
Constrained second-order power corrections in HQET:
RðDð�ÞÞ, jVcbj, and new physics

Florian U. Bernlochner,1 Zoltan Ligeti,2,3 Michele Papucci,4 Markus T. Prim,1 Dean J. Robinson ,2,3 and Chenglu Xiong 1

1Physikalisches Institut der Rheinischen, Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
2Ernest Orlando Lawrence Berkeley National Laboratory, University of California,

Berkeley, California 94720, USA
3Berkeley Center for Theoretical Physics, Department of Physics, University of California,

Berkeley, California 94720, USA
4Walter Burke Institute for Theoretical Physics, California Institute of Technology,

Pasadena, California 91125, USA

(Received 12 August 2022; accepted 17 September 2022; published 17 November 2022)

We postulate a supplemental power countingwithin the heavy quark effective theory (HQET) that results in
a small, highly constrained set of second-order power corrections, compared to the standard approach. We
determine all B̄ → Dð�Þ form factors, both within and beyond the standard model to Oðαs=mc;b; 1=m2

c;bÞ,
under truncation by this power counting. We show that the second-order power corrections to the zero-recoil
normalization of the B̄ → Dð�Þlνmatrix elements (l ¼ e,μ, τ) are fully determined byhadronmass parameters
and are in good agreement with lattice QCD (LQCD) predictions.We develop a parametrization of these form
factors under the postulated truncation, that achieves excellent fits to the available LQCD predictions and
experimental data, and we provide precise updated predictions for the B̄ → Dð�Þτν̄ decay rates, lepton flavor
universality violation ratios RðDð�ÞÞ, and the Cabibbo-Kobayashi-Maskawa matrix element jVcbj. We point
out some apparent errors in prior literature concerning theOð1=mcmbÞ corrections and note a tension between
commonly used simplified dispersive bounds and current data.
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I. INTRODUCTION

The heavy quark effective theory (HQET) [1–4] under-
pins key foundations in our theoretical understanding of
exclusive semileptonic b → clν̄ decays (l ¼ e, μ, τ). HQET
allows for a hadronicmodel-independent and high-precision
determination of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix element jVcbj from fits to exclusive semileptonic
decaymeasurements to light leptons, B̄→Dð�Þlν̄ (l ¼ e,μ).
Furthermore, one may obtain model-independent precision
predictions for ratios testing lepton flavor universality
violation (LFUV),

RðDð�ÞÞ ¼ Γ½B̄ → Dð�Þτν̄�
Γ½B̄ → Dð�Þlν̄� ; ð1:1Þ

both within and beyond the standard model (SM). The
current HFLAV arithmetic-averaged SM predictions are
RðDÞ ¼ 0.299ð3Þ and RðD�Þ ¼ 0.258ð5Þ [5–9].

These ratios have provided tantalizing hints for lepton
flavor universality violation over the past decade: When
combined, they currently exhibit 3σ [5] (or more [10])
tension with SM predictions. Anticipating future measure-
ment precision at the percent level for RðDð�ÞÞ (see
Ref. [10] for a review), similarly precise SM predictions
are warranted. Moreover, jVcbj recovered from exclusive
B̄ → D�lν̄ measurements currently exhibits a 3σ tension
compared to the measured value from inclusive B̄ → Xclν̄
decays [5], with the magnitude of the deviation near the
Oð10%Þ level (also see [11]). Because the extraction of
jVcbj (currently) relies on extrapolation to the zero-recoil
point, at which the hadron velocities are equal and
phase space vanishes, the exclusive measurement of
jVcbj is particularly sensitive to the parametrization of the
B̄ → Dð�Þ form factors.
In the SM, B̄ → D (B̄ → D�) transitions are described

by two (four) form factors, for a total of six. (There are
20 form factors for Bð�Þ → Dð�Þ decays in the SM and
34 if one further includes all possible new physics (NP)
interactions.) The Oð1=mc;bÞ and OðαsÞ HQET correc-
tions to the B̄ → Dð�Þ matrix elements in the SM have
been known for three decades [12–15], and explicit
Oð1=mc;b; αsÞ results for all NP matrix elements were
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recently derived [7]. At first order in the heavy quark (HQ)
expansion, six first-order wave functions are described by
three subleading Isgur-Wise functions, while the one-loop
OðαsÞ perturbative corrections are calculable (see, e.g.,
Ref. [7] for their closed-form expressions). The Oð1=m2

c;bÞ
corrections have also been known for three decades [16].
ConsideringOð1=m2

cÞ alone [all corrections atOð1=m2
c;bÞ],

6 (30) possible second-order wave functions are described
by an overcomplete basis of 20 (32) subsubleading Isgur-
Wise functions (hereafter,m2

c;b denotesm
2
c,m2

b, andmcmb).
The counting is summarized in Table I. Finally, the
Oðαs × 1=mc;bÞ corrections are also long known (see,
e.g., Ref. [14] for a review).
The expected size of theOð1=mcÞ,Oð1=mbÞ, andOðαsÞ

corrections are about 20%, 5%, and 10%, respectively
(as the approximate small parameter is ∼ΛQCD=mc;b or
∼αs=π). The second-order corrections at Oð1=m2

cÞ can also
be expected to contribute at the∼5% level. Moreover, in the
zero-recoil limit the B̄ → D� form factor, F ð1Þ (defined
below), has vanishing first-order corrections, but its result-
ing value at Oðαs; 1=mc;bÞ differs at the 5% level from
lattice QCD (LQCD) predictions [17]. These observations
lead to the following possibilities: (a) given that second-
order or higher corrections must fix the F ð1Þ tension, it is
possible the HQ expansion of the B̄ → Dð�Þ matrix ele-
ments could be “badly behaved,” such that 1=m2

c terms may
be unexpectedly large; or (b) while second-order power
corrections must be important at zero recoil because of the
vanishing first-order corrections at the phase space point,
they are otherwise subdominant and the data beyond zero
recoil will be predominantly described by first-order
corrections. The latter is the approach used in Ref. [7]
that performed the first combined and self-consistent
analysis of B̄ → Dð�Þlν decays at Oðαs; 1=mc;bÞ. In this
approach, only the shape of the differential distributions
was used to constrain the subleading Isgur-Wise functions.
Recent analyses that attempt to quantify the effect of

second-order power corrections [9,18,19] treat the six
Oð1=m2

cÞ wave functions (or a subset of them) as nuisance

parameters in phenomenological fits. These analyses fur-
ther make use of theoretical inputs from model-dependent
calculations, such as QCD sum rules (QCDSR) or light
cone sum rules (LCSR). Such studies typically estimated
that the HQ expansion appears well-behaved at Oð1=m2

cÞ.
In addition, the constrained structure of the HQET for
Λb → Λclν decay has permitted its far simpler Oð1=m2

cÞ
contributions [20] to be extracted from combined fits to
data and LQCD results [21,22]. These were found to be
compatible with a well-behaved HQ expansion, too.
In this paper, we propose a supplemental power counting

within the HQ expansion that allows one to truncate, in a
well-defined manner, the number of subsubleading Isgur-
Wise functions to 3 instead of 32 in the B̄ → Dð�Þ system,
and to just a single subsubleading Isgur-Wise function at
Oð1=m2

cÞ alone. This approach provides a predictive set of
second-order power corrections in B → Dð�Þlν decays that
can be tested with available data, without using additional
model-dependent QCDSR or LCSR inputs. Specifically,
we show that one may formally power count in insertions of
the transverse residual momentum operator of the HQET
mass-subtracted states, =D⊥, and we develop a conjecture
that terms entering at third order or higher in this power
counting should be suppressed. We refer to the resulting
expansion as the “residual chiral” (RC) expansion.
The goal of this work is to derive the set of

Oðαs × 1=mc;b; 1=m2
c;bÞ corrections to the B̄ → Dð�Þ form

factors, in both the SM and beyond, under truncation at
second order in the RC expansion. As a point of compari-
son to the RC expansion, we also consider the vanishing
chromomagnetic (VC) interaction limit [16,23–25], which
also dramatically simplifies the number of subleading and
subsubleading Isgur-Wise functions. We then confront the
RC expansion and VC limit results with available exper-
imental measurements and LQCD predictions, and obtain
precise results for jVcbj and SM predictions for RðDð�ÞÞ.
These objectives require the assembly of a wide range of

theoretical and phenomenological components. First, to
ensure self-consistent conventions we carefully (re)develop
the formal elements of the general HQ expansion that are
required when working at second order, and then we
develop the RC conjecture, showing how it constrains
and simplifies the structure of the power corrections (Sec. II
and Appendices A–C). Second, we proceed to apply this to
the B̄ → Dð�Þ system, deriving the corrections up to and
including Oðαs × 1=mc;b; 1=m2

c;bÞ under truncation by the
RC expansion, incorporating zero-recoil and normalization
constraints, and removing redundant higher-order terms
(Sec. III and Appendices D and E). We note apparent sign
errors or inconsistencies for several Oð1=mcmbÞ wave
functions derived in Ref. [16]. Third, we construct a
parametrization of these corrections, implementing the
1S short-distance mass scheme for heavy quark masses
and an analytic structure for the leading Isgur-Wise
function that respects the HQ expansion at second order

TABLE I. Number of B̄ → Dð�Þ form factors and Isgur-Wise
functions entering at each fixed order in HQET. The residual
chiral (RC) expansion is developed in this work, which we
compare to the vanishing chromomagnetic (VC) limit. (For
details of the counting rules see Sec. III E.)

Isgur-Wise functions

HQET order
Fixed-order

wave functions All RC expansion VC limit

1=m0
c;b 1 1 1 1

1=m1
c;b 6 3 3 1

1=m2
c 6 20 1 3

1=m2
c;b 30 32 3 4

FLORIAN U. BERNLOCHNER et al. PHYS. REV. D 106, 096015 (2022)

096015-2



(Sec. IV). These results are encoded in the HAMMER library
[26,27]. We show that the tremendous simplification of the
second-order power corrections under the RC expansion
constrains most zero-recoil corrections to be a combination
of the hadron mass parameters, λ1 and λ2. We investigate
the zero-recoil predictions for various form factors and their
ratios, and find that the value of F ð1Þ is in good agreement
with LQCD results (Sec. V). Finally, in Sec. VI, the
parametrizations of both the RC expansion and the VC
limit are fitted against all available experimental measure-
ments and LQCD data, examining various fit scenarios that
consider different combinations of experimental and LQCD
inputs and different assumptions. The latter includes fits
that truncate at lower order in HQET and fits that constrain
only the shape of the distributions, as done in Ref. [7]. To
properly identify optimal parameter subsets that describe
the data and avoid potential overfitting, we employ a nested
hypothesis test (NHT) prescription.
Several important observations ensue from our analysis:

(i) Under the NHT prescription, we identify optimal
parameter sets for the RC expansion including Oð1=m2

cÞ
terms, which achieve excellent agreement with the data
with relatively few parameters and without using any
QCDSR (or LCSR) inputs. We obtain

RðDÞ ¼ 0.288ð4Þ; RðD�Þ ¼ 0.249ð3Þ;
jVcbj ¼ 38.7ð6Þ × 10−3 ð1:2Þ

These results can be compared to other recent results
[17,18,28–31]. (ii) While the inclusion of zero-recoil sec-
ond-order power corrections in theRCexpansion is crucial to
good fits, the inclusion of second-order power corrections
beyond zero recoil is not. This supports the approach used in
Ref. [7]. (iii) The slope-curvature relation developed by
Ref. [32] is in tensionwith the data and leads to large upward
biases in RðDÞ. (iv) The VC limit, in contrast to the RC
expansion, produces poor fits because of its structure at zero
recoil, but using only shape information yields good fits.

II. THE RESIDUAL CHIRAL EXPANSION

A. General HQET preliminaries

The standard construction of HQET follows from a
reorganization of the QCD Lagrangian for a heavy quarkQ
with mass mQ, in terms of the mass-subtracted fields

Qv
�ðxÞ ¼ eimQv·xΠ�QðxÞ: ð2:1Þ

The parameter v is a heavy quark velocity—defined up to
reparametrization freedom [33] via pQ ¼ mQvþ k, in
which k ∼ ΛQCD is a residual momentum—and the pro-
jectors Π� ¼ ð1� =vÞ=2. This yields

LQCD ¼ Q̄vþiv ·DQvþ þ Q̄vþi=D⊥Qv
− þ Q̄v

−i=D⊥Qvþ
− Q̄v

−ðiv ·Dþ 2mQÞQv
−: ð2:2Þ

Here Dμ is a gauge covariant derivative of QCD, and the
transverse derivative Dμ

⊥ ¼ Dμ − ðv ·DÞvμ. Because of the
mass subtraction in the phase of Q ∼ e−ipQ·x, the derivative
D ∼ k ∼ ΛQCD, so that in the heavy quark regime,
mQ ≫ ΛQCD, one may integrate out the double heavy
field Qv

− yielding an effective theory for the light field
Qvþ with order-by-order corrections in 1=mQ. This HQET
Lagrangian reads

LHQET ¼ Q̄vþiv ·DQvþ þ Q̄vþi=D⊥
1

iv ·Dþ 2mQ
i=D⊥Qvþ:

ð2:3Þ
Writing LHQET ¼ P

n¼0 Ln=ð2mQÞn to second order,

L0 ¼ Q̄vþiv ·DQvþ; ð2:4aÞ

L1 ¼ −Q̄vþ=D⊥=D⊥Qvþ ¼ −Q̄vþ

�
D2 þ aQðμÞ

g
2
σαβGαβ

�
Qvþ;

ð2:4bÞ
L2 ¼ Q̄vþ½=D⊥iv ·D=D⊥�Qvþ

¼ gQ̄vþ½vβDαGαβ − ivασβγDγGαβ�Qvþ: ð2:4cÞ
Here the field strength igGαβ ¼ ½Dα; Dβ�, σαβ ≡ i

2
½γα; γβ�,

and we have made use of the equation of motion,
iv ·DQvþ ¼ 0, in the free effective theory.1 The coefficient
of the L1 chromomagnetic operator aQðμÞ is renormalized
by the strong interactions, where μ is an arbitrary matching
scale of QCD onto HQET. Its deviation from unity is
important when considering corrections at Oðαs=mQÞ and
higher. Therefore, it can consistently be neglected every-
where except when discussing the Oðαs=mQÞ radiative
corrections, for which we use

aQðμÞ≡ 1þ αs
π
CQ
g ðμÞ; ð2:5Þ

with CQ
g ðμÞ ¼ −ð3=2Þ½lnðmQ=μÞ − 13=9� [35] (see also

Refs. [14,36]), and except for explicit evaluation of the
λ2 parameter [see Eqs. (A9) and (A10)]. The renormaliza-
tion of the coefficients of the L2 terms can be neglected
at Oðαs=mQÞ.
At any order in 1=mQ, one may compute Lagrangian

corrections to a particular HQET correlator via an operator
product involving the Li. In addition, the quark source term
J̄Q for a QCD correlator can be expressed with respect to
mass-subtracted quantities via J̄Q ¼ J̄vðQþ þQ−Þ≡
J̄vJ HQETQvþ, with Jv ¼ eimQv·xJ. The time-ordered corre-
lators of full QCD will then match onto time-ordered

1In the full effective theory, the equation of motion receives
corrections, such that beyond leading order iv ·DQvþ ≃
1=ð2mQÞ=D⊥=D⊥Qvþ þ � � �. As usual in any perturbation theory,
consistent power counting in 1=mQ mandates the use of the free
equation of motion at each order in 1=mQ (see, e.g., [34]).
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HQET correlators determined by functional derivatives
with respect to Jv, order-by-order in 1=mQ. Applying
the equations of motion from Eq. (2.2), the source term
becomes

J̄Q ¼ J̄v
�
1þ 1

iv ·Dþ 2mQ
i=D⊥

�
Qvþ

¼ J̄v
�
1þ Π−

�
i=D
2mQ

−
=D=D
4m2

Q
þ � � �

��
Qvþ; ð2:6Þ

keeping terms to second order, and noting the second-order
term arises via Π−v ·D=D⊥Qvþ ¼ −Π−=D=DQvþ because of
the Qvþ equation of motion. Expanding the current factor

J HQET ¼ 1þ Π−

X
n¼1

J n=ð2mQÞn; ð2:7Þ

then J 1 ¼ i=D, and J 2 ¼ −=D=D. We define the conjugate

J̄ n ≡ γ0J⃖ †
nγ

0: ð2:8Þ

Here J⃖ (J⃗ ) indicates action of the derivatives to the left
and right, respectively: it is always the case that J̄ (J ) acts
to the left (right).
In this work, we are interested in computing the matrix

elements for exclusive heavy-quark hadron transitions, via
matching onto HQET. For a b → c transition (i.e.,Q ¼ c or
b) involving hadrons Hb → Hc, the QCD matrix elements
of interest are hHcjc̄ΓbjHbi, where Γ is any Dirac matrix.
The matching onto HQET corresponds to equating the
QCD matrix element to the path integral computed in
HQET,

hHcjc̄ΓbjHbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimHc
mHb

p ¼ hHv0
c j

1

Z

Z
Dc̄v

0
þDcv

0
þDB̄vþDbvþ

× exp

�
i
Z

d4x½L0
HQET þ LHQET�ðxÞ

�

× c̄v
0

þJ̄ 0
HQETΓJ HQETbvþjHv

bi; ð2:9Þ

in which Z is the partition function of the free theory
generated by L0. As is the usual practice, we use a
notational convention that labels charm parameters with
primes while beauty parameters are unprimed. At any order
in 1=mc;b, one may read off from Eq. (2.9) the HQET
correlators that contribute to the hadronic matrix element.
Note the corrections to the source term induce corrections
to the HQET current c̄v

0
þΓbvþ: the current corrections.

A particularly important application of Eq. (2.9) is the
matching of the QCD correlator involving the HQET
Hamiltonian hHjQ̄vþiv ·DQvþjHi onto HQET, from which
one may derive the hadron mass expansion,

mH ¼ mQ þ Λ̄þ ΔmH
2

2mQ
þ � � � ;

ΔmH
2 ¼ −λ1 − dHaQðμÞλ2ðμÞ: ð2:10Þ

In Appendix A we present this derivation from first
principles, including precise definitions of the HQ mass
parameters B̄, λ1, and λ2 and pertinent conventions used in
this work that are important to a self-consistent derivation
of the second-order power corrections. In Eq. (2.10) we
have explicitly restored the renormalization factor for the
chromomagnetic operator. For a pseudoscalar (P) and
vector (V) meson, furnishing a heavy quark doublet with
brown muck spin-parity sπl ¼ 1

2
−, the factors dP ¼ 3 and

dV ¼ −1, respectively.
The HQET eigenstates of L0, jHvi, are normalized such

that

hHv0 ðk0ÞjHvðkÞi ¼ 2v0δvv0 ð2πÞ3δ3ðk − k0Þ: ð2:11Þ

Note this normalization choice differs from that in Ref. [16],
which normalized the HQET states with respect to an HQ
mass scale,mQ þ B̄. Similarly the matching (2.9) is defined
with respect to normalized QCD states. To second order,
Eq. (2.9) then becomes

hHcjc̄ΓbjHbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimHc
mHb

p ≃ hHv0
c jc̄v0þΓbvþjHv

bi þ
1

2mc
hHv0

c jðc̄v0þJ̄ 0
1 þ L0

1 ∘ c̄v
0

þÞΓbvþjHv
bi

þ 1

2mb
hHv0

c jc̄v0þΓðJ 1bvþ þ bvþ ∘ L1ÞjHv
bi

þ 1

4m2
c
hHv0

c jðc̄v0þJ̄ 0
2Π0

− þ L0
2 ∘ c̄v

0
þ þ L0

1 ∘ c̄v
0

þJ̄ 0
1Π0

− þ 1

2
L0
1 ∘ L0

1 ∘ c̄v
0

þÞΓbvþjHv
bi

þ 1

4m2
b

hHv0
c jc̄v0þΓðΠ−J 2bvþ þ bvþ ∘ L2 þ Π−J 1bvþ ∘ L1 þ

1

2
bvþ ∘ L1 ∘ L1ÞjHv

bi

þ 1

4mcmb
hHv0

c jðc̄v0þJ̄ 0
1 þ L0

1 ∘ c̄v
0

þÞΓðJ 1bvþ þ bvþ ∘ L1ÞjHv
bi: ð2:12Þ
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The Π− projectors on the J 1 terms have been eliminated in
some terms by the Qvð0Þþ equation of motion. Here, the ∘
operator denotes an operator product. For instance,

L0
1 ∘ c̄v

0
þðzÞ ¼ i

Z
d4xL0

1ðxÞc̄v
0

þðzÞ

¼ −i
Z

d4x c̄v
0

þðxÞ
�
D2 þ g

2
σαβGαβ

�
P0

2ðx − zÞ;

ð2:13Þ
in which P2ðx − zÞ is the (dressed) heavy quark two-point
function.
Of particular utility when working at second order is the

observation that the two-point function is Green’s function

iv ·DzP2ðx − zÞ ¼ −iΠþδ4ðx − zÞ; ð2:14Þ

i.e., it generates a contact term. Such terms play a
particularly important role within Schwinger-Dyson rela-
tions, as discussed in Appendix B. At first order, these
relations constrain matrix elements arising from the
Oð1=mQÞ current corrections with respect to B̄ times the
leading-order matrix element, i.e., the well-known relation
in Eq. (B4). At second order, one obtains Eq. (B5), which
relates matrix elements arising from Oð1=m2

QÞ current
corrections and the Oð1=mQmQ0 Þ mixed corrections, with
ΔmH

2 times the leading-order matrix element and Λ̄ times
the matrix element from Oð1=mQÞ Lagrangian corrections.
In Appendix B we derive these relations from first
principles (cf. Appendix C of Ref. [16]).
It is important to keep in mind that the notationQ ¼ c or

b here and throughout is merely a convenient reminder of
which HQET operator acts on the ingoing and outgoing
states. From the point of view of HQET, there is no
distinction between bvþ and cvþ: The heavy quark flavor
symmetry is broken only by the masses mb ≠ mc. We will
therefore switch as convenient between writing Q̄v0þΓQvþ
and c̄v

0
þΓbvþ.

B. Interaction operator basis

Writing the QCD current JΓ ¼ c̄Γb, then a full operator
basis entering the QCD matrix elements hHcjc̄ΓbjHbi is

JS ¼ c̄b; JP ¼ c̄γ5b; JV ¼ c̄γμb;

JA ¼ c̄γμγ5b; JT ¼ c̄σμνb; ð2:15Þ
where, again, σμν ≡ ði=2Þ½γμ; γν�. The pseudotensor contri-
bution is determined by the identity σμνγ5 ≡�ði=2Þϵμνρσσρσ,
in which the sign is subject to a convention choice. For
B̄ → Dð�Þ, the sign conventionmost often chosen is such that
σμνγ5 ≡ −ði=2Þϵμνρσσρσ, which implies Tr½γμγνγργσγ5� ¼
þ4iϵμνρσ. This is the opposite of the sign convention often

used for B̄ → D�� or Λb → Λð�Þ
c .

Perturbative corrections to the currents (2.15) may be
computed by matching QCD onto HQET local operators
[37–39] at a suitable matching scale μ. We present the
general derivation of these corrections in Appendix C.

C. Modified power counting

We are interested in exploring whether it is possible to
develop a supplemental power counting, on top of the
heavy quark expansion, that may systematically reorganize
the second-order power corrections into a small set of
dominant terms, plus a larger set of subdominant contri-
butions that can be truncated.
The heavy quark expansion arises from a reorganization

of the QCD Lagrangian into the L0 term that obeys heavy
quark spin-flavor symmetry, plus symmetry-breaking cor-
rections suppressed by powers of 1=mQ (and by αs). The
order of any given correction in the 1=mQ expansion is
effectively determined by the number of insertions of
Qv

−Q̄v
− into a QCD correlator of interest, which are then

integrated out to form the corresponding HQET matrix
element. This expansion does not assign any relative
importance to the local current corrections versus nonlocal
Lagrangian insertions that enter at each fixed order.
However, with respect to the structure of 1=mc;b corrections
in B̄ → Dð�Þ decays, it has been hypothesized (albeit based
on model-dependent calculations, such as QCDSR) that
corrections from the chromomagnetic operator in the L1

Lagrangian may be numerically small compared to the
current corrections from J 1 [23–25]. These expectations
are also supported somewhat by fits to B̄ → Dð�Þ data at
Oð1=mc;bÞ [7], and they are compatible with fits to B̄ →
D�� data, which find that first-order chromomagnetic
contributions are consistent with zero [40,41].
With this in mind, a distinguishing feature between a

current and a Lagrangian correction is the number of =D⊥
insertions involved: there is one for the former, and two for
the latter, as follows immediately from Eqs. (2.6) and (2.3).
Thus, one may contemplate an additional expansion
that resembles counting in =D⊥=ΛQCD, in which each
Lagrangian insertion amounts to two powers of
=D⊥=ΛQCD, while a current insertion involves just a single
power of =D⊥=ΛQCD. As we will see in this section and the
next, this counting can be related to an expansion in the
number of operator products inserted along the heavy quark
line, with the additional counting rule that a current
insertion counts for half that of a Lagrangian one.
Before discussing further such an expansion, which can

be fully defined within HQET (the low energy effective
field theory), it is useful to consider first the origin of the
difference in the number of =D⊥ ’s entering the current and
Lagrangian insertions. This is better understood by looking
at the matching between QCD and HQET. In particular,
apart from counting the number of insertions ofQv

−Q̄v
−, one

may additionally count the number of insertions of the
cross term Q̄vþi=D⊥Qv

− into a QCD correlator (after which
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Qv
− is integrated out to form an HQET correlator). This

counting is not the same as for 1=mQ, because of the
equation of motion for Qv

−. The cross terms break the
accidental Uð1Þ2 chiral symmetry, respected by the Qv

�
kinetic terms, to a diagonalUð1Þ. Therefore, although there
is no small parameter in the QCD Lagrangian (2.2) that
parametrizes this chiral symmetry breaking, one may
nonetheless systematically organize the contributions to
any matrix element by power counting in the number of
insertions of the chiral symmetry breaking cross term that
enter into each correlator.
Referring to Eq. (2.2), one may implement this power

counting by introducing a chiral symmetry breaking
parameter θ, such that

i=D⊥ → θi=D⊥; ð2:16Þ

and determining the degree of θ in any HQET correlator
after Qv

− is integrated out. With respect to the heavy quark
expansion of the Lagrangian, it follows from Eq. (2.3) that
the leading term L0 ∼ θ0, while all the Ln≥1 ∼ θ2. In the
heavy quark expansion of the source term (2.6), however,
all the current correction terms J n≥1 ∼ θ. Moreover, all
product current correction terms from J̄ 0

mJ n—i.e., terms
at order 1=ðmm

Q0mn
QÞ—are then ∼θ2. The θ power counting

is summarized in Table II.

D. Operator product conjecture

Because pure current corrections act on one of the
external states, the single =D⊥ term that is inserted by these
corrections amounts to inserting a factor =k⊥ð� � �Þ ∼
ΛQCDð� � �Þ in the matrix element, where k⊥ ¼ k− ðv · kÞv
and ð� � �Þ denotes powers of iv · k=ð2mQÞ ∼ ΛQCD=mQ.

2

We similarly expect a current-current product correction to
involve a factor ð� � �Þ=k⊥=k⊥ð� � �Þ ∼ ð� � �ÞΛ2

QCDð� � �Þ. By con-
trast, a pure Lagrangian correction involves an operator
product with two =D⊥ insertions, producing a factor of
the form QvþðzÞ ∘ Ln ∼

R
d4xP2ðx − zÞ=D⊥ð� � �Þ=D⊥QvþðxÞ.

