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We derive relativistic second-order dissipative fluid-dynamical equations of motion for massive spin-1/2
particles from kinetic theory using the method of moments. Besides the usual conservation laws for charge,
energy, and momentum, such a theory of relativistic dissipative spin hydrodynamics features an equation of
motion for the rank-3 spin tensor, which follows from the conservation of total angular momentum.
Extending the conventional method of moments for spin-0 particles, we expand the spin-dependent
distribution function near local equilibrium in terms of moments of the momentum and spin variables. We
work to next-to-leading order in the Planck constant 7. As shown in previous work, at this order in 7 the
Boltzmann equation for spin-1/2 particles features a nonlocal collision term. From the Boltzmann
equation, we then obtain an infinite set of equations of motion for the irreducible moments of the deviation
of the single-particle distribution function from local equilibrium. In order to close this system of moment
equations, a truncation procedure is needed. We employ the “14 + 24-moment approximation”, where
“14” corresponds to the components of the charge current and the energy-momentum tensor and ‘“24” to the
components of the spin tensor, which completes the derivation of the equations of motion of second-order
dissipative spin hydrodynamics. For applications to heavy-ion phenomenology, we also determine
dissipative corrections to the Pauli-Lubanski vector.
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I. INTRODUCTION

The derivation of a theory of relativistic hydrodynamics
when spin degrees of freedom are dynamical variables
coupled to the fluid, often referred to as “relativistic spin
hydrodynamics”, has recently attracted a lot of attention
[1-29]. One of the main motivations to develop such a
theory comes from the physics of the quark-gluon plasma
(QGP) created in nuclear collisions. In this case, the
vorticity of the hot and dense matter triggers hadron spin
polarization in the final state [30-33]. This mechanism
resembles the time-honored Barnett effect [34], which
shows the interplay between a classical property of the
system, the rotation, with the spin, which is a quantum
property of matter. Experimental evidence of these phenom-
ena comes from the analysis carried out in Refs. [35-38],
where it was shown that hadrons emitted in noncentral
nuclear collisions are indeed spin-polarized. Theoretical
models have successfully managed to describe the global-
polarization data (i.e., the polarization along the direction of
angular momentum of the collision) [33,39-45]. However,
the explanation of the longitudinal-polarization data (i.e., the
polarization along the beam direction) is still an open
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question [46-56], see also important recent developments
in Refs. [57-60]. Since the spacetime evolution of the QGP is
very accurately described by relativistic hydrodynamics
[61,62], it is natural to extend conventional relativistic
hydrodynamics to incorporate the dynamics of spin. This
novel theory, besides being of fundamental interest by itself
as it connects quantum properties of matter with hydro-
dynamics, may provide an important tool towards a deeper
understanding of relativistic strong-interaction matter under
extreme conditions.

The basic idea of relativistic spin hydrodynamics, as put
forward in Ref. [1], is that, in addition to the usual hydro-
dynamic quantities such as the energy-momentum tensor,
one introduces the rank-3 spin tensor and studies its evolution
using additional equations of motion constructed from the
conservation of the total angular momentum of the system.
Over the past few years, different methods to derive rela-
tivistic spin hydrodynamics have been applied; kinetic theory
[I-19], an effective action [20-22], an entropy-current
analysis [23-28], holographic duality [63—65], and linear-
response theory [21,29]. Despite these formidable efforts, an
agreement on how to formulate a theory of relativistic
dissipative spin hydrodynamics has not yet been reached.

© 2022 American Physical Society
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An important issue in deriving this theory is that the
definitions of the energy-momentum and spin tensors are
not unique: their form is fixed only up to so-called “pseu-
dogauge transformations”, which do not change the global
charges (i.e., the global energy, momentum, and angular
momentum) [9,66]. The physical implications of various
choices of energy-momentum and spin tensors have been
investigated in different works and this topic is still intensely
debated [9,24,25,67-70]. In Ref. [7], it was proposed that in
the Hilgevoord-Wouthuysen (HW) pseudogauge choice [71]
nonlocal collisions serve as a source term in the equation of
motion of the spin tensor, providing a physical interpretation
of polarization through rotation in a manifestly relativistic
kinetic and hydrodynamic framework.

One of the most powerful ways to derive conven-
tional relativistic hydrodynamics is using the method of
moments starting from the Boltzmann equation [see, e.g.,
Refs. [72,73] and refs. therein]. In this approach, the single-
particle distribution function is expanded in momentum
space around its local-equilibrium value in terms of a series
of irreducible Lorentz tensors formed from the particle
four-momentum. In order to study deviations from equi-
librium, a consistent power-counting scheme is needed.
Usually in the context of deriving hydrodynamics from
kinetic theory, such a power counting is constructed by
comparing the mean free path A, of particle scattering
with the length scale Ly, associated with gradients of the
hydrodynamical variables, the ratio of the two being the
Knudsen number Kn = A,/ Liyaro- In spin kinetic theory,
however, another scale, A, enters via the nonlocal collision
term [7,74], allowing to mutually transfer spin and orbital
angular momentum. For a consistent power-counting
scheme, it turns out that A/Z,; ~ Kn, where £, is the
length scale associated with the fluid vorticity. For
A < App, this means that £, is not of the order Lyyqro,
like typical gradients of hydrodynamical quantities, but can
be much smaller (for a related discussion, see Ref. [25]).

In this paper we extend the method of moments to
include spin dynamics. This requires the extension of
ordinary phase space by spin degrees of freedom. Here,
we choose a description in terms of a spin-four vector 8¥,
which is normalized and orthogonal to the particle four-
momentum p*. Starting from the quantum kinetic theory
with nonlocal collisions developed in Refs. [5,7,74] (see
also the related works [14,75,76]), we expand the single-
particle distribution function in terms of irreducible
moments formed by p# and 8”. After deriving the equations
of motion for the spin moments, we employ a truncation to
close the system of equations. For the truncation we use the
HW pseudogauge and choose the “14 -+ 24-moment
approximation”, which extends the usual 14-moment
approximation [72] by 24 additional moments related to
the components of the spin tensor. In this way, we derive for
the first time a second-order dissipative theory of relativ-
istic spin hydrodynamics.

