CAz]
—e[(1+rp)i(1) + (1 = rp )47 (1) + rp] — &,(27(1) — 1)
(2/11 - 312)1"[)* - 3/12 A 2(&1 + 312)
2| PRI 23 4 1)1 )| - g 2O
1_ *
— oty L (157, = 42y + 6(2(1) = 1) = 724 (1))]
+ asgc{(zﬁ(l) - 1)rD CA2
+ 31 +2 = rp-((1) + 1)]Ca3 = 4(1 = rp- )22 (1)C3}
+ asep{[rp- (2 = 37(1))2 + (1) = 1]Cpo = (20(1) = 1)rp:Cas}, (5.11d)
1—rp R . A
RoDe =1+ 12 { =[G+ Col +£(20(1) + 1)+ 6s20(1) = 1)
D
A —34 A+ 34
— 207 2+2e%#+&s<cﬂ+cA3>[eb<2ﬁ<1>—1)—ec<zf7<1>+1)1}, (5.11¢)

in which all Cy functions are evaluated at w = 1. In R, (1),
two additional subleading Isgur-Wise functions, ¢} and ﬁz,
enter that may absorb any sensitivity to the higher-order
perturbative corrections. We see from G(1)gc, F(1)ge, and
Ry(1)ge that the second-order power corrections to the
B — D]y rates at w = 1 are fully determined by A1
The expressions in Egs. (5.11) are useful for building
intuition concerning the dominant second-order power
corrections. By Luke’s theorem the first-order corrections
to F(1) vanish, and one finds
]—'(1)%%T ~0.966(2), (5.12)
where the quoted uncertainty arises from the parameter
7z = m./my, on which C,; depends. Since 4, is expected to

be ~ —0.3 GeV?, and A,(u) ~ 0.11 GeV?, then the 4, — 4,
second-order correction to F(1) induces a few percent
negative shift, toward LQCD expectations, while the
A1 + 34, second-order contribution in G(1) and elsewhere
approximately cancels.

Regarding (1), prior fits at O(a,, 1/m. ;) [7] obtained
approximately

(1) = 0.3 £0.05, (5.13)

mainly driven by the LQCD data for G(1). In our fits
in Sec. VI below we do not constrain #(1) a priori.
However, assuming for the moment that the recovered
value of 77(1) will not be overly perturbed by the inclusion
of higher-order corrections—this is the expected behavior
in a well-behaved expansion; we will see that this
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assumption is justified in Sec. VI—we may use this value
of (1) to inform zero-recoil predictions, when combined
with the 1§ inputs (4.4), (4.5), and (4.8), plus the
relations (4.3).

Some further insight can be gained from examining the
numerical forms

G(1)pe =~ 1.105 + [0.006 — 0.0247(1)] (4, /GeV?)

—0.1707(1), (5.14a)
F(1)ge = 0.963 + 0.092(4, /GeV?), (5.14b)

Ry (1)ge = 1.400 — [0.063 4 0.0187(1)] (4, /GeV?)
—0.1297(1), (5.14c)

Ry(1)ge ~0.955 + [0.036 — 0.1007,(1) — 0.0627(1)
—0.010¢/,(1))(4,/GeV?) — 0.4437(1)

—0.7177,(1) = 0.1295,(1), (5.14d)
Ro(1)ge = 1.119 + (0.0387(1) — 0.030)(4,/GeV?)
+0.2727(1), (5.14e)

in which we have kept the 4; and subleading Isgur-Wise
function dependence explicit: the former arises from the 1,
dependence in Egs. (5.11), as well as from &g, via the
relations (4.3), from which one may express p; in terms of
A1. In these expressions, we have taken the central values
m}S =4.71 GeV and 6m;,. = 3.40 GeV. The /(1)-induced
corrections to G(1) shift it down toward the LQCD
predicted range while the A;-dependent terms approxi-
mately cancel. In R, (1) the #(1)-induced corrections tend
to cancel against the 4, terms. In R,(1) the #(1)-induced
corrections dominate, shifting it downwards. Thus the
second-order corrections at ((6?) have a structure naively
compatible with the data in Egs. (5.9) and (5.10).

The form factor F (1) is fully constrained at second order
by 4;,, and its first-order corrections vanish. Because of
this, in addition to the O(1/m? . a,/m, ) corrections, we
also include the full O(a?) correction to the axial-vector
current [69-71] that amounts to

SF (1) ~ —0.944C &, ~ —0.009, (5.15)

where Cp = (N2—-1)/(2N.). We do not include such
corrections in SM form factors that do not have vanishing
first-order corrections. In practice, in our fits in Sec. VI, we

implement Eq. (5.15) via an overall shift in h A,» such that
ha, = hy, —0.944Cpar2. (5.16)

This additional O () term should be included in /2, when
using the fit results in Sec. VL.

1 . 1 T T T T
Contours hold at 68% CL: y? = 2.3
95% CL: x* = 6.2
1.08 | .
1.06 .
= {
< 1.04 .
1.02 - [ HQET: NNLO + RC + o? i
’ HQET: NNLO + RC
[ HQET: NLO
1+ Fit: LU i
[ LQCD
0.88 0.9 0.92 0.94 0.96 0.98
F(1)
FIG. 1. Second-order HQET predictions for (1) and G(1) at

O(6*) in the RC expansion (red ellipse), using the inputs
Egs. (4.4), (4.5), and (4.8), and (5.13), and including the
O(a?) corrections [69,70] in Eq. (5.15). These are compared
to LQCD predictions (blue ellipse) and predictions at first order
in HQET (orange ellipse). The 68% CL region from a fit of the
RC expansion at O(1/m?,. a;/m,;.6*) to LQCD and exper-
imental data (see Sec. VI) is shown by the gray solid ellipse. The
dashed gray ellipse shows RC expansion predictions without the
O(a?) terms.

In Fig. 1 we show the CLs (red ellipse) in the (1) — G(1)
plane determined by the fit inputs (4.4), (4.5), and (4.8), as
well as Egs. (5.13) and (5.15) and the relations (4.3), imposed
on their O(1/m?,,a;/m,,,0%) expressions in Egs. (5.5).
This range is in agreement with the LQCD predictions (blue
ellipse) at the 0.85¢ level (p = 0.40). If the O(a?) correction
inEq. (5.15) isnotincluded, the agreement is at the 1.4 level
(p = 0.16), indicated by the dashed gray ellipse. By com-
parison, the first-order HQET CL (orange ellipse), whose
small F (1) uncertainty is determined by the 1S inputs as in
Eq. (5.12), is approximately 4.2¢ from the LQCD values. Fits
at first order must therefore consider nuisance parameters for
higher-order terms, or consider shape-only fits as in Ref. [7];
see Sec. VIC.

C. Vanishing chromomagnetic limit

Because A;, — 0 in the VC limit, we fix 4;, =0
in the 1S scheme, with m}’ = 4.71(5) GeV and émy,, =
3.40(2) GeV. Although the mass degeneracy in the HQ
doublet is formally not lifted at O(1/m?,), we use the
physical masses of the hadrons in the kinematics, just as
in the approach used for fits at O(1/m..,,, a,) in Ref. [7],
at which order 4, also formally vanish. However, note
Ref. [7] used the nonzero value A; = —0.3 GeV?, which
amounts to a correction of about 5% in the value of B
used here.

In the G,4 — O limit, the expressions for the 7 (1) and
G(1) form factors and the ratios R;(1) and R,(1) become
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G(1)ye =1+ aCy; + Cya(1 = pp) + Cyz(1 + pp)]
— (ec — &)pp[27(1) — 1]
+2(ec — &) ¢o(1) + 2(e2 = €3)ppo’ (1) — &3(1)]
— e pp[(20(1) = 1)Cyy = 2Cy;]
+ a,eppp[(27(1) = 1)Cyy = 2Cyy), (5.17a)

F(Dye = 1+ a,Cqp +2(e. — &5)80(1), (5.17b)

Ri(N)ye =1+ a[Cyy — Cyi] +e. —&,(27(1) = 1)
+2e2(1) + 2€[@p (1) = &3(1)] — 2e.ep[e3(1) + 295(1)]
+ &€ [Cyy — Car = 2(1)Cys3]
+ a,ep[(277(1) = 1)(Cay — Cyy) = 27(1)Cy], (5.17¢)

Ry(1)ye = 1 4 &,[Cys + rp-Cas)
—e[(1+rp)i(1) + rp] —&,(20(1) = 1)
—e2[2rp-@p(1) + (1 + rp)es(1)] + 2e[rp @ (1) + &5(1)]
—ecep{ (1 —rp)[20(1) = 1+ 8p(1)]/2 + (3 + rp-)e5(1)}
+ e {(27(1) = D)rp:Cap + [37(1) +2 — rp+ (/(1) + 1)|Cas}

+ agep{[rp(2=30(1))2 + (1) = 1]Caz — (27(1) — 1)rp-Cas}, (5.17d)
Rollhve = 1+ 12 (=[G + Cal + ec20(1) + 1)+ &,(20(1) = 1)

+262es(1) + (1] + 263125(1) = §h(1)] + Aeces (1)

+ 0, (Cpp + Cy3)[ep(27(1) — 1) — e.(27(1) + )]}, (5.17¢)

in which all Cy functions are evaluated at w = 1. Here, one finds a downward shift in 7 (1) toward the LQCD prediction by
requiring &(1) < 0. However, unlike in the RC expansion, the same downward shift from the second-order power
correction enters into both F(1) and G(1)—both have the same 2(e, — €;,)?¢y(1) term—resulting in a large downward shift
in G(1). It is again useful to examine the numerical forms for the truncated expressions

G(1)ye = 1.108 4 0.055¢(1) — 0.1717(1) + 0.047(¢(1) — 25(1)), (5.18a)
F(1)ye = 0.966 4 0.0558(1). (5.18b)
Ry (1)ye = 1.407 — 0.1307(1) 4 0.0474(1) — 0.03825(1), (5.18¢)
Ry(1)ye ~0.992 — 0.4657(1) — 0.0694,/ (1) — 0.01585(1), (5.18d)
Ro(1)ye 2~ 1.105 4 0.2747(1) + 0.0444} (1) — 0.01725(1). (5.18¢)

in which we use m}f =4.71 GeV, émy,. = 3.40 GeV, and 4; — 0. Assuming 7(1) falls in the range given in Eq. (5.13)
when second-order corrections are included, the downward shift in G(1) must be counterbalanced by the @{(1) — é5(1)
term, resulting in a large upward shift in R; (1), potentially such that R; (1) > 1.40, in some tension with the prior fit results
in Eq. (5.10). However, a proper assessment of the consistency of the VC limit with data requires a full fit beyond zero
recoil.
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VI. FITS

A. Experimental data

Prior to 2018 only two measurements were available for
(isospin-averaged) B — Dfv and B® — D** /v, Ref. [72]
(Belle 15) and Ref. [73] (Belle 17), respectively, that
provided kinematic distributions for the recoil and decay
angles fully corrected for detector effects. These analyses,
by providing “unfolded” kinematic distributions, permit fits
outside of the experimental frameworks, using different
parametrizations of the B — D) form factors than what
was used in each analysis.

Subsequently, the Belle Collaboration performed an
untagged analysis of B® — D**£v [74] (Belle 19), pro-
viding response functions and efficiencies, into which
alternate form-factor parametrizations may be folded, in
order to generate predictions for bin yields in the kinematic
distributions. In this work, we will consider combined
fits that include the 2017 and 2019 B — D*#v analyses
either together or separately. A summary of the experi-
mental inputs for each fit scenario is shown in Table V.
We use masses mp = 5.28 GeV, mp = 1.87 GeV, and
mp+ = 2.01 GeV.

In most of our fits, we only fit to the w spectra of
Refs. [73,74], as there is little information constraining the
form factors encoded in the projections of the angular
distributions. We combine and unfold the reported results
for electrons and muons of Ref. [74] using the provided
migration matrices and efficiency corrections. Systematic
uncertainties are incorporated into the unfolding procedure
using nuisance parameters that act upon the resulting yields
to avoid the d’Agostini bias [cf. Eq. (3) in Ref. [75]].

B. Lattice QCD inputs

For B — D decay, LQCD predictions for the SM form
factors f, and f,, have long been available at and beyond
zero recoil [76,77]. Their relationship to 4, and A_ is

hy(l+rp)=h_(1-rp)

El

fe=

21/7'D
w+1 w—1
=/ h —-h . 6.1
fo ) Tt T1orp (6.1)

Reference [76] is currently the most precise and conven-
iently provides a synthetic dataset at three values of
w = 1.0, 1.08, and 1.16, including statistical and system-
atic correlations. These may be incorporated directly into
the combined fits; the values are shown in Table IV [the
corresponding G(1) = 2,/rpf(1)/(1 4 rp) is shown in
Eq. (5.9)]. Without combination with any experimental
data, the predicted LFUV ratios from Refs. [76,77],
respectively, are R(D); ocp = 0.285(15) and R(D), ocp =
0.300(8), leading to the FLAG average [17]

TABLE IV. Top: Synthetic data for the B — D form factors at
w=1.0, 1.08, 1.16 [76], and for the B — D* form factors at
w=1.03, 1.10, 1.17 [31]. The correlations can be found in
Table VII of Ref. [76] and in the ancillary files of Ref. [31],
respectively.