This, in turn, entails an integral of the formR
d4k=k⊥ð� � �Þ=k⊥=ðv · kÞQvþðkÞeik·z, which can be thought

of as a second moment of the (dressed) two-point function,
with respect to the transverse residual momentum, plus
higher-order HQET corrections.
Recalling, as mentioned in the previous section, that

corrections in B̄ → Dð�Þ decays from the first-order chro-
momagnetic operator are hypothesized to be numerically
small compared to the current corrections [23–25], and that
chromomagnetic contributions are consistent with zero in
fits to B̄ → D�� data [40,41], one might hypothesize that,
generally,

Z
d4k=k⊥ð� � �Þ=k⊥=ðv · kÞQvþðkÞeik·z ≪ Λ5=2

QCDð� � �Þ: ð2:17Þ

A mixed current and Lagrangian correction involves
three =D⊥’s, yielding a factor ∼

R
d4k=k⊥ � � �=k⊥ð� � �Þ=k⊥=

ðv · kÞQvþðkÞeik·z, while a Lagrangian-Lagrangian operator
product correction yields a factor ∼

R
d4k½=k⊥ð� � �Þ=k⊥=

ðv · kÞ�2QvþðkÞeik·z. Given Eq. (2.17), this leads us to the
conjecture regarding the magnitudes of integrals of the
form

Z
d4k=kl⊥ � � � ½=k⊥ð� � �Þ=k⊥=ðv · kÞ�mQvþðkÞeik·z

∼ ϵ2mþlΛmþlþ3=2
QCD ð� � �Þ; ð2:18Þ

with l ¼ 0 or 1 and m ≥ 1, and treating ϵ as a small
parameter. That is, the greater the number of operator
products in a correlator, the smaller its value.
The conjectured ϵ expansion in Eq. (2.18) requires at least

one operator product, and it is formally different from that of
the θ expansion, because at Oðθ2Þ the product current
corrections enter that do not involve an operator product.
Further, radiative corrections in HQET may induce mixing
under the renormalization group evolution (RGE), such that
the Wilson coefficient of an operator containing n time-
ordered operator products may induce a (αs=π-suppressed)
correction to one containing m ≤ n [42].3 In the context of
the ϵ power counting, this amounts to higher-order operators
generating contributions to lower-order ones. This, however,
is not a problem (and not dissimilar to what happens with
conventional perturbative expansions) as long as ϵ is small,
which is the basic assumptionmotivating this expansion: it is
based on empirical evidence at Oð1=mQÞ and ultimately

TABLE II. Orders at which current and Lagrangian corrections
(n ≥ 1), as well as hadron mass parameters, enter in the heavy
quark and residual chiral expansions. The RC power counting for
Λ̄ follows from the Schwinger-Dyson relation (B4) and for λ1;2
from Eq. (A8).

Correction or
parameter Associated HQ order =D⊥ power counting

L0 1=m0
Q θ0

Ln 1=mn
Q θ2

J n 1=mn
Q θ

Λ̄ 1=m1
Q θ

λ1;2 1=m2
Q θ2

ρ1 1=m3
Q θ2

2With some abuse of notation we track here only the transverse
momentum contributions originating from the Fourier transform
of ∂⊥. The same power counting would also apply to the soft
gluon interactions contained in the covariant derivative D⊥. 3We thank Mike Luke for pointing this out.
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involves a question about nonperturbative QCD dynamics
that can be determined only by comparing this constrained
expansion to experimental or lattice data.
The first occurrence of this phenomenon—higher-order

operators generating contributions to lower-order ones—is
at second order in the heavy quark expansion, at which,
for example, the operator product L1 ∘ L1 induces an
Oðαs=m2

QÞ correction to the L2 Wilson coefficient [43,44].
However, the L2 Wilson coefficient or that of any other
term up to and including Oðθ2Þ cannot radiatively generate
contributions toOðϵ3Þ or higher-order operators. Moreover,
atOðθ3Þ and beyond, the θ and tree-level ϵ power countings
coincide, so that the θ expansion becomes a convenient tool
for tracking, within HQET, the conjectured ϵ suppressions.
That is, from the conjectured ϵ expansion in HQET, one
may deduce that Oðθ2Þ and lower-order terms dominate
those at Oðθ3Þ and higher, while any RGE-induced
counterterms from the latter will be captured by Oðθ2Þ
terms that are already present. Thus we may truncate the
expansion at Oðθ2Þ. We refer to this as the residual chiral
(RC) expansion.

E. Modified heavy quark expansion

If one keeps terms up to and including Oðθ2Þ, then all
the usual Oð1=mQÞ terms are retained in Eq. (2.9).
However, at Oð1=m2

QÞ, while the second-order J 2 correc-
tions and L2 Lagrangian corrections are retained, the mixed
corrections involving J 1L1 ∼ θ3 and L1 double insertions
L1L1 ∼ θ4 are neglected. AtOð1=m2

c;b; θ
2Þ, Eq. (2.12) then

simplifies to

hHcjc̄ΓbjHbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimHc
mHb

p ≃ hHv0
c jc̄v0þΓbvþjHv

bi

þ 1

2mc
hHv0

c jðc̄v0þJ̄ 0
1 þL0

1 ∘ c̄v0þÞΓbvþjHv
bi

þ 1

2mb
hHv0

c jc̄v0þΓðJ 1bvþ þ bvþ ∘ L1ÞjHv
bi

þ 1

4m2
c
hHv0

c jðc̄v0þJ̄ 0
2Π0

− þL0
2 ∘ c̄v0þÞΓbvþjHv

bi

þ 1

4m2
b

hHv0
c jc̄v0þΓðΠ−J⃗ 2bvþ þ bvþ ∘ L2ÞjHv

bi

þ 1

4mcmb
hHv0

c jc̄v0þJ̄ 0
1ΓJ 1bvþjHv

bi: ð2:19Þ

Because the two neglected types of Oð1=m2
QÞ corrections

are the sources of a large number of subsubleading Isgur-
Wise functions in B̄ → Dð�Þ, tremendous simplification of
the second-order power corrections in B̄ → Dð�Þ ensues.
Similarly, for the hadron mass expansion parameters,

the Schwinger-Dyson relation (B4) implies Λ̄ ∼ θ, while

by definition ΔmH
2 ∼ θ2 and thus λ1;2 ∼ θ2. Thus the

Schwinger-Dyson relations (B5) at Oðθ2Þ simplify to

hHv0
c jc̄v0þðzÞJ̄ 0

2Π0þΓbvþðzÞjHv
bi¼!− ΔmHc

2 hHv0
c jJΓþðzÞjHv

bi;
hHv0

c jc̄v0þðzÞΓΠþJ 2bvþðzÞjHv
bi ¼!− ΔmHb

2 hHv0
c jJΓþðzÞjHv

bi;
ð2:20Þ

writing the HQET current operator JΓþðzÞ ¼ c̄v
0

þðzÞΓbvþðzÞ.
These allow us to relate the IW functions associated with
second-order current corrections to λ1;2 times the leading
IW function.
One additional point of importance is that in this

expansion the Oðθ3Þ terms at second order—the terms
corresponding to mixed current and Lagrangian corrections
∼J 1L1—vanish at zero recoil [16]. Thus, if the residual
chiral expansion is a good approximation, we may expect it
to be particularly useful at zero recoil because only Oðθ4Þ
corrections enter.

III. B̄ → Dð�Þ FORM FACTORS

A. HQET matrix elements

The D and D� (or B and B�) mesons belong to a HQ
spin-symmetry doublet, formed by the tensor product of a
spin-1=2 heavy quark with brown muck in the sπl ¼ 1

2
−

spin-parity state. This doublet, containing the pseudoscalar
(P) and vector (V) mesons with a single heavy quark, can
be represented as [37,45,46]

Hv ↦ HðvÞ ¼ Πþ½Vv=ϵ − Pvγ5�;
H̄v ↦ H̄ðvÞ≡ γ0Hv†γ0 ¼ ½V̄v=ϵ� þ P̄vγ5�Πþ; ð3:1Þ

in which ϵμ denotes the polarization vector of the spin-1
state with velocity v. Here and hereafter X̄ ¼ γ0X†γ0 for
any Dirac object X.
With reference to the reduced terms in Eq. (2.19) at

Oð1=m2
c;b; θ

2Þ the matching of HQET to the QCD matrix
elements becomes

hDð�Þjc̄ΓbjB̄ð�ÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimHc
mHb

p ¼ −ξðwÞ
�
Tr½H̄cðv0ÞΓHbðvÞ�

þ
X2
n¼1

εncTr½H̄ðnÞ
c ðv0; vÞΓHbðvÞ�

þ
X2
n¼1

εnbTr½H̄cðv0ÞΓHðnÞ
b ðv; v0Þ�

þ εcεbTr½ΓHð1;1Þ
bc ðv; v0Þ�

�
; ð3:2Þ

defining
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HðnÞðv;v0Þ ¼ ΠþfPvL̂ðnÞ
1 ð−γ5Þ þVvðL̂ðnÞ

2 =ϵþ L̂ðnÞ
3 ϵ · v0Þg

þΠ−fPvL̂ðnÞ
4 ð−γ5Þ þVvðL̂ðnÞ

5 =ϵþ L̂ðnÞ
6 ϵ · v0Þg;

ð3:3aÞ

H̄ðnÞðv0; vÞ ¼ fP̄v0 L̂ðnÞ
1 γ5 þ V̄v0 ðL̂ðnÞ

2 =ϵ0� þ L̂ðnÞ
3 ϵ0� · vÞgΠ0þ

þ fP̄v0L̂ðnÞ
4 γ5 þ V̄v0 ðL̂ðnÞ

5 =ϵ0� þ L̂ðnÞ
6 ϵ0� · vÞgΠ0

−;

ð3:3bÞ

Hð1;1Þ
bc ðv; v0Þ ¼ Π−fPvP̄v0M̂8ð−γ5Þγ5

þ PvV̄v0 ð−γ5Þ½M̂9=ϵ0� þ M̂10ϵ
0� · v�

þ VvP̄v0 ½M̂9=ϵþ M̂10ϵ · v0�γ5
þ VvV̄v0 ½M̂11=ϵ=ϵ0� þ M̂12ϵ · ϵ0�

þ M̂13=ϵϵ0� · vþ M̂13=ϵ0�ϵ · v0

þ M̂14ϵ
0� · v ϵ · v0�gΠ0

−: ð3:3cÞ

Here we have included inHð1;1Þ
bc only those terms relevant

for matching at Oð1=m2
c;b; θ

2Þ. The full expressions are
given in Appendix G. The recoil parameter is defined as

w ¼ v · v0 ¼ m2
Bð�Þ þm2

Dð�Þ − q2

2mBð�ÞmDð�Þ
; q2 ¼ ðp − p0Þ2; ð3:4Þ

and the HQ expansion parameters,

εc;b ¼
Λ̄

2mc;b
: ð3:5Þ

[As mentioned in Sec. II A, the c and b subscripts on the
field representations in Eq. (3.2) are mere reminders of the
flavor of the hadron: the HQET is agnostic to this
distinction except via εb ≠ εc and within perturbative
corrections.] Since we have normalized the HQET states
according to Eq. (2.11), then Eq. (3.2) need not include the
ZM factors present in Eq. (4.34) of Ref. [16].
Following convention, in Eq. (3.2) we have factored out

the leading Isgur-Wise function, ξðwÞ, from all terms.
Matching onto HQET, at leading order, the normalization
of the QCDmatrix element for the conserved vector current
in the equal mass, zero-recoil limit

hHjQ̄γμQjHi ¼ 2mHvμ; ð3:6Þ

implies that ξð1Þ ¼ 1. We discuss further zero-recoil con-
straints in Sec. III D. As done in, e.g., Refs. [7,14,47] (but
not in Refs. [12,15]) we have further normalized terms in
the expansion with respect to Λ̄, such that all Isgur-Wise
functions are dimensionless.
We use the notation that hatted functions of w are

normalized to the leading Isgur-Wise function,

ŴðwÞ≡WðwÞ=ξðwÞ; ð3:7Þ

for any Isgur-Wise function or form factor. In particular, the

L̂ðnÞ
i and M̂i denote linear combinations of higher-order

Isgur-Wise functions4 normalized by ξ.

B. Form-factor matching

We use the standard HQET definitions for the B̄ → Dð�Þ

form factors. The B̄ → D matrix elements are

hDðp0Þjc̄bjB̄ðpÞiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ¼ hSðwþ 1Þ; ð3:8aÞ

hDðp0Þjc̄γ5bjB̄ðpÞiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ¼ hDðp0Þjc̄γμγ5bjB̄ðpÞiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ¼ 0; ð3:8bÞ

hDðp0Þjc̄γμbjB̄ðpÞiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ¼ ½hþðvþ v0Þμ þ h−ðv− v0Þμ�; ð3:8cÞ

hDðp0Þjc̄σμνbjB̄ðpÞiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ¼ i½hTðv0μvν−v0νvμÞ�; ð3:8dÞ

and for B̄ → D�,

hD�ðp0Þjc̄bjB̄ðpÞiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ¼ 0; ð3:9aÞ

hD�ðp0Þjc̄γ5bjB̄ðpÞiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ¼ −hPðϵ� · vÞ; ð3:9bÞ

hD�ðp0Þjc̄γμbjB̄ðpÞiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ¼ ihVεμναβϵ�νv0αvβ; ð3:9cÞ

hD�ðp0Þjc̄γμγ5bjB̄ðpÞiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ¼ ½hA1
ðwþ 1Þϵ�μ

− hA2
ðϵ� · vÞvμ − hA3

ðϵ� · vÞv0μ�;
ð3:9dÞ

hD�ðp0Þjc̄σμνbjB̄ðpÞiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ¼−εμναβ½hT1
ϵ�αðvþv0Þβ

þhT2
ϵ�αðv−v0ÞβþhT3

ðϵ� ·vÞvαv0β�:
ð3:9eÞ

4In the notation of Ref. [16], Λ̄L̂ð1Þ
i ¼ Li=ξ, Λ̄2L̂ð2Þ

i ¼ li=ξ,
and Λ̄2M̂i ¼ mi=ξ. We have added the superscript index to the
L̂’s in order to make clearer at which order they enter into the
power expansion. We use the standard numbering for the sub-
scripts of the L̂ðnÞ

i , while our numbering for the M̂i is the same as
those used for the mi in Ref. [16].
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Here the hΓi
are functions of w. While typically we are not

interested in B̄� → Dð�Þ decays, because the B� decays to
Bγ, the vector current matrix element for B̄� → D� is
important for mass normalization constraints at second
order: a generalization of Luke’s theorem. In particular, we
need also consider

hD�ðp0Þjc̄γμbjB̄�ðpÞiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ¼ −ϵ · ϵ0�h1ðvþ v0Þμ þ � � � ; ð3:10Þ

which is the only form factor that contributes in the zero-
recoil, equal mass limit.

For the sake of writing the form factors in terms of L̂ðnÞ
i

and M̂i in a compact manner, it is convenient to define

L̂ðQÞ
i ¼ L̂ð1Þ

i þ εQL̂
ð2Þ
i ; Q ¼ c; b: ð3:11Þ

In this notation, the hatted B̄ → D form factors [see
Eq. (3.7)] at Oðαs; 1=m2

c;b; θ
2Þ are

ĥS ¼ 1þ α̂sCS þ
X
Q¼c;b

εQ

�
L̂ðQÞ
1 − L̂ðQÞ

4

w − 1

wþ 1

�
þ εcεbM̂8;

ĥþ ¼ 1þ α̂s

�
CV1

þ wþ 1

2
ðCV2

þ CV3
Þ
�
þ

X
Q¼c;b

εQL̂
ðQÞ
1 − εcεbM̂8;

ĥ− ¼ α̂s
wþ 1

2
ðCV2

− CV3
Þ þ εcL̂

ðcÞ
4 − εbL̂

ðbÞ
4 ;

ĥT ¼ 1þ α̂sðCT1
− CT2

þ CT3
Þ þ

X
Q¼c;b

εQ½L̂ðQÞ
1 − L̂ðQÞ

4 � þ εcεbM̂8: ð3:12Þ

The hatted B̄ → D� form factors at this order are

ĥP ¼ 1þ α̂sCP þ εc½L̂ðcÞ
2 þ L̂ðcÞ

3 ðw − 1Þ þ L̂ðcÞ
5 − L̂ðcÞ

6 ðwþ 1Þ� þ εb½L̂ðbÞ
1 − L̂ðbÞ

4 �
− εcεb½M̂9 − ðw − 1ÞM̂10�;

ĥV ¼ 1þ α̂sCV1
þ εc½L̂ðcÞ

2 − L̂ðcÞ
5 � þ εb½L̂ðbÞ

1 − L̂ðbÞ
4 � þ εcεbM̂9;

ĥA1
¼ 1þ α̂sCA1

þ εc

�
L̂ðcÞ
2 − L̂ðcÞ

5

w − 1

wþ 1

�
þ εb

�
L̂ðbÞ
1 − L̂ðbÞ

4

w − 1

wþ 1

�
þ εcεbM̂9;

ĥA2
¼ α̂sCA2

þ εc½L̂ðcÞ
3 þ L̂ðcÞ

6 � − εcεbM̂10;

ĥA3
¼ 1þ α̂sðCA1

þ CA3
Þ þ εc½L̂ðcÞ

2 − L̂ðcÞ
3 þ L̂ðcÞ

6 − L̂ðcÞ
5 � þ εb½L̂ðbÞ

1 − L̂ðbÞ
4 �

þ εcεb½M̂9 þ M̂10�;

ĥT1
¼ 1þ α̂s

�
CT1

þ w − 1

2
ðCT2

− CT3
Þ
�
þ εcL̂

ðcÞ
2 þ εbL̂

ðbÞ
1 − εcεbM̂9;

ĥT2
¼ α̂s

wþ 1

2
ðCT2

þ CT3
Þ þ εcL̂

ðcÞ
5 − εbL̂

ðbÞ
4 ;

ĥT3
¼ α̂sCT2

þ εc½L̂ðcÞ
6 − L̂ðcÞ

3 � − εcεbM̂10: ð3:13Þ

We have included here the leading perturbative corrections in α̂s ¼ αs=π that are given in Eq. (C2). The higher-order
α̂s=mc;b corrections are discussed in Appendix E. Finally, the B� → D� vector form factor

ĥ1 ¼ 1þ α̂s

�
CV1

þ wþ 1

2
ðCV2

þ CV3
Þ
�
þ

X
Q¼c;b

εQL̂
ðQÞ
2 − εcεb½M̂11 þ M̂12�: ð3:14Þ

In Eqs. (3.12)–(3.14) we have included only those M̂i terms
relevant for matching at Oðθ2Þ in the RC expansion; the
additional 1=mcmb terms that enter when all second-order
power corrections are considered are given in Eq. (G2).

In Appendix D we present a derivation of the first- and
second-order power corrections entering the B̄ → Dð�Þ
form factors, making use of the formalism and conventions
presented in Appendices A and B. For the first-order power
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corrections in Eq. (D1), we use the standard set of Isgur-
Wise functions, namely χ̂1;2;3 and η̂. The full expressions
for the second-order power corrections are shown in
Eqs. (D17) and (D18). These involve the following:

(i) one Isgur-Wise function, φ̂1, arising from current
corrections;

(ii) the mass parameters λ1;2 that enter the current cor-
rections via the Schwinger-Dyson relations (2.20);

(iii) three Isgur-Wise functions β̂1;2;3 that enter via
second-order Lagrangian corrections.

The Isgur-Wise function φ̂1 is constrained at zero recoil
by the Schwinger-Dyson relations, such that it is conven-
ient to write the form factors in terms of ½φ̂1ðwÞ − φ̂1ð1Þ�=
ðw − 1Þ. This combination must be regular because of the
analyticity of the matrix elements [see discussion leading to
Eqs. (D14) and (D15)]. To express this explicitly, we define
the quotient of an Isgur-Wise function with respect to
w ¼ 1,

W♮ðwÞ≡ ½WðwÞ −Wð1Þ�=ðw − 1Þ; ð3:15Þ

which must be regular. By definition W♮ð1Þ ¼ W0ð1Þ, the
gradient at zero recoil.

C. Chiral corrections

A full assessment of potential percent-level corrections
to the form factors requires consideration of chiral correc-
tions, which originate from strong dynamics of the brown
muck at momentum scales below that of chiral symmetry
breaking, sensitive to the light mesons spectrum and the
heavy mesons mass differences. This dynamics may there-
fore be represented using heavy hadron chiral perturbation
theory (HHχPT) [48,49], under which the dominant chiral
corrections to the HQET matrix elements are generated by
loops containing a light pseudoscalar, P ¼ π, K, η.
Schematically the structure of the chiral corrections can
be expanded in powers of the heavy mass scaleMH (e.g., a
heavy hadron mass) as

X
n

AnðwÞ logðm2
P=μ

2Þ þ Bnðw; μÞ
Mn

H
; ð3:16Þ

where logðm2
P=μ

2Þ denotes chiral logarithms of the light
meson masses and Bn contain finite and counterterm
contributions. The scale μ ∼Oð1 GeVÞ is where HQET
is matched onto HHχPT. The expressions for B̄ → Dð�Þ
decays have been known for a long time [50–52]. The terms
An and Bn are in general different for B0, Bþ, and Bs
decays.
At zero recoil, the leading and subleading corrections

vanish, and the leading nonzero contribution is proportional
to the hyperfine mass splitting Δm2

H ∼ λ22 [51]. Because
λ22 ∼Oðθ4Þ in the RC expansion, the chiral corrections can
be neglected at zero recoil. Similarly, in the VC limit they
vanish because λ2 → 0.

Away from zero recoil, both leading and subleading
corrections in powers of 1=MH are present. Parametrically
the size of An, Bn is controlled by the chiral loop factor
ðgPmP=4πfPÞ2 ≲ 1%, where gP is the coupling of the light
meson P to the heavy hadrons and mP and fP are its mass
and decay constant. At the order of precision we are
interested in, only the leading corrections are important,
because the subleading ones contribute ∼1% × ΛQCD=mQ

or ∼1% × αs=π, which are both ≪ 1% [52].
Importantly, the leading chiral corrections are universal

for any HQ current. As a result, they can be reabsorbed via
a redefinition of the leading-order Isgur-Wise function, up
to induced corrections of order ∼1% × ΛQCD=mQ or
∼1% × αs=π that can be neglected. Because the leading-
order chiral corrections are flavor diagonal, but not flavor
universal, this reabsorption further induces isospin and
flavor SUð3Þ breaking, which distinguishes the leading-
order Isgur-Wise functions ξþ;0ðwÞ in Bþ;0 and ξsðwÞ in Bs

decays, respectively.
The size of isospin corrections enter proportional to

the isospin mass splittings of light or heavy mesons
Δmπ;K;H=mπ;K;H on top of the chiral loop factor sup-
pression, i.e., at the ∼10−4 level. Therefore, we need
only consider a single isospin-invariant leading-order
Isgur-Wise function ξþ;0ðwÞ ≃ ξðwÞ for the Bþ;0 decays.
Flavor SUð3Þ breaking from the chiral corrections may be
sizable enough, however, to distinguish ξsðwÞ for Bs decays
from ξðwÞ in B decays. Explicit expressions for the leading
SUð3Þ-breaking contributions can be found in Ref. [50].
Additional SUð3Þ breaking contributions, parametrically as
large asms=mQ ∼ Λ̄=mQ will be present atOð1=MHÞ in the
HQET matrix elements themselves, and must also be

considered when relating Bs → Dð�Þ
s Isgur-Wise functions

to those for B̄ → Dð�Þ. Since Bs → Dð�Þ
s decays are not

considered in this paper, we do not discuss them further.

D. Zero-recoil normalization constraints
and redefinitions

The mass normalization condition (3.6) implies that in
the equal mass limit the vector current matrix elements
satisfy, to all orders,

hþ;1ð1Þjmc¼mb
¼ 1: ð3:17Þ

In this limit, both the perturbative corrections and the power
corrections to hþ;1ð1Þ vanish order-by-order. At first order,
Eqs. (3.12) and (3.14) then imply L1ð1Þ ¼ L2ð1Þ ¼ 0,
which is a part of Luke’s theorem [12]

χ̂1ð1Þ ¼ χ̂3ð1Þ ¼ 0: ð3:18Þ

At second order, the mass normalization constraints for
pseudoscalar and vector mesons, respectively, require
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2L̂ð2Þ
1 ð1Þ − M̂8ð1Þ ¼ −

λ1 þ 3λ2
Λ̄2

þ 4β̂1ð1Þ
þ 24β̂3ð1Þ ¼ 0;

2L̂ð2Þ
2 ð1Þ − M̂11ð1Þ − M̂12ð1Þ ¼ −

λ1 − λ2
Λ̄2

þ 4β̂1ð1Þ
− 8β̂3ð1Þ ¼ 0; ð3:19Þ

which results in the zero-recoil constraints

β̂1ð1Þ ¼
λ1
4Λ̄2

; β̂3ð1Þ ¼
λ2
8Λ̄2

: ð3:20Þ

Just as in Eq. (D15), we therefore write

β̂1ðwÞ ¼
λ1
4Λ̄2

þ ðw − 1Þβ̂♮1ðwÞ;

β̂3ðwÞ ¼
λ2
8Λ̄2

þ ðw − 1Þβ̂♮3ðwÞ; ð3:21Þ

in which the quotient functions β♮1;3 are regular near zero
recoil.
The three Isgur-Wise functions β1, χ1, and ξ arise from

the same leading-order trace, as can be seen by comparing
Eqs. (3.2), (D2), and (D16). This trace conserves heavy
quark spin symmetry; therefore, these three Isgur-Wise
functions always enter in the same linear combination.
Based on this observation, when working at Oðαs; 1=mQÞ
in the heavy quark expansion, it is common (see, e.g.,
Refs. [7,15]) to reabsorb χ1 into the leading-order Isgur-
Wise function via the replacement

ξþ 2ðεc þ εbÞχ1 → ξ: ð3:22Þ
The constraint χ1ð1Þ ¼ 0 ensures that the normalization
condition ξð1Þ ¼ 1 is preserved. The replacement (3.22)
induces Oð1=m2

c;bÞ and Oðαs=mcbÞ corrections that must
be incorporated consistently when working at second order
in the power expansion. In the power counting of the
residual chiral expansion, however, because χ1 enters at
Oðθ2Þ, then the Oð1=m2

c;bÞ corrections induced by

Eq. (3.22) enter only at Oðθ3Þ or higher, and can therefore
be neglected at Oðθ2Þ. Furthermore, reparametrization
invariance ensures that the replacement (3.22) induces
only Oðαs=m2

c;bÞ or higher-order corrections in the
Oðαs=mc;bÞ terms (see Appendix E).
Since the second terms in Eq. (3.21) vanish at zero recoil

by construction, then at Oðαs=mQ; 1=m2
Q; θ

2Þ we can
therefore extend Eq. (3.22) to

ξþ 2ðεc þ εbÞχ1 þ 2ðε2c þ ε2bÞðw − 1Þβ♮1 → ξ; ð3:23Þ
while preserving ξð1Þ ¼ 1. Note, however, one cannot
generally redefine χ2;3 to absorb β2;3, because although
β2 and χ2 enter via an identical trace, as do β3 and χ3, each
trace violates heavy quark spin symmetry. As a result,
χ2;3 þ εcβ2;3 enters into the B̄ → D� form factors with a
different prefactor than χ2;3 þ εbβ2;3: Specifically, dV ¼ −1
versus dP ¼ 3, respectively. With this in mind, if one
neglects Oð1=mcmb; 1=m2

bÞ or Oðαs=mc;bÞ corrections,
then one can absorb β2;3 via the redefinitions

χ2 þ εcβ2 → χ2; χ3 þ εcðw − 1Þβ♮3 → χ3; ð3:24Þ
the latter of which preserves χ3ð1Þ ¼ 0.