The paper is organized as follows. In Sec. II we briefly
review the kinetic theory developed in Refs. [7,74]. In
Sec. III we summarize the equations of motion of spin
hydrodynamics for the conserved quantities in the HW
pseudogauge. The extended power-counting scheme men-
tioned above is subject of Sec. IV. In Sec. V we generalize
the method of moments as used in Ref. [73] to include spin
degrees of freedom. In order to define the distribution
function in local equilibrium, one needs to impose match-
ing conditions, which are discussed in Sec. VI. The
equations of motion for the spin moments are derived in
Sec. VII. In Sec. VIII the linearized collision term is
expressed in terms of the spin moments. In order to obtain a
closed set of equations of motion we employ the 14 + 24-
moment approximation in Sec. IX. Furthermore, we cal-
culate the relaxation times for the spin moments and
compare them with those related to the usual dissipative
quantities. In Sec. X, in order to establish a connection with
the phenomenology of heavy-ion collisions, we give the
expression for the Pauli-Lubanski vector, which is the
observable used to quantify the particle spin polarization.
Finally, in Sec. XI we also present the Navier-Stokes limit
of the second-order equations of motion, before concluding
this work with a summary and an outlook.

We use the following notation and conventions,
a-b=db,, a,b,=ab,—ab, a,b,=a,b,+a,b,,
G = diag(+,—,—, =), €' = —¢y1p3 = 1, and repeated
indices are summed over. The dual of any rank-2 tensor A*
is defined as A" = e# A .

II. KINETIC THEORY WITH SPIN

In this section we give a brief review of the kinetic theory
for massive spin-1/2 particles developed in Refs. [7,74],
which will be used to derive hydrodynamical equations of
motion in the following sections. All information about the
microscopic theory is contained in the spin-dependent
distribution function f(x, p, 8), which depends on space-
time coordinate x¥, four-momentum p*, and the spin vector
8# and is uniquely defined in terms of the Wigner function
for spinor fields, see Refs. [7,74] for details. Its dynamics is
described by the generalized Boltzmann equation

p-of = CIf], (1)

where C[f] is the collision term. As shown in Refs. [7,74]
this collision term contains a nonlocal part, which allows to
convert vorticity into spin. Neglecting a contribution from
pure spin exchange without momentum exchange (which
will be justified below), it reads explicitly

Clfl= /dFldl"zdF’W[f(x—i— Ay, p1s81)f(x+ Az, p2, %))

—f(x+A,p.8)f(x+4A,p.8), (2)
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where the integration measure
dr’ = d*ps(p* — m*)dS(p) (3)

denotes integration over the extended phase space, with

_vr
=Yz

The transition rate ¥V in Eq. (2) is defined as

ds(p) d*3s5(3-8+3)8(p - 3). (4)

1
_ s
W =Y (p+p' - p —pz)gghsr(p,?o)
x>

—
s 7 ,51,80,r1,1

X (p,p'sr. Pt|p1. pas sy, s2)

hs’r’(p/? §I)hs1r1 (pl’ gl)hs2r2 (p27 QZ)

X (p1. pas .t p. p'ss. '), (5)
with
hs(p.8) =6, + 8- ny,(p). (6)
where
Wi (p) = 5 (PP, ). ™)
2m

The scattering matrix element for a general interaction
p=—(1/h)oL;/(0y), where L; is the interaction
Lagrangian and y is the Dirac-adjoint fermion spinor, is
defined as [77]

(. P'sr. P[tp1, pas si, 82)

27h)
- %ur(p)om@’;r’\p(O)Iphpz;sl,Szhm (8)

In Eq. (2) the nonlocality of the collision term is given by
the spatial separations

A= - b p i g5, )

2m(p -1+ m)

where 7 is the timelike unit vector which is equal to (1,0) in
the frame where p* is measured. The Boltzmann equa-
tion (1) is the starting point to derive dissipative equations
of motion for spin hydrodynamics.

III. EQUATIONS OF MOTION OF SPIN
HYDRODYNAMICS

The dynamical quantities in spin hydrodynamics are the
charge current N¥, the energy-momentum tensor 7+, and
the spin tensor S*#*. It should be noted that the form of
these quantities depends on the choice of the pseudogauge.

In this paper, we choose the so-called Hilgevoord-
Wouthuysen (HW) pseudogauge [71], which corresponds
to a frame where the spin of a particle is measured in its rest
frame. As will become clear later in Sec. IX, the dynamical
moments depend on the choice of pseudogauge, which
hence affects the evolution of the system. Since the HW
spin tensor is conserved in equilibrium (see discussion in
Ref. [7]), we expect that it evolves on the same time scales
as the charge current and the energy-momentum tensor, i.e.,
on hydrodynamic time scales.

In kinetic theory the form of the charge current, as well
as the energy momentum tensor and spin tensor can be
obtained from the Wigner-function formalism, employing a
power-series expansion in 7 [5,7,9]. In the following, we
will work up to first order in £, such that the currents have
the form

Nt = (ph), (10a)
T = (php*) + T, (10b)
S = P — sl (109
2 s 4m?
Here we defined
()= [ ) tp.s), ()
and the dipole-moment tensor
= —leﬂ”“ﬂpaé/j. (12)
m

The interaction contribution AT%" in Eq. (10b) is of second
order in 7 (see below) and hence will be neglected in the
equations of motion for 7. However, its antisymmetric
part contributes to first order in 7 to the equation of motion
of the spin tensor, see Eq. (13c). This antisymmetric part
arises from nonlocal collisions, which are responsible for
the conversion of orbital to spin angular momentum. The
equations of motion of spin hydrodynamics read [7]

9,N* =0, (13a)

9,T" =0, (13b)
1 v

0,8 =2 / drsis[f] = T, (13c)

By explicitly performing a pseudogauge transformation
from the canonical to the HW energy-momentum tensor,
we observe that 7# ~ f dl'v* p*, with some vector v# [78].
Combining this with Eq. (13c) and the conservation of total
angular momentum J* = Al p* 4+ (7/2)24” in a micro-
scopic collision we obtain
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T — / T A 6 f]. (14)

We now show that this is of second order in 7. Namely,
when expanding the distribution functions in the collision
term (2) in a Taylor series around x, we recover to lowest
order the standard local collision term. Under the integral in
Egs. (13c) or (14), respectively, this contribution vanishes
(the local collision term conserves spin or orbital angular
momentum separately, see discussion in Ref. [7]). The next
term in the Taylor series gives rise to the nonlocal collision
term, which does not separately conserve spin or orbital
angular momentum and is of linear order in the shifts (9).
These shifts are of first order in 7%, and together with the
prefactor ~A¥p¥ in Eq. (14) we obtain AT ~ O(h?).