Form factor w=1.0 w = 1.08 w=1.16
fu 1.1994(95) 1.0941(104) 1.0047(123)
fo 0.9026(72) 0.8609(77) 0.8254(94)
Form factor w=1.03 w=1.10 w=1.17
hy, 0.877(16) 0.807(15) 0.745(22)
ha, —0.586(82) —0.492(82) —0.391(95)
hy, 1.213(75) 1.103(75) 0.989(86)
hy 1.212(44) 1.079(44) 0.948(54)
R(D)LQCD = 0.2934(53). (6.2)

For B — D*, LQCD results are available at zero recoil
for hy, (1) = F (1) with the most precise result as quoted in
Eq. (5.9). For all SM B — D* form factors at and beyond
zero recoil, recently Fermilab/MILC [31] has provided the
first predictions (not yet published), including synthetic
data at w = 1.03, w = 1.10, and w = 1.17; the values are
shown in Table IV. Results for the B — D* form factors
beyond zero recoil are also expected soon from the HPQCD
Collaboration.

C. Fitting setup and scenarios

To determine the leading and subleading Isgur-Wise
functions and |V,|, we carry out a simultaneous x fit of
the experimental and lattice data (and in some scenarios
include constraints from QCDSR). To take into account the
uncertainties in m}5 and 6m,., we introduce both as
nuisance parameters into the fit, assuming Gaussian con-
straints [see Eq. (4.4) for their value and uncertainties]. The
constraints from LQCD are incorporated into the fit
assuming multivariate Gaussian errors. The y> function
is numerically minimized, and uncertainties are evaluated
using the asymptotic approximation by scanning the y?
contour to find the Ay?> = 1 crossing point, providing the
68% confidence level.

As mentioned in Sec. V, in the B — D™ transitions
many first-order corrections vanish at zero recoil, such that
the HQ expansion is more constrained at w =1 than
beyond zero recoil, prospectively leading to higher sensi-
tivity to second-order contributions. For this reason, when
working at O(ay, 1/m.;,) as in Ref. [7], it is a well-
motivated approach to consider information from “shape-
only” fits. In these fits, information concerning the overall
normalization of the B — D) rates—in effect, LQCD
predictions for G(1) and F(1)—are not imposed, and only
the shapes of the B — D) spectra are used to constrain the
subleading Isgur-Wise functions. Two different variations
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TABLE V. Summary of theory and data inputs for each fit scenario. Our baseline fit scenario is highlighted in bold. Note the O(a?)

shift in Eq. (5.16) is also imposed in all second-order fits.

Lattice QCD Belle data

Fit Order Floating norm.  f.,o(w>1) F(1) hy(w>1) hy, y(w>1) QCDSR 15 17 19
25 ametmy, S v v
Lﬁ?ﬁ;u Shape a,/my, l/sz 4 v v v/ v/ v/
NOL* ax/mQ,l/sz v/ v/ 4
Ls ay/mg.1/mp : v v v v VR
LY \NLO ag, 1/mg v v v / O
Lo+ SR a;/mg.1/m} v v v o/ 7
LOR 17 a,/mgy, 1/m?, v v S v
LA 19 a,/mg. 1/m v v v/ v

f‘)’gizl[hm] a‘Y/mQ’ l/sz 4 4 v v v v

of this approach were considered: one in which no lattice
information was used (denoted “NoL” in Ref. [7]); and one
in which beyond zero-recoil LQCD predictions for B — D
were included (denoted “L,;” in Ref. [7]).

At zero recoil, the O(1/m? ) corrections are also more
constrained. As can be seen in Egs. (3.12), (3.13), and
(3.25), at O(1/m?,,6%) all corrections to the matrix
elements at zero recoil are determined just by 4;,, while

beyond zero recoil effects from é)li can become important.
Along similar lines, in Fig. 1 we see that the O(a?)
corrections are relevant at zero recoil. It therefore remains
interesting to consider similar “shape-only” fits that probe
the structure of second-order power corrections at O(6?)
beyond zero recoil, and we therefore also include the
correction in Eq. (5.16) in all our fits.

In Ref. [7] additional constraints were considered for the
subleading Isgur-Wise functions, (1), 7>(1), and ) 5(1),
arising from QCDSR calculations [24,25,78], including
renormalization improvement factors [14] [which, for
improvement at renormalization scale p, mandates the
inclusion of a compensating —Cg (u) factor in the ay
coefficient (2.5), which enters at O(a,/m..;)]. Because these
calculations are model dependent, Ref. [7] assigned inflated
uncertainties in the fit inputs, typically much larger than the
fituncertainties [and much larger than the size of O(a,/m.. ;)
corrections].10 The QCDSR inputs were taken to be [7]

#2(1) = =0.06+£0.02,  2,(1) =0+0.02,
#(1) =004+£002,  #(1)=0.62+02,

#(1) =0=£0.2. (6.3)

To compare with prior fits using QCDSR (denoted with a
“+SR” suffix in Ref. [7]), we perform some fits also with

19See footnote 7.

these QCDSR constraints. However, the future arc of
precision data-driven fits bends away from the ongoing
inclusion of inputs with poorly quantifiable theory uncer-
tainties, and therefore we focus on fits without QCDSR
constraints.

The various fit scenarios and their inputs considered in
this work are summarized in Table V. They comprise the
following:

(1) Our baseline fit scenario uses all published LQCD
data—i.e., except for the not-yet-published B — D*
form factors beyond zero recoil [31]—plus all avail-
able experimental data from Belle. This fit is denoted
Lﬁﬁ;l, adapting from the notation in Ref. [7].

(i) We also perform fit (i) with the relative normaliza-
tion between the D and D*—in effect the relation
between G(1) and F(1)—allowed to float, so that
only shape information is used. This fit is denoted
as L) Shape.

(iii) We further consider a fit using all available LQCD
data, denoted by LDF .

(iv) A fit that includes only experimental data, but no
LQCD inputs, labeled NoL.

In addition, we consider the same Lﬁﬁ;l fit, with the
following variations:

(v) Using only either 2017 or 2019 B — D* data from
Belle, denoted with a ““17” or “19” suffix, respectively.

(vi) Including QCDSR as discussed above, denoted with
a +SR.

(vii) Including LQCD data beyond zero recoil for Ay,

alone, denoted Lﬁgzzl[h,u]' This fit provides an

interesting contrast to the Leg;l fit.
To further characterize the role of the second-order power
corrections, finally we consider the following:
(viii) A fit at first order in the HQ expansion, similar to the
above-mentioned L, 4+ SR fit of Ref. [7], which

we denote here with a “NLO” suffix.
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D. Nested hypothesis tests

Before proceeding to obtain results for our various fit
scenarios, we employ a nested hypothesis test (NHT)-based
prescription to determine the optimal number of parameters

for the Lﬁﬂ;l fit scenario. Such a prescription not only
allows systematic determination of those parameters to
which the current data have sensitivity but also prevents
overfitting. The optimal parameter set obtained through
this prescription depends on the precision of the available
experimental data, such that the prescription permits
systematic improvements as future data become available.

We use here a variation of the prescription developed in
Ref. [79]. The core idea of an NHT is to test a N-parameter
fit hypothesis versus alternative fit hypotheses that use one
additional parameter. The difference in y?,

A =% = AN (64)
provides a convenient test statistic, because it is distributed
as a y° in the large N limit [80] with a single degree of
freedom. We choose Ay? = 1 as the decision boundary: the
(N + 1)-parameter hypothesis is then rejected in favor of
the N-parameter fit at 68% CL.

AsinRef. [79], we apply the NHT starting from a suitably
small initial number of parameters. In this case, based on the
parameters entering at zero recoil (see Sec. V B) we pick all
the HQ mass parameters, the leading Isgur-Wise parameters,
and #j(1). Thus, the initial parameters are
|Vch|; mLS’ 5mbc’ P1s 12; p%a Cys ﬁ(l) (65)
We then incrementally add all combinations of the remain-
ing seven candidate parameters

7). 2, pB), 20, @), A1), B,
(6.6)

one by one. This generates a “graph” of fit hypotheses, with
each node of the graph representing a possible set of fit
parameters and each edge denoting the addition of one of the
candidate parameters. Over the graph, we identify a “ter-
minating node”—a parameter set—as a fit hypothesis that is
preferred over all hypotheses that nest it. To avoid runaways
in fit parameters, we constrain ¢/, (1), /3,(1), and (1) to be
at most O(1) (in practice less than approximately 9) in a
terminating node. We further require that no two parameters
are more than approximately 95% correlated, in order to
avoid flat directions and consequent overfitting and/or non-
Gaussian uncertainties. The terminating node with the
fewest parameters (and hence the largest number of degrees
of freedom) and lowest y is then selected as the optimal fit.

Under this prescription, we find sixteen terminating
nodes. Of these, we observe eight nodes involve either

B>(1) or B5(1), and are the same as the remaining eight

under the approximate replacement ~e.f,(1) — y,(1) or
~ef5(1) = x5(1). As discussed in Sec. IIID, because
we do not expect sensitivity to O(1/m.my, 1/m?) or
O(ay/m, ) corrections in the currently available data,
we expect that y,(1) and y5(1) can reabsorb ¢.3,(1) and
e.f5(1), respectively, as in Eq. (3.24). In effect, y,(1) +
e.p>(1) and y5(1) + €.p5(1) should be approximately flat
directions in the fit, which comports with the behavior seen
in the terminating nodes. The fit parameters and corre-
sponding fit results for the remaining eight terminating
nodes, labeled “S1” through “S8,” are shown in Table VI.
These fits are excellent, with y?/ndf ~ 1 for all terminat-
ing nodes.

Per our prescription, the terminating node with the
fewest parameters and lowest y° is S1, highlighted in gray
in Table VL. In this fit, ¢} (1) is distinguished from zero at
the 1o level, while all chromomagnetic terms are compat-
ible with zero, except 7,(1), which is somewhat smaller
than #(1). This is in line with expectations from the
operator product conjecture (see Sec. I D) that leads to
the RC expansion. It is notable that S2 exchanges ¢} (1)
with #/(1), producing a comparably good fit: while the
zero-recoil second-order corrections from 4, , are impor-
tant, the fit appears not to distinguish contributions from
first- versus second-order Isgur-Wise functions beyond
zero recoil. This matches the expectations of Ref. [7].

To characterize the behavior of the selected fit hypothesis
S1, in Fig. 2(a) we show the various form-factor ratios
R 50(w), along with the leading-order Isgur-Wise function
&(w), and the form factors F(w) and G(w). The uncer-
tainties in all the form-factor ratios are well controlled. The
small uncertainties in F(w) and G(w) are directly deter-
mined by the precision of the LQCD and experimental data.
For comparison, we also show in Fig. 2(b) the same ratios
and form factors for the S3 hypothesis, which has the
lowest y? of those fits with 30 degrees of freedom. The S3
fit results exhibit slightly larger uncertainties, while F(w)
and G(w) remain almost entirely unchanged, as expected,
and &(w) deviates from S1 only very slightly at high recoil.
Most notable is an overall downward shift in R,, and a
small disagreement in R at high recoil, both at the 1o level
or so (depending on correlations). This is perhaps not a
surprise, because /14, and h,, are sensitive to (1) at O(e,.)
while Ay, is not, and therefore they can be more sensitive to
variations in the fits. Nonetheless, it is reasonable to expect
that such moderate shifts in R, may be absorbed, for
example, by the corresponding small variations in &(w) and
Ry(w), such that other physical observables hardly change.

In Fig. 3(a) we show the R(D™)) predictions for the S1
and S3 scenarios, finding good agreement. In Fig. 3(b) we
show the R(D™)) predictions for the other six terminating
nodes: The R(D™)) predictions are very similar between all
hypotheses, providing good evidence that the truncation of
the fit parameters determined by our NHT prescription has
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TABLE VL

Fit values and parameters for each terminating node of the nested hypothesis test graph. The node S1 (bold) is chosen as

the optimal fit hypothesis. To characterize possible model dependence in the parameter truncation, we also consider S3 (bold). The last
four rows show the corresponding values for the fit 2, number of degrees of freedom, and the slope and the curvature of &(w) at zero

recoil.