E. Summary of constrained form factors

Including all the zero-recoil constraints in Eqs. (D15)
and (3.21), and the redefinition (3.23), one finds finally
from Eqs. (D1), (D17), and (D18)

L̂ð1Þ
1 ¼ −4ðw − 1Þχ̂2 þ 12χ̂3;

L̂ð1Þ
2 ¼ −4χ̂3;

L̂ð1Þ
3 ¼ 4χ̂2;

L̂ð1Þ
4 ¼ 2η̂ − 1;

L̂ð1Þ
5 ¼ −1;

L̂ð1Þ
6 ¼ −2ð1þ η̂Þ=ðwþ 1Þ; ð3:25aÞ

TABLE III. Isgur-Wise functions and their parametrizations used in our fits, order-by-order in the HQ expansion, as used in Ref. [7],
and in the RC and VC expansions in this work. If one includes additional input on the quark masses,mc;b, certain combinations of Λ̄ and
λ1;2 can be eliminated. In the VC case, c0ðwÞ enters proportional to the leading Isgur-Wise function and can be absorbed, except for
c0ð1Þ [see Eq. (3.28)]. Further, χ1 enters only when second-order terms are included, that prevent its reabsorption at Oð1=mc;bÞ. (With
no constraints, 11 unknown functions parametrize the SM form factors at order 1=m2

c;b for B → Dð�Þlν̄, and 6 when restricted to 1=m2
c.)

Expansions 1=m0
c;b 1=mc;b 1=m2

c only 1=m2
c;b

Ref. [7]
Form factors ξðwÞ ηðwÞ, χ2ðwÞ, χ3ðwÞ � � � � � �
Parameters ρ2 Λ̄, η̂ð1Þ, η̂0ð1Þ, χ̂2ð1Þ, χ̂02ð1Þ, χ̂3ð1Þ � � � � � �

RC
Form factors ξðwÞ ηðwÞ, χ2ðwÞ, χ3ðwÞ φ♮

1ðwÞ φ♮
1ðwÞ, β2ðwÞ, β♮3ðwÞ

Parameters ρ2�, c� Λ̄, η̂ð1Þ, η̂0ð1Þ, χ̂2ð1Þ, χ̂02ð1Þ, χ̂30ð1Þ λ1, λ2, φ̂0
1ð1Þ λ1, λ2, φ̂0

1ð1Þ, β̂2ð1Þ, β̂03ð1Þ

VC
Form factors ξðwÞ ηðwÞ, χ1ðwÞ φ♮

0ðwÞ, c0ð1Þ φ♮
0ðwÞ, c0ð1Þ, e3ðwÞ

Parameters ρ2�, c� Λ̄, η̂ð1Þ, η̂0ð1Þ, χ̂10ð1Þ φ̂0
0ð1Þ, c0ð1Þ φ̂0

0ð1Þ, c0ð1Þ, e3ð1Þ
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L̂ð2Þ
1 ¼ λ1 þ 3λ2

2Λ̄2
þ ðw − 1Þ½−4β̂2 þ 12β̂♮3�;

L̂ð2Þ
2 ¼ λ1 − λ2

2Λ̄2
þ ðw − 1Þ½−4β̂♮3�;

L̂ð2Þ
3 ¼ 4β̂2;

L̂ð2Þ
4 ¼ λ1ðwþ 1Þ

3Λ̄2
−
λ2ðw − 5Þ

2Λ̄2
þ 2ðw2 − 1Þφ̂♮

1;

L̂ð2Þ
5 ¼ λ1ðwþ 1Þ

3Λ̄2
−
λ2ðw − 1Þ

2Λ̄2
þ 2ðw2 − 1Þφ̂♮

1;

L̂ð2Þ
6 ¼ 2λ1

3Λ̄2
−

λ2
Λ̄2

þ 4ðw − 1Þφ̂♮
1; ð3:25bÞ

M̂8 ¼
λ1ð4 − wÞ

3Λ̄2
þ λ2ðw2 þ 11Þ

2Λ̄2ðwþ 1Þ − 2ðw − 1Þ2φ̂♮
1 −

2ð2η̂ − 1Þðw − 1Þ
wþ 1

;

M̂9 ¼
λ1
3Λ̄2

þ λ2ð5 − wÞ
2Λ̄2ðwþ 1Þ þ 2ðw − 1Þφ̂♮

1 −
ð2η̂ − 1Þðw − 1Þ

wþ 1
;

M̂10 ¼
λ1
3Λ̄2

−
λ2ðwþ 4Þ
2Λ̄2ðwþ 1Þ þ 2ðwþ 2Þφ̂♮

1 −
2η̂ − 1

wþ 1
;

M̂11 ¼
λ1ðw − 2Þ

3Λ̄2
þ λ2ð3 − wÞ

2Λ̄2
þ 2ðw2 − 1Þφ̂♮

1;

M̂12 ¼
2λ1ð3 − wÞ

3Λ̄2
−
λ2ðw2 − 3w − 2Þ

Λ̄2ðwþ 1Þ − 4wðw − 1Þφ̂♮
1 þ

2ðw − 1Þ
wþ 1

;

M̂13 ¼
λ1
3Λ̄2

−
λ2w

2Λ̄2ðwþ 1Þ þ 2ðwþ 2Þφ̂♮
1 þ

2η̂þ 1

wþ 1
;

M̂14 ¼
2λ1ðw − 2Þ
3Λ̄2ðwþ 1Þ −

λ2ðw2 − 2w − 4Þ
Λ̄2ðwþ 1Þ2 þ 4ðw2 þ 2Þφ̂♮

1

wþ 1
þ 4ð2η̂þ 1Þ − 2w

ðwþ 1Þ2 : ð3:25cÞ

Additional wave functions [see Eq. (E3)] entering the
Oðαs=mc;bÞ corrections are presented in Appendix E. Up
to and including second order in the power expansion and in
the residual chiral expansion, the B̄ð�Þ → Dð�Þ form factors
are determined fully by seven Isgur-Wise functions: ξ at
leading order; χ̂2;3 and η̂ at first order; and φ̂♮

1, β̂2, and β̂♮3 at
second order. The relevant Isgur-Wise functions in the
residual chiral expansion are shown in Table III, including
the reduced set in the case that one truncates atOð1=m2

cÞ and
reabsorbs redundant Isgur-Wise functions via Eq. (3.24). In
the latter case the B̄ð�Þ → Dð�Þ form factors are determined
fully by just a single Isgur-Wise function at second order.
Both of these countings—at Oð1=m2

cÞ and Oð1=m2
c;bÞ—

are also reflected in Table I. In this table, moving from
leading order to first order to second order, we only count
the new, independent Isgur-Wise functions entering at each
order (though 1=m2

c;b counts functions also counted at
1=m2

c). The counting of Isgur-Wise functions is performed
after redefinition of lower-order functions to absorb all
possible redundant higher-order ones, such as in Eq. (3.24).
Some redundant higher-order functions can be reabsorbed

in this manner only up to their value at zero recoil: these
vestigial constant terms are counted as independent func-
tions unless they are fully determined with respect to
known quantities, such as λ1;2, as happens for β̂1;3ð1Þ in
Eq. (3.20) [cf. Eq. (3.28) below].

F. Vanishing chromomagnetic limit

Besides the RC expansion truncated at Oðθ2Þ, we also
consider another Ansatz, in which the field strength Gαβ is
set to zero.5 This vanishing chromomagnetic (VC) limit,
already considered in Ref. [16], also significantly reduces
the number of Isgur-Wise functions at Oð1=m2

c;bÞ. It is

5Prior literature [53] considered the limit in which HQ spin
symmetry-violating matrix elements involving the field strength
Gαβ are neglected, which implies that some spin symmetry
conserving terms must also vanish for self-consistency (see
Appendix F). At second order in HQET, the difference between
this limit and Gαβ → 0 amounts to contributions from B0 [see
Eq. (D16)], which may be reabsorbed into C0 [see Eq. (F7)], and
is thus unphysical at this order.
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motivated by the smallness of χ̂2;3 calculated using QCD
sum rules [24,25] and is also consistent withOð1=mc;bÞ fits
(see, e.g., Ref. [7]). For the sake of completeness and
consistency of notation, we revisit the derivation of this

limit in Appendix F, noting a few differences with respect
to Ref. [16].

The expressions for the nonvanishing L̂ð1;2Þ
i and M̂i in the

VC limit are6

L̂ð1Þ
1 ¼ L̂ð1Þ

2 ¼ 2χ̂1;

L̂ð1Þ
4 ¼ 2η̂ − 1; L̂ð1Þ

5 ¼ −1; L̂ð1Þ
6 ¼ −2

1þ η̂

wþ 1
; ð3:26aÞ

L̂ð2Þ
1 ¼ L̂ð2Þ

2 ¼ 2ĉ0;

L̂ð2Þ
4 ¼ −2ðχ̂1 þ wφ̂♮

0 − ê3Þ; L̂ð2Þ
5 ¼ −2ðχ̂1 þ wφ̂♮

0Þ; L̂ð2Þ
6 ¼ −

4wφ̂♮
0 þ 2ê3 þ 4χ̂1
wþ 1

; ð3:26bÞ

M̂1 ¼ M̂2 ¼ M̂4 ¼ 2d̂0; ð3:26cÞ

M̂8 ¼ 2ðw − 1Þ
�
φ̂♮
0 −

2η̂ − 1

wþ 1

�
; M̂9 ¼ −

w − 1

wþ 1
ð2η̂ − 1Þ;

M̂10 ¼ −2φ̂♮
0 −

2η̂ − 1

wþ 1
; M̂11 ¼ −2ðw − 1Þφ̂♮

0; M̂12 ¼ 2ðw − 1Þ
�
2φ̂♮

0 þ
1

wþ 1

�
;

M̂13 ¼ −2φ̂♮
0 þ

2η̂þ 1

wþ 1
; M̂14 ¼ −

4wφ̂♮
0

wþ 1
þ 4ð2η̂þ 1Þ − 2w

ðwþ 1Þ2 ; ð3:26dÞ

M̂15 ¼ M̂18 ¼ 2ðê3 þ φ̂♮
0 − χ̂1Þ; M̂16 ¼ M̂20 ¼ 2ðφ̂♮

0 − χ̂1Þ;

M̂17 ¼ M̂22 ¼ −2
ê3 − 2φ̂♮

0 þ 2χ̂1
wþ 1

: ð3:26eÞ

Concerning the perturbative corrections, in the vanishing
chromomagnetic limit the OðαsÞ expressions remain the
same, while at Oðαs=mc;bÞ the terms proportional to Cc;b

g

vanish (see Appendix E), as they correspond to insertions
of the chromomagnetic operator. Finally, the effects of the
chiral corrections in the VC limit are the same as for the RC
expansion, as the zero-recoil effects proportional to λ22
vanish altogether instead of being higher order.
The zero-recoil constraints in the equal mass limit,

hþð1Þ ¼ 1 and h1ð1Þ ¼ 1, now impose a relation between
c0ð1Þ and d0ð1Þ, namely

2c0ð1Þ þ d0ð1Þ ¼ 0: ð3:27Þ

The Isgur-Wise functions χ1, c0, d0 all involve the same
trace structure as the leading-order matrix element

parametrized by ξðwÞ. On the one hand, because of the
relation Eq. (F5), χ1 enters indirectly in terms originating
from different tensor structures. Therefore, even though χ1
vanishes at zero recoil, it can no longer be fully reabsorbed
via a redefinition of the leading Isgur-Wise function ξ. On
the other hand, one can reabsorb c0 and d0 into ξ, up to their
contribution at zero recoil, 2ðεc − εbÞ2ĉ0ð1Þ, to preserve the
normalization condition ξð1Þ ¼ 1. Explicitly this can be
achieved via the shift

ξðwÞ þ 2ðw − 1Þ½ðε2b þ ε2cÞc♮0ðwÞ þ εbεcd
♮
0ðwÞ� → ξðwÞ;

ð3:28Þ

which induces only higher-order corrections at Oð1=m3
c;bÞ.

In addition, if one is only interested in second-order
corrections at Oð1=m2

cÞ, then in a similar manner to
Eq. (3.24), ê3 may be reabsorbed into η̂ via

η̂þ εcê3 → η̂; ð3:29Þ

up to induced Oð1=mcmbÞ and Oðαs=mcÞ corrections.

6Though our definitions of the M̂i form factors in Eq. (G1) are
the same as in Ref. [16], we find with respect to Eqs. (A5)–(A7)
of Ref. [16] a different sign for M̂10 (as above); further M̂17 is
swapped with M̂19, and M̂22 is swapped with M̂23. The latter two
swaps are also present in Appendix B of Ref. [16].

CONSTRAINED SECOND-ORDER POWER CORRECTIONS IN … PHYS. REV. D 106, 096015 (2022)

096015-13



After all these constraints and redefinitions, the form
factors now depend on five Isgur-Wise functions and one
zero-recoil constant only: ξ at leading order; η̂ and χ̂1 at first
order; and at second order, φ̂♮

0 and ê3 together with the zero-
recoil constant ĉ0ð1Þ. The relevant Isgur-Wise functions for
the VC limit are shown in Table III, including the reduced
set in the case that one truncates at Oð1=m2

cÞ and reabsorbs
the redundant Isgur-Wise function via Eq. (3.29).

IV. PARAMETRIZATIONS AND PRESCRIPTIONS

A. 1S scheme and numerical inputs

Cancellation of the leading renormalon ambiguities
[54,55] from the mass parameter Λ̄ against those in the
factorially growing coefficients in the αs perturbative power
series can be achieved by the use of a short distance mass
scheme. We use the 1S scheme [56–58], which defines m1S

b
as half of the perturbatively computed ϒð1SÞ mass. It is
related to the pole mass via m1S

b ¼ mbð1 − 2α2s=9þ � � �Þ.
This may be inverted to express the pole mass

mbðm1S
b Þ ≃m1S

b ð1þ 2α2s=9þ � � �Þ: ð4:1Þ

The splitting of the bottom and charm quark pole mass
δmbc ≡mb −mc is subject to a renormalon ambiguity

only at third order when one computes just the leading
nf dependence at high orders [59–61], so we fix
mc¼mb−δmbc. Thus, when working at second order in
the HQ expansion, we may parametrize observables in
terms of m1S

b and δmbc.
In practice, however, becausem1S

b and δmbc are extracted
from fits to inclusive spectra at Oð1=m3

QÞ [62–64], third-
order terms must be retained numerically in the expansion
of the hadron mass, even though we formally work to
second order in the expressions for the form factors. In
particular, the spin-averaged mass of the HQ pseudoscalar-
vector doublet, m̄≡ ðmP þ 3mVÞ=4, can be written in the
1S scheme, defining mcðm1S

b Þ≡mbðm1S
b Þ − δmbc,

m̄B ≃mbðm1S
b Þ þ Λ̄ −

λ1
2mbðm1S

b Þ þ
ρ1

4½mbðm1S
b Þ�2 ;

m̄D ≃mcðm1S
b Þ þ Λ̄ −

λ1
2mcðm1S

b Þ þ
ρ1

4½mcðm1S
b Þ�2 ; ð4:2Þ

noting from Eq. (A10) that the λ2 dependence cancels. Here
we have included only theOðθ2Þ contribution to the hadron
mass from ΔmH

3 , proportional to the parameter ρ1, as
defined in Ref. [65]. This leads to

Λ̄ ¼ mbðm1S
b Þm̄B −mcðm1S

b Þm̄D

δmbc
− ½mbðm1S

b Þ þmcðm1S
b Þ� þ ρ1

4mbðm1S
b Þmcðm1S

b Þ ;

λ1 ¼
2mbðm1S

b Þmcðm1S
b Þ

δmbc
½m̄B − m̄D − δmbc� þ

ρ1½mbðm1S
b Þ þmcðm1S

b Þ�
2mbðm1S

b Þmcðm1S
b Þ : ð4:3Þ

That is, truncating the hadron masses at third order in the HQ power expansion and second order in the residual chiral
expansion, Λ̄ and λ1 are parametrized in terms of m1S

b , δmbc, and ρ1.
The fits to inclusive B → Xclν̄ spectra and other determinations of m1S

b find that [64]

m1S
b ¼ ð4.71� 0.05Þ GeV; δmbc ≡mb −mc ¼ ð3.40� 0.02Þ GeV; ð4:4Þ

which we use as inputs to our fits. For ρ1 we use

ρ1 ¼ ð−0.1� 0.2Þ GeV3; ð4:5Þ

corresponding numerically to the range λ1 ¼ ð−0.3�
0.1Þ GeV2, commensurate with the ranges quoted in
Ref. [64].7 We choose the HQET to QCD matching scale

μbc ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
mbmc

p
≃ 2.5 GeV: ð4:6Þ

One may apply these inputs to Eq. (4.1), combined
with the renormalization group evolution αs ¼
αsðαsðmZÞ; mZ; μÞ computed at four-loop order [66,67].
One finds

αsðμbcÞ ≃ 0.27; ð4:7Þ

up to small uncertainties that are negligible when working
atOð1=m2

c;b; αs=mc;bÞ. We shall therefore treat αsðμbcÞ as a
fixed external parameter.8

7These somewhat arbitrary uncertainties, to be used in fit
inputs, should not be confused with the recovered uncertainties
from fit results, which determine the uncertainties in predictions
of, e.g., RðDð�ÞÞ.

8In Ref. [7] we used αs ¼ 0.26 due to the slightly higher
scale choice. Both formally and numerically, the difference
between these choices only enters at higher order compared to
Oð1=m2

c; αs=mcÞ.
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At first order in the HQ expansion, cancellation of the
leading renormalon ambiguity amounts to replacing the pole
mass mbðm1S

b Þ by m1S
b everywhere, except in Oð1=mc;bÞ

terms originating from the Schwinger-Dyson relation (B4),
i.e., that enter via the “¼⃗” relations defined in Eq. (A2). To
comparewith the results of Ref. [7], we similarly enforce this
prescription here. Cancellation of higher-order renormalon
ambiguities is relevant only with the inclusion of α2s and
higher terms, which we do not consider.9 There is, in
addition, a leading renormalon cancellation between the
Lagrangian Oðαs=mc;bÞ corrections and certain terms at
Oð1=m2

c;bÞ. It would affect terms originating from Λ̄ ×
Oð1=mQÞ matrix elements in the second-order Schwinger-
Dyson relations, but such terms vanish at Oðθ2Þ.
Canceling the third-order power corrections from ΔmH

3 ,
one may express λ2 via [62]

λ2ðμbcÞ ≃
m2

bðmB� −mBÞ −m2
cðmD� −mDÞ

2mbabðμbcÞ − 2mcacðμbcÞ
≃ 0.11� 0.02 GeV2; ð4:8Þ

using the 1S prescription and Eq. (2.5), in which we have
assigned an inflated ∼20% uncertainty to λ2 to absorb
possible higher-order renormalon effects. The fits to
inclusive B → Xclν̄ decays [62–64], from which we obtain
the 1S inputs, use the leading log approximation for aQðμÞ.
This leads to an enhancement of the extracted λ2 by
approximately a factor ð1þ 13αs=6πÞ ≃ 1.2, which is
formally higher order, Oðαs=m2

c;bÞ. This difference is also
covered by the assigned uncertainties in λ2.

B. Leading-order Isgur-Wise function

Parametrizations that make use of unitarity plus
dispersion relations for the QCD matrix elements typically
apply the conformal transformation

zðq2; q20Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ − q20

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ − q2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ − q20

p ; ð4:9Þ

which maps the pair-production threshold q2 >

q2þ;J ≡ ðmHJ
b
þmHJ

c
Þ2 to the boundary of the unit circle

jzj ¼ 1, centered at q2 ¼ q20, while the interval q2− < q2 <
q2þ ismapped to the real axis ð0 ≥Þzðq2−; q20Þ > z > −1. Here
HJ

cHJ
b denotes the lightest pair of hadrons that couple to

current J, generating the QCD matrix element hHcjJjHbi.
Thus there is in principle a different z for each current J.
At second order in the HQ expansion, the λ2-induced
splitting of the pseudoscalar and vector meson masses in
the spin symmetry doublet means that the branch point

q2þ;V ¼ ðmB þmDÞ2 for the B → D and B → D� vector
current, while for the B → D� axial-vector current it is
q2þ;A ¼ ðmB� þmDÞ2. That is, second-order corrections
to the hadron masses enter into the conformal transfor-
mation (4.9). The choice q20 ¼ q2þ;Jð1 − ½1 − q2−=q2þ;J�1=2Þ≡
q2opt;J minimizes jzðq2 ¼ 0Þj, and hence the range of z,
while for q20 ¼ q2− simply zðw ¼ 1Þ ¼ 0. We define
z� ≡ zðq2; q2optÞ.
In the HQET representation of the matrix elements, the

Isgur-Wise functions are functions of the variable
w ¼ v · v0. One may reexpress Eq. (4.9) as

zðw;w0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w − wþ

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0 − wþ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w − wþ

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0 − wþ

p : ð4:10Þ

In this form, the branch point wþ;V ¼ −1 for B → D, which
is the minimal possible branch point, but for B → D� both
wþ;V and wþ;A > −1. This leads to different z’s not only for
different currents but also for different hadrons in the same
HQ multiplet. However, because the Isgur-Wise functions
are universal by construction, a conformal transformation
zðw;w0Þ consistent with the HQET matching in Eq. (3.2)
should respect HQ symmetry, while higher-order correc-
tions in the HQ expansion itself reabsorb the differences in
the branch points of different matrix elements. Adopting
this construction, we therefore choose to parametrize the
leading-order Isgur-Wise function as a polynomial in the
optimized z� for B → D, with the minimal branch point at
wþ ¼ −1. Thus

ξðwÞ
ξðw0Þ

¼ 1 − 8a2ρ2�z� þ 16ð2c�a4 − ρ2�a2Þz2� þ � � � ð4:11Þ

in which the optimized conformal variable

z�ðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p
−

ffiffiffi
2

p
affiffiffiffiffiffiffiffiffiffiffiffi

wþ 1
p þ ffiffiffi

2
p

a
; with a2 ≡w0 þ 1

2
¼ 1þ rD

2
ffiffiffiffiffi
rD

p :

ð4:12Þ
By construction ξ0ðw0Þ=ξðw0Þ ¼ −ρ2�, ξ00ðw0Þ=ξðw0Þ ¼ c�,
and z�ðw0Þ¼0. Numerically jz�j<0.032. Because ξð1Þ¼1,
it follows from Eq. (4.11) that ξðw0Þ ¼ ½1 − 8a2ρ2�z�ð1Þ þ
16ð2c�a4 − ρ2�a2Þz�ð1Þ2�−1.
Another convention in the literature is to expand the

leading-order Isgur-Wise function about zero recoil, via the
choice z≡ zðq2; q2−Þ, such that ξðwÞ ¼ 1 − 8ρ2zþ 16ð2c −
ρ2Þz2 þ � � � and zðwÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi

wþ 1
p

−
ffiffiffi
2

p Þ=ð ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p þ ffiffiffi
2

p Þ.
By construction ξ0ð1Þ ¼ −ρ2 and ξ00ð1Þ ¼ c. Differen-
tiating Eq. (4.11) at w ¼ 1, one may relate ρ2 and c to ρ2�
and c�.
In the fits below, we keep ρ2� and c� as free parameters.

This differs from the approach of Ref. [32] (see also
Ref. [7]), in which one expands the B → D form factor
GðwÞ with respect to z� (using the same wþ ¼ −1 branch
point),

9Order α2s corrections will be included at zero recoil only for
F ð1Þ in Sec. V B because 1=mc;b corrections vanish there. While
at that order one should consider also second-order corrections in
the 1S expansion, these would multiply εc;b and therefore vanish
in F ð1Þ.
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GðwÞ
Gðw0Þ

¼ 1 − 8a2ρ̃2�z� þ 16ð2c̃�a4 − ρ̃2�a2Þz2� þ � � � ;

ð4:13Þ
and then applies dispersive bounds to constrain the curva-
ture c̃� and the slope ρ̃2� (and higher coefficients) to lie in an
elongated ellipsoidal region. Further fixing c̃� to the central
value—the major axis—of the allowed region yields [32]

c̃� ≃ ½ðV21 þ 16a2Þρ̃2� − V20�=32a4; ð4:14Þ
with V21 ≃ 57 and V20 ≃ 7.5. As we discuss further in
Sec. VI F below, this approach leads to fit biases when
applied to current data. Because GðwÞ ¼ ξðwÞ½ĥþðwÞ−
ρDĥ−ðwÞ�, one may relate the coefficients of Eqs. (4.11)
and (4.13) directly,

ρ2� ¼ ρ̃2� þ
ĥ0þðw0Þ − ρDĥ

0−ðw0Þ
ĥþðw0Þ − ρDĥ−ðw0Þ

;

c� ¼ c̃� þ 2ρ2�ðρ2� − ρ̃2�Þ −
ĥ00þðw0Þ − ρDĥ

00−ðw0Þ
ĥþðw0Þ − ρDĥ−ðw0Þ

; ð4:15Þ

in which ĥð0;00Þ� ðw0Þ can be expanded to arbitrary order in
HQET as desired. These relations allow the fitted ρ2� and c�
parameters to be compared to the dispersive bounds for ρ̃2�
and c̃� (see Sec. VI F).

C. Sub(sub)leading Isgur-Wise functions

We approximate the subleading Isgur-Wise functions (as
in Ref. [7] and elsewhere) as

χ̂2ðwÞ ≃ χ̂2ð1Þ þ χ̂02ð1Þðw − 1Þ; χ̂3ðwÞ ≃ χ̂03ð1Þðw − 1Þ;
η̂ðwÞ ≃ η̂ð1Þ þ η̂0ð1Þðw − 1Þ; ð4:16Þ
expanding to linear order in w − 1. The remaining sub-
subleading Isgur-Wise functions after the redefinitions in
Eqs. (D15) and (3.21) are φ̂♮

1, β̂2, and β̂♮3. To limit the
number of fit parameters, given the precision of the
available data, we treat these functions as constants

φ̂♮
1ðwÞ≃ φ̂0

1ð1Þ; β̂2ðwÞ≃ β̂2ð1Þ; β̂♮3ðwÞ≃ β̂03ð1Þ: ð4:17Þ
The relevant parameters for the residual chiral expansion
are shown in Table III. Applying the 1S scheme, the full set
of Isgur-Wise parameters in our parametrization of the form
factors are

ρ2�; c�; χ̂2ð1Þ; χ̂02;3ð1Þ; η̂ð1Þ; η̂0ð1Þ;
φ̂0
1ð1Þ; β̂2ð1Þ; β̂03ð1Þ; ð4:18Þ

in addition to the constrained parametersm1S
b , δmbc, ρ1, and

λ2 per Eqs. (4.4), (4.5), and (4.8).
Though β2 and β3 may be reabsorbed into χ2 and χ3 via

Eq. (3.24) if one neglects Oð1=mcmbÞ or Oðαs=mc;bÞ
corrections, at zero recoil many lower-order corrections

vanish or are constrained, such that higher-order correc-
tions could still have large effects (see Sec. V). However,
the gradient β03ð1Þ does not contribute at w ¼ 1, and one
may explicitly see from Eqs. (3.12), (3.13), (E1), and (E2)

that at zero recoil χ2 and β2 enter only via εcL̂
ð1;2Þ
3 terms,

respectively. Thus, β2ð1Þ is redundant with χ2ð1Þ at zero
recoil: the induced Oð1=mcmbÞ or Oðαs=mc;bÞ corrections
from applying Eq. (3.24) must be suppressed by w − 1.
Since the precision of current or near-future data is too low
for sensitivity to Oð1=mcmbÞ or Oðαs=mc;bÞ corrections
beyond zero recoil, where lower-order corrections do not
vanish, as a practical matter both β̂2ð1Þ and β̂03ð1Þ may
therefore be neglected in fits.