It is convenient to decompose the quantities in Eq. (10)
with respect to the fluid velocity ##. In this work, the latter
is defined as the normalized timelike eigenvector of T4 =
T — AT = (p*p*) with eigenvalue e,

T u, = eu. (15)

In other words, we choose the Landau frame (with respect
to T+7). All momenta appearing in the microscopic expres-
sions for the hydrodynamic quantities in Eq. (10) are
decomposed into parts parallel and orthogonal to the fluid
velocity,

p=E,u" + p(l’)’ (16)

with £, =p-u and p¥ = A"p, where AW = g —
utu’ is the projector onto the three-space orthogonal to
the fluid velocity. Furthermore, products of two momenta
are split into parallel, orthogonal, and traceless orthogonal

parts, making use of the traceless projector A’;; =

(1/2)A%AY) — (1/3)A" A,y and the notation plp*)=
Alip®p. The tensor decompositions of N*, Ti7, and
S*# then take the form

Nt = nu# + n*, (17a)
™ = euu* — A*(Py +T1) + 7, (17b)

Shav — A 4 Aési}a/w + g 5/1)/41/01 +
- iz o [ewlut — AWA(Py +T0) + 2. (17c)

4dm

Here we defined the usual hydrodynamic currents, which
are given by the particle density n = (E,), the particle
diffusion current n* = (p)), the energy density € = (E2),
the thermodynamic pressure P, the bulk viscous pressure
IT with Py +I1=—(1/3){A"p,p,), and the shear-stress

tensor 7#* = (p¥p*)). In addition, the following new
quantities associated with spin transport occur,

- 1
N = =P (), (18a)
U — 1 auvp | A po
s’B =_@€ <A p/)p6§ﬂ>’ (lgb)
& Auva 1 v,
H = o€ HE,p8y), (18¢)
= 1
Qlﬂb =- _m €/waﬁ<p</1pu> 6/3> ’ (1 8d)
which are dual to the spin-energy tensor
NH = —Lu"<E2§”) (19a)
- 2m P
the spin-pressure tensor
1 o L
P = - (A7pypo8). (19b)
the spin-diffusion tensor
w1 )
=== (E,pl#), (19)
m
and the spin-stress tensor
g — L e
QW = —— (pwpY g, (19d)

2m

We remark that the 24 degrees of freedom of the spin tensor
in Eq. (17c¢) are distributed as follows: three from the spin-
energy tensor, three from the spin-pressure tensor, nine
from the spin-diffusion tensor, and nine from the spin-stress
tensor. Although Egs. (19) in principle contain more than
these degrees of freedom, as we will see later, certain
components will be fixed by the matching conditions and
constraints, such that the number of dynamical components
in our framework reduces to 24. As in standard (spin-
averaged) dissipative hydrodynamics, the system of equa-
tions of motion (13) is not sufficient to determine all 14 +
24 = 38 dynamical degrees of freedom of the system. In
the remainder of this paper we will derive additional
equations of motion for the dissipative currents from the
Boltzmann equation (1) using the method of moments, and
thus close the system of equations of motion [73].

IV. POWER-COUNTING SCHEME

In this section we introduce a novel power-counting
scheme, which allows to extend the concept of local
equilibrium in the presence of spin and nonlocal collisions,
and expand the distribution function f(x, p, 8) around this
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equilibrium state. In kinetic theory, local equilibrium is
defined by the condition that the collision term vanishes.
However, in Ref. [7], it was found that the nonlocal part of
the collision term vanishes only in global equilibrium. This
means that the single-particle distribution function assumes
the equilibrium form

h v
feq(x.p.8) = exp (—ﬁou-p+ao+—9 YA >

1
(27h)3 47w

(20)

where ) = 1/T is the inverse temperature, oy = fou, with
w being the chemical potential, and €2, the so-called spin
potential, and the following global-equilibrium conditions
are fulfilled,

o0 =0, (21a)

Obouy) = 0, (21b)
1

Q, =w, = —anﬁou,,], (21c¢)

where @, is the so-called thermal vorticity.

However, having to abandon the concept of local
equilibrium in the presence of spin and nonlocal collisions
seems to be too restrictive. On the one hand, the local part
of the collision term vanishes also in local equilibrium,
without imposing the global-equilibrium conditions (21),
just as in conventional kinetic theory. On the other hand, the
nonlocal collision term captures physics on a length scale
~A ~ fi/m,i.e., on the order of the Compton wavelength of
a particle. This is typically smaller or on the order of the
range of the interaction ¢, which is usually assumed to be
much smaller than the mean free path A, such that the
particles can be treated as free between collisions. Finally,
in order to derive hydrodynamics from kinetic theory, it is
assumed that hydrodynamic quantities vary over a scale
Lyyaro Which is much larger than the mean free path, i.e., an
expansion in powers of the Knudsen number Kn=
Amip/ Lhydro 18 applicable. Thus, the scales in the problem
are ordered as follows:

A 5 Lﬂint < /?'mfp < Lhydro- (22)

We expect that physics on the scale A should not have a major
influence on what happens on the hydrodynamic scale Ly yqyo-
Thus, we should be able to extend the concept of local
equilibrium to situations where terms of order A /Lyyqy, can
be neglected. This requires a novel power-counting scheme,
which will be introduced in the following.

We start by defining the hydrodynamic scale Lyygy, as

1 1
—p-0fg, ~——Fo, 23
p fOp Lhydro fOp ( )

where

1

W e~ Poup+ap (24)

fOpE

is the local-equilibrium distribution function (20) to zeroth
order in A. Equation (23) yields

aﬂao ~ O(Ll:yldro)’ (253)

1
== 0oty ~ OLiaro): (25b)

Po

These conditions relax the more restrictive global-equilib-
rium conditions (21a) and (21b) to situations where local
equilibrium is established. If Lyyq4,, — 00, or in other words
hydrodynamic gradients vanish, global equilibrium is
recovered. Note that only the symmetric part of d,fyu,
enters the local-equilibrium conditions (25). The antisym-
metric part, which is equal to the thermal vorticity (21c¢),
does not appear. In fact, this part is not even constrained by
the global-equilibrium conditions (21), because there exist
global-equilibrium states with arbitrarily large thermal
vorticity [79]. This fact will become important below, as
it will allow us to deviate from the standard power-counting
of gradients of hydrodynamic quantities.

We now decompose Eq. (25b) with respect to the fluid
velocity u. To this end, we define V¥ = Aj¢” and A=u-
0A = dA/dr, as well as the expansion scalar @ =V - u, the
shear tensor o* = V%¥u*), and the fluid vorticity w*=
(1/2)V¥u¥. Contracting Eq. (25b) with u#u” yields

2 Ol (26)

Furthermore, we obtain by contracting with A7; and A,
respectively,

0ap ~ OLiryaro)- (27a)
6 ~ O(Liyiro)- (27b)
Contracting with ALu" gives
LV + it~ OlLily) (28)
Po Y

While in principle only the sum of (1/5,)V S, and i, is of

order O(Lj 4, ), we will consider situations where both are

independently of this order of magnitude. This is valid when
being sufficiently far away from the boundary of a rigidly
rotating system close to equilibrium.