Params S1 S2 S3 S4 S5 S6 S7 S8
[Vl x 10° 38.70(62) 38.90(64) 38.70(68) 38.70(68) 38.70(69) 38.70(67) 38.80(68) 38.70(69)
P2 1.10(4) 1.15(4) 1.19(5) 1.15(5) 1.15(4) 1.10(7) 1.12(8) 1.104)
C, 2.39(18) 2.44(19) 2.16(24) 2.25(23) 2.29(29) 2.38(19) 2.41(20) 2.40(29)
(1) -0.12(2) —0.14(3) .- e —0.12(5) e —0.13(4) —0.12(5)
75(1) .- -0.15(8) —0.08(7) —0.07(11) 0.00(10)
75(1) e . 0.04(1) 0.04(1) e 0.04(1) e e
(1) 0.34(4) 0.33(4) 0.34(4) 0.34(4) 0.34(4) 0.34(4) 0.34(4) 0.34(4)
(1) e 0.12(10) 0.14(11) e 0.15(11) —0.15(14) 0.05(19) e
m}?S [GeV] 4.71(5) 4.71(5) 4.70(5) 4.70(5) 4.71(5) 4.71(5) 4.71(5) 4.71(5)
omy,. [GeV] 3.41(2) 3.41(2) 3.41(2) 3.41(2) 3.41(2) 3.41(2) 3.41(2) 3.41(2)
@i (1) 0.25(21) e e 0.24(21) e 0.53(31) 0.17(40) 0.25(21)
X [GeV?] 0.12(2) 0.12(2) 0.12(2) 0.12(2) 0.12(2) 0.12(2) 0.12(2) 0.12(2)
1 [GeV3] -0.36(24) —0.35(24) -0.37(24) —0.36(24) —0.37(24) —0.36(24) —0.36(24) —-0.36(24)
x> 29.8 30.0 28.9 29.3 29.5 29.6 29.8 29.8
ndf 31 31 30 30 30 30 30 30

p? 1.35(5) 1.37(5) 1.34(6) 1.34(6) 1.34(6) 1.34(6) 1.36(6) 1.35(6)
c 2.41(17) 2.43(17) 2.14(22) 2.26(21) 2.29(28) 2.40(17) 2.42(17) 2.42(27)

not introduced a model dependence associated with the
choice of parameters into the fit.

E. Fit results

Using the selected S1 fit hypothesis for the L)

scenario as our baseline, in Table VII we present the fit
results for the various scenarios discussed in Sec. VI C and
summarized in Table V. In Table VIII we show for each

scenario the corresponding recovered parameters: R(D),
R(D*), and their correlation; F (1) and G(1) and their

T T
Contours hold at 68% CL

1.6 |
1.4

E
0.8

0.6

0.4

correlation; and the zero-recoil values for the form-factor
ratios R;(1), R,(1), and Ry(1). Figure 4 shows the fitted
experimental and LQCD data, and the predicted differential

spectra for B — D™)zv as a function of w for the baseline

fit. We note the fitted value for /(1) in the L2} scenario

is in excellent agreement with Eq. (5.13), as recovered from
O(ay, 1/m.,) fits. The O(a?) correction in Eq. (5.16) is
included in all second-order fits (and must be included
when using these fit results). In all these fit scenarios, the

fitted values for |V.,| are in good agreement with the

T T
Contours hold at 68% CL

1.6 |

14

1.2 1

1

0.8

0.6

0.4

(b)

FIG. 2. Form factors and form-factor ratios as functions of the recoil parameter for (a) the S1 and (b) the S3 fits.
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FIG. 3. The predicted values for R(D*)) for (a) the selected hypotheses S1 and $3 and (b) all other hypotheses.

Lﬁg;l result, which follows from the compatibility of the

F(1) and G(1) results across all fit scenarios.

The Lﬁg{:zl Shape scenario results are similar to those
of the Lﬁﬁ;] scenario, with the exception of a larger
uncertainti in7(1) and p;, but both are compatible with the

TABLE VIIL.

L3£;1 fit scenario results. The resulting F (1) and G(1)

recovered from the LQ;DI;IShape fit (see Table VIII) are
F(1) =0.938(22) and G(1) = 1.055(11), whose uncer-
tainties are similarly larger but remain compatible with the
LQCD data. We see from this that the differential shape

Fit results. Below the line we show the corresponding values for the fit y?, number of degrees of freedom, the (negative)

slope and curvature of £(w) at zero recoil, and the value of 4, via Eq. (4.3). The slope for LQ‘ZDl;lN LO, marked by a 7, corresponds to the
slope p? defined as in Ref. [7]. Note the O(a?) shift in Eq. (5.16) is imposed in all second-order fits and must be included when using

these fit results.

Parameters L€;>D1j:1 Lgfl;lShape NoL lezﬁ:x Lgﬁ?:lNLO Li’ﬁ;l + SR Lﬁgt:l 17 Lﬁ’ﬁ;119 szﬁ; nm
[V x 103 38.70(62)  39.10(66)  37.70(110) 38.40(60)  39.40(63) 38.80(66)  38.60(103) 38.90(66) 38.80(64)
G(1) .. 1.06(1) 1.06(1) .
F(1) 0.90(1) 0.90(1) .

P2 1.10(4) 1.08(5) 1.31(17) 1.05(4) 1.12(4)7 1.13(6) 1.23(6) 1.10(4) 1.11(4)
c, 2.39(18) 2.24(19) 1.95(33)  2.38(15) 2.44(19) 2.81(21)  2.36(18)  2.45(18)
7(1) -0.12(2) —0.09(3) —0.19(15) —=0.11(2)  -0.05(2) —0.06(2) -0.21(3) —0.11(2) -0.12(2)
25(1) 0.00(2) -0.00(2)
251 0.02(1) 0.04(2)
A1) 0.34(4) 0.29(7) 0.10(39) 0.27(4) 0.31(3) 0.35(4) 0.34(4) 0.34(4) 0.34(4)
7(1) 0.02(8) -0.01(20)
mlS [GeV]  4.71(5) 4.72(5) 4.71(5) 4.76(3) 4.70(5) 4.70(5) 4.70(5) 4.70(5) 4.70(5)
dmy. [GeV]  3.41(2) 3.40(2) 3.40(2) 3.40(2) 3.40(2) 3.41(2) 3.41(2) 3.41(2) 3.41(2)
ﬁz(l) .. —0.14(89)
B/%(l) .. —0.15(33)
¢, (1) 0.25(21) 0.1521)  —=2.29(122) 0.31(27) 0.29(42) 0.1920)  0.25(21)  0.23(21)
1 [GeV?) 0.12(2) 0.11(2) 0.11(2) 0.11(2) 0.12(2) 0.12(2) 0.12(2) 0.12(2)
p1 [GeV3]  —0.36(24)  0.04(50) —0.02(50) -0.16(27) —0.39(24) —0.38(24) -0.36(24) —0.39(26)
e 29.8 26.5 20.3 494 33.1 31.7 49.1 18.3 31.2
ndf 31 29 31 42 33 31 51 21 33

P’ 1.35(5) 1.31(5) 1.35(10) 1.32(4) 1.25(3) 1.37(5) 1.48(6) 1.34(5) 1.36(4)
c 2.41(17) 2.28(18) 1.89(31)  2.43(15) 1.90(7) 2.45(17) 2.7417)  2.38(17)  2.46(16)
A [GeV?]  —0.42(10) -0.20(25) —0.23(24) -0.30(11) —0.43(9) —0.43(9) -0.42(10) —0.43(11)
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TABLE VIII. Recovered parameters for each fit scenario of Table V.

Scenario R(D) R(D*)  prp)rDY) F(1) 6(1) prajen  Ri(1) Ry(1) Ro(1)
Lﬁﬂt:l 0.288(4)  0.249(1) 0.121 0.917(10) 1.050(6) 0.507 1.43(4)  0.89(3) 1.23(3)
LB;DI;IShape 0.290(4)  0.249(1) 0.069 0.938(23) 1.055(11) 0.854 1.40(4)  0.90(3) 1.20(4)
NoL 0.278(7)  0.248(3) 0.662 0.935(23) 1.088(64) 0.385 1.43(6)  0.92(10) 1.16(11)
Leﬁtzl 0.285(4)  0.249(1) 0.146 0.929(10) 1.054(6) 0.480 1.38(2)  0.94(2) 1.18(2)
LﬁztleLO 0.296(3)  0.249(1) 0.347 0.966(1) 1.053(5) 0.418 1.343)  0.87(3) 1.18(2)
Lﬁ?l;l +SR  0.289(4)  0.250(1) 0.265 0.916(10) 1.048(6) 0.500 1.43(4)  0.86(10) 1.24(3)
Lva;Dlj:I 17 0.287(4)  0.258(3) 0.572 0.916(10) 1.050(6) 0.524 1.43(3)  0.96(3) 1.23(3)
Lﬁg;l 19 0.289(4)  0.249(1) 0.121 0.917(10) 1.050(6) 0.505 1.43(4)  0.89(3) 1.24(3)
Lﬁgzl[m.] 0.288(4)  0.250(1) 0.148 0.916(11) 1.049(6) 0.556 1.43(4)  0.89(3) 1.24(3)

information has mild constraining power on parameters
entering the zero-recoil predictions, such that the tension
of the first-order prediction F(1)}&2r =~ 0.966(2) [see
Eq. (5.12)] with the LQCD prediction is relaxed.

The NoL scenario fit also results in larger uncertainties,
as expected, but is compatible with the baseline fit. Put in
other words, the included LQCD data are in agreement with
the experimental data, in the context of an RC expansion-
based parametrization. By contrast, the Lfv);[f;l scenario,
which uses LQCD predictions for B — D* beyond zero
recoil, produces a fit of notably poorer quality, due to
known tensions between the LQCD beyond zero-recoil
B — D*lv predictions [31] and experimental measure-
ments. However, including just the beyond zero-recoil
LQCD data for h, , as done in the Lo

w>15>1[hy]
produces fits in good agreement with the LQ;ZDI:I results.

scenario,

We characterize the behavior of the L2/ | versus

Lﬁg;lw scenarios further in Appendix H. Finally, the
Lgﬁ;l + SR scenario fit results are compatible with those

of LQ;ZDI;I, suggesting that QCDSR inputs are not incom-
patible with current data. The QCDSR inputs appear to
simply allow additional sub(sub)leading Isgur-Wise func-
tion parameters to be constrained, beyond those already
selected by the NHT prescription.

In Fig. 5 we show a comparison of the R(D™)

predictions for the LD |, LD Shape, NoL,
D;D* D;D* D;D* .
LS. +SR, L3, and L3, Scenarios. We

see that these predictions are all in agreement, with the
exception of the NoL results that mildly shift further down

in R(D) by about 1o but with notably larger uncertainties.
We note in Fig. 5(b) that the LQ;ZDI;I[IM,] scenario is in
excellent agreement with the Lfv)g;l.

While the parameters of the LQ;ZDI;INLO fit scenario
appear naively compatible with the baseline results, the
zero-recoil slope and curvature are significantly different.
We see in Table VIII that the main effect is a large shift in

R(D) versus the baseline fit. As we will discuss in Sec. VIF
below, the source of this shift can be attributed to a
slope-curvature constraint imposed on G(w). Apart from
this effect, the similar size of the uncertainties in the

L2 NLO fit results [as also seen in R(D™))] versus

the baseline suggests that while the O(1/m2) RC correc-
tions ameliorate the tension in the first-order prediction
F(1)§oer in Eq. (5.12) compared to LQCD data (see also
Fig. 1), they do not otherwise introduce large uncertainties
into physical observables. This is precisely the expected
behavior that motivated the O(ay, 1/m..;) “shape only” fits
of Ref. [7].

Between LD 17 and LDH 19 we further note
significant differences in the slope and curvature, sug-
gesting a mild tension between these two datasets. We
explore the implications of this further in Sec. VI F below.

F. Biases and the major axis of doom

The astute reader will have noted that our correlated
R(D™) predictions from the L22

wel:=1 scenario,

R(D)=0.288(4), R(D*)=0.249(1), p=0.12, (6.7)
differ by approximately 2.7¢ from our prior predictions [7],
R(D) =0.298(3), R(D*) = 0.261(4) with correlation 0.19.
However, the origin of this difference is not the inclusion of
second-order power corrections; in particular, it is not due
to any hint of unexpectedly large O(1/m2) corrections
(which was hypothesized in prior literature [8]). Rather, we
identify two sources of external biases that are mainly
responsible for this shift.