V. ZERO-RECOIL PREDICTIONS

A. Form factors and ratios

The SM differential rates for B̄ → Dð�Þlν with respect to
w have the well-known expressions in the massless lepton
limit

dΓðB̄ → Dlν̄Þ
dw

¼ G2
FjVcbj2η2EWm5

B

48π3

× ðw2 − 1Þ3=2r3Dð1þ rDÞ2GðwÞ2; ð5:1aÞ
dΓðB̄ → D�lν̄Þ

dw
¼ G2

FjVcbj2η2EWm5
B

48π3

× ðw2 − 1Þ1=2ðwþ 1Þ2r3D�ð1 − rD� Þ2

×

�
1þ 4w

wþ 1

1 − 2wrD� þ r2D�

ð1 − rD�Þ2
�
F ðwÞ2;

ð5:1bÞ
where rDð�Þ ¼ mDð�Þ=mB and ηEW ≃ 1.0066 [68] is the
electroweak correction (see, e.g., Ref. [10] for full expres-
sions including the lepton mass). The form factors

GðwÞ ¼ hþ −
1 − rD
1þ rD

h−; ð5:2aÞ

F ðwÞ2 ¼ h2A1

�
2ð1 − 2wrD� þ r2D�Þ

�
1þ R2

1

w − 1

wþ 1

�

þ ½ð1 − rD�Þ þ ðw − 1Þð1 − R2Þ�2
�

×

�
ð1 − rD� Þ2 þ 4w

wþ 1
ð1 − 2wrD� þ r2D� Þ

�
−1
;

ð5:2bÞ
in which the form-factor ratios are

R1ðwÞ ¼
hV
hA1

; R2ðwÞ ¼
hA3

þ rD�hA2

hA1

: ð5:3Þ

In addition,
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S1ðwÞ ¼ hþ −
1þ rD
1 − rD

w − 1

wþ 1
h−;

R0ðwÞ ¼
hA1

ðwþ 1Þ − hA3
ðw − rD�Þ − hA2

ð1 − wrD� Þ
ð1þ rD� ÞhA1

ð5:4Þ

parametrize the contributions that enter only proportional
to the lepton mass in the B̄ → Dlν and B̄ → D�lν rates,
respectively.
In HQET at Oð1=m2

c;b; αs=mc;bÞ, the zero-recoil Gð1Þ
and F ð1Þ form factors have explicit expressions, defin-
ing ρD ≡ ð1 − rDÞ=ð1þ rDÞ,

Gð1ÞHQET ≃ 1þ α̂s½CV1 þ CV2ð1 − ρDÞ þ CV3ð1þ ρDÞ� − ðεc − εbÞρDL̂ð1Þ
4

þ ε2c½L̂ð2Þ
1 − ρDL̂

ð2Þ
4 � þ ε2b½L̂ð2Þ

1 þ ρDL̂
ð2Þ
4 � þ εcεb½M̂1 − M̂8�

− α̂sρD½ðεc − εbÞCV1L̂
ð1Þ
4 þ 2ðεcCV3 − εbCV2ÞL̂ð1Þ

5 �;
F ð1ÞHQET ≃ 1þ α̂sCA1 þ ε2cL̂

ð2Þ
2 þ ε2bL̂

ð2Þ
1 þ εcεb½M̂2 þ M̂9�; ð5:5Þ

in which all functions are evaluated at w ¼ 1. Note S1ð1Þ ¼ hþð1Þ ¼ Gð1ÞjρD→0. Similarly, the zero-recoil form-factor
ratios at Oð1=m2

c;b; αs=mc;bÞ are

R1ð1ÞHQET ≃ 1þ α̂s½CV1 − CA1� − εcL̂
ðcÞ
5 − εbL̂

ðbÞ
4 − εcεb½M̂16 − M̂18�

þ α̂sfL̂ð1Þ
4 ½εbðCA1 − CV1 − CV2Þ − εcCV3�

þ L̂ð1Þ
5 ½εbCV2 þ εcðCA1 − CV1 þ CV3Þ�g; ð5:6Þ

R2ð1ÞHQET ≃ 1þ α̂sðCA3 þ rD�CA2Þ − εbL̂
ðbÞ
4

þ εc½ð1þ rD� ÞL̂ðcÞ
6 − ð1 − rD� ÞL̂ðcÞ

3 − L̂ðcÞ
5 �

þ εcεbfM̂16 þ M̂18 þ ð1þ rD� Þ½M̂17 − M̂19� − ð1 − rD� Þ½M̂3 − M̂10�g
þ α̂sεcf−ð1 − rD� ÞCc

gL̂
ð1Þ
3 þ CA2rD�ðL̂ð1Þ

5 − 2L̂ð1Þ
6 Þ

þ CA3½ð1 − rD�ÞL̂ð1Þ
4 þ ð1 − 3rD� ÞL̂ð1Þ

5 þ 4L̂ð1Þ
6 �=2g

þ α̂sεbfCA2½ð1 − 3rD�ÞL̂ð1Þ
4 þ ð1 − rD� ÞL̂ð1Þ

5 �=2 − CA3L̂
ð1Þ
4 g; ð5:7Þ

R0ð1ÞHQET ≃ 1þ 1 − rD�

1þ rD�
f−α̂s½CA2 þ CA3� þ εc½L̂ðcÞ

5 − 2L̂ðcÞ
6 � þ εbL̂

ðbÞ
4 þ εcεb½M̂16 þ M̂18 − 2ðM̂17 − M̂19Þ�

þ α̂sðCA2 þ CA3Þ½εbL̂ð1Þ
4 − εcðL̂ð1Þ

5 − 2L̂ð1Þ
6 Þ�g; ð5:8Þ

in which all functions are evaluated atw ¼ 1 and we use the

notation L̂ðQÞ
i ¼ L̂ð1Þ

i þ εQL̂
ð2Þ
i as in Eq. (3.11).

The most precise LQCD predictions provide that [17]

Gð1ÞLQCD ¼ 1.054ð9Þ; F ð1ÞLQCD ¼ 0.906ð13Þ: ð5:9Þ

(The latter does not include the recent result F ð1Þ ¼
0.909ð17Þ [31].) Fits at Oðαs; 1=mc;bÞ, allowing the form-
factor ratios at and beyond zero recoil to self-consistently
float, obtain [7]

R1ð1Þ ≃ 1.32ð3Þ; R2ð1Þ ≃ 0.88ð3Þ; ð5:10Þ

with a correlation of −0.7, which can be compared to our
second-order fits in Sec. VI.

B. Residual chiral expansion

At zero recoil, as noted in Sec. II E, the RC expansion
receives only Oðθ4Þ corrections, so that the convergence of
the expansion might be tested by examining its zero-recoil
predictions at Oðθ2Þ versus LQCD data. At the same time,
the B̄ → Dð�Þ form factors necessarily have a higher HQ
symmetry atw ¼ 1 (because the initial and final states are in
the same sπl ¼ 1

2
− HQ doublet), so that the structure of the

form factors is more tightly constrained than for w > 1. As a
result, one can expect higher sensitivity to Oð1=mcmbÞ and
Oðαs=mc;bÞ corrections, which must therefore be included.
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At Oðθ2Þ, the full Oð1=m2
c;b;αs=mc;bÞ expressions for the L̂ð1;2Þ

i ð1Þ and M̂ið1Þ form factors can be read off from
Eqs. (3.25) and Appendix E. This leads to

Gð1ÞRC ≃ 1þ α̂s½CV1 þ CV2ð1 − ρDÞ þ CV3ð1þ ρDÞ� − ðεc − εbÞρD½2η̂ð1Þ − 1�

þ ½ε2cð3 − 4ρDÞ þ ε2bð3þ 4ρDÞ − 2εcεb�
�
λ1 þ 3λ2
2Λ̄2

�

− α̂sεcρD½ð2η̂ð1Þ − 1ÞCV1 − 2CV3�
þ α̂sεbρD½ð2η̂ð1Þ − 1ÞCV1 − 2CV2�; ð5:11aÞ

F ð1ÞRC ≃ 1þ α̂sCA1 þ ε2c

�
λ1 − λ2
2Λ̄2

�
þ ð2εcεb þ 3ε2bÞ

�
λ1 þ 3λ2
6Λ̄2

�
; ð5:11bÞ

R1ð1ÞRC ≃ 1þ α̂s½CV1 − CA1� þ εc − εbð2η̂ð1Þ − 1Þ − ε2c
2λ1
3Λ̄2

− ε2b
2ðλ1 þ 3λ2Þ

3Λ̄2

þ α̂sεc½CV1 − CA1 − 2η̂ð1ÞCV3�
þ α̂sεb½ð2η̂ð1Þ − 1ÞðCA1 − CV1Þ − 2η̂ð1ÞCV2�; ð5:11cÞ

R2ð1ÞRC ≃ 1þ α̂s½CA3 þ rD�CA2�
− εc½ð1þ rD� Þη̂ð1Þ þ ð1 − rD� Þ4χ̂2ð1Þ þ rD� � − εbð2η̂ð1Þ − 1Þ

þ ε2c

�ð2λ1 − 3λ2ÞrD� − 3λ2
3Λ̄2

− 4β̂2ð1Þð1 − rD� Þ
�
− ε2b

2ðλ1 þ 3λ2Þ
3Λ̄2

− εcεb
1 − rD�

12
½15λ2 − 4λ1 þ 6ð2η̂ð1Þ − 1Þ − 72φ̂0

1ð1ÞÞ�
þ α̂sεcfð2η̂ð1Þ − 1ÞrD�CA2

þ ½3η̂ð1Þ þ 2 − rD� ðη̂ð1Þ þ 1Þ�CA3 − 4ð1 − rD� Þχ̂2ð1ÞCc
gg

þ α̂sεbf½rD� ð2 − 3η̂ð1ÞÞ2þ η̂ð1Þ − 1�CA2 − ð2η̂ð1Þ − 1ÞrD�CA3g; ð5:11dÞ

R0ð1ÞRC ≃ 1þ 1 − rD�

1þ rD�

�
−α̂s½CA2 þ CA3� þ εcð2η̂ð1Þ þ 1Þ þ εbð2η̂ð1Þ − 1Þ

− 2ε2c
λ1 − 3λ2
3Λ̄2

þ 2ε2b
λ1 þ 3λ2
3Λ̄2

þ α̂sðCA2 þ CA3Þ½εbð2η̂ð1Þ − 1Þ − εcð2η̂ð1Þ þ 1Þ�
�
; ð5:11eÞ

in which all CX functions are evaluated at w ¼ 1. In R2ð1Þ,
two additional subleading Isgur-Wise functions, φ̂0

1 and β̂2,
enter that may absorb any sensitivity to the higher-order
perturbative corrections. We see from Gð1ÞRC, F ð1ÞRC, and
R0ð1ÞRC that the second-order power corrections to the
B̄ → Dð�Þlν rates at w ¼ 1 are fully determined by λ1;2.
The expressions in Eqs. (5.11) are useful for building

intuition concerning the dominant second-order power
corrections. By Luke’s theorem the first-order corrections
to F ð1Þ vanish, and one finds

F ð1ÞNLOHQET ≃ 0.966ð2Þ; ð5:12Þ

where the quoted uncertainty arises from the parameter
z ¼ mc=mb, on which CA1 depends. Since λ1 is expected to

be ∼ − 0.3 GeV2, and λ2ðμÞ ≃ 0.11 GeV2, then the λ1 − λ2
second-order correction to F ð1Þ induces a few percent
negative shift, toward LQCD expectations, while the
λ1 þ 3λ2 second-order contribution in Gð1Þ and elsewhere
approximately cancels.
Regarding η̂ð1Þ, prior fits at Oðαs; 1=mc;bÞ [7] obtained

approximately

η̂ð1Þ ¼ 0.3� 0.05; ð5:13Þ
mainly driven by the LQCD data for Gð1Þ. In our fits
in Sec. VI below we do not constrain η̂ð1Þ a priori.
However, assuming for the moment that the recovered
value of ηð1Þ will not be overly perturbed by the inclusion
of higher-order corrections—this is the expected behavior
in a well-behaved expansion; we will see that this
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assumption is justified in Sec. VI—we may use this value
of η̂ð1Þ to inform zero-recoil predictions, when combined
with the 1S inputs (4.4), (4.5), and (4.8), plus the
relations (4.3).
Some further insight can be gained from examining the

numerical forms

Gð1ÞRC ≃ 1.105þ ½0.006 − 0.024η̂ð1Þ�ðλ1=GeV2Þ
− 0.170η̂ð1Þ; ð5:14aÞ

F ð1ÞRC ≃ 0.963þ 0.092ðλ1=GeV2Þ; ð5:14bÞ

R1ð1ÞRC ≃ 1.400 − ½0.063þ 0.018η̂ð1Þ�ðλ1=GeV2Þ
− 0.129η̂ð1Þ; ð5:14cÞ

R2ð1ÞRC ≃ 0.955þ ½0.036 − 0.100χ̂2ð1Þ − 0.062η̂ð1Þ
− 0.010φ̂0

1ð1Þ�ðλ1=GeV2Þ − 0.443η̂ð1Þ
− 0.717χ̂2ð1Þ − 0.129β̂2ð1Þ; ð5:14dÞ

R0ð1ÞRC ≃ 1.119þ ð0.038η̂ð1Þ − 0.030Þðλ1=GeV2Þ
þ 0.272η̂ð1Þ; ð5:14eÞ

in which we have kept the λ1 and subleading Isgur-Wise
function dependence explicit: the former arises from the λ1
dependence in Eqs. (5.11), as well as from εQ, via the
relations (4.3), from which one may express ρ1 in terms of
λ1. In these expressions, we have taken the central values
m1S

b ¼ 4.71 GeV and δmbc ¼ 3.40 GeV. The η̂ð1Þ-induced
corrections to Gð1Þ shift it down toward the LQCD
predicted range while the λ1-dependent terms approxi-
mately cancel. In R1ð1Þ the η̂ð1Þ-induced corrections tend
to cancel against the λ1 terms. In R2ð1Þ the η̂ð1Þ-induced
corrections dominate, shifting it downwards. Thus the
second-order corrections at Oðθ2Þ have a structure naively
compatible with the data in Eqs. (5.9) and (5.10).
The form factorF ð1Þ is fully constrained at second order

by λ1;2, and its first-order corrections vanish. Because of
this, in addition to the Oð1=m2

c;b; αs=mc;bÞ corrections, we
also include the full Oðα2sÞ correction to the axial-vector
current [69–71] that amounts to

δF ð1Þ ≃ −0.944CFα̂s
2 ≃ −0.009; ð5:15Þ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ. We do not include such

corrections in SM form factors that do not have vanishing
first-order corrections. In practice, in our fits in Sec. VI, we
implement Eq. (5.15) via an overall shift in ĥA1

, such that

ĥA1
→ ĥA1

− 0.944CFα̂s
2: ð5:16Þ

This additionalOðαsÞ term should be included in ĥA1 when
using the fit results in Sec. VI.

In Fig. 1 we show the CLs (red ellipse) in theF ð1Þ − Gð1Þ
plane determined by the fit inputs (4.4), (4.5), and (4.8), as
well as Eqs. (5.13) and (5.15) and the relations (4.3), imposed
on their Oð1=m2

c;b; αs=mc;b; θ2Þ expressions in Eqs. (5.5).
This range is in agreement with the LQCD predictions (blue
ellipse) at the 0.85σ level (p ¼ 0.40). If theOðα2sÞ correction
inEq. (5.15) is not included, the agreement is at the 1.4σ level
(p ¼ 0.16), indicated by the dashed gray ellipse. By com-
parison, the first-order HQET CL (orange ellipse), whose
small F ð1Þ uncertainty is determined by the 1S inputs as in
Eq. (5.12), is approximately4.2σ from theLQCDvalues. Fits
at first order must therefore consider nuisance parameters for
higher-order terms, or consider shape-only fits as in Ref. [7];
see Sec. VI C.

C. Vanishing chromomagnetic limit

Because λ1;2 → 0 in the VC limit, we fix λ1;2 ¼ 0

in the 1S scheme, with m1S
b ¼ 4.71ð5Þ GeV and δmbc ¼

3.40ð2Þ GeV. Although the mass degeneracy in the HQ
doublet is formally not lifted at Oð1=m2

c;bÞ, we use the
physical masses of the hadrons in the kinematics, just as
in the approach used for fits at Oð1=mc;b; αsÞ in Ref. [7],
at which order λ1;2 also formally vanish. However, note
Ref. [7] used the nonzero value λ1 ¼ −0.3 GeV2, which
amounts to a correction of about 5% in the value of B̄
used here.
In the Gαβ → 0 limit, the expressions for the F ð1Þ and

Gð1Þ form factors and the ratios R1ð1Þ and R2ð1Þ become

FIG. 1. Second-order HQET predictions for F ð1Þ and Gð1Þ at
Oðθ2Þ in the RC expansion (red ellipse), using the inputs
Eqs. (4.4), (4.5), and (4.8), and (5.13), and including the
Oðα2sÞ corrections [69,70] in Eq. (5.15). These are compared
to LQCD predictions (blue ellipse) and predictions at first order
in HQET (orange ellipse). The 68% CL region from a fit of the
RC expansion at Oð1=m2

c;b; αs=mc;b; θ2Þ to LQCD and exper-
imental data (see Sec. VI) is shown by the gray solid ellipse. The
dashed gray ellipse shows RC expansion predictions without the
Oðα2sÞ terms.
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Gð1ÞVC ≃ 1þ α̂s½CV1 þ CV2ð1 − ρDÞ þ CV3ð1þ ρDÞ�
− ðεc − εbÞρD½2η̂ð1Þ − 1�
þ 2ðεc − εbÞ2ĉ0ð1Þ þ 2ðε2c − ε2bÞρD½φ̂0

0ð1Þ − ê3ð1Þ�
− α̂sεcρD½ð2η̂ð1Þ − 1ÞCV1 − 2CV3�
þ α̂sεbρD½ð2η̂ð1Þ − 1ÞCV1 − 2CV2�; ð5:17aÞ

F ð1ÞVC ≃ 1þ α̂sCA1 þ 2ðεc − εbÞ2ĉ0ð1Þ; ð5:17bÞ

R1ð1ÞVC ≃ 1þ α̂s½CV1 − CA1� þ εc − εbð2η̂ð1Þ − 1Þ
þ 2ε2cφ̂

0
0ð1Þ þ 2ε2b½φ̂0

0ð1Þ − ê3ð1Þ� − 2εcεb½ê3ð1Þ þ 2φ̂0
0ð1Þ�

þ α̂sεc½CV1 − CA1 − 2η̂ð1ÞCV3�
þ α̂sεb½ð2η̂ð1Þ − 1ÞðCA1 − CV1Þ − 2η̂ð1ÞCV2�; ð5:17cÞ

R2ð1ÞVC ≃ 1þ α̂s½CA3 þ rD�CA2�
− εc½ð1þ rD� Þη̂ð1Þ þ rD� � − εbð2η̂ð1Þ − 1Þ
− ε2c½2rD� φ̂0

0ð1Þ þ ð1þ rD�Þê3ð1Þ� þ 2ε2b½rD� φ̂0
0ð1Þ þ ê3ð1Þ�

− εcεbfð1 − rD�Þ½2η̂ð1Þ − 1þ 8φ̂0
0ð1Þ�=2þ ð3þ rD� Þê3ð1Þg

þ α̂sεcfð2η̂ð1Þ − 1ÞrD�CA2 þ ½3η̂ð1Þ þ 2 − rD� ðη̂ð1Þ þ 1Þ�CA3g
þ α̂sεbf½rD� ð2 − 3η̂ð1ÞÞ2þ η̂ð1Þ − 1�CA2 − ð2η̂ð1Þ − 1ÞrD�CA3g; ð5:17dÞ

R0ð1ÞVC ≃ 1þ 1 − rD�

1þ rD�
f−α̂s½CA2 þ CA3� þ εcð2η̂ð1Þ þ 1Þ þ εbð2η̂ð1Þ − 1Þ

þ 2ε2c½ê3ð1Þ þ φ̂0
0ð1Þ� þ 2ε2b½ê3ð1Þ − φ̂0

0ð1Þ� þ 4εcεbê3ð1Þ
þ α̂sðCA2 þ CA3Þ½εbð2η̂ð1Þ − 1Þ − εcð2η̂ð1Þ þ 1Þ�g; ð5:17eÞ

in which all CX functions are evaluated at w ¼ 1. Here, one finds a downward shift in F ð1Þ toward the LQCD prediction by
requiring ĉ0ð1Þ < 0. However, unlike in the RC expansion, the same downward shift from the second-order power
correction enters into both F ð1Þ and Gð1Þ—both have the same 2ðεc − εbÞ2ĉ0ð1Þ term—resulting in a large downward shift
in Gð1Þ. It is again useful to examine the numerical forms for the truncated expressions

Gð1ÞVC ≃ 1.108þ 0.055ĉ0ð1Þ − 0.171η̂ð1Þ þ 0.047ðφ̂0
0ð1Þ − ê3ð1ÞÞ; ð5:18aÞ

F ð1ÞVC ≃ 0.966þ 0.055ĉ0ð1Þ; ð5:18bÞ

R1ð1ÞVC ≃ 1.407 − 0.130η̂ð1Þ þ 0.047φ̂0
0ð1Þ − 0.038ê3ð1Þ; ð5:18cÞ

R2ð1ÞVC ≃ 0.992 − 0.465η̂ð1Þ − 0.069φ̂0
0ð1Þ − 0.015ê3ð1Þ; ð5:18dÞ

R0ð1ÞVC ≃ 1.105þ 0.274η̂ð1Þ þ 0.044φ̂0
0ð1Þ − 0.017ê3ð1Þ; ð5:18eÞ

in which we use m1S
b ¼ 4.71 GeV, δmbc ¼ 3.40 GeV, and λ1 → 0. Assuming η̂ð1Þ falls in the range given in Eq. (5.13)

when second-order corrections are included, the downward shift in Gð1Þ must be counterbalanced by the φ̂0
0ð1Þ − ê3ð1Þ

term, resulting in a large upward shift in R1ð1Þ, potentially such that R1ð1Þ > 1.40, in some tension with the prior fit results
in Eq. (5.10). However, a proper assessment of the consistency of the VC limit with data requires a full fit beyond zero
recoil.
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VI. FITS

A. Experimental data

Prior to 2018 only two measurements were available for
(isospin-averaged) B̄ → Dlν and B̄0 → D�þlν, Ref. [72]
(Belle 15) and Ref. [73] (Belle 17), respectively, that
provided kinematic distributions for the recoil and decay
angles fully corrected for detector effects. These analyses,
by providing “unfolded” kinematic distributions, permit fits
outside of the experimental frameworks, using different
parametrizations of the B̄ → Dð�Þ form factors than what
was used in each analysis.
Subsequently, the Belle Collaboration performed an

untagged analysis of B̄0 → D�þlν [74] (Belle 19), pro-
viding response functions and efficiencies, into which
alternate form-factor parametrizations may be folded, in
order to generate predictions for bin yields in the kinematic
distributions. In this work, we will consider combined
fits that include the 2017 and 2019 B̄ → D�lν analyses
either together or separately. A summary of the experi-
mental inputs for each fit scenario is shown in Table V.
We use masses mB̄0 ¼ 5.28 GeV, mD ¼ 1.87 GeV, and
mD�þ ¼ 2.01 GeV.
In most of our fits, we only fit to the w spectra of

Refs. [73,74], as there is little information constraining the
form factors encoded in the projections of the angular
distributions. We combine and unfold the reported results
for electrons and muons of Ref. [74] using the provided
migration matrices and efficiency corrections. Systematic
uncertainties are incorporated into the unfolding procedure
using nuisance parameters that act upon the resulting yields
to avoid the d’Agostini bias [cf. Eq. (3) in Ref. [75]].

B. Lattice QCD inputs

For B̄ → D decay, LQCD predictions for the SM form
factors fþ and f0 have long been available at and beyond
zero recoil [76,77]. Their relationship to hþ and h− is

fþ ¼ hþð1þ rDÞ − h−ð1 − rDÞ
2

ffiffiffiffiffi
rD

p ;

f0 ¼
ffiffiffiffiffi
rD

p �
hþ

wþ 1

1þ rD
− h−

w − 1

1 − rD

�
: ð6:1Þ

Reference [76] is currently the most precise and conven-
iently provides a synthetic dataset at three values of
w ¼ 1.0, 1.08, and 1.16, including statistical and system-
atic correlations. These may be incorporated directly into
the combined fits; the values are shown in Table IV [the
corresponding Gð1Þ ¼ 2

ffiffiffiffiffi
rD

p
fþð1Þ=ð1þ rDÞ is shown in

Eq. (5.9)]. Without combination with any experimental
data, the predicted LFUV ratios from Refs. [76,77],
respectively, are RðDÞLQCD ¼ 0.285ð15Þ and RðDÞLQCD ¼
0.300ð8Þ, leading to the FLAG average [17]

RðDÞLQCD ¼ 0.2934ð53Þ: ð6:2Þ

For B̄ → D�, LQCD results are available at zero recoil
for hA1

ð1Þ ¼ F ð1Þ with the most precise result as quoted in
Eq. (5.9). For all SM B̄ → D� form factors at and beyond
zero recoil, recently Fermilab/MILC [31] has provided the
first predictions (not yet published), including synthetic
data at w ¼ 1.03, w ¼ 1.10, and w ¼ 1.17; the values are
shown in Table IV. Results for the B̄ → D� form factors
beyond zero recoil are also expected soon from the HPQCD
Collaboration.

C. Fitting setup and scenarios

To determine the leading and subleading Isgur-Wise
functions and jVcbj, we carry out a simultaneous χ2 fit of
the experimental and lattice data (and in some scenarios
include constraints from QCDSR). To take into account the
uncertainties in m1S

b and δmbc, we introduce both as
nuisance parameters into the fit, assuming Gaussian con-
straints [see Eq. (4.4) for their value and uncertainties]. The
constraints from LQCD are incorporated into the fit
assuming multivariate Gaussian errors. The χ2 function
is numerically minimized, and uncertainties are evaluated
using the asymptotic approximation by scanning the χ2

contour to find the Δχ2 ¼ 1 crossing point, providing the
68% confidence level.
As mentioned in Sec. V, in the B̄ → Dð�Þ transitions

many first-order corrections vanish at zero recoil, such that
the HQ expansion is more constrained at w ¼ 1 than
beyond zero recoil, prospectively leading to higher sensi-
tivity to second-order contributions. For this reason, when
working at Oðαs; 1=mc;bÞ as in Ref. [7], it is a well-
motivated approach to consider information from “shape-
only” fits. In these fits, information concerning the overall
normalization of the B̄ → Dð�Þ rates—in effect, LQCD
predictions for Gð1Þ and F ð1Þ—are not imposed, and only
the shapes of the B̄ → Dð�Þ spectra are used to constrain the
subleading Isgur-Wise functions. Two different variations

TABLE IV. Top: Synthetic data for the B̄ → D form factors at
w ¼ 1.0, 1.08, 1.16 [76], and for the B̄ → D� form factors at
w ¼ 1.03, 1.10, 1.17 [31]. The correlations can be found in
Table VII of Ref. [76] and in the ancillary files of Ref. [31],
respectively.

Form factor w ¼ 1.0 w ¼ 1.08 w ¼ 1.16

fþ 1.1994(95) 1.0941(104) 1.0047(123)
f0 0.9026(72) 0.8609(77) 0.8254(94)

Form factor w ¼ 1.03 w ¼ 1.10 w ¼ 1.17
hA1

0.877(16) 0.807(15) 0.745(22)
hA2

−0.586ð82Þ −0.492ð82Þ −0.391ð95Þ
hA3

1.213(75) 1.103(75) 0.989(86)
hV 1.212(44) 1.079(44) 0.948(54)
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of this approach were considered: one in which no lattice
information was used (denoted “NoL” in Ref. [7]); and one
in which beyond zero-recoil LQCD predictions for B̄ → D
were included (denoted “Lw≥1” in Ref. [7]).
At zero recoil, the Oð1=m2

c;bÞ corrections are also more
constrained. As can be seen in Eqs. (3.12), (3.13), and
(3.25), at Oð1=m2

c;b; θ
2Þ all corrections to the matrix

elements at zero recoil are determined just by λ1;2, while

beyond zero recoil effects from φ̂♮
1 can become important.