Now consider the thermal vorticity @,,, cf. Eq. (21c). As
discussed above, this quantity does not enter Eq. (23), and it
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can be arbitrarily large, even in global equilibrium.
Contracting Wy with Abu?, we obtain

ﬂ aﬂO (Lhydro) (29)

where we used the fact that both (1/4,)V,f, and i, are of
order O(Liy,)- However, contracting w,,, with AfZAY and
dividing by f yields (up to a sign) the fluid vorticity @g.
We assume that this quantity is associated with a different

scale, which we call £,
a)aﬂ ~ O(Z’ﬂ\jolrt . (30)

This assumption forms the basis of the novel power-
counting scheme introduced here [for a related discussion,
see Ref. [25]]. A priori, €y can be arbitrarily small, even
in global equilibrium. We will later on restrict it in order to
neglect terms of higher order in 7.

The mean free path 4, is related to the collision term

(2) by

6]~ . 31)

ﬂmfp

However, the nonlocal part of the collision term is propor-
tional to the scale A, cf. Eq. (9), which characterizes the
nonlocality of the collision. It is also a microscopic scale
and should not be larger than the interaction range,
cf. Eq. (22). Furthermore, it is important to note that both
A and the polarization are of order /. We consider here a
situation where polarization is only generated by nonlocal
collisions, i.e., there is no initial polarization. For the
semiclassical expansion to apply we need

n
Aof ~—of < f. (32)
m
Comparison to Eq. (23) shows that we have to require that

L ro
Adf < —hydro hyd p - of, (33)

which implies
A Lhydrov (34)

which is consistent with Eq. (22). However, the gradient in
Eq. (32), when acting on the local-equilibrium distribution
function (24), also generates a term proportional to the
vorticity. Considering Eq. (30), we therefore have to
demand that

A <l (35)

i.e., Zyo can no longer be arbitrarily small, such as in a
global-equilibrium situation with arbitrarily fast rotation.

However, £ can be smaller than Ly, and does not even
need to be larger than the mean free path.

We now consider a situation in which #',; << Lyyqr, Such
that

A iy

— = Kn. 36
fvort ( )

Lhydro

In principle, it would not be necessary to require that
A/ o is of order Kn, i.e., we could have introduced
another quantity related to this ratio. This, however, is not
necessary for our purposes.

We will now show that the distribution function

feq(x.p.8) :f0p< + hQ z"”) +O(R*)  (37)

4R

leads to a vanishing collision term in Eq. (2), if one neglects
terms of order A/Lnyaro < Amfp/ Liyaro = Kn, where we
have used that A < 7 < Ay Here, Q,, = —Q,, is the
Lagrange multiplier of the fotal angular momentum, and
not just of the spin angular momentum. This means that
Pou* contains a contribution from the rotational motion of
the fluid, or in other words, that Q" also enters fyu”,

Pout = b + Qx,, (38)
where b* is the Lagrange multiplier for the linear momen-
tum of the fluid.

We now expand each distribution function in Eq. (2) to
linear order in A and insert Eq. (37), see Ref. [7] for details.
In the terms linear in A, the derivatives of the distribution
functions lead to terms proportional to d,fyu,. According
to Eq. (25b), the symmetric part of the latter gives rise to
terms of order A/Lyygr,, Or with Eq. (38),

1 1
'B—O Alaibﬂ ~ ﬁ_o Alx OAQW

This is much smaller than the leading dissipative correc-
tions, which are of first order in Knudsen number, and will
be neglected in our extended concept of local equilibrium.

However, the antisymmetric part of d,5yu, has to be
kept, because it can be nonzero even in global equilibrium
(for instance, for a globally rotating system). Requiring that
the nonlocal collision term vanishes up to corrections of
order O(A/Lpyqro) leads to the condition

O<A/Lhydro)' (39)

%a”ﬁou” = ﬂ_guv + O(Liyaro): (40)

i.e., the spin potential is equal to the thermal vorticity up to
terms of order O(Liy,), which vanish in global equilib-
rium. This is then consistent with Egs. (21b) and (21c).
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As an antisymmetric rank-2 tensor, the spin potential
contains six independent parameters. It is convenient to
decompose Q" as

Qv = emvab Uaop + u[f‘Kg], (41)
with
K = -0, (42)
and
wph = leﬂ”aﬂuyﬂaﬁ. (43)
2
Since ky-u =0 (because Q" = —-Q") and wy-u =0,

both § and @), contain three independent parameters.
Multiplying Eq. (40) with u,, from Eq. (42) we see that

Ko _
;B_?) ~ O(Lhyldro)’ (44)

where we have used Eq. (26) and the fact that
it ~ O(Li 4,)- Multiplying Eq. (41) with Aj and anti-
symmetrizing the resulting equation in the indices (4,v),
we then derive

/3060”” = €Myaﬂu0!a)0ﬁ + O(Lk:yldro)' (45)

With Eq. (30) it follows that

1]
@y

%~<mw»§. (46)

Po
V. EXPANSION AROUND EQUILIBRIUM

In this section we discuss the expansion of the distri-
bution function around local equilibrium, using the method
of moments. We will generalize the approach of Ref. [73] to
also include spin degrees of freedom. Our starting point is
the decomposition

fp% = feq + 5fp§’ (47)
with fq from Eq. (37) and

6fp§ EfOp(¢p+§'§p)' (48)

The spin-independent part ¢, has the same form as in
Ref. [73], 1.e.,

bp Zﬂ;ﬂlmﬂﬁp(m Py (49)
=0

where

N,
ign---/m = ZH;I’)“D,’;[”I (50)
n=0

Here, p(,, - - p,, are the irreducible tensors in momentum
space and

Pl = <E;p<”' "'P”’>>5 (51)

are the spin-independent irreducible moments of the
deviation of the single-particle distribution function from
local equilibrium, with

- < ’ '>eq’ (52)

where

<mms/ﬂwwm@n@. (53)

The function H\) in Eq. (49) is defined as

o _w! ZN’ ) pll
Hpn = e Amn P pm, (54)
where
Pon=> allE) (55)
r=0

are orthogonal polynomials in energy, the coefficients ag)

of which are determined such that

WO e g ) plD
2 dpm (A papﬁ) fOpPPmPP” = 5mn’ (56)

where we defined dP = d*p/(2p,). The normalization in
Eq. (54) is determined as w!) = (—1)!/1I,;,, where

1

g (. fo) = [ E

(Ey (=A% popg) ¥, (57)

are standard thermodynamic integrals.