The first of these is a so-called major-axis approximation
introduced in Ref. [32], which is a core feature of the
Caprini-Lellouch-Neubert (CLN) parametrization. In
Ref. [32], the application of dispersive bounds from
unitarity constraints to the B — D form factor G(w) was
shown to constrain the allowed region in the p? — &, plane
[slope and curvature, defined in Eq. (4.13)] in the form of
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FIG. 4. The spectra and form factors (red bands) recovered from the Lw>1 ._; it scenario in the RC expansion, compared to the
fitted experimental data (black markers) and LQCD data (plum markers): (a) dF[B — D¢v]/dw (Belle 2015); (b) dT'[B — D*¢v]/dw
(Belle 2017); (¢) dT'[B — D*£v]/dw (Belle 2019); (d) £, (w); (e) fo(w); and (f) h4, (w). Also shown are the corresponding B — D¥zy

spectra (blue bands). For /4 (1) =

F (1) the zero-recoil prediction of Ref. [17] is used. The beyond zero-recoil lattice points for £,

from Ref. [31], which are not included in this fit, are shown as gray markers.

two elongated overlapping ellipses for the J¥ = 0~ and 0F
currents, respectively. QCDSR results were applied to the
first-order HQET corrections, in order to relate bounds on
the J¥ =0~ current to G(w). These ellipses, which also
incorporated estimates of theoretical uncertainties in the
first-order corrections, are reproduced in Fig. 6 in blue."
Reference [32] approximated these allowed regions simply
by the major axis of the most constraining ellipse (perhaps
because the size of the minor axes of these ellipses were far

"Our ¢, = 2¢; in Ref. [32].

smaller than the experimental uncertainties in ¢, at the
time), shown by the purple dashed line in Fig. 6. This
imposes the relationship between &, and p? in Eq. (4 14),
leading to a polynomial form G(w)/G(w,) = 1 — 8a*p2z,+
(57.p2—17.5)z>+ -+, and, after application of HQET
relations at O(a,, 1/m, ), to similar polynomial forms
in z, for hy (w)/h4, (wo). The CLN parametrization and all
parametrizations derived from it implicitly apply this
constraint on the p? — &, plane.

The experimental data and LQCD predictions have
reached a level of precision, however, such that the size
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FIG. 5. Fit results for R(D™*)) for the nine scenarios of Table V.

of the p? — &, allowed region recovered from fits is now
comparable to the minor axes. To see this, we show in

Fig. 6 the recovered 68% and 95% CLs for the LYY,
L2 Shape, and L2

w>1;=1 w>1;=1
and green ellipses, respectively. Constraining 52 and &, to
the major axis is barely compatible with these fits at
95% CL. Thus, imposing the CLN constraint in
Eq. (4.14) introduces fit biases into the analysis of

current data.

17 scenarios, by red, orange,

T T T T T T
Contours hold at 68% CL: x? = 2.3
95% CL: x> =6.2
-

FIG. 6. The allowed-region ellipses (blue) arising from dis-
persive bounds plus unitarity constraints applied to the B — D
form factor G(w) [32]. The major axis of the tighter ellipse,
corresponding to the J¥ = 0~ current, is shown by the dashed

purple line. Also shown are the recovered CLs for the LP:2

w>1;=1°
D;D* D:iD* i
L,31.—,Shape, and L2 17 fit scenarios (red, orange, and

green ellipses, respectively).

To demonstrate this explicitly, we show in Fig. 7(a) the
recovered R(D) — R(D*) CLs arising from applying the
CLN constraint (4.14) to the Lg;ﬁ;lﬂ scenario (blue
ellipse) versus the Lﬁﬁ;l 17 scenario without such a
constraint (gray ellipse). We do the same for the Legzl
scenario (red ellipse), i.e., using all Belle data, versus the
Lﬁgzl scenario without such a constraint (orange ellipse).
One observes a significant shift in R(D), commensurate
with a bias introduced into G(w): R(D*) remains unaffected
because the parameters entering the first-order power
corrections may compensate for the bias when translated

to hy, and hy. In Fig. 7(b) we show the same comparison,

but for a Lﬁﬁ?: {NLO-type scenario, that incorporates only
O(ay, 1/m, ;) corrections and (in this case) no QCDSR
inputs. One sees that a similar downward shift in R(D)
occurs independently of whether second-order power

corrections were included. A similar result occurs for
LQ‘ZI?;INLO with QCDSR inputs. To guide the eye, in
Fig. 7(a) we show the Lﬁﬁ;lNLO—type fits by dashed
ellipses. The fits using first-order versus second-order
HQET corrections are, respectively, compatible for both
the CLN constrained and unconstrained scenarios, sub-
stantiating that the second-order power corrections do not
appear to play a major role in these shifts.

The second source of external bias is, as already noted in
Sec. VIE, a tension in the fits to the Belle 2017 versus the
Belle 2017 + 2019 B — D*#v datasets. The inclusion of
the more precise latter dataset results in an additional
reduction of both the central value and the uncertainty of
the predicted R(D*). In Fig. 7, this corresponds to the shift
from the gray to red or blue to orange ellipses. Once again,
comparing Figs. 7(a) and 7(b) we see that the shift is
relatively insensitive to the inclusion of the second-order
power corrections. Overall, the fits using first-order versus
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FIG. 7. (a) The Lﬁ;ZDl;l R(D™)) predictions using different sets of inputs and assumptions. The blue versus gray (orange versus red)
ellipses demonstrate the shift in the predicted R(D) when the CLN constraint on ¢, is applied versus lifted, respectively, to the LQ;ZDI;I 17
(LS;L;?:I) scenario. The inclusion of the Belle 2019 data results in a reduction of the central value and uncertainty of R(D*) (gray versus
red or blue versus orange ellipses). The light-purple band shows the R(D) LQCD prediction [17]. (b) The same pattern for the
Lﬁ;ZDl;lNLO scenario fits that incorporate only O(ay, 1/m, ;) corrections and (in this case) do not incorporate QCDSR inputs. For

comparison, in the left figure we show the LQ;ZD]:ZINLO CLs by dashed ellipses.

second-order HQET corrections are, respectively, compat-
ible for each set of inputs or assumptions. Thus the
significant shifts in the R(D(*)) predictions can be attrib-
uted mainly to two sources of bias: the CLN constraint
enforcing a linear relationship between p? and ¢,, and the
tension between the Belle datasets.

Because of the tension in the R(D*) predictions from fits
using either the Belle 2017 or 2019 dataset, we adopt a

scale factor for its uncertainty, \/;? for two experiments
[81], to account for the differences between the two
datasets. From the results in Table VIII, this leads to the
R(D*) prediction

1.10
D:D*
02514 LMTI
LD, Shape (VC, Belle 15,17)
108 0.252 1
0.250
1.06 1
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o)) ’E/ 0.248 1
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FIG. 8. (a) The recovered values of G(1) and F (1) from the Lsﬁ;l fit scenario in the VC limit are compared to the LQCD predictions
of Ref. [17]. (b) The R(D™)) predictions from the Leﬁ;l Shape fit scenario in the VC limit (orange ellipse) are compared to the Lﬁﬁ;l
fit in the RC expansion (red ellipse).
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TABLE IX. Fit results for the single terminating node of the nested hypothesis test graph for the

D;D*
szl;:l

Shape fit scenario in the VC

limit. The O(a?) correction in Eq. (5.16) is imposed and must be included when using these fit results.

Valx100 6)  FU) 2 e

() )

A1) miS [GeV] my, [GeV] Go(1)  e5(1) &4(1) &o(1)

38.98(68) 1.055(7) 0.903(12) 0.96(3) 2.00(14)

0.17(4) —0.09(8)

473(5) 34005 —0.6(2)

R(D*) = 0.249(3), (6.8)

in which the scale factor is 2.6.

G. Vanishing chromomagnetic limit fits

Applying the VC limit to the fit scenarios in Table V
instead of the RC expansion, we find poor fits for the

LS;?;I scenario and for all its variations that include zero-
recoil normalization constraints. Typically, the y?/ndf
corresponds to a p value of less than one percent. This
is caused by the tensions in the predicted value of F(1)
from the VC expansion versus LQCD data: to describe
the experimental spectra at nonzero recoil, the fit para-
meter ¢q(1) is pushed to small values, which result in
F(1)~0.96. This is far from the LQCD constraint
F (1) qcp = 0.906(13) [17], yielding a large contribution
to the fit y>. This behavior also matches the approximate
expectations discussed in Sec. V C: The zero-recoil struc-
ture of the first- and second-order power corrections in the
VC limit appears inconsistent with the LQCD data (5.9)
and the recovered ratios R; (1) from first-order fits. The
recovered values for F(1) and G(1) for the L‘?,;li;l
scenario are shown in Fig. 8(a).

We next consider the Lﬁ;ljljZIShape scenario, which
relaxes the zero-recoil normalization constraints. In this
scenario, the VC limit parametrization achieves excellent
fits. To avoid overfitting, we again apply our NHT
prescription, considering all combinations of the candidate
parameter set 7(1), 7/ (1), ¢o(1), &5(1), &5(1), and &(1).
The prescription identifies three terminating nodes. Of
these, two are the same as the third under the approximate
replacements  ~e.e3(1) - 7(1) or ~e.5(1) — 7'(1),
matching our expectation in Sec. III F that # can reabsorb
e.e3 as in Eq. (3.29), because there is no sensitivity to
O(1/m.my, 1/m3) or O(a,/m. ;) corrections in the avail-
able data. We show the resulting fit parameters for this
node in Table IX, which has y*> = 27.1 for 29 degrees of
freedom.

The fitted value for |V, | is in good agreement with the
Lg;ﬁ;l result for the RC expansion, which must be the
case as F (1) and G(1) are constrained to the LQCD data.
The corresponding zero-recoil slope and curvature param-
eters are p*> = 1.20(3) and ¢ = 2.10(15), which are in
moderate tension with those for the LQ;QTZIShape inthe RC
expansion. A similar difference arises in #(1), which leads

to a larger R,(1) and a smaller Ry(1) as in Egs. (5.17). One
sees respective up- and downshifts in these form-factor
ratios over the entire w range, as shown in Fig. 9. While
R(D) is mainly determined by lattice data and is unchanged
versus the RC expansion fits, these shifts in R, o result in a
significantly smaller R(D*): One finds R(D) = 0.290(4)
and R(D*) = 0.246(1) with correlation 0.54. The corre-
sponding CL is shown in Fig. 8(b) and compared to the RC
baseline fit.

More concerning than the shift in R(D*), however, is that
the VC limit L2 ;] Shape fits have no sensitivity to ¢,(1),
which solely determines the second-order power correction
to F(1) in the VC limit [see Eq. (5.17b)]. This insensitivity
arises by construction: because the same 2(e, — &;,)?¢(1)
term enters both F (1) and G(1), and &,(1) does not enter
R (1) or R,(1) [see Eq. (5.17)], relaxing the normalization
constraints by definition eliminates any constraining power
on &y(1). As a result the recovered F(1) is unchanged
from F(1)jo2r. up to the small O(aj) correction in
Eq. (5.15): one finds the recovered F (1) = 0.957(2) and
G(1)=1.050(5). Therefore the optimal VC L%, _, Shape fit
does not address the tension with LQCD predictions for
F(1). While O(1/m3) corrections may be of percent size, it
seems unlikely that the third-order VC limit corrections
could resolve the remaining tension in (1) at the 5% level.
Therefore, while the VC limit parametrization can describe
the shape of the B — D*) £u spectra, it is unlikely to be able
to provide a full description of the data.

T T
Contours hold at 68% CL
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FIG.9. Form factors and form-factor ratios as functions of w for
the VC limit L2 _ Shape fit.

w>1;=1
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FIG. 10. Prediction for the ratio RZD /D" for the scenarios of Table V in the RC expansion, for (a) £ = e, and (b) [ = 7.

H. Branching ratios, forward-backward asymmetries,
and polarizations
With our fits we can produce precise predictions for
several additional observables. We quote predictions here
based on our Lsg;l baseline scenario in the RC expan-
sion, unless stated otherwise. First, for the D — D* ratio

B[B — DI
l = —
b/D* — B[B - D*lu]’ (69)
we find
RD/D* =0.417(12) and R’D/Dw =0.479(8). (6.10)

The light lepton value R}/, can be compared to the world
averages of Ref. [5]. Averaging the branching fractions
from both B® and B* decays assuming isospin (including a
correction for their relative lifetimes), one obtains

Ry = 0.436(15),

(6.11)
in agreement with the baseline result (6.10) at the 1o level.
The predictions for the other scenarios listed in Table V are
compared with Eq. (6.11) in Fig. 10(a). They all show good
agreement with the world average.

Similarly, one can convert the measured world
averages of R(D) and R(D*) [5] into a ratio of branching
fractions, R7, /D Using the average in Eq. (6.11), we find

RTHFLAV =0. 50(6)

b/D* The R}, p predictions for the various

Agg(m,, ¢* > 0.08 GeV?) = 0.246(4),

AAgg(q* > 0.08 GeV?) = —0.0050(1),

fit scenarios in the RC expansion are compared to this value
in Fig. 10(b), all showing good agreement with the world
average.