Along similar lines, in Fig. 1 we see that the Oðα2sÞ
corrections are relevant at zero recoil. It therefore remains
interesting to consider similar “shape-only” fits that probe
the structure of second-order power corrections at Oðθ2Þ
beyond zero recoil, and we therefore also include the
correction in Eq. (5.16) in all our fits.
In Ref. [7] additional constraints were considered for the

subleading Isgur-Wise functions, η̂ð1Þ, χ̂2ð1Þ, and χ̂02;3ð1Þ,
arising from QCDSR calculations [24,25,78], including
renormalization improvement factors [14] [which, for
improvement at renormalization scale μ, mandates the
inclusion of a compensating −CQ

g ðμÞ factor in the aQ
coefficient (2.5), which enters atOðαs=mc;bÞ]. Because these
calculations are model dependent, Ref. [7] assigned inflated
uncertainties in the fit inputs, typically much larger than the
fit uncertainties [andmuch larger than the size ofOðαs=mc;bÞ
corrections].10 The QCDSR inputs were taken to be [7]

χ̂2ð1Þ ¼ −0.06� 0.02; χ̂02ð1Þ ¼ 0� 0.02;

χ̂03ð1Þ ¼ 0.04� 0.02; η̂ð1Þ ¼ 0.62� 0.2;

η̂0ð1Þ ¼ 0� 0.2: ð6:3Þ

To compare with prior fits using QCDSR (denoted with a
“þSR” suffix in Ref. [7]), we perform some fits also with

these QCDSR constraints. However, the future arc of
precision data-driven fits bends away from the ongoing
inclusion of inputs with poorly quantifiable theory uncer-
tainties, and therefore we focus on fits without QCDSR
constraints.
The various fit scenarios and their inputs considered in

this work are summarized in Table V. They comprise the
following:

(i) Our baseline fit scenario uses all published LQCD
data—i.e., except for the not-yet-published B̄ → D�
form factors beyond zero recoil [31]—plus all avail-
able experimental data from Belle. This fit is denoted
LD;D�
w≥1;¼1, adapting from the notation in Ref. [7].

(ii) We also perform fit (i) with the relative normaliza-
tion between the D and D�—in effect the relation
between Gð1Þ and F ð1Þ—allowed to float, so that
only shape information is used. This fit is denoted
as LD;D�

w≥1;¼1Shape.
(iii) We further consider a fit using all available LQCD

data, denoted by LD;D�
w≥1;≥1.

(iv) A fit that includes only experimental data, but no
LQCD inputs, labeled NoL.

In addition, we consider the same LD;D�
w≥1;¼1 fit, with the

following variations:
(v) Using only either 2017 or 2019 B̄ → D� data from

Belle, denotedwith a “17” or “19” suffix, respectively.
(vi) Including QCDSR as discussed above, denoted with

a þSR.
(vii) Including LQCD data beyond zero recoil for hA1

alone, denoted LD;D�
w≥1;≥1½hA1�. This fit provides an

interesting contrast to the LD;D�
w≥1;≥1 fit.

To further characterize the role of the second-order power
corrections, finally we consider the following:
(viii) A fit at first order in the HQ expansion, similar to the

above-mentioned Lw≥1 þ SR fit of Ref. [7], which
we denote here with a “NLO” suffix.

TABLE V. Summary of theory and data inputs for each fit scenario. Our baseline fit scenario is highlighted in bold. Note the Oðα2sÞ
shift in Eq. (5.16) is also imposed in all second-order fits.

Lattice QCD Belle data

Fit Order Floating norm. fþ;0ðw ≥ 1Þ F ð1Þ hA1
ðw > 1Þ hA2;3;Vðw > 1Þ QCDSR ’15 ’17 ’19

LD;D�
w≥1;= 1 αs=mQ;1=m2

Q � � � ✓ ✓ � � � � � � � � � ✓ ✓ ✓

LD;D�
w≥1;¼1Shape αs=mQ; 1=m2

Q ✓ ✓ ✓ � � � � � � � � � ✓ ✓ ✓

NoL αs=mQ; 1=m2
Q � � � � � � � � � � � � � � � � � � ✓ ✓ ✓

LD;D�
w≥1;≥1 αs=mQ; 1=m2

Q � � � ✓ ✓ ✓ ✓ � � � ✓ ✓ ✓

LD;D�
w≥1;¼1NLO αs; 1=mQ ✓ ✓ ✓ � � � � � � ✓ ✓ ✓ ✓

LD;D�
w≥1;¼1 þ SR αs=mQ; 1=m2

Q � � � ✓ ✓ � � � � � � ✓ ✓ ✓ ✓

LD;D�
w≥1;¼117 αs=mQ; 1=m2

Q � � � ✓ ✓ � � � � � � � � � ✓ ✓ � � �
LD;D�
w≥1;¼119 αs=mQ; 1=m2

Q � � � ✓ ✓ � � � � � � � � � ✓ � � � ✓

LD;D�
w≥1;≥1½hA1� αs=mQ; 1=m2

Q � � � ✓ ✓ ✓ � � � � � � ✓ ✓ ✓

10See footnote 7.
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D. Nested hypothesis tests

Before proceeding to obtain results for our various fit
scenarios, we employ a nested hypothesis test (NHT)-based
prescription to determine the optimal number of parameters
for the LD;D�

w≥1;¼1 fit scenario. Such a prescription not only
allows systematic determination of those parameters to
which the current data have sensitivity but also prevents
overfitting. The optimal parameter set obtained through
this prescription depends on the precision of the available
experimental data, such that the prescription permits
systematic improvements as future data become available.
We use here a variation of the prescription developed in

Ref. [79]. The core idea of an NHT is to test a N-parameter
fit hypothesis versus alternative fit hypotheses that use one
additional parameter. The difference in χ2,

Δχ2 ¼ χ2N − χ2Nþ1; ð6:4Þ

provides a convenient test statistic, because it is distributed
as a χ2 in the large N limit [80] with a single degree of
freedom. We choose Δχ2 ¼ 1 as the decision boundary: the
(N þ 1)-parameter hypothesis is then rejected in favor of
the N-parameter fit at 68% CL.
As inRef. [79], we apply theNHT starting from a suitably

small initial number of parameters. In this case, based on the
parameters entering at zero recoil (see Sec. V B) we pick all
theHQmass parameters, the leading Isgur-Wise parameters,
and η̂ð1Þ. Thus, the initial parameters are

jVcbj; m1S
b ; δmbc; ρ1; λ2; ρ2�; c�; η̂ð1Þ: ð6:5Þ

We then incrementally add all combinations of the remain-
ing seven candidate parameters

η̂0ð1Þ; χ̂2ð1Þ; χ̂02ð1Þ; χ̂03ð1Þ; φ̂0
1ð1Þ; β̂2ð1Þ; β̂03ð1Þ;

ð6:6Þ

one by one. This generates a “graph” of fit hypotheses, with
each node of the graph representing a possible set of fit
parameters and each edge denoting the addition of one of the
candidate parameters. Over the graph, we identify a “ter-
minating node”—a parameter set—as a fit hypothesis that is
preferred over all hypotheses that nest it. To avoid runaways
in fit parameters, we constrain φ̂0

1ð1Þ, β̂2ð1Þ, and β̂03ð1Þ to be
at most Oð1Þ (in practice less than approximately 9) in a
terminating node.We further require that no two parameters
are more than approximately 95% correlated, in order to
avoid flat directions and consequent overfitting and/or non-
Gaussian uncertainties. The terminating node with the
fewest parameters (and hence the largest number of degrees
of freedom) and lowest χ2 is then selected as the optimal fit.
Under this prescription, we find sixteen terminating

nodes. Of these, we observe eight nodes involve either
β̂2ð1Þ or β̂03ð1Þ, and are the same as the remaining eight

under the approximate replacement ∼εcβ2ð1Þ → χ2ð1Þ or
∼εcβ03ð1Þ → χ03ð1Þ. As discussed in Sec. III D, because
we do not expect sensitivity to Oð1=mcmb; 1=m2

bÞ or
Oðαs=mc;bÞ corrections in the currently available data,
we expect that χ2ð1Þ and χ03ð1Þ can reabsorb εcβ2ð1Þ and
εcβ

0
3ð1Þ, respectively, as in Eq. (3.24). In effect, χ2ð1Þ þ

εcβ2ð1Þ and χ03ð1Þ þ εcβ
0
3ð1Þ should be approximately flat

directions in the fit, which comports with the behavior seen
in the terminating nodes. The fit parameters and corre-
sponding fit results for the remaining eight terminating
nodes, labeled “S1” through “S8,” are shown in Table VI.
These fits are excellent, with χ2=ndf ≃ 1 for all terminat-
ing nodes.
Per our prescription, the terminating node with the

fewest parameters and lowest χ2 is S1, highlighted in gray
in Table VI. In this fit, φ̂0

1ð1Þ is distinguished from zero at
the 1σ level, while all chromomagnetic terms are compat-
ible with zero, except χ̂2ð1Þ, which is somewhat smaller
than η̂ð1Þ. This is in line with expectations from the
operator product conjecture (see Sec. II D) that leads to
the RC expansion. It is notable that S2 exchanges φ̂0

1ð1Þ
with η̂0ð1Þ, producing a comparably good fit: while the
zero-recoil second-order corrections from λ1;2 are impor-
tant, the fit appears not to distinguish contributions from
first- versus second-order Isgur-Wise functions beyond
zero recoil. This matches the expectations of Ref. [7].
To characterize the behavior of the selected fit hypothesis

S1, in Fig. 2(a) we show the various form-factor ratios
R1;2;0ðwÞ, along with the leading-order Isgur-Wise function
ξðwÞ, and the form factors F ðwÞ and GðwÞ. The uncer-
tainties in all the form-factor ratios are well controlled. The
small uncertainties in F ðwÞ and GðwÞ are directly deter-
mined by the precision of the LQCD and experimental data.
For comparison, we also show in Fig. 2(b) the same ratios
and form factors for the S3 hypothesis, which has the
lowest χ2 of those fits with 30 degrees of freedom. The S3
fit results exhibit slightly larger uncertainties, while F ðwÞ
and GðwÞ remain almost entirely unchanged, as expected,
and ξðwÞ deviates from S1 only very slightly at high recoil.
Most notable is an overall downward shift in R2, and a
small disagreement in R0 at high recoil, both at the 1σ level
or so (depending on correlations). This is perhaps not a
surprise, because hA2

and hA3
are sensitive to η̂ð1Þ at OðεcÞ

while hA1
is not, and therefore they can be more sensitive to

variations in the fits. Nonetheless, it is reasonable to expect
that such moderate shifts in R2 may be absorbed, for
example, by the corresponding small variations in ξðwÞ and
R0ðwÞ, such that other physical observables hardly change.
In Fig. 3(a) we show the RðDð�ÞÞ predictions for the S1

and S3 scenarios, finding good agreement. In Fig. 3(b) we
show the RðDð�ÞÞ predictions for the other six terminating
nodes: The RðDð�ÞÞ predictions are very similar between all
hypotheses, providing good evidence that the truncation of
the fit parameters determined by our NHT prescription has
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not introduced a model dependence associated with the
choice of parameters into the fit.

E. Fit results

Using the selected S1 fit hypothesis for the LD;D�
w≥1;¼1

scenario as our baseline, in Table VII we present the fit
results for the various scenarios discussed in Sec. VI C and
summarized in Table V. In Table VIII we show for each
scenario the corresponding recovered parameters: RðDÞ,
RðD�Þ, and their correlation; F ð1Þ and Gð1Þ and their

correlation; and the zero-recoil values for the form-factor
ratios R1ð1Þ, R2ð1Þ, and R0ð1Þ. Figure 4 shows the fitted
experimental and LQCD data, and the predicted differential
spectra for B̄ → Dð�Þτν as a function of w for the baseline
fit. We note the fitted value for η̂ð1Þ in the LD;D�

w≥1;¼1 scenario
is in excellent agreement with Eq. (5.13), as recovered from
Oðαs; 1=mc;bÞ fits. The Oðα2sÞ correction in Eq. (5.16) is
included in all second-order fits (and must be included
when using these fit results). In all these fit scenarios, the
fitted values for jVcbj are in good agreement with the

TABLE VI. Fit values and parameters for each terminating node of the nested hypothesis test graph. The node S1 (bold) is chosen as
the optimal fit hypothesis. To characterize possible model dependence in the parameter truncation, we also consider S3 (bold). The last
four rows show the corresponding values for the fit χ2, number of degrees of freedom, and the slope and the curvature of ξðwÞ at zero
recoil.

Params S1 S2 S3 S4 S5 S6 S7 S8

jVcbj × 103 38.70(62) 38.90(64) 38.70(68) 38.70(68) 38.70(69) 38.70(67) 38.80(68) 38.70(69)
ρ2� 1.10(4) 1.15(4) 1.19(5) 1.15(5) 1.15(4) 1.10(7) 1.12(8) 1.10(4)
c� 2.39(18) 2.44(19) 2.16(24) 2.25(23) 2.29(29) 2.38(19) 2.41(20) 2.40(29)
χ̂2ð1Þ − 0.12ð2Þ −0.14ð3Þ � � � � � � −0.12ð5Þ � � � −0.13ð4Þ −0.12ð5Þ
χ̂02ð1Þ � � � � � � − 0.15ð8Þ −0.08ð7Þ −0.07ð11Þ � � � � � � 0.00(10)
χ̂03ð1Þ � � � � � � 0.04(1) 0.04(1) � � � 0.04(1) � � � � � �
η̂ð1Þ 0.34(4) 0.33(4) 0.34(4) 0.34(4) 0.34(4) 0.34(4) 0.34(4) 0.34(4)
η̂0ð1Þ � � � 0.12(10) 0.14(11) � � � 0.15(11) −0.15ð14Þ 0.05(19) � � �
m1S

b [GeV] 4.71(5) 4.71(5) 4.70(5) 4.70(5) 4.71(5) 4.71(5) 4.71(5) 4.71(5)
δmbc [GeV] 3.41(2) 3.41(2) 3.41(2) 3.41(2) 3.41(2) 3.41(2) 3.41(2) 3.41(2)
β̂2ð1Þ � � � � � � � � � � � � � � � � � � � � � � � �
β̂03ð1Þ � � � � � � � � � � � � � � � � � � � � � � � �
φ̂0
1ð1Þ 0.25(21) � � � � � � 0.24(21) � � � 0.53(31) 0.17(40) 0.25(21)

λ2 ½GeV2� 0.12(2) 0.12(2) 0.12(2) 0.12(2) 0.12(2) 0.12(2) 0.12(2) 0.12(2)
ρ1 ½GeV3� − 0.36ð24Þ −0.35ð24Þ − 0.37ð24Þ −0.36ð24Þ −0.37ð24Þ −0.36ð24Þ −0.36ð24Þ −0.36ð24Þ
χ2 29.8 30.0 28.9 29.3 29.5 29.6 29.8 29.8
ndf 31 31 30 30 30 30 30 30
ρ2 1.35(5) 1.37(5) 1.34(6) 1.34(6) 1.34(6) 1.34(6) 1.36(6) 1.35(6)
c 2.41(17) 2.43(17) 2.14(22) 2.26(21) 2.29(28) 2.40(17) 2.42(17) 2.42(27)

(a) (b)

FIG. 2. Form factors and form-factor ratios as functions of the recoil parameter for (a) the S1 and (b) the S3 fits.
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LD;D�
w≥1;¼1 result, which follows from the compatibility of the

F ð1Þ and Gð1Þ results across all fit scenarios.
The LD;D�

w≥1;¼1 Shape scenario results are similar to those

of the LD;D�
w≥1;¼1 scenario, with the exception of a larger

uncertainty in η̂ð1Þ and ρ1, but both are compatible with the

LD;D�
w≥1;¼1 fit scenario results. The resulting F ð1Þ and Gð1Þ

recovered from the LD;D�
w≥1;¼1Shape fit (see Table VIII) are

F ð1Þ ¼ 0.938ð22Þ and Gð1Þ ¼ 1.055ð11Þ, whose uncer-
tainties are similarly larger but remain compatible with the
LQCD data. We see from this that the differential shape

(a) (b)

FIG. 3. The predicted values for RðDð�ÞÞ for (a) the selected hypotheses S1 and S3 and (b) all other hypotheses.

TABLE VII. Fit results. Below the line we show the corresponding values for the fit χ2, number of degrees of freedom, the (negative)
slope and curvature of ξðwÞ at zero recoil, and the value of λ1 via Eq. (4.3). The slope for LD;D�

w≥1;¼1NLO, marked by a †, corresponds to the
slope ρ̄2� defined as in Ref. [7]. Note the Oðα2sÞ shift in Eq. (5.16) is imposed in all second-order fits and must be included when using
these fit results.

Parameters LD;D�
w≥1;¼1 LD;D�

w≥1;¼1Shape NoL LD;D�
w≥1;≥1 LD;D�

w≥1;¼1NLO LD;D�
w≥1;¼1 þ SR LD;D�

w≥1;¼117 LD;D�
w≥1;¼119 LD;D�

w≥1;≥1½hA1�

jVcbj × 103 38.70(62) 39.10(66) 37.70(110) 38.40(60) 39.40(68) 38.80(66) 38.60(103) 38.90(66) 38.80(64)
Gð1Þ � � � 1.06(1) � � � � � � 1.06(1) � � � � � � � � � � � �
F ð1Þ � � � 0.90(1) � � � � � � 0.90(1) � � � � � � � � � � � �
ρ2� 1.10(4) 1.08(5) 1.31(17) 1.05(4) 1.12ð4Þ† 1.13(6) 1.23(6) 1.10(4) 1.11(4)
c� 2.39(18) 2.24(19) 1.95(33) 2.38(15) � � � 2.44(19) 2.81(21) 2.36(18) 2.45(18)
χ̂2ð1Þ −0.12ð2Þ −0.09ð3Þ −0.19ð15Þ −0.11ð2Þ −0.05ð2Þ −0.06ð2Þ −0.21ð3Þ −0.11ð2Þ −0.12ð2Þ
χ02ð1Þ � � � � � � � � � � � � 0.00(2) −0.00ð2Þ � � � � � � � � �
χ03ð1Þ � � � � � � � � � � � � 0.02(1) 0.04(2) � � � � � � � � �
η̂ð1Þ 0.34(4) 0.29(7) 0.10(39) 0.27(4) 0.31(3) 0.35(4) 0.34(4) 0.34(4) 0.34(4)
η̂0ð1Þ � � � � � � � � � � � � 0.02(8) −0.01ð20Þ � � � � � � � � �
m1S

b [GeV] 4.71(5) 4.72(5) 4.71(5) 4.76(3) 4.70(5) 4.70(5) 4.70(5) 4.70(5) 4.70(5)
δmbc [GeV] 3.41(2) 3.40(2) 3.40(2) 3.40(2) 3.40(2) 3.41(2) 3.41(2) 3.41(2) 3.41(2)
β̂2ð1Þ � � � � � � � � � � � � � � � −0.14ð89Þ � � � � � � � � �
β̂03ð1Þ � � � � � � � � � � � � � � � −0.15ð33Þ � � � � � � � � �
φ̂0
1ð1Þ 0.25(21) 0.15(21) −2.29ð122Þ 0.31(27) � � � 0.29(42) 0.19(20) 0.25(21) 0.23(21)

λ2 ½GeV2� 0.12(2) 0.11(2) 0.11(2) 0.11(2) � � � 0.12(2) 0.12(2) 0.12(2) 0.12(2)
ρ1 ½GeV3� −0.36ð24Þ 0.04(50) −0.02ð50Þ −0.16ð27Þ � � � −0.39ð24Þ −0.38ð24Þ −0.36ð24Þ −0.39ð26Þ
χ2 29.8 26.5 20.3 49.4 33.1 31.7 49.1 18.3 31.2
ndf 31 29 31 42 33 31 51 21 33
ρ2 1.35(5) 1.31(5) 1.35(10) 1.32(4) 1.25(3) 1.37(5) 1.48(6) 1.34(5) 1.36(4)
c 2.41(17) 2.28(18) 1.89(31) 2.43(15) 1.90(7) 2.45(17) 2.74(17) 2.38(17) 2.46(16)
λ1 ½GeV2� −0.42ð10Þ −0.20ð25Þ −0.23ð24Þ −0.30ð11Þ � � � −0.43ð9Þ −0.43ð9Þ −0.42ð10Þ −0.43ð11Þ
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information has mild constraining power on parameters
entering the zero-recoil predictions, such that the tension
of the first-order prediction F ð1ÞNLOHQET ≃ 0.966ð2Þ [see
Eq. (5.12)] with the LQCD prediction is relaxed.
The NoL scenario fit also results in larger uncertainties,

as expected, but is compatible with the baseline fit. Put in
other words, the included LQCD data are in agreement with
the experimental data, in the context of an RC expansion-
based parametrization. By contrast, the LD;D�

w≥1;≥1 scenario,
which uses LQCD predictions for B̄ → D� beyond zero
recoil, produces a fit of notably poorer quality, due to
known tensions between the LQCD beyond zero-recoil
B̄ → D�lν predictions [31] and experimental measure-
ments. However, including just the beyond zero-recoil
LQCD data for hA1

, as done in the LD;D�
w≥1;≥1½hA1� scenario,

produces fits in good agreement with the LD;D�
w≥1;¼1 results.

We characterize the behavior of the LD;D�
w≥1;≥1 versus

LD;D�
w≥1;≥1½hA1� scenarios further in Appendix H. Finally, the

LD;D�
w≥1;¼1 þ SR scenario fit results are compatible with those

of LD;D�
w≥1;¼1, suggesting that QCDSR inputs are not incom-

patible with current data. The QCDSR inputs appear to
simply allow additional sub(sub)leading Isgur-Wise func-
tion parameters to be constrained, beyond those already
selected by the NHT prescription.
In Fig. 5 we show a comparison of the RðDð�ÞÞ

predictions for the LD;D�
w≥1;¼1, LD;D�

w≥1;¼1Shape, NoL,

LD;D�
w≥1;¼1 þ SR, LD;D�

w≥1;≥1, and LD;D�
w≥1;≥1½hA1� scenarios. We

see that these predictions are all in agreement, with the
exception of the NoL results that mildly shift further down
in RðDÞ by about 1σ but with notably larger uncertainties.
We note in Fig. 5(b) that the LD;D�

w≥1;≥1½hA1� scenario is in

excellent agreement with the LD;D�
w≥1;¼1.

While the parameters of the LD;D�
w≥1;¼1NLO fit scenario

appear naively compatible with the baseline results, the
zero-recoil slope and curvature are significantly different.
We see in Table VIII that the main effect is a large shift in

RðDÞ versus the baseline fit. As wewill discuss in Sec. VI F
below, the source of this shift can be attributed to a
slope-curvature constraint imposed on GðwÞ. Apart from
this effect, the similar size of the uncertainties in the
LD;D�
w≥1;¼1NLO fit results [as also seen in RðDð�ÞÞ] versus

the baseline suggests that while the Oð1=m2
cÞ RC correc-

tions ameliorate the tension in the first-order prediction
F ð1ÞNLOHQET in Eq. (5.12) compared to LQCD data (see also
Fig. 1), they do not otherwise introduce large uncertainties
into physical observables. This is precisely the expected
behavior that motivated theOðαs; 1=mc;bÞ “shape only” fits
of Ref. [7].
Between LD;D�

w≥1;¼117 and LD;D�
w≥1;¼119 we further note

significant differences in the slope and curvature, sug-
gesting a mild tension between these two datasets. We
explore the implications of this further in Sec. VI F below.

F. Biases and the major axis of doom

The astute reader will have noted that our correlated
RðDð�ÞÞ predictions from the LD;D�

w≥1;¼1 scenario,

RðDÞ ¼ 0.288ð4Þ; RðD�Þ ¼ 0.249ð1Þ; ρ¼ 0.12; ð6:7Þ

differ by approximately 2.7σ from our prior predictions [7],
RðDÞ ¼ 0.298ð3Þ, RðD�Þ ¼ 0.261ð4Þwith correlation 0.19.
However, the origin of this difference is not the inclusion of
second-order power corrections; in particular, it is not due
to any hint of unexpectedly large Oð1=m2

cÞ corrections
(which was hypothesized in prior literature [8]). Rather, we
identify two sources of external biases that are mainly
responsible for this shift.
The first of these is a so-called major-axis approximation

introduced in Ref. [32], which is a core feature of the
Caprini-Lellouch-Neubert (CLN) parametrization. In
Ref. [32], the application of dispersive bounds from
unitarity constraints to the B̄ → D form factor GðwÞ was
shown to constrain the allowed region in the ρ̃2� − c̃� plane
[slope and curvature, defined in Eq. (4.13)] in the form of

TABLE VIII. Recovered parameters for each fit scenario of Table V.

Scenario RðDÞ RðD�Þ ρRðDÞ;RðD�Þ F ð1Þ Gð1Þ ρF ð1Þ;Gð1Þ R1ð1Þ R2ð1Þ R0ð1Þ
LD;D�
w≥1;¼1

0.288(4) 0.249(1) 0.121 0.917(10) 1.050(6) 0.507 1.43(4) 0.89(3) 1.23(3)

LD;D�
w≥1;¼1Shape 0.290(4) 0.249(1) 0.069 0.938(23) 1.055(11) 0.854 1.40(4) 0.90(3) 1.20(4)

NoL 0.278(7) 0.248(3) 0.662 0.935(23) 1.088(64) 0.385 1.43(6) 0.92(10) 1.16(11)
LD;D�
w≥1;≥1 0.285(4) 0.249(1) 0.146 0.929(10) 1.054(6) 0.480 1.38(2) 0.94(2) 1.18(2)

LD;D�
w≥1;¼1NLO 0.296(3) 0.249(1) 0.347 0.966(1) 1.053(5) 0.418 1.34(3) 0.87(3) 1.18(2)

LD;D�
w≥1;¼1 þ SR 0.289(4) 0.250(1) 0.265 0.916(10) 1.048(6) 0.500 1.43(4) 0.86(10) 1.24(3)

LD;D�
w≥1;¼117 0.287(4) 0.258(3) 0.572 0.916(10) 1.050(6) 0.524 1.43(3) 0.96(3) 1.23(3)

LD;D�
w≥1;¼119 0.289(4) 0.249(1) 0.121 0.917(10) 1.050(6) 0.505 1.43(4) 0.89(3) 1.24(3)

LD;D�
w≥1;≥1½hA1� 0.288(4) 0.250(1) 0.148 0.916(11) 1.049(6) 0.556 1.43(4) 0.89(3) 1.24(3)
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two elongated overlapping ellipses for the JP ¼ 0− and 0þ
currents, respectively. QCDSR results were applied to the
first-order HQET corrections, in order to relate bounds on
the JP ¼ 0− current to GðwÞ. These ellipses, which also
incorporated estimates of theoretical uncertainties in the
first-order corrections, are reproduced in Fig. 6 in blue.11

Reference [32] approximated these allowed regions simply
by the major axis of the most constraining ellipse (perhaps
because the size of the minor axes of these ellipses were far

smaller than the experimental uncertainties in c̃� at the
time), shown by the purple dashed line in Fig. 6. This
imposes the relationship between c̃� and ρ̃2� in Eq. (4.14),
leading to a polynomial form GðwÞ=Gðw0Þ ¼ 1− 8a2ρ̃2�z�þ
ð57:ρ̃2� − 7.5Þz2� þ � � �, and, after application of HQET
relations at Oðαs; 1=mc;bÞ, to similar polynomial forms
in z� for hA1

ðwÞ=hA1
ðw0Þ. The CLN parametrization and all

parametrizations derived from it implicitly apply this
constraint on the ρ̃2� − c̃� plane.
The experimental data and LQCD predictions have

reached a level of precision, however, such that the size

(a) (b)

(c) (d)

(e) (f)

FIG. 4. The spectra and form factors (red bands) recovered from the LD;D�
w≥1;¼1 fit scenario in the RC expansion, compared to the

fitted experimental data (black markers) and LQCD data (plum markers): (a) dΓ½B̄ → Dlν�=dw (Belle 2015); (b) dΓ½B̄ → D�lν�=dw
(Belle 2017); (c) dΓ½B̄ → D�lν�=dw (Belle 2019); (d) fþðwÞ; (e) f0ðwÞ; and (f) hA1

ðwÞ. Also shown are the corresponding B̄ → Dð�Þτν
spectra (blue bands). For hA1

ð1Þ ¼ F ð1Þ the zero-recoil prediction of Ref. [17] is used. The beyond zero-recoil lattice points for hA1

from Ref. [31], which are not included in this fit, are shown as gray markers.