Extending the approach of Ref. [73] to spin degrees of
freedom requires us to introduce the four-vector ¢, in
Eq. (48), which has an expansion in terms of the irreducible
tensors in momentum space,

=2 g - (58)
1=0

Without loss of generality, we may assume that (' is
orthogonal to p¥, p - £, = 0, since any part parallel to p*
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would vanish in Eq. (48) anyway because of the constraint
8-p=0. Using p- ¢, =0 we obtain

1
M'CPZ—E—Pw)é'(pM- (59)

p

Therefore, the expansion (58) takes the form
P )
C’;: (fﬁf— E<y>uﬂ>z’7§7>(ﬂl ﬂ,>p</41"'py[>‘ (60)
p =0
(ORTET

The coefficients 7,
polynomials in energy

are further expanded in terms of

) Zd/;l,mr--m)?;;ll)“ (61)
nes,;
with
0
gl _ _Wl—'<PE’Z’)1§<ﬂ> Gy (62)

In Eq. (61), S; C Ny is the set of indices of the spin
moments which will be considered as dynamical degrees of
freedom. We will specify S, for any given [ further below.
In order to prove Eq. (62), insert 6f s from Eq. (48) with
Egs. (58) and (61) on the right-hand side, and use

/ds(pw =0 /dS(p)é"é” = —2<g"” - p;fy),

(63)

the fact that p-{, =0, as well as the orthogonality
relations (56) and (A7).
Defining the spin moments

T!;l‘ﬂ]“.m = <E;’,§”P<ﬂl . pl‘1>>§’ (64)

we obtain

no_ _ZHEJ’ZT}?),M“W ) (65)

nes,;

Thus, the distribution function (47) can be written as

fps :fop{ +4Qﬂyzﬂv+z{ )
p Y R
+ (g/u/ - E—Wub) 8 ’7;7/0 b ﬂ]>:|p<}l1 o 'pltl>}‘ (66)
14

Making use of the local-equilibrium distribution function
(37), we can split the components (19) of the spin tensor
into equilibrium and nonequilibrium parts,

1
m’“’ = III(;D —%uﬂny’ (673.)
1
P=py - (mPp—nt), (67D)
S =g 5y (67¢)
0 2m b
Qi = - g (67d)
2m
with the equilibrium quantities
ngb =-—5-u <E%§y>eqv (683)
1
pg = _@<Ap p/)ij()'§ >eq9 (68b)
1
7
b" = “om (Epp1'8") . (68c)
and the terms
=1, p= 1-’(; [)/1;4 = T;lt,/17 qll;u/ = Té./ﬂ/’ (69)

pertaining to nonequilibrium.

It should be noted that not all spin moments are
independent, since {’, has only three independent compo-
nents because of p - {, = 0. Using Eq. (16) and 8- p = 0,
we compute

uﬂfﬁrl-ﬂ]wﬂn _ /dl"E;,(u . g)p(m ..pﬂn>5fp5

_/d[‘E;—lgpp(Wp(m ..pﬂn>6fp§_ (70)

Rearranging the projection operators, the right-hand side
can now be expressed in terms of a linear combination of
the spin moments. For specific n, this will be shown
explicitly below. For this reason, in the following we will
derive equations of motion only for the components of
#17H orthogonal to u#, from which also the ones parallel
to u can be obtained.

VI. MATCHING CONDITIONS
AND EQUATIONS OF MOTION FOR
HYDRODYNAMIC VARIABLES

The dynamical degrees of freedom of the local-
equilibrium distribution function (37) are the Lagrange
multipliers o, B, u*, and Q**. A priori, these fields are not
specified and constitute additional degrees of freedom. By
imposing a choice for the hydrodynamic frame, see, e.g.,
Eq. (15), and so-called matching conditions for the
moments of the distribution function, they can be related
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to physical quantities, e.g., the particle number density, the
energy density, and the angular-momentum density of the
system, and at the same time one can eliminate some of
the irreducible moments of the nonequilibrium part of the
distribution function.
In order to define o, and j;, we impose the matching
conditions
n=ng=(E,) (71)

e = e = (E})

eq’ eq’

1.e., the particle number and energy densities of the
fictitious local-equilibrium state match those of the actual
system. Furthermore, in order to define the spin potential
QM we require that the total angular momentum of the
system matches that of the local-equilibrium state,

w0 =, J (72)
where

JHH = xHTW — XY TH 4 pStH (73)
is the total angular-momentum tensor. This matching
condition is chosen in analogy to the Landau matching
condition for the energy-momentum tensor, such that the
total angular-momentum density in the fluid rest frame
equals its equilibrium value. We note that some works
[6,10] use the spin tensor S** for the matching condition
Eq. (72). We prefer not to do so, since only the total angular
momentum is conserved in the presence of nonlocal
collisions. Only for conserved quantities the corresponding
global charge transforms as a tensor under Lorentz trans-
formations [9]. The latter is not the case for the generally
nonconserved spin tensor S*#*,

The matching condition (72) allows to express some of
the components of the spin tensor in terms of the interacting
part of the energy-momentum tensor. Inserting the angular
momentum tensor (73) with the spin tensor (17¢) into
Eq. (72) and using the Landau condition (15) we find

w T 4 90 + S = w120 (74)

Here, we dropped the terms proportional to the derivatives
of IT and #** in Eq. (17c¢), since these terms would lead to
second-order derivatives of dissipative quantities in the
equations of motion, which are generally not considered in
second-order hydrodynamic theories. Contracting this

equation with €44, and then either with u® or AgAf,

respectively, results in the following relations for the
dissipative spin moments,

nl — = 2mu " ux, Ty, (75a)
1
EE)M")] = mALALE PP U x, Ty, (75b)
where Al®¥)] = A([]’,‘ A"]“, which lead to
Vet — L g o ciwap o
5[) =5 ul'ty + me*Pulx, T p. (76)

In the following, we choose # = u* in Eq. (9), i.e., we
describe collisions in the fluid rest frame. In this case,
w; T = 0 and the right-hand sides of Eqs. (75) as well as
the last term in Eq. (76) vanish.