The forward-backward asymmetry is defined by

Agg[m;] = B - D*lz/ [/ / }dcosel

with 6; denoting the polar helicity angle between the lepton
momentum p; and —p in the [v rest frame. For decays
involving light leptons, this asymmetry has attracted recent
attention [74,82,83]. We find

[B - D*Iu]
dcos0,
(6.12)

Apg(m; = 0) = 0.244(4),
Apg(m,) = 0.239(4),

Apg(m
Agg(m;) = 0.065(2).

o) = 0.244(4),
(6.13)

In addition, we can also predict the difference AAgg and
sum AFB’

,) = —0.0057(1), (6.14a)

AApg = AFB(mﬂ) — Apg(m

Aup = % A )] = 0242(4).  (6.14b)

m,) + Apg(m
To compare to the experimental value of AAgg from
Ref. [74], one needs to also include a small phase-space
cut g> > 0.08 GeV?, for which the quoted measurement is
not corrected. This results in

Apg(m,, ¢ > 0.08 GeV2) = 0.241(4),

Apg(q® > 0.08 GeV?2) = 0.243(4). (6.15)
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2>

This exhibits a tension of ~4¢ compared to AABg(g
0.08 GeV?) = 0.035(9) [82].
We also derive predictions for the LFUV ratios con-

strained to the 7 phase space

R(DW) = L dW[dFU__? — DY/ dw] ’
' aw[dU'[B = D™ ¢u]/dw)

(6.16)

i)(x) —m?)/(2mgmp)). These ratios

feature a larger cancellation of experimental and theory
uncertainties [40,84,85]. We find

with w, = (m% —m

R(D) = 0.571(4), R(D*) =0.339(1),  (6.17)
with a correlation of p = 0.24.
For the longitudinal D* polarization fraction,
T)—o[B —> D*1u]
Fp (D) =—“t————, 6.18
L,l( ) F[B N D*ZIJ] ( )

in which 1 = 4, 0 labels the D* spin in the helicity basis,
we find for the light leptons £ = e, p and for the

F (D) =0516(3) and F, (D*)=0.454(3),

(6.19)
respectively. The difference for the light Ieptons,
AF,(D*)=F,(D*) = Fp.(D*) = 0.00012(1). We find
for the 7 polarization,

[Cy—y =Ty -J[B > DY
I'[B — DWz

P.(D)) = . (6.20)

in which 4, = =+ labels the 7z spin in the helicity basis,

P.(D)=0.323(3) and P, (D*)=-0.494(5). (6.21)
Finally, for the electron-muon universality ratios

R, (D) = %j:—m, (6.22)
we find
R,/ (D) =1.0028(1) and R, (D*) = 1.0041(1),

(6.23)

where the latter is notably different from the prediction in
Ref. [82], R, (D*) =1.0026(1). For the LY. NLO
fit scenario we find similarly R,,,(D) = 1.0026(1) and
R,/ (D*) = 1.0041(1).

e/u

VII. SUMMARY

We developed a supplemental power counting for
HQET, based on counting insertions of the transverse
residual momentum, p ;, within HQET correlators: the
residual chiral expansion. We conjectured that higher-order
terms within this power counting may be suppressed, and
we showed how this leads to a dramatic simplification of
the second-order power corrections in HQET, when trun-
cating at O(#?) in the RC expansion. In doing so, we
presented a review of the formal elements of the general
HQ expansion, that are required when working at second
order and beyond. Though these formal developments are
not new per se, we are unaware of a self-contained and self-
consistent presentation of these elements in the literature.

We proceeded to derive the O(6?) second-order power
corrections to the B — D) form factors both within and
beyond the Standard Model, including also the O(a,/m.. )
corrections. At second order only three Isgur-Wise func-
tions are required to describe the O(6?) second-order power
corrections, and only one when considering only O(1/m?)
terms. Moreover, at zero recoil, almost all second-order
corrections are fully determined by the HQ mass param-
eters A;,. Similarly, we derived all second-order power
corrections to the B — D) form factors in the vanishing
chromomagnetic limit. Our results provide the first check of
Ref. [16]—which used somewhat different conventions—
for those terms entering at second order in the RC
expansion or in the VC limit. We find agreement except
for the sign of the O(1/m.m,) wave function #,, and an
exchange of M,; with My and M,, with M,;. Whether
these errors also affect the additional terms that arise
when including all second-order corrections remains to
be checked.

Based on the RC expansion results, we developed a
form-factor parametrization, applying the 1S short distance
mass scheme that is self-consistent at second order in the
HQ expansion. These results are encoded in the HAMMER
library [26,27]. We showed that the resulting zero-recoil
predictions for B — D) form factors, G(1) and F (1), are
in good agreement with zero-recoil LQCD data, in par-
ticular, resolving the prior tension of the LQCD data with
the first-order prediction for F(1).

Confronting our parametrization of the form factors with
experimental and LQCD data, we identified optimal
parameter sets for the RC expansion under a nested
hypothesis test prescription. We found that the RC expan-
sion can achieve excellent agreement with the data, with
relatively few parameters, and without using any QCDSR
or LCSR model-dependent inputs. The VC limit para-
metrization produces poor fits due to its restricted structure
at zero recoil, but using only shape information yields
good fits.
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We recovered for our best fit

R(D) = 0.288(4),
V.| = 38.7(6) x 1073,

R(D*) = 0.249(3), and
(7.1)

in which the R(D*) prediction contains a scale factor of 2.6
to account for tensions in the predictions from the Belle
2017 versus 2019 B — D*Iv datasets. The inclusion of
zero-recoil second-order power corrections in the RC
expansion was crucial to good fits, but the inclusion of
second-order power corrections beyond zero recoil was not.
This supports the approach used in Ref. [7], which used
only the shape of the differential distributions to constrain
the subleading Isgur-Wise functions, under the premise that
second-order corrections are important only at zero recoil.
We found that the simplified linear CLN slope-curvature
relation advocated in Ref. [32] is in tension with the data
and leads to large upward biases in R(D) predictions
obtained in previous analyses. Our fitting prescription is
systematically improvable with more precise future data
that will simultaneously allow further tests of the RC
expansion, as well as improved determination of |V |, the
LFUV ratios R(D™)), and other observables.
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APPENDIX A: HADRON MASS EXPANSION

The spectroscopy of heavy hadrons in HQET is typically
understood (see, e.g., Ref. [15]) via the claim that the
leading-order contribution to the hadron mass in the
effective theory should be my — mg, because of the mass
subtraction in the field redefinition (2.1) acting similarly on
the Hamiltonian: H — H — m. Higher-order corrections
can then be obtained from the expansion of the HQET
Hamiltonian H — mgy = Hy;en + 6H. Here Hjjgp encodes
the dynamics of the light degrees of freedom—the brown
muck—in the hadron. For a hadron whose brown muck is

in a state of definite spin-parity, s”/, this generates a
contribution A(s™) to the HQET hadron mass (ie., a
different parameter for each spin-parity state of the brown
muck). The remaining term encodes the power corrections
to the HQET Hamiltonian 6H = -, £;/(2my)".

It is instructive to understand the HQ expansion of the
hadron masses via the matrix element matching (2.9)
between QCD and HQET. To do this, it is crucial to note
[12] that one is ultimately interested in operators of the
form Q' (x)I'Q(x)L(x), in which L(x) is a current coupling
to the heavy quark current (such as a lepton bilinear in the
case of semileptonic decays). Momentum conservation
implies that iD,L = —(p — p'),L, in which p (p') is the
momentum of the hadron containing Q (Q’). In this work,
we always choose the heavy quark velocity to be that of the
hadron containing it, i.e.,

p = mgv. (A1)
Thus, because the total derivative of the interaction operator
should vanish, and because of the field redefinition (2.1), it
follows that

0, (H'(p")| QY (x)T QY (x)|H (p))
=l(my —mg)v, — (my —mg)v,]
x (H'(p)| QY (x)P QY (x)|H(p)),
in which the = denotes equalit_y under composition with
L(x). Defining the operator X, as the annihilator of

the light degrees of freedom in the hadron, it similarly
follows that

(A2)

i0,(0| X (x) Q% (x)|H (p))

= (my — mQ)Uy<O|XH(X)Qi(X)|H(P)>- (A3)

Let us define the power expansion of the mass splitting
my—mg =y ,_oAm#  /(2mgy)". The equation of motion
for QY applied to Eq. (A3) implies that at leading order

(01X 4 (x)iv - DO, (x)|H)

OXa oL wlE) -

Amil =

(A4)

which can be thought of as the energy of the brown muck in
the heavy quark limit. One may further deduce from Eq. (A2)
that the individual matrix elements must take the form, under
contraction with v or v/,'>

“Hereafter we assume that H » and H, (or H and H') belong
to the same HQET multiplet, so that A and the other mass
parameters A, ,, defined below, are the same for both hadrons.
For decays to excited states, for which this is not the case, two
sets of parameters are required: The leading terms of Eqs. (AS)
generalize to (v,w —v,)(Aw—A")/(w? = 1) and (v, — vjw) x
(A'w = A)/(w? = 1), respectively.
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R (H (p /)|Q1'FiD Q% |H(p)) In our normalization (2.11), (H'|Q% QY |H") =2. It is
conventional to define the parameters
= O [A W . ZAmn+l]
W+1 <Hv|_vD2 1}|HU>
gy = AHNOLD70Y (A9a)

x (H'(p)|Q{T QY |H(p)). (ASa) 1 (H'|QLQLH")

v</>ﬂ<H'<p/>|Qii13ﬂrQ1|H< ) (H"

, dyhy = —
_ Amt
=0 | A 2E ntl
e N

04 (9o,sG /2) Q4 |H")
(H'|0}. Q' ")

. (A9b)

where dy is a spin combinatoric factor, specific to a given

x (H'(p' )|Q+FQ+|H (p))- (A5b) hadronic state. The mass correction then becomes
These ensure that the equations of motion for Q. and QY are Amfl = =2y —dyag(u)y(u), (A10)
satisfied at leading order, and the forward-scattering matrix
element of the HQET operator is subleading, i.e., in which we have explicitly restored the scale-dependent

Al renormalization of the chromomagnetic operator. For a

— m — .

H|O"iv- DO’ |H)= ntl g 0! 0" |H). A6 pseudoscalar (P) and vector (V) meson, which fill a HQ

HI: +H) ; (2mg)" (H| 0301 1H) (A6) spin symmetry doublet with brown muck spin-parity
5™ =1~ the factor dp =3 and dy = —1, respectively. (For

With reference to Eq. (2.9), at first order the left side of  the ground-state baryon, the brown muck is in a s™ = 0F

Eq. (A6) matches onto HQET as state, and the chromomagnetic parameter 4, vanishes.)

<H|Q3_l1}DQ3—|H>E><H1/ —,Cl/(2H1Q)|H”>+“', (A7)
my APPENDIX B: SCHWINGER-DYSON

RELATIONS

The mass parameters play an important role in
Schwinger-Dyson style relations (also called modified
Ward identities) between matrix elements entering at
(H”|(—L,)|H?) different orders in the HQ expansion in E:q. (2.9). Writing
(H"|0" 0 |HY)  the HQET current operator Jrf(z).z ¢t (2)IbY (z), then
from Egs. (A2) and (A8) the derivative of the QCD matrix
element with respect to z,

where we made use of the contact term (2.14) plus the Qf
equation of motion. The hadronic mass can then be expanded
to second order as"

N

+, Amil >

Mo

(A8)
|

Z — A Amsz A Amgll /
laﬂ<Hc|JF+(Z)|Hb>: A+ D) Uy — A+ m Uy <HC|J1"+<Z)|HZJ>+"" (Bl)

nyp
expanding the mass splitting to O(1/m,). However, with reference to Eq. (2.9), to first order the matrix element

HCJ Z H 7 1 . ’ - N .
M = <H1é |§/DC:}_DC:}_DbiIDbi exp{l/d4x[£§_[QET + EHQET](X)}JT+(Z)|HZ>

my,mpy.