11Our c̃� ¼ 2c1 in Ref. [32].
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of the ρ̃2� − c̃� allowed region recovered from fits is now
comparable to the minor axes. To see this, we show in
Fig. 6 the recovered 68% and 95% CLs for the LD;D�

w≥1;¼1,

LD;D�
w≥1;¼1Shape, and LD;D�

w≥1;¼117 scenarios, by red, orange,
and green ellipses, respectively. Constraining ρ̃2� and c̃� to
the major axis is barely compatible with these fits at
95% CL. Thus, imposing the CLN constraint in
Eq. (4.14) introduces fit biases into the analysis of
current data.

To demonstrate this explicitly, we show in Fig. 7(a) the
recovered RðDÞ − RðD�Þ CLs arising from applying the
CLN constraint (4.14) to the LD;D�

w≥1;¼117 scenario (blue

ellipse) versus the LD;D�
w≥1;¼117 scenario without such a

constraint (gray ellipse). We do the same for the LD;D�
w≥1;¼1

scenario (red ellipse), i.e., using all Belle data, versus the
LD;D�
w≥1;¼1 scenario without such a constraint (orange ellipse).

One observes a significant shift in RðDÞ, commensurate
with a bias introduced into GðwÞ: RðD�Þ remains unaffected
because the parameters entering the first-order power
corrections may compensate for the bias when translated
to hAi

and hV . In Fig. 7(b) we show the same comparison,

but for a LD;D�
w≥1;¼1NLO-type scenario, that incorporates only

Oðαs; 1=mc;bÞ corrections and (in this case) no QCDSR
inputs. One sees that a similar downward shift in RðDÞ
occurs independently of whether second-order power
corrections were included. A similar result occurs for
LD;D�
w≥1;¼1NLO with QCDSR inputs. To guide the eye, in

Fig. 7(a) we show the LD;D�
w≥1;¼1NLO-type fits by dashed

ellipses. The fits using first-order versus second-order
HQET corrections are, respectively, compatible for both
the CLN constrained and unconstrained scenarios, sub-
stantiating that the second-order power corrections do not
appear to play a major role in these shifts.
The second source of external bias is, as already noted in

Sec. VI E, a tension in the fits to the Belle 2017 versus the
Belle 2017þ 2019 B̄ → D�lν datasets. The inclusion of
the more precise latter dataset results in an additional
reduction of both the central value and the uncertainty of
the predicted RðD�Þ. In Fig. 7, this corresponds to the shift
from the gray to red or blue to orange ellipses. Once again,
comparing Figs. 7(a) and 7(b) we see that the shift is
relatively insensitive to the inclusion of the second-order
power corrections. Overall, the fits using first-order versus

(a) (b)

FIG. 5. Fit results for RðDð�ÞÞ for the nine scenarios of Table V.

FIG. 6. The allowed-region ellipses (blue) arising from dis-
persive bounds plus unitarity constraints applied to the B̄ → D
form factor GðwÞ [32]. The major axis of the tighter ellipse,
corresponding to the JP ¼ 0− current, is shown by the dashed
purple line. Also shown are the recovered CLs for the LD;D�

w≥1;¼1,

LD;D�
w≥1;¼1Shape, and LD;D�

w≥1;¼117 fit scenarios (red, orange, and
green ellipses, respectively).

FLORIAN U. BERNLOCHNER et al. PHYS. REV. D 106, 096015 (2022)

096015-28



second-order HQET corrections are, respectively, compat-
ible for each set of inputs or assumptions. Thus the
significant shifts in the RðDð�ÞÞ predictions can be attrib-
uted mainly to two sources of bias: the CLN constraint
enforcing a linear relationship between ρ̃2� and c̃�, and the
tension between the Belle datasets.

Because of the tension in the RðD�Þ predictions from fits
using either the Belle 2017 or 2019 dataset, we adopt a
scale factor for its uncertainty,

ffiffiffiffiffi
χ2

p
for two experiments

[81], to account for the differences between the two
datasets. From the results in Table VIII, this leads to the
RðD�Þ prediction

(a) (b)

FIG. 7. (a) The LD;D�
w≥1;¼1 RðDð�ÞÞ predictions using different sets of inputs and assumptions. The blue versus gray (orange versus red)

ellipses demonstrate the shift in the predicted RðDÞwhen the CLN constraint on c� is applied versus lifted, respectively, to the L
D;D�
w≥1;¼117

(LD;D�
w≥1;¼1) scenario. The inclusion of the Belle 2019 data results in a reduction of the central value and uncertainty of RðD�Þ (gray versus

red or blue versus orange ellipses). The light-purple band shows the RðDÞ LQCD prediction [17]. (b) The same pattern for the
LD;D�
w≥1;¼1NLO scenario fits that incorporate only Oðαs; 1=mc;bÞ corrections and (in this case) do not incorporate QCDSR inputs. For

comparison, in the left figure we show the LD;D�
w≥1;¼1NLO CLs by dashed ellipses.

(a) (b)

FIG. 8. (a) The recovered values of Gð1Þ andF ð1Þ from the LD;D�
w≥1;¼1 fit scenario in the VC limit are compared to the LQCD predictions

of Ref. [17]. (b) The RðDð�ÞÞ predictions from the LD;D�
w≥1;¼1Shape fit scenario in the VC limit (orange ellipse) are compared to the LD;D�

w≥1;¼1

fit in the RC expansion (red ellipse).
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RðD�Þ ¼ 0.249ð3Þ; ð6:8Þ

in which the scale factor is 2.6.

G. Vanishing chromomagnetic limit fits

Applying the VC limit to the fit scenarios in Table V
instead of the RC expansion, we find poor fits for the
LD;D�
w≥1;¼1 scenario and for all its variations that include zero-

recoil normalization constraints. Typically, the χ2=ndf
corresponds to a p value of less than one percent. This
is caused by the tensions in the predicted value of F ð1Þ
from the VC expansion versus LQCD data: to describe
the experimental spectra at nonzero recoil, the fit para-
meter ĉ0ð1Þ is pushed to small values, which result in
F ð1Þ ≃ 0.96. This is far from the LQCD constraint
F ð1ÞLQCD ¼ 0.906ð13Þ [17], yielding a large contribution
to the fit χ2. This behavior also matches the approximate
expectations discussed in Sec. V C: The zero-recoil struc-
ture of the first- and second-order power corrections in the
VC limit appears inconsistent with the LQCD data (5.9)
and the recovered ratios R1;2ð1Þ from first-order fits. The
recovered values for F ð1Þ and Gð1Þ for the LD;D�

w≥1;¼1

scenario are shown in Fig. 8(a).
We next consider the LD;D�

w≥1;¼1Shape scenario, which
relaxes the zero-recoil normalization constraints. In this
scenario, the VC limit parametrization achieves excellent
fits. To avoid overfitting, we again apply our NHT
prescription, considering all combinations of the candidate
parameter set η̂ð1Þ, η̂0ð1Þ, ϕ̂0

0ð1Þ, ê3ð1Þ, ê03ð1Þ, and ĉ0ð1Þ.
The prescription identifies three terminating nodes. Of
these, two are the same as the third under the approximate
replacements ∼εcê3ð1Þ → η̂ð1Þ or ∼εcê03ð1Þ → η̂0ð1Þ,
matching our expectation in Sec. III F that η̂ can reabsorb
εcê3 as in Eq. (3.29), because there is no sensitivity to
Oð1=mcmb; 1=m2

bÞ or Oðαs=mc;bÞ corrections in the avail-
able data. We show the resulting fit parameters for this
node in Table IX, which has χ2 ¼ 27.1 for 29 degrees of
freedom.
The fitted value for jVcbj is in good agreement with the

LD;D�
w≥1;¼1 result for the RC expansion, which must be the

case as F ð1Þ and Gð1Þ are constrained to the LQCD data.
The corresponding zero-recoil slope and curvature param-
eters are ρ2 ¼ 1.20ð3Þ and c ¼ 2.10ð15Þ, which are in
moderate tension with those for the LD;D�

w≥1;¼1Shape in the RC
expansion. A similar difference arises in η̂ð1Þ, which leads

to a larger R2ð1Þ and a smaller R0ð1Þ as in Eqs. (5.17). One
sees respective up- and downshifts in these form-factor
ratios over the entire w range, as shown in Fig. 9. While
RðDÞ is mainly determined by lattice data and is unchanged
versus the RC expansion fits, these shifts in R2;0 result in a
significantly smaller RðD�Þ: One finds RðDÞ ¼ 0.290ð4Þ
and RðD�Þ ¼ 0.246ð1Þ with correlation 0.54. The corre-
sponding CL is shown in Fig. 8(b) and compared to the RC
baseline fit.
More concerning than the shift in RðD�Þ, however, is that

the VC limit LD;D�
w≥1;¼1Shape fits have no sensitivity to ĉ0ð1Þ,

which solely determines the second-order power correction
to F ð1Þ in the VC limit [see Eq. (5.17b)]. This insensitivity
arises by construction: because the same 2ðεc − εbÞ2ĉ0ð1Þ
term enters both F ð1Þ and Gð1Þ, and ĉ0ð1Þ does not enter
R1ð1Þ or R2ð1Þ [see Eq. (5.17)], relaxing the normalization
constraints by definition eliminates any constraining power
on ĉ0ð1Þ. As a result the recovered F ð1Þ is unchanged
from F ð1ÞNLOHQET, up to the small Oðα2sÞ correction in
Eq. (5.15): one finds the recovered F ð1Þ ¼ 0.957ð2Þ and
Gð1Þ¼1.050ð5Þ. Therefore the optimal VCLD;D�

w≥1;¼1Shape fit
does not address the tension with LQCD predictions for
F ð1Þ. WhileOð1=m3

cÞ corrections may be of percent size, it
seems unlikely that the third-order VC limit corrections
could resolve the remaining tension inF ð1Þ at the 5% level.
Therefore, while the VC limit parametrization can describe
the shape of the B̄ → Dð�Þlν spectra, it is unlikely to be able
to provide a full description of the data.

TABLE IX. Fit results for the single terminating node of the nested hypothesis test graph for the LD;D�
w≥1;¼1Shape fit scenario in the VC

limit. The Oðα2sÞ correction in Eq. (5.16) is imposed and must be included when using these fit results.

jVcbj × 103 Gð1Þ F ð1Þ ρ2� c� χ01ð1Þ η̂ð1Þ η̂1ð1Þ m1S
b [GeV] δmbc [GeV] ϕ̂0

0ð1Þ ê3ð1Þ ê03ð1Þ ĉ0ð1Þ
38.98(68) 1.055(7) 0.903(12) 0.96(3) 2.00(14) � � � 0.17(4) −0.09ð8Þ 4.73(5) 3.40(5) −0.6ð2Þ � � � � � � � � �

FIG. 9. Form factors and form-factor ratios as functions of w for
the VC limit LD;D�

w≥1;¼1Shape fit.
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H. Branching ratios, forward-backward asymmetries,
and polarizations

With our fits we can produce precise predictions for
several additional observables. We quote predictions here
based on our LD;D�

w≥1;¼1 baseline scenario in the RC expan-
sion, unless stated otherwise. First, for the D −D� ratio

Rl
D=D� ≡ B½B̄ → Dlν�

B½B̄ → D�lν� ; ð6:9Þ

we find

Re;μ
D=D� ¼ 0.417ð12Þ and Rτ

D=D� ¼ 0.479ð8Þ: ð6:10Þ

The light lepton value Re;μ
D=D� can be compared to the world

averages of Ref. [5]. Averaging the branching fractions
from both B0 and Bþ decays assuming isospin (including a
correction for their relative lifetimes), one obtains

Re;μHFLAV
D=D� ¼ 0.436ð15Þ; ð6:11Þ

in agreement with the baseline result (6.10) at the 1σ level.
The predictions for the other scenarios listed in Table Vare
compared with Eq. (6.11) in Fig. 10(a). They all show good
agreement with the world average.
Similarly, one can convert the measured world

averages of RðDÞ and RðD�Þ [5] into a ratio of branching
fractions, Rτ

D=D� . Using the average in Eq. (6.11), we find

RτHFLAV
D=D� ¼ 0.50ð6Þ. The Rτ

D=D� predictions for the various

fit scenarios in the RC expansion are compared to this value
in Fig. 10(b), all showing good agreement with the world
average.
The forward-backward asymmetry is defined by

AFB½ml� ¼
1

Γ½B̄→D�lν�
�Z

1

0

−
Z

0

−1

�
d cosθl

dΓ½B̄→D�lν�
d cosθl

;

ð6:12Þ

with θl denoting the polar helicity angle between the lepton
momentum p⃗l and −p⃗ in the lν rest frame. For decays
involving light leptons, this asymmetry has attracted recent
attention [74,82,83]. We find

AFBðml ¼ 0Þ ¼ 0.244ð4Þ; AFBðmeÞ ¼ 0.244ð4Þ;
AFBðmμÞ ¼ 0.239ð4Þ; AFBðmτÞ ¼ 0.065ð2Þ: ð6:13Þ

In addition, we can also predict the difference ΔAFB and
sum ĀFB,

ΔAFB ≡ AFBðmμÞ − AFBðmeÞ ¼ −0.0057ð1Þ; ð6:14aÞ

ĀFB ≡ 1

2
½AFBðmμÞ þ AFBðmeÞ� ¼ 0.242ð4Þ: ð6:14bÞ

To compare to the experimental value of ΔAFB from
Ref. [74], one needs to also include a small phase-space
cut q2 > 0.08 GeV2, for which the quoted measurement is
not corrected. This results in

AFBðme; q2 > 0.08 GeV2Þ ¼ 0.246ð4Þ; AFBðmμ; q2 > 0.08 GeV2Þ ¼ 0.241ð4Þ;
ΔAFBðq2 > 0.08 GeV2Þ ¼ −0.0050ð1Þ; ĀFBðq2 > 0.08 GeV2Þ ¼ 0.243ð4Þ: ð6:15Þ

(a) (b)

FIG. 10. Prediction for the ratio Rl
D=D� for the scenarios of Table V in the RC expansion, for (a) l ¼ e,μ and (b) l ¼ τ.
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This exhibits a tension of ∼4σ compared to ΔABelle
FB ðq2 >

0.08 GeV2Þ ¼ 0.035ð9Þ [82].
We also derive predictions for the LFUV ratios con-

strained to the τ phase space

R̃ðDð�ÞÞ ¼
R wτ
1 dw½dΓ½B̄ → Dð�Þτν�=dw�R wτ
1 dw½dΓ½B̄ → Dð�Þlν�=dw� ; ð6:16Þ

with wτ ¼ ðm2
B −m2

Dð�Þ −m2
τÞ=ð2mBmDð�Þ Þ. These ratios

feature a larger cancellation of experimental and theory
uncertainties [40,84,85]. We find

R̃ðDÞ ¼ 0.571ð4Þ; R̃ðD�Þ ¼ 0.339ð1Þ; ð6:17Þ

with a correlation of ρ ¼ 0.24.
For the longitudinal D� polarization fraction,

FL;lðD�Þ≡ Γλ¼0½B̄ → D�lν�
Γ½B̄ → D�lν� ; ð6:18Þ

in which λ ¼ �; 0 labels the D� spin in the helicity basis,
we find for the light leptons l ¼ e, μ and for the τ

FL;lðD�Þ ¼ 0.516ð3Þ and FL;τðD�Þ ¼ 0.454ð3Þ;
ð6:19Þ

respectively. The difference for the light leptons,
ΔFLðD�Þ≡ FL;μðD�Þ − FL;eðD�Þ ¼ 0.00012ð1Þ. We find
for the τ polarization,

PτðDð�ÞÞ ¼ ½Γλτ¼þ − Γλτ¼−�½B̄ → Dð�Þτν�
Γ½B̄ → Dð�Þτν� ; ð6:20Þ

in which λτ ¼ � labels the τ spin in the helicity basis,

PτðDÞ ¼ 0.323ð3Þ and PτðD�Þ ¼ −0.494ð5Þ: ð6:21Þ

Finally, for the electron-muon universality ratios

Re=μðDð�ÞÞ≡ Γ½B̄ → Dð�Þeν�
Γ½B̄ → Dð�Þμν� ; ð6:22Þ

we find

Re=μðDÞ ¼ 1.0028ð1Þ and Re=μðD�Þ ¼ 1.0041ð1Þ;
ð6:23Þ

where the latter is notably different from the prediction in
Ref. [82], Re=μðD�Þ ¼ 1.0026ð1Þ. For the LD;D�

w≥1;¼1NLO
fit scenario we find similarly Re=μðDÞ ¼ 1.0026ð1Þ and
Re=μðD�Þ ¼ 1.0041ð1Þ.

VII. SUMMARY

We developed a supplemental power counting for
HQET, based on counting insertions of the transverse
residual momentum, =D⊥, within HQET correlators: the
residual chiral expansion. We conjectured that higher-order
terms within this power counting may be suppressed, and
we showed how this leads to a dramatic simplification of
the second-order power corrections in HQET, when trun-
cating at Oðθ2Þ in the RC expansion. In doing so, we
presented a review of the formal elements of the general
HQ expansion, that are required when working at second
order and beyond. Though these formal developments are
not new per se, we are unaware of a self-contained and self-
consistent presentation of these elements in the literature.
We proceeded to derive the Oðθ2Þ second-order power

corrections to the B̄ → Dð�Þ form factors both within and
beyond the Standard Model, including also theOðαs=mc;bÞ
corrections. At second order only three Isgur-Wise func-
tions are required to describe theOðθ2Þ second-order power
corrections, and only one when considering only Oð1=m2

cÞ
terms. Moreover, at zero recoil, almost all second-order
corrections are fully determined by the HQ mass param-
eters λ1;2. Similarly, we derived all second-order power
corrections to the B̄ → Dð�Þ form factors in the vanishing
chromomagnetic limit. Our results provide the first check of
Ref. [16]—which used somewhat different conventions—
for those terms entering at second order in the RC
expansion or in the VC limit. We find agreement except
for the sign of the Oð1=mcmbÞ wave function M̂10 and an
exchange of M̂17 with M̂19 and M̂22 with M̂23. Whether
these errors also affect the additional terms that arise
when including all second-order corrections remains to
be checked.
Based on the RC expansion results, we developed a

form-factor parametrization, applying the 1S short distance
mass scheme that is self-consistent at second order in the
HQ expansion. These results are encoded in the HAMMER

library [26,27]. We showed that the resulting zero-recoil
predictions for B̄ → Dð�Þ form factors, Gð1Þ and F ð1Þ, are
in good agreement with zero-recoil LQCD data, in par-
ticular, resolving the prior tension of the LQCD data with
the first-order prediction for F ð1Þ.
Confronting our parametrization of the form factors with

experimental and LQCD data, we identified optimal
parameter sets for the RC expansion under a nested
hypothesis test prescription. We found that the RC expan-
sion can achieve excellent agreement with the data, with
relatively few parameters, and without using any QCDSR
or LCSR model-dependent inputs. The VC limit para-
metrization produces poor fits due to its restricted structure
at zero recoil, but using only shape information yields
good fits.
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We recovered for our best fit

RðDÞ ¼ 0.288ð4Þ; RðD�Þ ¼ 0.249ð3Þ; and

jVcbj ¼ 38.7ð6Þ × 10−3; ð7:1Þ

in which the RðD�Þ prediction contains a scale factor of 2.6
to account for tensions in the predictions from the Belle
2017 versus 2019 B̄ → D�lν datasets. The inclusion of
zero-recoil second-order power corrections in the RC
expansion was crucial to good fits, but the inclusion of
second-order power corrections beyond zero recoil was not.
This supports the approach used in Ref. [7], which used
only the shape of the differential distributions to constrain
the subleading Isgur-Wise functions, under the premise that
second-order corrections are important only at zero recoil.
We found that the simplified linear CLN slope-curvature
relation advocated in Ref. [32] is in tension with the data
and leads to large upward biases in RðDÞ predictions
obtained in previous analyses. Our fitting prescription is
systematically improvable with more precise future data
that will simultaneously allow further tests of the RC
expansion, as well as improved determination of jVcbj, the
LFUV ratios RðDð�ÞÞ, and other observables.
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APPENDIX A: HADRON MASS EXPANSION

The spectroscopy of heavy hadrons in HQET is typically
understood (see, e.g., Ref. [15]) via the claim that the
leading-order contribution to the hadron mass in the
effective theory should be mH −mQ, because of the mass
subtraction in the field redefinition (2.1) acting similarly on
the Hamiltonian: H → H −mQ. Higher-order corrections
can then be obtained from the expansion of the HQET
Hamiltonian H −mQ ¼ Hlight þ δH. Here Hlight encodes
the dynamics of the light degrees of freedom—the brown
muck—in the hadron. For a hadron whose brown muck is

in a state of definite spin-parity, sπl , this generates a
contribution Λ̄ðsπlÞ to the HQET hadron mass (i.e., a
different parameter for each spin-parity state of the brown
muck). The remaining term encodes the power corrections
to the HQET Hamiltonian δH ¼ −

P
n¼1 Li=ð2mQÞn.

It is instructive to understand the HQ expansion of the
hadron masses via the matrix element matching (2.9)
between QCD and HQET. To do this, it is crucial to note
[12] that one is ultimately interested in operators of the
form Q̄0ðxÞΓQðxÞLðxÞ, in which LðxÞ is a current coupling
to the heavy quark current (such as a lepton bilinear in the
case of semileptonic decays). Momentum conservation
implies that iDμL ¼ −ðp − p0ÞμL, in which p (p0) is the
momentum of the hadron containing Q (Q0). In this work,
we always choose the heavy quark velocity to be that of the
hadron containing it, i.e.,

p ¼ mHv: ðA1Þ

Thus, because the total derivative of the interaction operator
should vanish, and because of the field redefinition (2.1), it
follows that

i∂μhH0ðp0ÞjQ̄v0þðxÞΓQvþðxÞjHðpÞi
¼!½ðmH −mQÞvμ − ðmH0 −mQ0 Þv0μ�

× hH0ðp0ÞjQ̄v0þðxÞΓQvþðxÞjHðpÞi; ðA2Þ
in which the ¼! denotes equality under composition with
LðxÞ. Defining the operator X̄H as the annihilator of
the light degrees of freedom in the hadron, it similarly
follows that

i∂μh0jX̄HðxÞQvþðxÞjHðpÞi
¼⟶ðmH −mQÞvμh0jX̄HðxÞQvþðxÞjHðpÞi: ðA3Þ

Let us define the power expansion of the mass splitting
mH −mQ ¼P

n¼0ΔmH
nþ1=ð2mQÞn. The equation of motion

for Qvþ applied to Eq. (A3) implies that at leading order

ΔmH
1 ¼ h0jX̄HðxÞiv · D⃖QvþðxÞjHi

h0jX̄HðxÞQvþðxÞjHi ≡ Λ̄; ðA4Þ

which can be thought of as the energy of the brown muck in
the heavy quark limit. Onemay further deduce fromEq. (A2)
that the individual matrix elements must take the form, under
contraction with v or v0,12

12Hereafter we assume that Hb and Hc (or H and H0) belong
to the same HQET multiplet, so that Λ̄ and the other mass
parameters λ1;2, defined below, are the same for both hadrons.
For decays to excited states, for which this is not the case, two
sets of parameters are required: The leading terms of Eqs. (A5)
generalize to ðvμw − v0μÞðΛ̄w − Λ̄0Þ=ðw2 − 1Þ and ðvμ − v0μwÞ×
ðΛ̄0w − Λ̄Þ=ðw2 − 1Þ, respectively.
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vð0ÞμhH0ðp0ÞjQ̄v0þΓiDμQvþjHðpÞi

¼!vð0Þμ
�
Λ̄
vμw − v0μ
wþ 1

þ vμ
X
n¼1

ΔmH
nþ1

ð2mQÞn
�

× hH0ðp0ÞjQ̄v0þΓQvþjHðpÞi; ðA5aÞ

vð0ÞμhH0ðp0ÞjQ̄v0þiD⃖μΓQvþjHðpÞi

¼!vð0Þμ
�
Λ̄
vμ − v0μw
wþ 1

− v0μ
X
n¼1

ΔmH0
nþ1

ð2mQ0 Þn
�

× hH0ðp0ÞjQ̄v0þΓQvþjHðpÞi: ðA5bÞ

These ensure that the equations of motion forQvþ and Q̄v0þ are
satisfied at leading order, and the forward-scattering matrix
element of the HQET operator is subleading, i.e.,

hHjQ̄vþiv ·DQvþjHi¼!
X
n¼1

ΔmH
nþ1

ð2mQÞn
hHjQ̄vþQvþjHi: ðA6Þ

With reference to Eq. (2.9), at first order the left side of
Eq. (A6) matches onto HQET as

hHjQ̄vþiv ·DQvþjHi
mH

¼!hHvj−L1=ð2mQÞjHviþ���; ðA7Þ

where we made use of the contact term (2.14) plus the Qvþ
equation ofmotion. The hadronicmass can then be expanded
to second order as13

mH ¼ mQ þ Λ̄þ ΔmH
2

2mQ
þ � � � ; ΔmH

2 ≃
hHvjð−L1ÞjHvi
hHvjQ̄vþQvþjHvi :

ðA8Þ

In our normalization (2.11), hHvjQ̄vþQvþjHvi ¼ 2. It is
conventional to define the parameters

λ1 ¼ −
hHvjQ̄vþD2QvþjHvi
hHvjQ̄vþQvþjHvi ; ðA9aÞ

dHλ2 ¼ −
hHvjQ̄vþðgσαβGαβ=2ÞQvþjHvi

hHvjQ̄vþQvþjHvi ; ðA9bÞ

where dH is a spin combinatoric factor, specific to a given
hadronic state. The mass correction then becomes

ΔmH
2 ¼ −λ1 − dHaQðμÞλ2ðμÞ; ðA10Þ

in which we have explicitly restored the scale-dependent
renormalization of the chromomagnetic operator. For a
pseudoscalar (P) and vector (V) meson, which fill a HQ
spin symmetry doublet with brown muck spin-parity
sπl ¼ 1

2
−, the factor dP ¼ 3 and dV ¼−1, respectively. (For

the ground-state baryon, the brown muck is in a sπl ¼ 0þ
state, and the chromomagnetic parameter λ2 vanishes.)