From the conservation equations [(13a) and (13b)] we
obtain the following comoving derivatives [remember that
T’i’ ¥ is neglected in the equation of motion (13b)],

. 1
% =p- {=130(no0 + 9 - n) + Ing[(€9 + Py + )0 — 70, ]}, (77)
20
. 1
Po = D_Z,O{—Izo(”oe +0-n) +Iy[(e + Py + )0 — 20, ]}, (78)
1
" — V¥ Py — it + VAT = Afyoya), 7
! eO—I-PO( o ) 7
where we defined
Dy = Iyl n-1yg = Ing- (80)

Equations (77)—(79) are identical to the ones in standard second-order hydrodynamics without spin degrees of freedom.
Analogously, using the decomposition (17c¢), after multiplying the equation of motion Eq. (13c) by eﬂmﬂuﬂ and u,,

respectively, we obtain
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ho. 2 h . . h . ) 1 n
Wwﬁﬂ = —130 I {L 2 (20130 — 140Po + 13000) +W(l41ﬁo —I1a) —EWIMG @y

1 1 . 1 « a
+ “ﬂva3—m(m27f1) - 1) - Wis (m*tg —75)it” + %9(’”27(() P )

1A . 1A
— > — el (=L, Vo + I3y, Vyag + 313 u,0;) — = — €9 31,V ko,
2m 2m
h 1 0,(A A B 1 . 1 PlA
—?131@70’/1 + 0™ )wg; — ﬁAgvﬂfl “ap) + %T@ Y, + E”ﬂAgvﬂgM]
1
- E M/ﬂjé’aﬂl:t/{ + 2€“ﬂ””hTiWuﬂ}, (81)
and
n . 1 n . n
WK(%”) =—- {2m Lyge" P itawopu, + W€aﬂyﬂ“»[—l31vaa)0ﬂ + (I Vabo = 131V 00) 0]

)
131(0'/“/ + a)/w)K'OU

1 1 .
- 3—m€“"”ﬁuvva(m210ﬂ - TZﬂ) + 3—m€“/‘”ﬂuyua(m2‘roﬁ - T2ﬂ) 2 P

1 n /4 . .
+ ﬁeﬂmﬁuaﬁ(/}’,i)(aﬁ + w}) + o (51319 —1ypo+ 1310‘0>Kg

1
= — P, (V1o 0y — W T0p 1) + 27’wa”u}’ (82)
- ,

where we used the matching conditions in Eq. (76). Using Eqgs. (9) and (14), the last term in Eq. (81) is given by

h E
ey [ ar,psif) = [ ar| g, =m0 ol

I & J

_—/dFE —m[ EZ( ) <>](S[f], (83)
P j=0
where we used the geometric series to express 1/(1 —m?/E?). Similarly, we have for the last term in Eq. (82)

n 1 2 (m*\ !

/dFEpA/' =g /”u{,/dFE—p(Ep —m)j; <E—%> P8 (84)

Equations (81) and (82) thus contain an infinite sum of moments with negative r, however, we as will show in Sec. IX, such
moments can be expressed in terms of those with positive .

VII. EQUATIONS OF MOTION FOR SPIN MOMENTS

In this section, we derive the equations of motion for the spin moments 141 n our truncation scheme, we only need
these moments up to tensor-rank two in momentum. From the definition (64) we find

Z._;;,(yl..un Al ﬁi’zd_/dF 'p””>§”5fp§, (85)

Using Eq. (47) with Eq. (37), up to order O(#) the Boltzmann equation (1) can be written in the form
5F,s = —fo (142 0s@) 2 r 6 s _pip.v 1 1tg sw E;'p-Vs E;'G 86
fpé'y__f()p +Z aff =3 _ZfOp ap~g —Lp D fOp +Z aff <3 —Lp D fp5+ P [f] ( )

In the following, we define I* = V¥, the thermodynamic function
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Gnm = InOImO - I(n—l)OI(m+1)O’ (87) VMPO = @Vﬂao — € + PO V”ﬂO» (89)
Po Po
as well as the collision integrals

hich is unaffected by spin effects up to O(#). After a
1, (1 ) w y sp p
e / dUE,p P8 Cf]. (88) straightforward calculation using the properties of irreduc-
ible tensors in Appendix A, we obtain the equation of motion
We also make use of the relation for the spin moment of tensor-rank zero in momentum as

h G r G r Gr h ®
— (gyi)l - [§§0)9+ 2(r+1) 1o — 2(r+1) e, — D3 0- n]wg —%I(anA’ZVUQM

2m Dy 20 20

h ~ . . v Q,
- 4_Q<”>D |:I(r+1)11y - I(r+2)1 ﬂO (_Huv + qu - Awla/)ﬂjﬂ):| + ruufi@i + (I" - 1)Ga/ifffli>é /

m €y -+ 0

u h :
- AV, 7 ~3 [( +2)2 = (r = D)m*cl,]0 - El(r+1)0€maﬁuygaﬂ’ (90)
where we defined
0 _ 1
& =10 — Ml — 75— [Gagrsry (€0 + Po) = Gagrpnyol- (91)

Dy

Furthermore, for the spin moment of tensor-rank one in momentum we find the equation of motion

) ey D v | <0, L O3r42) Gari2) h L &P
Trﬂ _(gr;il _EAgAlQp |:§r 9+Tm0n—Tm(H9 JT (lﬂ) +rA”AQ I(r+2)

+ %w’é {ﬁ Iy 3y (TN + VVIT = AY0,77) — 1<,+2)11"} - % Bol (32" 6+

- %I(,H)IA%(V”QM)W + a4+ % [(r = Dm2e ¥y — (r 4+ 3)24*10 — ALALV 2%

+ ritpri’i)l’”” + % 2(r = 1)m?z" <”> — (2r 4 3)c lob + ; i [m2r1<”> (r+3)z §+>1]

— AV = ) + (= D5, (92)

with

Gy, Gy,
5gl) 3(r+2) n 2(r+2) (60 + Po)

5
_ — 8.1 , 93
Do 0 Doy 350 (r+3)2 (93)

and finally for the spin moment of tensor-rank two in momentum the equation of motion reads

(), (v 1), (VA h 2) A v h v g h - B
Tﬁm WA - (‘:9—>1< )= ﬁf(r >Q<”>< "+ %I(r+3)2A%Aa/2v r - %Q’wﬁo”p" ll(r+4)2

h ﬂO A v . A a . VAp 2 s
%60 + PO I(r+4)29<”>< (—I—[M/1> + VDH - AO,)aﬁﬂ' ﬁ) + I"MPTE,}?I & + 5 [szi@ < (V + 5) S,Jr>1< ] l>
2 1
- A”A;%Vp };_aﬂp 5§A;’}3Vﬂ(1’r’f1 -m>%) + 3 [(r— l)mz'ri’iéw1 —(r+ 4)T§”>’M]9

2
+ (r = 1), a7 4. 2 Z2(r- Dm0 — (2 + 5) 170 6h 4 2 WPk
2

15 [(r = m*t <”> — (2r +3)m? ¥ +(r+ 4)1%22]0’”1, (94)
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with

2 _ "o
fr— I -
& (432~ B

I(riay2- (95)

We note that the equations of motion for the spin-
independent irreducible moments p,, g, and p;” take the
same form as in Ref. [73]. The reason is that the terms
proportional to X5 and proportional to (¥ in §f,s in
Eq. (86) vanish when integrating over spin space. This,
however, does not mean that these moments do not couple

to the spin moments 7, 7*, and 7 since such a coupling
may arise from the collision term in Eq. (86). We will
discuss this further in the next section.