4 v v -0 v v 1 V| = v v
= (He ey (2)|Hp) + 5 —(HZ| L o €4 ()T (2) [ H]) +2—mb<HC ¢t (2)TbY(2) o Ly|Hy),  (B2)

and, similarly, the derivative of the matrix element

n the notation of Ref. [16], the higher-order power corrections to the mass are denoted as Amf,. However, because this closely
resembles the notation for the mass splitting within a HQET doublet, we use a different notation.
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(HelJry(2)|Hp)

9, ~ (HY [e4(2)iDiTbY (2)|Hy) + (HY |&% (2)TiDibY. (2)|H}
G g e [ QIDTBLEHG) + (HE e @TDP (H)
+ g (HE L) 0 S (DT + i} b4 (2) | Hy)
1 :
+W<H§f|a+( 2)[iDiT + TiD3|bY(z) o L|H}). (B3)
b

Applying Eqs. (B2) and (B3) to the relation (B1), and matching order-by-order in 1/m,. ;,, one obtains at leading order the
familiar relation

(HY |ct(2)iD;Tb" (2) | Hy) + (HE e (2)TiDbY (2)|Hp) = Alv = ') (HE |y (2) | H}). (B4)

The left-hand side comprises uncontracted versions of the O(1/m,. ) current corrections generated by 7, that is, with the
ip replaced by iD,. At first order in 1/m,, contracting with v;, and using the derivative contact term (2.14), one finds
(cf. Appendix C of Ref. [16])

(HE |2 () TAI DY (2) | HG) + (HE |7 o et (2)Ti - D¥bt (<) | H))
= Aw— D)(HY |} o & ()Y (2) | Hy) — Amb (HY |Jr-, (2) | Hj). (BSa)
The first term on the left-hand side is the usual second-order current correction, but with a positive projector IT,.
The second term on the left-hand side resembles the O(1/m.m;) mixed Lagrangian and current corrections generated
by £, and J;, with the ip) replaced by iv’ - D. This relation thus constrains a combination of the matrix elements
arising from the O(1/m?2) current corrections and the O(1/m.m;) mixed corrections, with the second-order mass
splitting times the leading-order matrix element and A(w — 1) times the matrix element generated by the O(1/m,)
Lagrangian corrections on the right-hand side. The conjugate relation to Eq. (B5), from the O(1/m;) terms in the
relation (B1), is
(H |t ()T TobY (2) | Hy) = (HE |8 (2)iv - DTBY(2) o L1]Hp)
= Aw = 1)(HL & (2)Tb!(2) o L1|Hp) = Amy" (H |Tr (2) | H}). (B5b)

APPENDIX C: RADIATIVE CORRECTIONS

At O(ay), perturbative corrections arise via the matching
b — ¢’ [F n aSZcﬂrl} b, (C1)

where &, = a,/z, and I'; = I and ;. , are a basis of operators generated by all combinations of replacements y* — v,
The functions Cr, = Cr.(w, z) depend on the recoil parameter w = v - v and mass ratio z = m,/m,. Specifically, at O(a,)
the following operators are generated (using the notation of Ref. [15])

¢b — ¢ (1 + a,Cg)bY,
&b — (14 a,Cp)p°bt.,
ey'b - e [(1 + a,Cy )" + &,Cy,v" + &,Cy v"]bY,
er'y’b — el [(1 + a,Ca) )y" + a,Ca, 0" + 6,Ca, 0]y bY.,
¢o"b — ¢V [(1 +a,Cr, )0 + a,Cri(v'y” — v'7*) + &,Cr,i(v¥y* — v"y")

+ Cr, (00" = vv#)|bY, (C2)

from which one may read off the I'; basis for each of the currents in Eq. (2.15).
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The O(a;) corrections for all five currents were computed
in Ref. [39]; explicit expressions are given in Ref. [7]. The
vector and axial-vector currents in QCD are (partially)
conserved and so not renormalized, but the corresponding
HQET currents have nonzero anomalous dimensions, lead-
ing to u dependence for Cy, and Cy, for w # 1. The scalar,
pseudoscalar, and tensor currents are renormalized in QCD,
and thus Cg, Cp, and Cy, are also u dependent. In the MS
scheme, the remaining Cr, (j 2 2) are scale independent.

Because we are interested in the phenomenology of
second-order power corrections, the O(a,/m,) corrections

|

5[5Fb]—>c+ [ ZCF }

/ _ |:A ZC F:|br +&‘YCg
ocL|a rli 1
+ | % i 7% T o,

2m,

with C. = 0Cr/ow. In the last line we have written the
nonlocal contributions from £} alongside the explicit
O(ay) correction from the renormalization of the chromo-
magnetic operator that arises from the O(1/m,.) operator
product in Eq. (2.12).

The first term on the second line may be determined by
applying the relations (AS) after inserting the current into a
correlator, and expanding to first order. Thus the second
line may be rewritten as

w—1)eT;bY

+zcr,ai[ay;tr,»ﬂ—mﬂ)bm. (c4)

The proportionality to A of the first term is explicit
although all the remaining terms in Eq. (C3) are also
proportional to A, as seen in the explicit evaluation of the
relevant matrix elements, in Egs. (D2) and (D5).
The O(a,/m,) terms are constructed similarly, using the
Hermitian conjugates of the insertions in Eq. (C3).
|

(Y|} Ty o (B DD )|Hp)
(H!|etThY o {M%aaﬁG“ﬁbi} |H})
and for the conjugate matrix elements

(HY [y D2ct] o ¢ Thy|Hy)

1 ~ ) . < . —
mjasZ[C’ncﬂ—w - D)TybY + Cretl [0, 1) (—i

should also be incorporated, as they may be comparable
to the 1/m.m, terms. At this order both radiative
corrections to local operators and nonlocal operators,
arising from the operator product of the currents with the
insertion of the first-order Lagrangian £, enter. The
coefficients of the local operators are fully determined by
reparametrization invariance, while those of the nonlocal
ones are just the products of the Wilson coefficients of the
operators entering the operator product, expanded at O(a).
With reference to Eq. (2.9), these additional contributions
read [14,86]

D,)b"]

ai’gaaﬂcaﬂci] o /ThY, (C3)

APPENDIX D: B — D) FIRST- AND SECOND-
ORDER POWER CORRECTIONS

The w-dependent ﬁgzﬁ functions have well-known
expressions (see, e.g., Ref. [16])

LY =27 —4(w=1)7 + 1275,

LS =27, - 43,

tg]):“f(z,

LV =2q-1,

L =1,

B ==20140)/(w+1) (D1)

in terms of the standard definitions of subleading Isgur-
Wise functions 7;(w) and #/j(w) (see below). Note that we
retained explicitly the term parametrizing the correction
from the kinetic energy operator, y; (cf. Ref. [7]).

To compute the second-order power corrections in the
RC expansion, it is useful to briefly revisit the derivation of
Egs. (D1). Under the trace formalism, we write the
Lagrangian corrections

= ATr[H,(v\TH, (v)Xo(v, v')], (D2a)
= ATr[H, (v )ITL 6,5H, (v) X% (v, V)], (D2b)
= ATr[H .(v')TH,(v) X, (v, v)], (D2c)
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(HY | {Ei goaﬂGaﬂci] o EUThY|H}) = RTrH, ()0, IV TH, (0)XP(2/, v).

(D2d)

)

The implicit two-point function arising from the operator product yields the IT} factors, and the explicit A prefactor accords
with our normalization convention. The T invariance of the strong interactions requires the antisymmetric tensor X4 to
obey X,5(v,v') = X,5(v', v), and similarly, Xo(v', v) = Xo(v, v'). Thus the latter is a real-valued function—an Isgur-Wise
function—with the conventional definition X, = 2y, (w),]4 while X,; must take the form

Xop(0,0") = —iys(w)(v - U/)[aYﬁ] + 2x3(W)0,p.

(D3)

using the notation x,yp = X,¥p — YaXp, and each of the y; is a real Isgur-Wise function. There is no v[av;ﬂ term because

I, 04511 0" = 0.
Three relations of particular utility are

aaﬁH(v)a“/j = 6(—p) P’ = 24f¢V?

=2[dpP"(=p) + dyydV"], (D4a)

oopH(v)(v = o)y H(v') = —4i{[(w = DIL, + (w = 2)IL|P*(=p°)
—[M_¢+e- vV IH), (D4b)
(D4c)

GapH ()10l F(0') = =2 {(ow + D)P* (=) + [(w + 1)+ 2¢ - o)V},

Applying the IT, projector from the left in Eqs. (D4a)
and (D4b), inserting them into Egs. (D2), and matching
onto Eqgs. (3.3), one can read off the results for lA,EI%S
The current corrections are determined in the trace

formalism by writing

(HY|G{TiD bt Hp) = —ATe{A, ()T, (0)5, (0, )],
(D5a)

(HY &1 (=D, )TbY | Hy) = ~ATe[H, (/)T H, (0)E,(v", ).

and E must take the general form E, = ¢, (v + '), +
§(v—1'),—&y,.  Straightforward application  of
Egs. (A5) at leading order contracted under v and v'—or
equivalently the leading-order Schwinger-Dyson relation
(B4) plus the equation of motion for Q' —allows one to
immediately deduce é_ = &/2, and &, = —&3/(w+ 1) +
Ew—1)/(2(w+ 1)). Inserting this result into Egs. (D5)
and matching onto Egs. (3.3), one can read off the results

for I:S;G, with the Isgur-Wise function 7} = &3 /€.

"“When we encounter the second-order power corrections
below, it will become apparent that it is unfortunate that the
standard notation uses y; rather than y.

[
We turn now to the second-order current corrections

from 7. Just as for the first-order Lagrangian corrections,
we write these contributions under the trace formalism as

(HY|e{T D2 |Hy) = KT, (/)T H, () (0, )],
(D6a)

<Hg’|ai’rg 64sGPbY|HY) = A2Tr[H (1),

x H,(0)®% (v, 1)), (D6b)

and similarly for the conjugate matrix elements. 7-invariance

requires that ®,4(v, 1) = @y4(v', v), so that

Dop(v, v') = i1 (W) vy — i (W) (v = V') o7

+ 2(ﬂ3 (W)Gaﬂ’ (D7)
and further ®, = 2¢(w)."”” Though we have defined the
functions @, and ®,; with respect to an arbitrary inter-
action I, note that the 7, terms in Eq. (2.19) feature an
additional I1_ insertion. Perforce, there is no II, projector
in Eq. (D6b), and hence the ¢, term does not vanish inside
the trace.

Application of the relations (D4) allows one to read off
the contributions of the §; = ¢;/& to the £ in Egs. (2.20).

i

_ISSee footnote 14. With respect to the notation of Ref. [16],
2Ny = o, 2Ny = =y, 2Ny = ¢y, and 4N 5 = ¢ps.
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However, just as for the first-order current corrections, It immediately follows that

the ¢, are constrained by a Schwinger-Dyson relation, B o . ) .
Eq. (2.20) at O(6?). Applying the relations (D4) for the 200 =M&/A Ag3=RE/AS and g, =0. (D9)

pseudoscalar and vector, this constraint reduces to If one includes higher-order terms in the RC expansion,
these relations become more complicated, but Eq. (D9)
ME+ dploé = K220 — 4ps(w — 1) + 4dpgy), remains valid at zero recoil.
- An additional constraint on ¢;(1) may be derived by
Mhé+dyaaé = N[200 + 4y + 4dygs]. (D8) observing that one could have equivalently defined @, via
|
(HY T D Dbt |Hy) = ATr{H, () TH, (1) ¥y (0. 0') + i@ (0, 0')]}, (D10)

in which ¥, is a symmetric tensor, having the general form

Yap = W19ap + w2 (v + V) (0 + )5+ w3 (0 = 1) (v = V)5 +ya v+ 0) (o (v = '),
Tys(v+ ) @rp +wel(v =) (rp) (D11)

Imposition of the Q% equation of motion requires that I1_[v” (Wop + i@p)]TIL = O [the ") projectors arise because
H(v)§ = —H(v)], and it must be the case that ®; = I1_g* ¥ ,4I1_. Further, because via integration by parts and Eq. (A2)
[or via Eq. (B4)]

(H'(p")| QY (=iD,)TiD, Q% |H(p)) = =A(v = o), (H'(p")|Q{TiD, Q% |H(p)) - (H'(p')| Q4TD,D,Q" |H(p)), ~ (D12)

then the QY equation of motion requires I1_(v/*(W,; + i®,4))IT_ = (w — 1)E4(v, v'). These three conditions together have
a solution for y; = y;/&:

R A Aow . w—1

ViTR TR w ) M T w1y

o A Lw+3)  @w-1@  (w—1)(=47+w—2)

V2 TR ) AR w12 2w+ 1) Awr 1?2

L A LC2w+1) 2w+ 1o w+2

V3T AR w—1) AA(wi— 1) 2w—1) 4w+1)’

o 2htw-l ) p iw — 1 o

Va = 4IZw+1) ’ WS:2/_\2(vj+1)_’27((w+1;’ Ve = —h/2. (D13)

At zero recoil, the symmetric tensor ¥, must have the form g,z — v4v4. In the limitw — 1, (v = ') (v = v');/(w = 1) is
finite, but it cannot be written as a linear combination of the metric and v, v;4. Hence (w — 1)y3(w) must itself vanish at zero
recoil. It follows that

I 4 4
() =—=|7—-= D14
() =5 [3- 5 (D14)
and the analyticity of the matrix elements near zero recoil permits us to write

0100 =552 [5 = %] + o= Do) (o15)

where the function (fonl is regular. As in Eq. (3.15), 60“1 denotes the qguotient with respect to w = 1, and (21? (1) =@(1), the

gradient at zero recoil.
The Lagrangian corrections from £, are represented under the trace formalism as

(HY|eYTbY o [bYgvsD,G¥bY||HY) = —A*Tr[H.(v/)TH,(v)By(v, v')], (D16a)
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(HY|eYTbY. o [=ibYv,05D'GPbY]||HY) = —A*Tr[H, . (v')TTL, 6,45H,(v)B* (v, 0')]. (D16b)

The tensors B, and B,; must have the same forms as X, and X, so that writing B, =2f, and
By = —ifr(w)(v — v') o7 + 203(W)0ap, the subsubleading Isgur-Wise functions B, = /& enter i?