APPENDIX B: SCHWINGER-DYSON
RELATIONS

The mass parameters play an important role in
Schwinger-Dyson style relations (also called modified
Ward identities) between matrix elements entering at
different orders in the HQ expansion in Eq. (2.9). Writing
the HQET current operator JΓþðzÞ ¼ c̄v

0
þðzÞΓbvþðzÞ, then

from Eqs. (A2) and (A8) the derivative of the QCD matrix
element with respect to z,

i∂zμhHcjJΓþðzÞjHbi¼!
��

Λ̄þ ΔmHb
2

2mb

�
vμ −

�
Λ̄þ ΔmHc

2

2mc

�
v0μ

�
hHcjJΓþðzÞjHbi þ � � � ; ðB1Þ

expanding the mass splitting to Oð1=mQÞ. However, with reference to Eq. (2.9), to first order the matrix element

hHcjJΓþðzÞjHbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimHb
mHc

p ¼ hHv0
c j

1

Z

Z
Dc̄v

0
þDcv

0
þDb̄vþDbvþ exp

�
i
Z

d4x½L0
HQET þ LHQET�ðxÞ

�
JΓþðzÞjHv

bi

≃ hHv0
c jJΓþðzÞjHv

bi þ
1

2mc
hHv0

c jL0
1 ∘ c̄v

0
þðzÞΓbvþðzÞjHv

bi þ
1

2mb
hHv0

c jc̄v0þðzÞΓbvþðzÞ ∘ L1jHv
bi; ðB2Þ

and, similarly, the derivative of the matrix element

13In the notation of Ref. [16], the higher-order power corrections to the mass are denoted as Δm2
H. However, because this closely

resembles the notation for the mass splitting within a HQET doublet, we use a different notation.
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i∂zμ
hHcjJΓþðzÞjHbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimHb

mHc

p ≃ hHv0
c jc̄v0þðzÞiD⃖z

μΓbvþðzÞjHv
bi þ hHv0

c jc̄v0þðzÞΓiD⃗z
μbvþðzÞjHv

bi

þ 1

2mc
hHv0

c jL0
1 ∘ c̄v

0
þðzÞ½iD⃖z

μΓþ ΓiD⃗z
μ�bvþðzÞjHv

bi

þ 1

2mb
hHv0

c jc̄v0þðzÞ½iD⃖z
μΓþ ΓiD⃗z

μ�bvþðzÞ ∘ L1jHv
bi: ðB3Þ

Applying Eqs. (B2) and (B3) to the relation (B1), and matching order-by-order in 1=mc;b, one obtains at leading order the
familiar relation

hHv0
c jc̄v0þðzÞiD⃖z

μΓbvþðzÞjHv
bi þ hHv0

c jc̄v0þðzÞΓiD⃗z
μbvþðzÞjHv

bi ¼! Λ̄ðv − v0ÞμhHv0
c jJΓþðzÞjHv

bi: ðB4Þ

The left-hand side comprises uncontracted versions of the Oð1=mc;bÞ current corrections generated by J 1, that is, with the
i=D replaced by iDμ. At first order in 1=mc, contracting with v0μ and using the derivative contact term (2.14), one finds
(cf. Appendix C of Ref. [16])

hHv0
c jc̄v0þðzÞJ̄ 0

2Π0þΓbvþðzÞjHv
bi þ hHv0

c jL0
1 ∘ c̄v

0
þðzÞΓiv0 · D⃗zbvþðzÞjHv

bi
¼! Λ̄ðw − 1ÞhHv0

c jL0
1 ∘ c̄v

0
þðzÞΓbvþðzÞjHv

bi − ΔmHc
2 hHv0

c jJΓþðzÞjHv
bi: ðB5aÞ

The first term on the left-hand side is the usual second-order current correction, but with a positive projector Π0þ.
The second term on the left-hand side resembles the Oð1=mcmbÞ mixed Lagrangian and current corrections generated
by L1 and J 1, with the i=D replaced by iv0 ·D. This relation thus constrains a combination of the matrix elements
arising from the Oð1=m2

cÞ current corrections and the Oð1=mcmbÞ mixed corrections, with the second-order mass
splitting times the leading-order matrix element and Λ̄ðw − 1Þ times the matrix element generated by the Oð1=mcÞ
Lagrangian corrections on the right-hand side. The conjugate relation to Eq. (B5), from the Oð1=mbÞ terms in the
relation (B1), is

hHv0
c jc̄v0þðzÞΓΠþJ 2bvþðzÞjHv

bi − hHv0
c jc̄v0þðzÞiv · D⃖zΓbvþðzÞ ∘ L1jHv

bi
¼! Λ̄ðw − 1ÞhHv0

c jc̄v0þðzÞΓbvþðzÞ ∘ L1jHv
bi − ΔmHb

2 hHv0
c jJΓþðzÞjHv

bi: ðB5bÞ

APPENDIX C: RADIATIVE CORRECTIONS

At OðαsÞ, perturbative corrections arise via the matching

c̄Γb → c̄v
0

þ
h
Γþ α̂s

X
i

CΓi
Γi

i
bvþ; ðC1Þ

where α̂s ¼ αs=π, and Γ1 ¼ Γ and Γi>1 are a basis of operators generated by all combinations of replacements γμ → vð0Þμ.
The functions CΓi

¼ CΓi
ðw; zÞ depend on the recoil parameter w ¼ v · v0 and mass ratio z ¼ mc=mb. Specifically, atOðαsÞ

the following operators are generated (using the notation of Ref. [15])

c̄b → c̄v
0

þð1þ α̂sCSÞbvþ;
c̄γ5b → c̄v

0
þð1þ α̂sCPÞγ5bvþ;

c̄γμb → c̄v
0

þ½ð1þ α̂sCV1
Þγμ þ α̂sCV2

vμ þ α̂sCV3
v0μ�bvþ;

c̄γμγ5b → c̄v
0

þ½ð1þ α̂sCA1
Þγμ þ α̂sCA2

vμ þ α̂sCA3
v0μ�γ5bvþ;

c̄σμνb → c̄v
0

þ½ð1þ α̂sCT1
Þσμν þ α̂sCT2

iðvμγν − vνγμÞ þ α̂sCT3
iðv0μγν − v0νγμÞ

þ CT4
ðv0μvν − v0νvμÞ�bvþ; ðC2Þ

from which one may read off the Γi basis for each of the currents in Eq. (2.15).
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TheOðαsÞ corrections for all five currents were computed
in Ref. [39]; explicit expressions are given in Ref. [7]. The
vector and axial-vector currents in QCD are (partially)
conserved and so not renormalized, but the corresponding
HQET currents have nonzero anomalous dimensions, lead-
ing to μ dependence for CV1

and CA1
for w ≠ 1. The scalar,

pseudoscalar, and tensor currents are renormalized in QCD,
and thus CS, CP, and CT1

are also μ dependent. In the MS
scheme, the remaining CΓj

(j ≥ 2) are scale independent.
Because we are interested in the phenomenology of

second-order power corrections, the Oðαs=mcÞ corrections

should also be incorporated, as they may be comparable
to the 1=mcmb terms. At this order both radiative
corrections to local operators and nonlocal operators,
arising from the operator product of the currents with the
insertion of the first-order Lagrangian L1, enter. The
coefficients of the local operators are fully determined by
reparametrization invariance, while those of the nonlocal
ones are just the products of the Wilson coefficients of the
operators entering the operator product, expanded atOðαsÞ.
With reference to Eq. (2.9), these additional contributions
read [14,86]

δ½c̄Γb� → c̄v
0

þ
J̄ 0

1

2mc

�
α̂s
X
i

CΓi
Γi

�
bvþ þ 1

mc
α̂s
X
i

½C0
Γi
c̄v

0
þð−iv · D⃖ÞΓibvþ þ CΓi

c̄v
0

þ½∂v0μΓi�ð−iD⃖μÞbvþ�

þ L0
1

2mc
∘ c̄v

0
þ

�
α̂s
X
i

CΓi
Γi

�
bvþ þ α̂sCc

g

2mc

�
c̄v

0
þ
g
2
σαβGαβcv

0
þ

�
∘ c̄v

0
þΓbvþ; ðC3Þ

with C0
Γ ¼ ∂CΓ=∂w. In the last line we have written the

nonlocal contributions from L0
1 alongside the explicit

OðαsÞ correction from the renormalization of the chromo-
magnetic operator that arises from the Oð1=mcÞ operator
product in Eq. (2.12).
The first term on the second line may be determined by

applying the relations (A5) after inserting the current into a
correlator, and expanding to first order. Thus the second
line may be rewritten as

1

2mc
α̂s
X
i

½2Λ̄C0
Γi
ðw − 1Þc̄v0þΓibvþ

þ 2CΓi
c̄v

0
þ½∂v0μΓi�ð−iD⃖μÞbvþ�: ðC4Þ

The proportionality to Λ̄ of the first term is explicit
although all the remaining terms in Eq. (C3) are also
proportional to Λ̄, as seen in the explicit evaluation of the
relevant matrix elements, in Eqs. (D2) and (D5).
TheOðαs=mbÞ terms are constructed similarly, using the

Hermitian conjugates of the insertions in Eq. (C3).

APPENDIX D: B̄ → Dð�Þ FIRST- AND SECOND-
ORDER POWER CORRECTIONS

The w-dependent L̂ð1Þ
1���6 functions have well-known

expressions (see, e.g., Ref. [16])

L̂ð1Þ
1 ¼ 2χ̂1 − 4ðw − 1Þχ̂2 þ 12χ̂3;

L̂ð1Þ
2 ¼ 2χ̂1 − 4χ̂3;

L̂ð1Þ
3 ¼ 4χ̂2;

L̂ð1Þ
4 ¼ 2η̂ − 1;

L̂ð1Þ
5 ¼ −1;

L̂ð1Þ
6 ¼ −2ð1þ η̂Þ=ðwþ 1Þ; ðD1Þ

in terms of the standard definitions of subleading Isgur-
Wise functions χ̂iðwÞ and η̂ðwÞ (see below). Note that we
retained explicitly the term parametrizing the correction
from the kinetic energy operator, χ̂1 (cf. Ref. [7]).
To compute the second-order power corrections in the

RC expansion, it is useful to briefly revisit the derivation of
Eqs. (D1). Under the trace formalism, we write the
Lagrangian corrections

hHv0
c jc̄v0þΓbvþ ∘ ½b̄vþD2bvþ�jHv

bi ¼ Λ̄Tr½H̄cðv0ÞΓHbðvÞX0ðv; v0Þ�; ðD2aÞ

hHv0
c jc̄v0þΓbvþ ∘

�
b̄vþ

g
2
σαβGαβbvþ

�
jHv

bi ¼ Λ̄Tr½H̄cðv0ÞΓΠþσαβHbðvÞXαβðv; v0Þ�; ðD2bÞ

and for the conjugate matrix elements

hHv0
c j½c̄v0þD2cv

0
þ� ∘ c̄v

0
þΓbvþjHv

bi ¼ Λ̄Tr½H̄cðv0ÞΓHbðvÞX̄0ðv0; vÞ�; ðD2cÞ
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hHv0
c j
�
c̄v

0
þ
g
2
σαβGαβcv

0
þ

�
∘ c̄v

0
þΓbvþjHv

bi ¼ Λ̄Tr½H̄cðv0ÞσαβΠ0þΓHbðvÞX̄αβðv0; vÞ�: ðD2dÞ

The implicit two-point function arising from the operator product yields theΠð0Þ
þ factors, and the explicit Λ̄ prefactor accords

with our normalization convention. The T invariance of the strong interactions requires the antisymmetric tensor Xαβ to
obey Xαβðv; v0Þ ¼ X̄αβðv0; vÞ, and similarly, X̄0ðv0; vÞ ¼ X0ðv; v0Þ. Thus the latter is a real-valued function—an Isgur-Wise
function—with the conventional definition X0 ¼ 2χ1ðwÞ,14 while Xαβ must take the form

Xαβðv; v0Þ ¼ −iχ2ðwÞðv − v0Þ½αγβ� þ 2χ3ðwÞσαβ; ðD3Þ

using the notation x½αyβ� ≡ xαyβ − yαxβ, and each of the χi is a real Isgur-Wise function. There is no v½αv0β� term because
ΠþσαβΠþvα ¼ 0.

Three relations of particular utility are

σαβHðvÞσαβ ¼ 6ð−γ5ÞPv − 2=v=ϵVv

¼ 2½dPPvð−γ5Þ þ dV=v=ϵVv�; ðD4aÞ

σαβHðvÞðv − v0Þ½αγβ�H̄ðv0Þ ¼ −4if½ðw − 1ÞΠþ þ ðw − 2ÞΠ−�Pvð−γ5Þ
− ½Π−=ϵþ ϵ · v0�VvgH̄ðv0Þ; ðD4bÞ

σαβHðvÞv½αv0β�H̄ðv0Þ ¼ −2iΠ−fðwþ 1ÞPvð−γ5Þ þ ½ðwþ 1Þ=ϵþ 2ϵ · v0�VvgH̄ðv0Þ: ðD4cÞ

Applying the Πþ projector from the left in Eqs. (D4a)
and (D4b), inserting them into Eqs. (D2), and matching

onto Eqs. (3.3), one can read off the results for L̂ð1Þ
1;2;3.

The current corrections are determined in the trace
formalism by writing

hHv0
c jc̄v0þΓiD⃗μbvþjHv

bi ¼ −Λ̄Tr½H̄cðv0ÞΓHbðvÞΞμðv; v0Þ�;
ðD5aÞ

hHv0
c jc̄v0þð−iD⃖μÞΓbvþjHv

bi ¼ −Λ̄Tr½H̄cðv0ÞΓHbðvÞΞ̄μðv0; vÞ�;
ðD5bÞ

and Ξ must take the general form Ξμ ¼ ξþðvþ v0Þμþ
ξ−ðv − v0Þμ − ξ3γμ. Straightforward application of
Eqs. (A5) at leading order contracted under v and v0—or
equivalently the leading-order Schwinger-Dyson relation
(B4) plus the equation of motion for Qvþ—allows one to
immediately deduce ξ− ¼ ξ=2, and ξþ ¼ −ξ3=ðwþ 1Þ þ
ξðw − 1Þ=ð2ðwþ 1ÞÞ. Inserting this result into Eqs. (D5)
and matching onto Eqs. (3.3), one can read off the results

for L̂ð1Þ
4;5;6, with the Isgur-Wise function η̂≡ ξ3=ξ.

We turn now to the second-order current corrections
from J 2. Just as for the first-order Lagrangian corrections,
we write these contributions under the trace formalism as

hHv0
c jc̄v0þΓD2bvþjHv

bi ¼ Λ̄2Tr½H̄cðv0ÞΓHbðvÞΦ0ðv; v0Þ�;
ðD6aÞ

hHv0
c jc̄v0þΓ

g
2
σαβGαβbvþjHv

bi ¼ Λ̄2Tr½H̄cðv0ÞΓσαβ
×HbðvÞΦαβðv; v0Þ�; ðD6bÞ

and similarly for the conjugatematrix elements.T-invariance
requires that Φαβðv; v0Þ ¼ Φ̄αβðv0; vÞ, so that

Φαβðv; v0Þ ¼ iφ1ðwÞv½αv0β� − iφ2ðwÞðv − v0Þ½αγβ�
þ 2φ3ðwÞσαβ; ðD7Þ

and further Φ0 ¼ 2φ0ðwÞ.15 Though we have defined the
functions Φ0 and Φαβ with respect to an arbitrary inter-
action Γ, note that the J 2 terms in Eq. (2.19) feature an
additional Π− insertion. Perforce, there is no Πþ projector
in Eq. (D6b), and hence the φ1 term does not vanish inside
the trace.
Application of the relations (D4) allows one to read off

the contributions of the φ̂i ≡ φi=ξ to the L̂
ð2Þ
i in Eqs. (2.20).

14When we encounter the second-order power corrections
below, it will become apparent that it is unfortunate that the
standard notation uses χ1 rather than χ0.

15See footnote 14. With respect to the notation of Ref. [16],
2Λ̄2φ0 ¼ ϕ0, 2Λ̄2φ1 ¼ −ϕ1, 2Λ̄2φ2 ¼ ϕ2, and 4Λ̄2φ3 ¼ ϕ3.
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However, just as for the first-order current corrections,
the φi are constrained by a Schwinger-Dyson relation,
Eq. (2.20) at Oðθ2Þ. Applying the relations (D4) for the
pseudoscalar and vector, this constraint reduces to

λ1ξþ dPλ2ξ ¼ Λ̄2½2φ0 − 4φ2ðw − 1Þ þ 4dPφ3�;
λ1ξþ dVλ2ξ ¼ Λ̄2½2φ0 þ 4φ2 þ 4dVφ3�: ðD8Þ

It immediately follows that

2φ0 ¼ λ1ξ=Λ̄2; 4φ3 ¼ λ2ξ=Λ̄2; and φ2 ¼ 0: ðD9Þ
If one includes higher-order terms in the RC expansion,
these relations become more complicated, but Eq. (D9)
remains valid at zero recoil.
An additional constraint on φ1ð1Þ may be derived by

observing that one could have equivalently defined Φαβ via

hHv0
c jc̄v0þΓDαDβbvþjHv

bi ¼ Λ̄2TrfH̄cðv0ÞΓHbðvÞ½Ψαβðv; v0Þ þ iΦαβðv; v0Þ�g; ðD10Þ

in which Ψαβ is a symmetric tensor, having the general form

Ψαβ ¼ ψ1gαβ þ ψ2ðvþ v0Þαðvþ v0Þβ þ ψ3ðv − v0Þαðv − v0Þβ þ ψ4ðvþ v0Þðαðv − v0ÞβÞ
þ ψ5ðvþ v0ÞðαγβÞ þ ψ6ðv − v0ÞðαγβÞ: ðD11Þ

Imposition of the Qvþ equation of motion requires that Π−½vβðΨαβ þ iΦαβÞ�Π0
− ¼ 0 [the Πð0Þ

− projectors arise because
HðvÞ=v ¼ −HðvÞ], and it must be the case that Φ0 ¼ Π−gαβΨαβΠ0

−. Further, because via integration by parts and Eq. (A2)
[or via Eq. (B4)]

hH0ðp0ÞjQ̄v0þð−iD⃖μÞΓiD⃗νQvþjHðpÞi ¼ −Λ̄ðv − v0ÞμhH0ðp0ÞjQ̄v0þΓiDνQvþjHðpÞi − hH0ðp0ÞjQ̄v0þΓDμDνQvþjHðpÞi; ðD12Þ

then the Q̄v0þ equation of motion requiresΠ−ðv0αðΨαβ þ iΦαβÞÞΠ0
− ¼ ðw − 1ÞΞβðv; v0Þ. These three conditions together have

a solution for ψ̂ i ≡ ψ i=ξ:

ψ̂1 ¼
λ1
2Λ̄2

−
λ2w

2Λ̄2ðwþ 1Þ − wφ̂1 þ
w − 1

2ðwþ 1Þ ;

ψ̂2 ¼ −
λ1

4Λ̄2ðwþ 1Þ þ
λ2ð2wþ 3Þ
4Λ̄2ðwþ 1Þ2 þ

ð2w − 1Þφ̂1

2ðwþ 1Þ þ ðw − 1Þð−4η̂þ w − 2Þ
4ðwþ 1Þ2 ;

ψ̂3 ¼
λ1

4Λ̄2ðw − 1Þ −
λ2ð2wþ 1Þ
4Λ̄2ðw2 − 1Þ −

ð2wþ 1Þφ̂1

2ðw − 1Þ þ wþ 2

4ðwþ 1Þ ;

ψ̂4 ¼
−2η̂þ w − 1

4ðwþ 1Þ ; ψ̂5 ¼
λ2

2Λ̄2ðwþ 1Þ −
η̂ðw − 1Þ
2ðwþ 1Þ ; ψ̂6 ¼ −η̂=2: ðD13Þ

At zero recoil, the symmetric tensor Ψαβ must have the form gαβ − vαvβ. In the limit w → 1, ðv − v0Þαðv − v0Þβ=ðw − 1Þ is
finite, but it cannot be written as a linear combination of the metric and vαvβ. Hence ðw − 1Þψ3ðwÞmust itself vanish at zero
recoil. It follows that

φ̂1ð1Þ ¼
1

2Λ̄2

�
λ1
3
−
λ2
2

�
; ðD14Þ

and the analyticity of the matrix elements near zero recoil permits us to write

φ̂1ðwÞ ¼
1

2Λ̄2

�
λ1
3
−
λ2
2

�
þ ðw − 1Þφ̂♮

1ðwÞ; ðD15Þ

where the function φ̂♮
1 is regular. As in Eq. (3.15), φ̂♮

1 denotes the quotient with respect to w ¼ 1, and φ̂♮
1ð1Þ ¼ φ̂0

1ð1Þ, the
gradient at zero recoil.
The Lagrangian corrections from L2 are represented under the trace formalism as

hHv0
c jc̄v0þΓbvþ ∘ ½b̄vþgvβDαGαβbvþ�jHv

bi ¼ −Λ̄2Tr½H̄cðv0ÞΓHbðvÞB0ðv; v0Þ�; ðD16aÞ
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hHv0
c jc̄v0þΓbvþ ∘ ½−ib̄vþvασβγDγGαβbvþ�jHv

bi ¼ −Λ̄2Tr½H̄cðv0ÞΓΠþσαβHbðvÞBαβðv; v0Þ�: ðD16bÞ

The tensors B0 and Bαβ must have the same forms as X0 and Xαβ, so that writing B0 ¼ 2β1 and

Bαβ ¼ −iβ2ðwÞðv − v0Þ½αγβ� þ 2β3ðwÞσαβ, the subsubleading Isgur-Wise functions β̂i ¼ βi=ξ enter L̂ð2Þ
i identically to χ̂i.

Thus we find

L̂ð2Þ
1 ¼ 2β̂1 − 4ðw − 1Þβ̂2 þ 12β̂3;

L̂ð2Þ
2 ¼ 2β̂1 − 4β̂3;

L̂ð2Þ
3 ¼ 4β̂2;

L̂ð2Þ
4 ¼ 3λ2=Λ̄2 þ 2ðwþ 1Þφ̂1

¼ λ1ðwþ 1Þ
3Λ̄2

−
λ2ðw − 5Þ

2Λ̄2
þ 2ðw2 − 1Þφ̂♮

1;

L̂ð2Þ
5 ¼ λ2=Λ̄2 þ 2ðwþ 1Þφ̂1

¼ λ1ðwþ 1Þ
3Λ̄2

−
λ2ðw − 1Þ

2Λ̄2
þ 2ðw2 − 1Þφ̂♮

1;

L̂ð2Þ
6 ¼ 4φ̂1 ¼

2λ1
3Λ̄2

−
λ2
Λ̄2

þ 4ðw − 1Þφ̂♮
1: ðD17Þ

It remains now to compute the 1=mcmb current corrections from the product term J̄ 0
1J 1. Because of zero-recoil

normalization constraints (see Sec. III D) these terms play a crucial role in the structure of the L̂ð2Þ
i . One may immediately

derive these product terms by noting the integration by parts in Eq. (D12), evaluating the right-hand side via Eqs. (D5) and
(D10), and applying the solutions (D13). The results are

M̂8 ¼
λ1
Λ̄2

þ 6λ2
Λ̄2ðwþ 1Þ − 2ðw − 1Þφ̂1 −

2ð2η̂ − 1Þðw − 1Þ
wþ 1

;

M̂9 ¼
3λ2

Λ̄2ðwþ 1Þ þ 2φ̂1 −
ð2η̂ − 1Þðw − 1Þ

wþ 1
;

M̂10 ¼
λ1
3Λ̄2

−
λ2ðwþ 4Þ
2Λ̄2ðwþ 1Þ þ 2ðwþ 2Þφ̂♮

1 −
2η̂ − 1

wþ 1
;

M̂11 ¼
−λ1 þ 2λ2

Λ̄2
þ 2ðwþ 1Þφ̂1;

M̂12 ¼
2λ1
Λ̄2

−
2λ2ð2wþ 1Þ
Λ̄2ðwþ 1Þ − 4wφ̂1 þ

2ðw − 1Þ
wþ 1

;

M̂13 ¼
λ1
3Λ̄2

−
λ2w

2Λ̄2ðwþ 1Þ þ 2ðwþ 2Þφ̂♮
1 þ

2η̂þ 1

wþ 1
;

M̂14 ¼
2λ1ðw − 2Þ
3Λ̄2ðwþ 1Þ −

λ2ðw2 − 2w − 4Þ
Λ̄2ðwþ 1Þ2 þ 4ðw2 þ 2Þφ̂♮

1

wþ 1
þ 4ð2η̂þ 1Þ − 2w

ðwþ 1Þ2 : ðD18Þ

In these results, we have applied Eq. (D15) in M̂10;13;14 in order to remove superficial divergences at zero recoil.

APPENDIX E: B̄ → Dð�Þ ORDER αs=mc;b CORRECTIONS

Evaluating the matrix elements of Eq. (C3) (and the corresponding ones for the αs=mb terms) one may compute the
αs=mb;c corrections to the form factors. Defining these corrections via ĥi → ĥi þ α̂sδĥi with respect to the form factors in
Eqs. (3.12) and (3.13), for the B̄ → D form factors they read
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δĥS ¼ ðεb þ εcÞ
�
CS

�
L̂ð1Þ
1 −

w − 1

wþ 1
L̂ð1Þ
4

�
þ 2ðw − 1ÞC0

S

�
þ ðεbCb

g þ εcCc
gÞΔ̂1;

δĥþ ¼ ðεb þ εcÞ
�
CV1

L̂ð1Þ
1 þ wþ 1

2
ðCV2

þ CV3
Þ
�
L̂ð1Þ
1 −

w − 1

wþ 1
L̂ð1Þ
4

�

þ 2ðw − 1Þ
�
CV 0

1
þ wþ 1

2
ðCV 0

2
þ CV 0

3
Þ
��

− ðw − 1ÞðεbCV2
þ εcCV3

ÞL̂ð1Þ
5 þ ðεbCb

g þ εcCc
gÞΔ̂1;

δĥ− ¼ ðεb þ εcÞ
wþ 1

2

�
ðCV2

− CV3
Þ
�
L̂ð1Þ
1 −

w − 1

wþ 1
L̂ð1Þ
4

�
þ 2ðw − 1Þ½CV2

0 − CV3

0�
�

þ CV1
ðεc − εbÞL̂ð1Þ

4 − ðwþ 1ÞðεbCV2
− εcCV3

ÞL̂ð1Þ
5 ;

δĥT ¼ ðεb þ εcÞf½CT1
− CT2

þ CT3
�L̂ð1Þ

1 − CT1
L̂ð1Þ
4 þ 2ðw − 1Þ½C0

T1
− C0

T2
þ C0

T3
�g

þ ðεc − εbÞ½CT2
þ CT3

�L̂ð1Þ
4 þ 2ðεbCT2

− εcCT3
ÞL̂ð1Þ

5 þ ðεbCb
g þ εcCc

gÞΔ̂1: ðE1Þ

For the B̄ → D� form factors they read

δĥP ¼ CPfεbðL̂ð1Þ
1 − L̂ð1Þ

4 Þ þ εc½L̂ð1Þ
2 þ ðw − 1ÞL̂ð1Þ

3 þ L̂ð1Þ
5 − ðwþ 1ÞL̂ð1Þ

6 �g
þ 2ðεb þ εcÞðw − 1ÞC0

P þ ½εbCb
gΔ̂1 þ εcCc

gðΔ̂2 þ ðw − 1ÞL̂ð1Þ
3 Þ�;

δĥV ¼ CV1
½εbðL̂ð1Þ

1 − L̂ð1Þ
4 Þ þ εcðL̂ð1Þ

2 − L̂ð1Þ
5 Þ� − ðεbCV2

þ εcCV3
Þ½L̂ð1Þ

4 − L̂ð1Þ
5 �

þ 2ðεb þ εcÞðw − 1ÞCV1

0 þ ðεbCb
gΔ̂1 þ εcCc

gΔ̂2Þ;

δĥA1
¼ CA1

�
εb

�
L̂ð1Þ
1 −

w − 1

wþ 1
L̂ð1Þ
4

�
þ εc

�
L̂ð1Þ
2 −

w − 1

wþ 1
L̂ð1Þ
5

��
þ 2ðw − 1Þðεb þ εcÞC0

A1

þ w − 1

wþ 1
ðεbCA2

þ εcCA3
Þ½L̂ð1Þ

4 − L̂ð1Þ
5 � þ ðεbCb

gΔ̂1 þ εcCc
gΔ̂2Þ;

δĥA2
¼ CA2

fεbðL̂ð1Þ
1 − L̂ð1Þ

4 Þ þ εc½L̂ð1Þ
2 þ ðw − 1ÞL̂ð1Þ

3 þ L̂ð1Þ
5 − ðwþ 1ÞL̂ð1Þ

6 �g

−
1

wþ 1
½εbCA2

½L̂ð1Þ
4 þ ð2w − 1ÞL̂ð1Þ

5 � þ εcCA3
ðL̂ð1Þ

4 − 3L̂ð1Þ
5 Þ�

þ εcCA1
ðL̂ð1Þ

3 þ L̂ð1Þ
6 Þ þ 2ðw − 1Þðεb þ εcÞC0

A2
þ εcCc

gL̂
ð1Þ
3 ;

δĥA3
¼ CA1

½εbðL̂ð1Þ
1 − L̂ð1Þ

4 Þ þ εcðL̂ð1Þ
2 − L̂ð1Þ

3 − L̂ð1Þ
5 þ L̂ð1Þ

6 Þ�

þ 1

wþ 1
fεbCA2

½wL̂ð1Þ
4 − ðw − 2ÞL̂ð1Þ

5 � þ εcCA3
ðwL̂ð1Þ

4 − 3wL̂ð1Þ
5 Þg

þ CA3
fεbðL̂ð1Þ

1 − L̂ð1Þ
4 Þ þ εc½L̂ð1Þ

2 þ ðw − 1ÞL̂ð1Þ
3 þ L̂ð1Þ

5 − ðwþ 1ÞL̂ð1Þ
6 �g

þ 2ðw − 1Þðεb þ εcÞðC0
A1

þ C0
A3
Þ þ ½εbCb

gΔ̂1 þ εcCc
gðΔ̂2 − L̂ð1Þ

3 Þ�;

δĥT1
¼ CT1

ðεbL̂ð1Þ
1 þ εcL̂

ð1Þ
2 Þ þ w − 1

2
ðCT2

− CT3
Þ½εbðL̂ð1Þ

1 − L̂ð1Þ
4 Þ þ εcðL̂ð1Þ

2 − L̂ð1Þ
5 Þ�

þ 2ðw − 1Þðεb þ εcÞ
�
C0
T1

þ w − 1

2
ðC0

T2
− C0

T3
Þ
�
− ðw − 1ÞðεbCT2

− εcCT3
ÞL̂ð1Þ

5 þ ðεbCb
gΔ̂1 þ εcCc

gΔ̂2Þ;

δĥT2
¼ −CT1

ðεbL̂ð1Þ
4 − εcL̂

ð1Þ
5 Þ þ wþ 1

2
ðCT2

þ CT3
Þ½εbðL̂ð1Þ

1 − L̂ð1Þ
4 Þ þ εcðL̂ð1Þ

2 − L̂ð1Þ
5 Þ�

þ ðεbCT2
þ εcCT3

ÞðL̂ð1Þ
4 − wL̂ð1Þ

5 Þ þ ðw2 − 1Þðεb þ εcÞðC0
T2

þ C0
T3
Þ;

δĥT3
¼ −εcCT1

ðL̂ð1Þ
3 − L̂ð1Þ

6 Þ þ CT2
½εbðL̂ð1Þ

1 − L̂ð1Þ
4 Þ þ εcðL̂ð1Þ

2 − L̂ð1Þ
5 Þ�

−
1

wþ 1
½εbCT2

½L̂ð1Þ
4 þ ð2w − 1ÞL̂ð1Þ

5 � þ εcCT3
ðL̂ð1Þ

4 − 3L̂ð1Þ
5 Þ� þ 2ðw − 1Þðεb þ εcÞC0

T2
− εcCc

gL̂
ð1Þ
3 : ðE2Þ
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As above, the derivatives C0
i ¼ ∂Ci=∂w, CQ

g ðμÞ ¼
−ð3=2Þ½lnðmQ=μÞ − 13=9� [35], and the w-dependent func-
tions

Δ̂1 ¼ −4ðw − 1Þχ̂2 þ 12χ̂3; Δ̂2 ¼ −4χ̂3: ðE3Þ

These arise by a simple redefinition of χ̂2;3 →
ð1þ α̂sC

Q
g Þχ̂2;3 in the 1=mb;c contributions to the various

form factors. Applying the redefinition in Eq. (3.23), then

Δ̂1 ¼ L̂ð1Þ
1 and Δ̂2 ¼ L̂ð1Þ

2 , up to Oðαs=m2
QÞ corrections.