Apart from the 7 expansion, which is truncated at first
order, the above equations of motion are exact. In order to
close the system of equations, we need to employ a
truncation procedure. The Navier-Stokes limit is obtained
by taking into account only terms linear in gradients of
order O(Ljyy,)» see Sec. IV. However, in this approxima-

tion, the spin moments are not dynamical. Going beyond
the Navier-Stokes limit and keeping terms which are linear
in the product of gradients of order O(Ly/,) and a
dissipative quantity, one arrives at the second-order equa-
tions of motion, where the spin moments are determined
dynamically. In principle, one could now follow the DNMR
approach [73] by considering only the slowest microscopic
time scales as dynamical, approximating the faster time
scales by their Navier-Stokes limit, and systematically
resumming higher-order moments in energy. This will be
|

discussed in a forthcoming work. In this paper, we will
apply a procedure similar to Israel-Stewart theory [80],
which employs an explicit truncation of the moment
expansion at tensor-rank two in momentum and in the
lowest order in moments of energy [72]. In conventional
hydrodynamics, this is known as the “14-moment approxi-
mation”. Since the spin tensor has 24 dynamical degrees of
freedom, the analogue of this approximation in the case of
spin hydrodynamics will be referred to as “14 4 24-
moment approximation”.

VIII. COLLISION TERMS

In order to close the system of equations of motion (90),
(92), and (94), we have to express the collision integrals
(88) in terms of spin-independent irreducible moments and
spin moments. We will neglect terms of second order in
dissipative quantities, which means that we keep only linear
terms in ¢ and ¢* in the collision term (2). (This means that
terms of second order in inverse Reynolds number are
neglected, cf. the discussion in Ref. [81], where such terms
were computed.) Furthermore, we keep terms of linear
order in 7, in gradients of order O(Lgyldm), as well as in the
product of the two. Using Eq. (47) with Egs. (37) and (48)
we obtain

C[f]1 = C[f] + C[f] + O(n*, A05f), (%)

where

Clf] = /drldFZdF/WfOPfOp’(¢l +h—p—P' +8,-{1+8,-5,-8-(-8"-(), (97a)
¢lf] = / dFIdFZdF’Wfo,,fop/{—(@ﬁouy)[A’fpﬁ(l + o) + A5p5(1 4+ ¢y) — A p (14 @) + A% p™(1 + )]
n
RO+ 4) + S+ ) - 20+ 4) X0+ ), (971)

where we have abbreviated ¢ =¢,, ¢' =, 1 =¢,,,
pr=¢,,, =0, =0, 0 =0, and § =0, re-
spectively. Note that €[f] is the local part of the collision term
and, up to the terms proportional to the spin vectors, formally
identical with the collision term in the standard Boltzmann
equation. On the other hand, @[ f] corresponds to the non-
local part of the collision term and is responsible for the
mutual conversion of orbital angular momentum and spin. As
we shall see below, it is the local part €[f] which determines
the spin relaxation times, while the nonlocal part ¢ [f] enters
the equations of motion for the spin-dependent moments in a
similar way as the Navier-Stokes terms in the equations of
motion for the usual dissipative quantities.

[
Using Eq. (96), the spin-dependent collision integrals
(88) are split into two parts,

(s/:;(/;r-m _ @:ﬁtr-m) + @/:;(1141-“/4,,)’ (98)

where

@/:;(;ltr-wn) = / dFE;,_I‘D(”‘ ...pﬂn>gﬂ(§j[f], (99a)
@/:,_(éll“'ﬂn> = /dr‘E;—lp(m ...pﬂn>§ﬂf§[f], (99b)
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Inserting the expansion of the distribution function (66) we find

& lrtad 162/ [dPIE i piod o o [=Wopi, - - pugl® ™
+ W”( /1<1/1 “vr) /1(1/2 “vr) _ /1("1 vr) ./ o /1(1/1“14)
Pi, " P + P2, Py Pl Py Pl Poydy )
+ Wlfyn;,l@lmyl)p](l/[ .. ply,) + Wgyf]l];;yz D[>p2<u] .. p2y1> W:,M’]D/@] y[>p/<yl e pil>], (100)

where we defined [dP|= dPdP'dP,dP, and used
p - ¢ =0, cf. the discussion after Eq. (58). We also defined

1

Wo=2z / S|, (101a)
1

W”E? [dS]8" W, (101b)
1

W= / 1dS]8 8 W, (101c)

with [dS] = dS(p)dS'(p')dS,(p1)dS»(pa).

In this work, we focus on parity-conserving interactions,
and in particular on scalar and vector interactions. It is
shown in Appendix B that in the case of a scalar interaction
Eqgs. (101b) and (101c) vanish, respectively. For a vector
interaction, Eq. (101b) also vanishes, while Eq. (101c) is
nonzero. However, in the limit of small momentum trans-
fer, Eq. (101c) is zero also for the vector interaction, while
the only nonzero contribution comes from Eq. (101a). For
this reason, in the following we will consider the situation
of either a scalar interaction or a vector interaction in the
limit of small momentum transfer and drop the terms in
Egs. (101b) and (101c). One can then immediately con-
clude that the collision integrals for the spin-independent
irreducible moments pi'"*,

s = [ dreg po- e p (Gl + 6l (102

only contain terms proportional to W, and do not involve
the spin moments 7,*'"* . Therefore, the equations of
motion for the p}' " are not affected by contributions from
spin, at least up to order O(#), and decouple from the
equations of motion for the spin moments. Hence, the
standard dissipative currents, i.e., the bulk viscous pressure,
the particle diffusion current, and the shear-stress tensor
follow the same equations of motion as derived in Ref. [73].

We remark at this point that Eq. (101b) is nonzero only
for parity-violating interactions and, in this case, leads to a
coupling between the equations of motion for the spin-
independent irreducible moments p,'"* and the spin
moments 7-*""* . In this case, the time evolution of

|
I, n*, and #** will be influenced by spin effects. More
detailed studies of this are left for future work.