; ) identically to 7.
Thus we find

1:52) =28, —4(w— 1), + 125,
I:gz) = 2/371 - 4/}3,

igz) = 4&2,

L3 =32,/A% +2(w+ 1)@,

_ AWt A(w-=5)

T 3A2 A2
LY = 4 /R2 4 2(w+ 1)y

A1) hw-1)

+2(w? = 1)@,

3A2 2A2
S2) 4 _2/11 A N
L' =4, =3A2 _P+4(W_ 1)@;. (D17)

It remains now to compute the 1/m.m, current corrections from the product term J 'J1. Because of zero-recoil
normalization constraints (see Sec. III D) these terms play a crucial role in the structure of the lA,Ez). One may immediately
derive these product terms by noting the integration by parts in Eq. (D12), evaluating the right-hand side via Eqgs. (D5) and

(D10), and applying the solutions (D13). The results are

1y = % " [\2(?31 2w D= o :vll(;v -
5:M$1n+%“ghjyfn’

My —%—%JrZ(erZ)(foi —%:7;1] :

By = =22 o+ 1),

Vs =%—#W+l)+z(w+z)¢ﬁ +3§7—:11,

24 (w=2) (WP -2w—4) AW’ +2)p]  4Q27+1)—2w

— Y D18
UTARZw 1) Ai(w+1)? w1 (w+ 1) (D18)

In these results, we have applied Eq. (D15) in M 10.13.14 in order to remove superficial divergences at zero recoil.

APPENDIX E: B — D) ORDER ay/m,;, CORRECTIONS

Evaluating the matrix elements of Eq. (C3) (and the corresponding ones for the @,;/m,; terms) one may compute the
ag/my, . corrections to the form factors. Defining these corrections via fzi - fz,- + &xéfzi with respect to the form factors in
Egs. (3.12) and (3.13), for the B — D form factors they read
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~ o —-1. o
Shy = (e, + €, [cs <L(11) _:VV—HLE‘I)> +2o(w— 1)C’S} + (,C +£,COA,,
g _ P04 jm_w=lzm
Shy = (e, +€C){CV1 i (Cv2 + Cw){ e }

w41 A
+ 2(W - 1) |:CV/| +T(Cvf2 + Cvg):| } - ( - 1)(81)(:‘/7 + & CV3> g ) (SbCng + E'CC;)AI,

A w+1 A w—1.
5]’[_ = (‘Eh + 80) T {(CVZ - Cv3) |:L(ll) - W—HL£1>:| + Z(W - 1)[CV2/ — CV3/]}

~(1 ~ (1
+Cy, (e — &) LY = (w+ 1)(e,Cy, —e.Cy LY,
Shy = (e, +€.){[Cr, = Cr, + Cr L = Cp LY 4 2(w = 1)[Cy, — Cp + C) 1)
+ (0 — &) [Cr, + Cr LY +2(e,Cr, — £.C7 )L + (£,C + £,C)A,. (E1)

For the B — D* form factors they read

shp = Cpey (L) = EV) + e L) + (w= DY + 8 = (w+ LY}
+2(ep + £)(w = 1)Cp + [e,ChA| + &,C5(Ay + (w = 1LV,
She = O Te (F _ f (D B0 Z WY (g0 coNED _ 70
v v, len(Ly 4 ) Te(L s ) = (e,Cy, +e.Cy,)[L, 5 ]
+2(8b +€c)( - I)CV] (ebC A] +8 C Az)
~ (1 W—] A (1 A (1 W—] A (1
6hA] = CAl |:€b< 5 ) _W——HLS‘ )> +€c (L<2) _W—HLg >):| + 2(W— 1)(8b + 8C)Ci\|

1
Sha, = Cafep (L) = E) + e L + (w=DEY + 28 — w+ 1DEL])

lesCa [LY + 2w = DEM] + 6.0y (£ = 3EL)]

Sha, = Calep (L = 1) 4 e (L8 = 280 = £V 4+ 2]

+ CA3{€b< g t(l)) + Ec[igl) + (w— l)ﬁgl) + f,(l) —(w+ 1)£él)]}
+2(w = 1)(e, +£.)(C), + Ch,) + [es ChA, +£,C5(Ay — L)),

ohr, = Cr(e L + e Ly)) + 5= (Cr, = Cp)len(LY = L) + ec(Lg — L")

w—1 N

+2(w=1)(e + &) |Ch, + 5~ (Cp, = Cp) | = (w=1)(esCr, = e.Cp) LY + (8,CA + e Cihs),
A - A (1 w1 A1) s A A
Shr, = =Cr, (&)L — e L") + == (Cp, + Cr)ley(L)) - L) + e (2 — L4)]

+ (e,Cr, + €.Cr ) (L) = wil) + (w2 = 1) (e, + £.)(Cy, +C})
2~ ~(1 ~(1 1
Shy, = —e.Cp, (L) =LY+ Cp ey (L) = L) + e (28 = 2]

1 £ (1 (1 (1 .
—WH[,,CTZ[§>+(zw_1)Lg>]+eCCT3(L§>—3L<>)]+2( —1)(ep + £.)Cy, —e.C5LY. (E2)
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As above, the derivatives C,=dC;/dw, C2(u)=
—(3/2)[In(mp/u) — 13/9] [35], and the w-dependent func-
tions

Ay =—-4w—-1)3,+1275. A, =-4p,.  (E3)

These arise by a simple redefinition of j,; —
(1+ &SC_(,Q);?Z!3 in the 1/m,, . contributions to the various
form factors. Applying the redefinition in Eq. (3.23), then
A, = f,(11> and A, = I:g), up to O(a,/mp) corrections.
One can also see explicitly that 7; enters in these expres-
sions through ZA,?) and 1:21) as 2(g, + €.)j1, as expected
from reparametrization invariance, so that the redefinition
in Eq. (3.23) introduces only O(a,/ m2Q) corrections.

APPENDIX F: VANISHING
CHROMOMAGNETIC LIMIT

In the G* — 0 limit, Lagrangian and current insertions
reduce to £, =-0%D*QY, L, =0, and J, =—-D
Therefore y,3, 4,, and @;,3 all vanish. The Isgur-Wise
function ¢, does not vanish, however, because the 7,

|

current correction in Eq. (D6a) is still present. Unlike at
O(6?) in the RC expansion, the second-order Schwinger-
Dyson relations (B5) include mixed current-Lagrangian
matrix elements. Nonetheless, at zero recoil these addi-
tional terms manifestly vanish, with two consequences:
Eq. (D14) still holds, so that one deduces that 2; — 0 in this
limit. Hence, ¢((1) = 4,;/B* = 0. To make this and the
analyticity of the matrix elements explicit at w = 1, we
write

Po(w) = (w = D)gg(w), (F1)

where the quotient function (pg is regular near zero recoil

[see Eq. (3.15); Ref. [16] uses the notation éﬁ]. The
derivation of second-order power corrections from single
insertions of 7,, J %, or mixed insertions of 7 and J |
now proceeds as in the RC expansion above, but imposing
Eq. (F1) and that all other ¢, functions and 4,, vanish.
These matrix elements match onto Mg ;.

To compute corrections from the mixed -current-
Lagrangian terms, one considers the following matrix
elements:

(HY |2 (2)T(iDy)bY(2) o Li|Hp) = N Te[H (v )TH, (1) Eq(v, v')],
(HY |27 () (=iDg)ThY (2) o Ly|H}) = A>Te[H (v')TH,(v) Ej (v, 0')). (F2)

The most general decomposition for EY is

ED (0, 0) = &) (w)v, + e ()i, + &) (w)7e. (F3)

Similar expressions hold for their conjugates (corresponding to matrix elements with insertions of £ and swapped

)

derivatives) with tensor Eg (v, v), analogously to Egs. (D5). Then Egs. (2.14) and (D6a) and the equations of motion,

respectively, require

[ (v*E, (v, v'))IIL = 2¢I1_IT_,

I (v E, (v, v))IT. = 0, (F4)

ie., e; +wey —e3 =2¢y and we| + €5 — ¢4 = 0. Finally, Egs. (B1), (B3), and (D2) at O(1/m, ;) impose

H—(Ea - Eil)l—l/— -

Under the projectors this equation contains three relations for e

relations in Eq. (F4), and following the choice of Ref. [16], one may express all the remaining e

W+ 1)e; = e3 = 2(¢h + wr1),
(W 1)} = e3 = 2(0 — 21),

(Ua - 1);,)2)(11—1_1—[’_. (FS)

l(./), one of which is simply e} = e;. Together with the two
)

;~in terms of just e3, leading to

(w+1)ey =e; + 2(W(/’E) +x1).
(W 1)eh = e3 +2w(gh —11). (F6)

These results may be applied to the mixed current-Lagrangian matrix elements (F2), which generate corresponding second-

order power corrections in Eq. (2.12). These in turn match onto L 456 as well as the M,s

2 . .
@) »4 Wave functions, defined in

.....

Appendix G. [As mentioned below Eq. (3.3), there are additional #; wave functions not present in the RC expansion at O(6?).
Several of these arise in the VC limit. We also show in Appendix G the contributions from the complete set of M; wave functions

to the B —» D™ form factors.]
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The remaining nonvanishing matrix elements generating second-order power corrections in Eq. (2.12) are those with two
insertions of EE/),

! 1 ! - -
(H{ Eéi(z)rbi(z) oLy o Li|H}) = —A’Tr[H .(v')TH,(v)Coy(v, )],
(Y|} 0 @ (2TbL () o L1l Hp) = =ATr[H (0" )THy (0) Do (v, '), (F7)

2)

with two Isgur-Wise functions Cy (v, v') = 2¢o(w) and Dy(v, v') = 2dy(w). These matrix elements trivially match onto 1:5’2

(1.2)

The expressions for the nonvanishing I:i and M, in the VC limit are shown in Egs. (3.26).

APPENDIX G: B — D) ORDER 1/m.m;, CORRECTIONS

We provide here the complete set of the mixed O(1/m.m,,) traces and their contribution to the form factors, according to
the notation used in this paper. See footnote 6 for a summary of (apparent) typographical errors in the expressions in
Appendix A of Ref. [16].

The full expression for the heavy quark bilinear tensor is
B (0, 7) = TLAPYBY B, (=) + PPV (<) [iog* + B3¢ - 0] + VOB [ilog + Flse /)y

+ VIV [Mydd™ + Mse - € + Mege’™ - v+ Med e - v/ + M€ - ve - '] }IT,
+T{P"P " Ms(—7°)y° + PV (=y°) [Mof* + Myo€”* - v] + VP [Mof + M€ - v']y°
+ VOV (M ¢ + Mppe - € + Mysde™ - v+ Msd*e - v/ + Mue* - ve - v/}
+ILAP P Mys(=p°)y° + PV (=) [Myof* + My7€”* - 0] + VP [Mg¢ + M g€ - ']y
+ VOV [Mayodd™ + Myj€ - € + Made’™ - v+ Myzd e - V' + Moye’ - ve - v'] 1.
+T{P"P M \s(=p)r° + P'VY (=) [M 3¢ + Myo€™ - v] + VPV [M 6 + M17€ - /]y
+ VOV [Madf™ + Myie - € + Mozde™ - v+ Mg - v + Moye”™ - ve - o'} (G1)

Writing the O(e.€;,) terms in the h; form factors in Egs. (3.12) and (3.13) in the form e,&,,8h;, then the inclusion of all the
wave functions, M; modifies these terms such that they become

w—1

Shg = M, +M8—2W—+1M15,

Sh, = ity — itg,

sh_ =0,

Shy = M, + Mg —2M s,

Shp = My — Mo+ (w— 1)(M3 + Myg) + Mg — Mg — (14 w)(M 7 + M),
Shy = My + My — (M6 + Mig),

5ilA1 =M, +M9_::__T_11(M16+M18>7

5/A1A2:M3—M10+(M17—M19)»

Shy, = My + Mo — (M5 — M) — (Mg + Myg) + (M7 — M),

Shy, = M, — M,

Shy, = Mys — M3,

5ilr3 = (M + M) — (M7 + M,y),

Shy = (My = Myy) + (Ms — M,,). (G2)
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APPENDIX H: FITS TO FNAL/MILC B — D* are flexible enough to describe f| 5 and h, , beyond zero
DATA FOR w > 1 recoil, but there is a degree of tension between /1, y and the
fit form factors. The y* of both fits are 31.2 and 49.4 with

DD 33 and 42 degrees of freedom, respectively. More details
L, 31.51- The synthetic LQCD data points are compared 0 ¢an be found in Table VII

the predicted functional forms of h,, ;v and f . The fits

DD

Figure 11 shows details of the fits of szl;l[h/“] and

1.2 0.90
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0.91
0.75 1
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1.0 11 12 13 14 15 1.0 11 1.2 13 14 15
w w
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~0.31
0.8 p—
2 2
< <
—05
< -] <
~0.6
0.6
—0.71
1.0 L1 12 13 14 L5 1.0 L1 12 13 14 15
w w
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1.3

1.34
1.2

+ 1.2
114
= 10 + B L +
< o] < 107 +
0.81 0.97
0.7 0.8
10 11 12 13 14 15 10 11 12 13 14 15
w w
(©) ®
FIG. 11. Form factors from fits that include the B — D* LQCD predictions [31] for w > 1. The red band shows the results for the
Lf: gtzl[hm] fit scenario that uses h4; data only, while the dark plum shows the results for the Lﬁgtz | scenario that uses the full set of

synthetic LQCD points.
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APPENDIX I: HUMDRUM CORRELATIONS
We report in the following tables the correlations for each fit scenario considered in Table V in the RC expansion and the

LP:P"_ Shape fit in the VC limit.

w>1,=1

TABLE X. Parameter correlations for the Le;;f; , fit scenario in the RC expansion.