One can also see explicitly that χ̂1 enters in these expres-

sions through L̂ð1Þ
1 and L̂ð1Þ

2 as 2ðεb þ εcÞχ̂1, as expected
from reparametrization invariance, so that the redefinition
in Eq. (3.23) introduces only Oðαs=m2

QÞ corrections.

APPENDIX F: VANISHING
CHROMOMAGNETIC LIMIT

In the Gαβ → 0 limit, Lagrangian and current insertions
reduce to L1 ¼ −Q̄vþD2Qvþ, L2 ¼ 0, and J 2 ¼ −D2.
Therefore χ2;3, λ2, and φ1;2;3 all vanish. The Isgur-Wise
function φ0 does not vanish, however, because the J 2

current correction in Eq. (D6a) is still present. Unlike at
Oðθ2Þ in the RC expansion, the second-order Schwinger-
Dyson relations (B5) include mixed current-Lagrangian
matrix elements. Nonetheless, at zero recoil these addi-
tional terms manifestly vanish, with two consequences:
Eq. (D14) still holds, so that one deduces that λ1 → 0 in this
limit. Hence, φ0ð1Þ ¼ λ1=B̄2 → 0. To make this and the
analyticity of the matrix elements explicit at w ¼ 1, we
write

φ0ðwÞ ¼ ðw − 1Þφ♮
0ðwÞ; ðF1Þ

where the quotient function φ♮
0 is regular near zero recoil

[see Eq. (3.15); Ref. [16] uses the notation ϕ̂]. The
derivation of second-order power corrections from single
insertions of J 2, J̄ 0

2, or mixed insertions of J 1 and J̄ 0
1

now proceeds as in the RC expansion above, but imposing
Eq. (F1) and that all other φi functions and λ1;2 vanish.
These matrix elements match onto M̂8;…;14.
To compute corrections from the mixed current-

Lagrangian terms, one considers the following matrix
elements:

hHv0
c jc̄v0þðzÞΓðiD⃗αÞbvþðzÞ ∘ L1jHv

bi ¼ Λ̄2Tr½H̄cðv0ÞΓHbðvÞEαðv; v0Þ�;
hHv0

c jc̄v0þðzÞð−iD⃖αÞΓbvþðzÞ ∘ L1jHv
bi ¼ Λ̄2Tr½H̄cðv0ÞΓHbðvÞE0

αðv; v0Þ�: ðF2Þ

The most general decomposition for Eð0Þ
α is

Eð0Þ
α ðv; v0Þ ¼ eð0Þ1 ðwÞvα þ eð0Þ2 ðwÞv0α þ eð0Þ3 ðwÞγα: ðF3Þ

Similar expressions hold for their conjugates (corresponding to matrix elements with insertions of L0
1 and swapped

derivatives) with tensor Ēð0Þ
α ðv0; vÞ, analogously to Eqs. (D5). Then Eqs. (2.14) and (D6a) and the equations of motion,

respectively, require

Π−ðvαEαðv; v0ÞÞΠ0
− ¼ 2φ0Π−Π0

−; Π−ðv0αE0
αðv; v0ÞÞΠ0

− ¼ 0; ðF4Þ

i.e., e1 þ we2 − e3 ¼ 2φ0 and we01 þ e02 − e03 ¼ 0. Finally, Eqs. (B1), (B3), and (D2) at Oð1=mc;bÞ impose

Π−ðEα − E0
αÞΠ0

− ¼ −ðvα − v0αÞ2χ1Π−Π0
−: ðF5Þ

Under the projectors this equation contains three relations for eð0Þi , one of which is simply e03 ¼ e3. Together with the two

relations in Eq. (F4), and following the choice of Ref. [16], onemay express all the remaining eð0Þi in terms of just e3, leading to

ðwþ 1Þe1 ¼ e3 − 2ðφ♮
0 þ wχ1Þ; ðwþ 1Þe2 ¼ e3 þ 2ðwφ♮

0 þ χ1Þ;
ðwþ 1Þe01 ¼ e3 − 2ðφ♮

0 − χ1Þ; ðwþ 1Þe02 ¼ e3 þ 2wðφ♮
0 − χ1Þ: ðF6Þ

These results may be applied to the mixed current-Lagrangian matrix elements (F2), which generate corresponding second-

order power corrections in Eq. (2.12). These in turn match onto L̂ð2Þ
4;5;6 as well as the M̂15;…;24 wave functions, defined in

AppendixG. [Asmentioned belowEq. (3.3), there are additional M̂i wave functions not present in the RC expansion atOðθ2Þ.
Several of these arise in theVC limit.We also show inAppendixG the contributions from the complete set of M̂iwave functions
to the B → Dð�Þ form factors.]
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The remaining nonvanishing matrix elements generating second-order power corrections in Eq. (2.12) are those with two

insertions of Lð0Þ
1 ,

hHv0
c j

1

2
c̄v

0
þðzÞΓbvþðzÞ ∘ L1 ∘ L1jHv

bi ¼ −Λ̄2Tr½H̄cðv0ÞΓHbðvÞC0ðv; v0Þ�;
hHv0

c jL0
1 ∘ c̄v

0
þðzÞΓbvþðzÞ ∘ L1jHv

bi ¼ −Λ̄2Tr½H̄cðv0ÞΓHbðvÞD0ðv; v0Þ�; ðF7Þ

with two Isgur-Wise functionsC0ðv; v0Þ ¼ 2c0ðwÞ andD0ðv; v0Þ ¼ 2d0ðwÞ. These matrix elements trivially match onto L̂ð2Þ
1;2

and M̂1;…;7.

The expressions for the nonvanishing L̂ð1;2Þ
i and M̂i in the VC limit are shown in Eqs. (3.26).

APPENDIX G: B̄ → Dð�Þ ORDER 1=mcmb CORRECTIONS

We provide here the complete set of the mixedOð1=mcmbÞ traces and their contribution to the form factors, according to
the notation used in this paper. See footnote 6 for a summary of (apparent) typographical errors in the expressions in
Appendix A of Ref. [16].
The full expression for the heavy quark bilinear tensor is

Hð1;1Þ
bc ðv; v0Þ ¼ ΠþfPvP̄v0M̂1ð−γ5Þγ5 þ PvV̄v0 ð−γ5Þ½M̂2=ϵ0� þ M̂3ϵ

0� · v� þ VvP̄v0 ½M̂2=ϵþ M̂3ϵ · v0�γ5
þ VvV̄v0 ½M̂4=ϵ=ϵ0� þ M̂5ϵ · ϵ0� þ M̂6=ϵϵ0� · vþ M̂6=ϵ0�ϵ · v0 þ M̂7ϵ

0� · vϵ · v0�gΠ0þ
þ Π−fPvP̄v0M̂8ð−γ5Þγ5 þ PvV̄v0 ð−γ5Þ½M̂9=ϵ0� þ M̂10ϵ

0� · v� þ VvP̄v0 ½M̂9=ϵþ M̂10ϵ · v0�γ5
þ VvV̄v0 ½M̂11=ϵ=ϵ0� þ M̂12ϵ · ϵ0� þ M̂13=ϵϵ0� · vþ M̂13=ϵ0�ϵ · v0 þ M̂14ϵ

0� · vϵ · v0�gΠ0
−

þ ΠþfPvP̄v0M̂15ð−γ5Þγ5 þ PvV̄v0 ð−γ5Þ½M̂16=ϵ0� þ M̂17ϵ
0� · v� þ VvP̄v0 ½M̂18=ϵþ M̂19ϵ · v0�γ5

þ VvV̄v0 ½M̂20=ϵ=ϵ0� þ M̂21ϵ · ϵ0� þ M̂22=ϵϵ0� · vþ M̂23=ϵ0�ϵ · v0 þ M̂24ϵ
0� · vϵ · v0�gΠ0

−

þ Π−fPvP̄v0M̂15ð−γ5Þγ5 þ PvV̄v0 ð−γ5Þ½M̂18=ϵ0� þ M̂19ϵ
0� · v� þ VvP̄v0 ½M̂16=ϵþ M̂17ϵ · v0�γ5

þ VvV̄v0 ½M̂20=ϵ=ϵ0� þ M̂21ϵ · ϵ0� þ M̂23=ϵϵ0� · vþ M̂22=ϵ0�ϵ · v0 þ M̂24ϵ
0� · vϵ · v0�gΠ0þ: ðG1Þ

Writing the OðεcεbÞ terms in the ĥi form factors in Eqs. (3.12) and (3.13) in the form εcεbδĥi, then the inclusion of all the
wave functions, M̂i modifies these terms such that they become

δĥS ¼ M̂1 þ M̂8 − 2
w − 1

wþ 1
M̂15;

δĥþ ¼ M̂1 − M̂8;

δĥ− ¼ 0;

δĥT ¼ M̂1 þ M̂8 − 2M̂15;

δĥP ¼ M̂2 − M̂9 þ ðw − 1ÞðM̂3 þ M̂10Þ þ M̂16 − M̂18 − ð1þ wÞðM̂17 þ M̂19Þ;
δĥV ¼ M̂2 þ M̂9 − ðM̂16 þ M̂18Þ;

δĥA1
¼ M̂2 þ M̂9 −

w − 1

wþ 1
ðM̂16 þ M̂18Þ;

δĥA2
¼ M̂3 − M̂10 þ ðM̂17 − M̂19Þ;

δĥA3
¼ M̂2 þ M̂9 − ðM̂3 − M̂10Þ − ðM̂16 þ M̂18Þ þ ðM̂17 − M̂19Þ;

δĥT1
¼ M̂2 − M̂9;

δĥT2
¼ M̂16 − M̂18;

δĥT3
¼ ðM̂3 þ M̂10Þ − ðM̂17 þ M̂19Þ;

δĥ1 ¼ ðM̂4 − M̂11Þ þ ðM̂5 − M̂12Þ: ðG2Þ
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APPENDIX H: FITS TO FNAL/MILC B̄ → D�
DATA FOR w > 1

Figure 11 shows details of the fits of LD;D�
w≥1;≥1½hA1� and

LD;D�
w≥1;≥1. The synthetic LQCD data points are compared to

the predicted functional forms of hA1−3;V and fþ;0. The fits

are flexible enough to describe fþ;0 and hA1;2
beyond zero

recoil, but there is a degree of tension between hA3;V and the
fit form factors. The χ2 of both fits are 31.2 and 49.4 with
33 and 42 degrees of freedom, respectively. More details
can be found in Table VII.

(a) (b)

(c) (d)

(e) (f)

FIG. 11. Form factors from fits that include the B → D� LQCD predictions [31] for w > 1. The red band shows the results for the
LD;D�
w≥1;≥1½hA1� fit scenario that uses hA1 data only, while the dark plum shows the results for the LD;D�

w≥1;≥1 scenario that uses the full set of

synthetic LQCD points.
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APPENDIX I: HUMDRUM CORRELATIONS

We report in the following tables the correlations for each fit scenario considered in Table V in the RC expansion and the
LD;D�
w≥1;¼1Shape fit in the VC limit.

TABLE X. Parameter correlations for the LD;D�
w≥1;¼1 fit scenario in the RC expansion.

LD;D�
w≥1;¼1 jVcbj ρ2� c� m1S

b [GeV] δmbc
[GeV] λ2 [GeV2] η̂ð1Þ ρ1 [GeV3] χ̂2ð1Þ φ0

1ð1Þ
jVcbj 1 0.256 0.248 0.030 0.082 0.033 0.352 −0.463 −0.224 0.148
ρ2� � � � 1 0.357 −0.720 0.107 0.034 0.421 −0.075 −0.473 −0.632
c� � � � � � � 1 −0.460 0.048 −0.056 0.383 −0.076 −0.647 −0.112
m1S

b [GeV] � � � � � � � � � 1 0.028 0.008 −0.429 −0.007 0.369 0.362
δmbc

[GeV] � � � � � � � � � � � � 1 0.009 0.108 0.477 −0.089 0.011
λ2 [GeV2] � � � � � � � � � � � � � � � 1 −0.255 −0.094 −0.034 −0.006
η̂ð1Þ � � � � � � � � � � � � � � � � � � 1 −0.379 −0.374 0.189
ρ1 [GeV3] � � � � � � � � � � � � � � � � � � � � � 1 0.105 −0.279
χ̂2ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � 1 0.305
φ0
1ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

TABLE XI. Parameter correlations for the LD;D�
w≥1;¼1Shape fit scenario in the RC expansion.

LD;D�
w≥1;¼1Shape jVcbj Gð1Þ F ð1Þ ρ2� c� m1S

b [GeV] δmbc [GeV] λ2 ½GeV2� η̂ð1Þ ρ1 ½GeV3� χ̂2ð1Þ φ̂0
1ð1Þ

jVcbj 1 −0.215 −0.627 0.078 0.056 0.059 −0.007 −0.012 −0.006 0.021 0.069 0.049
Gð1Þ � � � 1 0.110 0.128 −0.201 −0.007 0.002 0.001 −0.117 −0.006 −0.054 −0.380
F ð1Þ � � � � � � 1 −0.007 0.131 0.017 −0.004 −0.001 −0.020 0.010 −0.150 −0.074
ρ2� � � � � � � � � � 1 0.394 −0.564 0.207 −0.033 0.632 −0.484 −0.665 −0.406
c� � � � � � � � � � � � � 1 −0.406 0.138 −0.007 0.427 −0.322 −0.645 0.066
m1S

b [GeV] � � � � � � � � � � � � � � � 1 0.009 0.001 −0.225 −0.024 0.267 0.243
δmbc [GeV] � � � � � � � � � � � � � � � � � � 1 0.000 0.241 0.010 −0.227 0.068
λ2 ½GeV2� � � � � � � � � � � � � � � � � � � � � � 1 −0.224 −0.001 0.025 0.037
η̂ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � 1 −0.807 −0.731 0.250
ρ1 ½GeV3� � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 0.656 −0.295
χ̂2ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 0.061
φ̂0
1ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

TABLE XII. Parameter correlations for the NoL fit scenario in the RC expansion.

NoL jVcbj ρ2� c� m1S
b [GeV] δmbc [GeV] λ2 ½GeV2� η̂ð1Þ ρ1 ½GeV3� χ̂2ð1Þ φ̂0

1ð1Þ
jVcbj 1 0.317 0.487 0.041 0.209 0.006 0.453 −0.754 −0.315 −0.025
ρ2� � � � 1 0.106 −0.212 0.049 0.000 0.705 −0.112 −0.868 −0.690
c� � � � � � � 1 −0.326 0.084 0.004 −0.024 −0.202 0.130 0.170
m1S

b [GeV] � � � � � � � � � 1 −0.001 0.000 −0.130 −0.002 0.012 −0.398
δmbc [GeV] � � � � � � � � � � � � 1 −0.000 0.122 0.003 −0.059 0.087
λ2 ½GeV2� � � � � � � � � � � � � � � � 1 −0.002 0.001 −0.007 0.024
η̂ð1Þ � � � � � � � � � � � � � � � � � � 1 −0.354 −0.896 −0.206
ρ1 ½GeV3� � � � � � � � � � � � � � � � � � � � � � 1 0.214 −0.118
χ̂2ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � 1 0.570
φ̂0
1ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � 1
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TABLE XIII. Parameter correlations for the LD;D�
w≥1;≥1 fit scenario in the RC expansion.

LD;D�
w≥1;≥1 jVcbj ρ2� c� m1S

b [GeV] δmbc [GeV] λ2 ½GeV2� η̂ð1Þ ρ1 ½GeV3� χ̂2ð1Þ φ̂0
1ð1Þ

jVcbj 1 0.222 0.160 0.183 0.085 0.043 0.294 −0.481 −0.148 0.185
ρ2� � � � 1 0.113 −0.523 0.056 0.032 0.228 −0.036 −0.373 −0.681
c� � � � � � � 1 −0.242 −0.004 −0.063 0.215 −0.019 −0.541 −0.046
m1S

b [GeV] � � � � � � � � � 1 0.142 0.028 −0.200 −0.114 0.170 0.390
δmbc [GeV] � � � � � � � � � � � � 1 0.009 0.067 0.429 −0.056 0.037
λ2 ½GeV2� � � � � � � � � � � � � � � � 1 −0.295 −0.106 −0.030 0.009
η̂ð1Þ � � � � � � � � � � � � � � � � � � 1 −0.339 −0.241 0.248
ρ1 ½GeV3� � � � � � � � � � � � � � � � � � � � � � 1 0.065 −0.310
χ̂2ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � 1 0.308
φ̂0
1ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

TABLE XIV. Parameter correlations for the LD;D�
w≥1;¼1NLO fit scenario in the RC expansion.

LD;D�
w≥1;¼1NLO jVcbj ρ2� Gð1Þ F ð1Þ χ̂2ð1Þ χ̂02ð1Þ χ̂03ð1Þ η̂ð1Þ η̂0ð1Þ m1S

b [GeV] δmbc [GeV]

jVcbj 1 0.256 −0.262 −0.625 0.014 0.061 0.127 0.050 0.218 0.035 0.003
ρ2� � � � 1 −0.201 −0.014 0.028 −0.042 0.575 0.558 0.228 −0.689 0.008
Gð1Þ � � � � � � 1 0.131 0.040 0.028 −0.083 −0.225 −0.316 −0.049 0.002
F ð1Þ � � � � � � � � � 1 −0.002 0.017 0.089 −0.018 −0.069 0.021 0.001
χ̂2ð1Þ � � � � � � � � � � � � 1 −0.082 0.470 −0.117 −0.135 0.064 −0.002
χ̂02ð1Þ � � � � � � � � � � � � � � � 1 0.141 −0.091 −0.117 0.056 −0.002
χ̂03ð1Þ � � � � � � � � � � � � � � � � � � 1 0.266 0.212 −0.166 0.000
η̂ð1Þ � � � � � � � � � � � � � � � � � � � � � 1 −0.053 −0.457 −0.003
η̂0ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � 1 0.174 −0.009
m1S

b [GeV] � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 0.000
δmbc [GeV] � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

TABLE XV. Parameter correlations for the LD;D�
w≥1;¼1 þ SR fit scenario in the RC expansion.

LD;D�
w≥1;¼1þSR jVcbj ρ2� c� χ̂2ð1Þ χ̂02ð1Þ χ̂03ð1Þ η̂ð1Þ η̂0ð1Þ

m1S
b

[GeV]
δmbc
[GeV] β̂2ð1Þ β̂03ð1Þ φ̂0

1ð1Þ
λ2

½GeV2�
ρ1

½GeV3�
jVcbj 1 0.392 0.281 0.003 0.023 −0.010 0.308 0.078 0.045 0.068 0.100 0.184 0.016 0.040 −0.426
ρ2� � � � 1 0.347 −0.053 −0.160 0.155 0.211 0.305 −0.485 0.055 0.092 0.192 −0.460 0.035 −0.025
c� � � � � � � 1 −0.050 0.186 0.147 0.326 0.143 −0.437 0.037 −0.132 −0.051 −0.179 −0.049 −0.053
χ̂2ð1Þ � � � � � � � � � 1 0.001 0.000 0.001 0.000 −0.003 0.000 −0.130 0.002 −0.005 −0.000 0.001
χ̂02ð1Þ � � � � � � � � � � � � 1 −0.002 0.000 −0.009 0.013 −0.001 −0.160 −0.128 0.013 −0.003 −0.004
χ̂03ð1Þ � � � � � � � � � � � � � � � 1 −0.004 −0.000 0.009 −0.000 0.003 −0.360 0.014 0.000 −0.002
η̂ð1Þ � � � � � � � � � � � � � � � � � � 1 0.012 −0.371 0.103 −0.091 −0.035 0.084 −0.254 −0.380
η̂0ð1Þ � � � � � � � � � � � � � � � � � � � � � 1 0.005 −0.002 −0.803 −0.655 −0.865 −0.004 0.000
m1S

b [GeV] � � � � � � � � � � � � � � � � � � � � � � � � 1 0.033 0.045 −0.037 0.200 −0.003 −0.035
δmbc [GeV] � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 −0.020 −0.008 0.004 0.009 0.483

β̂2ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 0.896 0.737 0.005 0.018

β̂03ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 0.577 0.012 0.011
φ̂0
1ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 0.001 −0.143

λ2 ½GeV2� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 −0.099
ρ1 ½GeV3� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1
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TABLE XVI. Parameter correlations for the LD;D�
w≥1;¼117 fit scenario in the RC expansion.

LD;D�
w≥1;¼117 jVcbj ρ2� c� m1S

b [GeV] δmbc [GeV] λ2 ½GeV2� η̂ð1Þ ρ1 ½GeV3� χ̂2ð1Þ φ̂0
1ð1Þ

jVcbj 1 0.394 0.188 0.008 0.042 −0.007 0.238 −0.258 −0.339 0.085
ρ2� � � � 1 0.540 −0.486 0.048 −0.033 0.312 −0.007 −0.662 −0.395
c� � � � � � � 1 −0.457 0.020 −0.125 0.414 −0.003 −0.509 −0.110
m1S

b [GeV] � � � � � � � � � 1 0.046 0.018 −0.406 −0.037 −0.071 0.247
δmbc [GeV] � � � � � � � � � � � � 1 0.006 0.101 0.489 −0.015 0.029
λ2 ½GeV2� � � � � � � � � � � � � � � � 1 −0.265 −0.086 0.055 0.013
η̂ð1Þ � � � � � � � � � � � � � � � � � � 1 −0.373 −0.205 0.269
ρ1 ½GeV3� � � � � � � � � � � � � � � � � � � � � � 1 0.055 −0.296
χ̂2ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � 1 0.111
φ̂0
1ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

TABLE XVII. Parameter correlations for the LD;D�
w≥1;¼119 fit scenario in the RC expansion.

LD;D�
w≥1;¼119 jVcbj ρ2� c� m1S

b [GeV] δmbc [GeV] λ2 ½GeV2� η̂ð1Þ ρ1 ½GeV3� χ̂2ð1Þ φ̂0
1ð1Þ

jVcbj 1 0.247 0.217 0.031 0.073 0.024 0.335 −0.429 −0.184 0.144
ρ2� � � � 1 0.364 −0.725 0.112 0.032 0.424 −0.070 −0.489 −0.633
c� � � � � � � 1 −0.464 0.053 −0.055 0.385 −0.075 −0.655 −0.120
m1S

b [GeV] � � � � � � � � � 1 0.019 0.008 −0.432 −0.010 0.392 0.372
δmbc [GeV] � � � � � � � � � � � � 1 0.008 0.111 0.477 −0.093 0.007
λ2 ½GeV2� � � � � � � � � � � � � � � � 1 −0.256 −0.096 −0.034 −0.006
η̂ð1Þ � � � � � � � � � � � � � � � � � � 1 −0.378 −0.379 0.181
ρ1 ½GeV3� � � � � � � � � � � � � � � � � � � � � � 1 0.100 −0.282
χ̂2ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � 1 0.313
φ̂0
1ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

TABLE XVIII. Parameter correlations for the LD;D�
w≥1;≥1½hA1� fit scenario in the RC expansion.

LD;D�
w≥1;≥1½hA1� jVcbj ρ2� c� m1S

b [GeV] δmbc [GeV] λ2 ½GeV2� η̂ð1Þ ρ1 ½GeV3� χ̂2ð1Þ φ̂0
1ð1Þ

jVcbj 1 0.263 0.230 0.021 0.101 0.059 0.404 −0.524 −0.226 0.205
ρ2� � � � 1 0.345 −0.723 0.114 0.046 0.418 −0.108 −0.452 −0.580
c� � � � � � � 1 −0.467 0.050 −0.051 0.370 −0.083 −0.627 −0.073
m1S

b [GeV] � � � � � � � � � 1 0.024 0.002 −0.410 0.006 0.345 0.323
δmbc [GeV] � � � � � � � � � � � � 1 0.016 0.126 0.403 −0.093 0.030
λ2 ½GeV2� � � � � � � � � � � � � � � � 1 −0.221 −0.122 −0.046 0.007
η̂ð1Þ � � � � � � � � � � � � � � � � � � 1 −0.449 −0.364 0.259
ρ1 ½GeV3� � � � � � � � � � � � � � � � � � � � � � 1 0.134 −0.327
χ̂2ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � 1 0.259
φ̂0
1ð1Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � 1
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