LR Vol P2 c.  mS[GeV] 5, [GeVl 1, [GeV]  #(1)  p [GeV]  7(1)  ¢i(1)
|V€b| 1 0.256 0.248 0.030 0.082 0.033 0.352 —-0.463 -0.224 0.148
pi e 1 0.357 -0.720 0.107 0.034 0.421 —-0.075 —-0.473 —-0.632
C, cee cee 1 —-0.460 0.048 —-0.056 0.383 -0.076 —0.647 -0.112
m})S [GeV] cee s cee 1 0.028 0.008 -0.429 —-0.007 0.369 0.362
5,,,[“_ [GeV] cee cee cee cee 1 0.009 0.108 0.477 —0.089 0.011
A, [GeV?] 1 —0.255 —-0.094 —-0.034 —0.006
ﬁ(]) 1 —-0.379 —-0.374 0.189
P [GeV3] 1 0.105 —-0.279
)?2(1) 1 0.305
@\ (1) 1

TABLE XI. Parameter correlations for the Lﬁ;ﬁ;ZIShape fit scenario in the RC expansion.

L Shape [Vl G()  F(1)  p2 e mp[GeV] dmy [GeVI % [GeVZ]  i(1) pilGeV?] 7a() (1)

Vel 1 -0215 -0.627 0.078 0.056 0.059 —-0.007 -0.012 -0.006  0.021 0.069  0.049
Gg(1) e 1 0.110 0.128 -0.201  -0.007 0.002 0.001 -0.117 —-0.006 —0.054 —0.380
F(1) e e 1 —0.007  0.131 0.017 —0.004 -0.001 -0.020  0.010 -0.150 —0.074
P2 e e e 1 0.394 -0.564 0.207 -0.033  0.632 -0.484 -0.665 —0.406
C, e e e e 1 —0.406 0.138 -0.007 0427 -0.322 -0.645 0.066
m}$ [GeV] e e . - e 1 0.009 0.001 -0.225 -0.024  0.267 0.243
omy,. [GeV] e e e e e e 1 0.000  0.241 0.010 -0.227 0.068
2 [GeV?] e E e e X e e 1 -0.224 —0.001 0.025 0.037
(1) 1 —0.807 —=0.731 0.250
pl[GeV3] 1 0.656 —0.295
(1) 1 0.061

TABLE XII. Parameter correlations for the NoL fit scenario in the RC expansion.

NoL [Vl P2 c, mlS [GeV]  6my, [GeV] 1, [GeV?] A1) p[GeV3] (1) 1(1)
[\ 1 0317  0.487 0.041 0.209 0.006 0.453 —0.754 -0.315  —0.025
p? e 1 0.106 -0.212 0.049 0.000 0.705 —-0.112 -0.868  —0.690
c, . e 1 —-0.326 0.084 0.004 —0.024 —-0.202 0.130 0.170
m}S [GeV] e e e 1 —0.001 0.000 -0.130 —-0.002 0.012  —-0.398
omy,. [GeV] 1 —0.000 0.122 0.003 —-0.059 0.087
1 [GeV?] e e e e . 1 —0.002 0.001 -0.007 0.024
A1) oo o S o S o 1 —0.354 —0.896 —-0.206
pl[GeV3] 1 0214 —0.118
7-(1) 1 0.570
@ (1) 1
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TABLE XIII.  Parameter correlations for the Lfgzl fit scenario in the RC expansion.
L2, Vel 02 c.  mS[GeV]  Smy [GeV] 1 [GeVZ]  @(1)  p[GeV]  p(1)  #4(1)
[Vl 1 0222 0.160 0.183 0.085 0.043 0.294 —-0.481 —-0.148 0.185
p? . 1 0.113 —0.523 0.056 0.032 0.228 —0.036 -0.373  -0.681
Cy e 1 —-0.242 —-0.004 —-0.063 0.215 -0.019 -0.541  -0.046
m}S [GeV] 1 0.142 0.028 —-0.200 -0.114 0.170 0.390
omy,. [GeV] 1 0.009 0.067 0.429 —0.056 0.037
1 [GeV?] . 1 —-0.295 —-0.106 -0.030 0.009
fi(1) 1 —-0.339 —-0.241 0.248
p1 [GeV?] 1 0.065 -0.310
72(1) 1 0.308
#,.(1) 1
TABLE XIV. Parameter correlations for the Lfv);ZDl?:]NLO fit scenario in the RC expansion.
LELNLO Vel gt 6)  F() ) ;M) #M) ) W) m®[GeV]  mp [GeV]
Vel 1 0256 -0.262 —0.625 0.014 0.061 0.127 0.050 0.218 0.035 0.003
p? 1 -0.201 -0.014 0.028 —0.042 0.575 0.558 0.228 —-0.689 0.008
G(1) 1 0.131 0.040 0.028 —0.083 -0.225 -0.316 —-0.049 0.002
F(1) e e e 1 —0.002 0.017 0.089 —-0.018 —0.069 0.021 0.001
72(1) e e e e 1 —0.082 0.470 -0.117 -0.135 0.064 —0.002
75(1) e e e e X 1 0.141  -0.091 -0.117 0.056 —-0.002
75(1) 1 0.266 0.212 —-0.166 0.000
(1) 1 —0.053 —0.457 —-0.003
i (1) 1 0.174 —0.009
m;® [GeV] 1 0.000
omy,. [GeV] 1
TABLE XV. Parameter correlations for the L‘?‘ZDI;I + SR fit scenario in the RC expansion.

my o omy, A Pi
LAl +SR [Vl p2 e (1) (1) FA() A1) #(1) [GeV] [GeV] ph(1) Bi(1) ¢i(1) [GeV?] [GeV?]
[Vl 1 0392 0.281 0.003 0.023 -0.010 0.308 0.078 0.045 0.068 0.100 0.184 0.016 0.040 —0.426
p? 1 0.347 -0.053 -0.160 0.155 0.211 0.305 —0.485 0.055 0.092 0.192 —0.460 0.035 —0.025
Cy 1 —0.050 0.186 0.147 0.326 0.143 -0.437 0.037 —0.132 -0.051 —=0.179 —0.049 —-0.053
72(1) 1 0.001 0.000 0.001 0.000 —0.003 0.000 —0.130 0.002 —0.005 —0.000 0.001
75(1) I -=0.002 0.000 -0.009 0.013 —0.001 —0.160 —0.128 0.013 —0.003 —0.004
75(1) 1 —0.004 —0.000 0.009 —-0.000 0.003 —0.360 0.014 0.000 —0.002
fi(1) 1 0.012 -0.371  0.103 —0.091 —0.035 0.084 —0.254 —0.380
(1) 1 0.005 —0.002 —0.803 —0.655 —0.865 —0.004 0.000
m}S [GeV] 1 0.033 0.045 —-0.037 0.200 —0.003 —0.035
omp,. [GeV] 1 —0.020 —0.008 0.004 0.009 0.483
Br(1) 1 0.896 0.737 0.005 0.018
Bi(1) 1 0577 0012 0.011
) (1) 1 0.001 -0.143
2y [GeV?] 1 -0.099
pi1[GeV?] 1
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TABLE XVI. Parameter correlations for the L2 _ 17 fit scenario in the RC expansion.

w>1;=1

LOR 17 [Vl P2 c, m)S [GeV]  omy. [GeV] 4, [GeV?] (1) p1[GeV3] (1) @ (1)

[Vl 1 0.394  0.188 0.008 0.042 —0.007 0.238 —0.258 —-0.339 0.085
p? e 1 0.540 —0.486 0.048 -0.033 0.312 —0.007 -0.662 —0.395
c, e e 1 —0.457 0.020 —-0.125 0.414 —0.003 -0.509 —0.110
m}S [GeV] . e e 1 0.046 0.018 —0.406 —0.037 -0.071 0.247
Smy, [GeV] 1 0.006 0.101 0.489 -0.015 0.029
1 [GeV?] coo oo ves oo e 1 —0.265 —0.086 0.055 0.013
ﬁ(l) e . . . . . 1 —0.373 —0.205 0.269
p1 [GeV?) 1 0.055 —-0.296
(1) 1 0.111

TABLE XVII. Parameter correlations for the szgzl 19 fit scenario in the RC expansion.

LYD_19 Vel p? c.  m}S[GeV] omy [GeV]  A[GeVZ] (1) p[GeV] ;1) @i(1)
|V(,,,| 1 0.247 0.217 0.031 0.073 0.024 0.335 —-0.429 —-0.184 0.144
p% cee 1 0.364 —-0.725 0.112 0.032 0.424 —-0.070 —0.489 —-0.633
C, . . 1 —-0.464 0.053 —0.055 0.385 —-0.075 —0.655 -0.120
m‘bs [GeV] e e . 1 0.019 0.008 —-0.432 -0.010 0.392 0.372
omy,. [GeV] 1 0.008 0.111 0.477 —0.093 0.007
A [GeVz] s S cee cee cee 1 —-0.256 —-0.096 —-0.034 —0.006
ﬁ(l) 1 _().378 _().379 0.181
p1 [GeV?] 1 0.100 —0.282
7.(1) 1 0.313
@i (1) 1

D;D*
TABLE XVIII. Parameter correlations for the szl;zl[hm] fit scenario in the RC expansion.

Ltz Vol 2 . mpGeV]  Smy [GeV]  A[GeV?] (1)  pi[GeVY] (D) #i(1)
[Vl 1 0.263  0.230 0.021 0.101 0.059 0.404 -0.524 —0.226 0.205
p? e 1 0.345 —-0.723 0.114 0.046 0.418 —-0.108 -0.452  -0.580
Cy e e 1 —-0.467 0.050 -0.051 0.370 -0.083 -0.627  -0.073
mlS [GeV] e e e 1 0.024 0.002 -0.410 0.006 0.345 0.323
omy,. [GeV] 1 0.016 0.126 0.403 -0.093 0.030
2y [GeV?] e e e e e 1 -0.221 -0.122 —-0.046 0.007
(1) .. . .. . .. . 1 —0.449 —0.364 0.259
21 [GeV3] 1 0.134 -0.327
7.(1) 1 0.259
(1) = I
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TABLE XIX. Parameter correlations for the L2

Shape fit scenario in the VC limit.

w>1;=1

LD _Shape  |V,|  G(1) F(1) p? . miS [GeV]  &my, [GeV] (1) 7y (1)
| Ve | 1 -0.256 —-0.630 0.259 0.092 0.126 -0.024 0.004 0.249 -0.027
g(l) cee 1 0.094 0.066 —0.285 0.021 —-0.002 0.122 -0.314 0.317
F(l) . e 1 —-0.208 0.107 0.045 —-0.007 —-0.150 —0.105 —-0.140
pi cee cee . 1 —-0.363 —-0.026 0.027 0.704 0.043 0.735
C, S . . S 1 -0.170 0.051 —0.348 —0.045 —-0.343
m‘bs [GeV] 1 0.025 —-0.072 0.264 —0.090
Smy, [GeV] 1 0014 —0.116 —0.028
A(1) 1 —-0.298 0.779
(1) 1 -0.277
$o(1) 1
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