Keeping only terms proportional to W, in Eq. (100), we
obtain with Eq. (65)

<I‘/l“‘l/m>

@l:’_(/:l ﬂl g Z Z yl Dm , (103)
m=0 nes,,
with
B =16 / [dPIWofop foy Ef pls - pio
XH(FY:?P(] Py, (104)

This tensor can only be nonzero for / = m and it must be
traceless and orthogonal to u#. Therefore, cf. Appendix D
and Ref. [73], we arrive at

(_S’:‘_Ol‘"“”’> _ _ZB%)TZ(M Hi) (105)
nes,;
with
, 1y s oD (i
Bgn) EmAm Mll( ())E’ﬁ,‘%} (106)

Finally, we consider the collision integral (99b) with
Eq. (97b). Since we neglect terms proportional to w/”,
cf. Eq. (101c), all terms involving &', 8;, and 8, vanish.
Using the conservation of total angular momentum in
binary collisions, we are left with

@}:’_Q{IMM'J _ /[dl—\]wE;—lp<ﬂ] .. p/"n>§”f0pf0pr

h s 1
X |:— Z (Qaﬁ - ’waﬂ)23ﬁ + 50<aﬁ0uﬁ) Aapﬂ .
(107)

These terms give corrections to the spin moments which
come from the difference between thermal vorticity and
spin potential and from thermal shear d(foup /2.
Remembering that 7 was chosen to be equal to u*, we
thus obtain for the full collision integrals up to tensor-rank
two in momentum
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64y == BUd + gV (@ — ), (108a)
nes,
11/ zBrnTMn -l-gl ( _1%,4(,/))
nes,
1 (Boity + V,50) e . (108b)
il = TR+ nP pooy e, (108c¢)

neS,

where we used the orthogonality relation (A7) (see also
Appendix D) and defined

4h
0 = — | [APIVOE, fopfop (109a)
41
g =5 | lAPIVOES fopfop (AP papy).  (109)
(ny__4n 1 - )
hy’' = 3m [dP] Ep n mWOEp lfopfOp’(A ﬂpapﬁ)’

(109¢)

WOEZ_lfopfOp’ (AaﬂPaPﬂ)z-

(109d)

) 16fl/ 1
hy — P
15m E ]Ep +m

IX. SECOND-ORDER EQUATIONS OF MOTION
IN THE 14 + 24-MOMENT APPROXIMATION

In this section we close the set of equations of motion by
a direct truncation of the moment expansion. Analogously
to the 14-moment approximation, we assume that only the
moments which appear in the conservation laws contribute
to the moment expansion. In this case there are 24
independent variables for the spin degrees of freedom,
which constitute the minimal number of additional degrees
of freedom in the dissipative case. Together with the 14
moments from the lowest-order approximation in the spin-
independent case we call this truncation “14 + 24-moment
approximation”.

One may wonder what would have happened if we had
chosen a different pseudogauge. If we had used, for
example, the canonical currents [9], we would have had
fewer degrees of freedom due to the fact that the canonical
spin tensor is completely antisymmetric. However, the
canonical spin tensor is not conserved even in global
equilibrium [9], so its equations of motion do not corre-
spond to conservation laws. On the other hand, the HW
spin tensor is conserved in global equilibrium, which is
physically more intuitive, since the mutual conversion of
orbital angular momentum into spin should balance to zero
in this case. As a consequence, (at least some of the) spin
dynamics must occur on large, i.e., hydrodynamic scales.

Hence, it is natural to favor the HW pseudogauge over the
canonical one.

In order to express the moments which do not appear in
the conservation laws in terms of those which do appear, we
first note that inserting Eq. (66) into Eq. (64) and using the
orthogonality relation (A7) we derive the identity,

R qun'”"””’%(rln), (110)
nes,;
with
n _ 21! r ap l
%rn =m dPE Hpn(A papﬁ) fOp’ (111)

cf. Ref. [72]. This relation is exact for r € S; and approx-
imately valid for all other values of r. Keeping only the
moments which appear in Egs. (19) we obtain S, = {0, 2},
S, = {1}, S, = {0}, while S, is an empty set for [ > 3. We
thus arrive at the following approximate relations,

) 1
Tﬁll)e ~ %(rll)f)w)v — E%S)slﬂ/’ (1 12b)
L 35(2))(](,4) A (112¢)
T;rt,vi/)-“ ~0, (1124)

where we defined 3* = §(*") and used Eq. (75b). The
components of the spin moments parallel to the fluid velocity
are then obtained from Eq. (70) as

M””LJ: = _TM —Lpu
~ ——% 1130 (113a)
v v 1 v
7" = T’:—lu—g(’”zf =)
~ (2) (0) (0) 3
~ =8 ol — 3 ( 2%0 | %(r+l)0)p<>
1 0 0 )
=3 (0L = F( (113b)
2
VA VA v
Ut = T’rl—lﬂ +1_5< 27;:—1,;4 T’rlﬂ,ﬂ)A ’
1 v),A v),A
L )
1 1 )
zﬁ(nggr)—l)l - %E ) NOETA N
1 1 N
_g(nggr)—l)l _%Erll)l)é /1- (1130)

From Eqgs. (75a) and the first line of Eq. (113b) for r = 1 we
conclude with the definitions (69) that
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2 v
— n(”) = —CIZ

3 (114)

1
— —m2p®

3P
Hence, n') can be expressed through the other dynamical
moments and we do not need to consider an additional
equation of motion for this quantity.

We note that the matrices whose components B&Q appear
in Eq. (105) are invertible. For [/ # 1, we can thus
straightforwardly obtain

MR Hs /41 ﬂz)
T!rlz ! '=— ~nr(g

res,;

(115)

where we defined the matrix

(116)
Since réw is fixed by the matching conditions, cf. Eq. (114),
r = 2 has to be excluded from the set Sy when performing
the sum in Eq. (115) for / = 0. The reason for this is that an
equation analogous to Eq. (70) relates the components of

u, G (u1--1a) to the components of € #)-#1#) implying that
|

d
AL
7L pt) 4l

+ [RE‘QIU + |0 (<M, + V,TT - A,9,77)]

+ 9\ F, + V6,590 — ¢V ALY, 5 4 g Vgpi)
0 O v v O 12

+(aVp, + o al,) (0" + o) + gy gL Fr.

Here we defined F* = V¥#P,. We also converted derivatives of the thermodynamic integrals 7,,,

more than six components of the collision integrals can be
related to collisional invariants. On the other hand, for
[ =1 Eq. (105) reads with the approximation (112)

@l:_<11/> = _ZBE‘L)TZ’D = ZBrn n]

nes,; nES]

) u”r§”>),

(117)

where we have used Egs. (69) and (75a). This implies for
the symmetric part orthogonal to the fluid velocity

1) (v
e

res,

(118)

We now multiply the equations of motion for the spin

moments (90), (92), and (94) with ~,(1,), sum over r in each
equation, and use Eq. (112). We then obtain with S, = {0},
S; ={1},and S, = {0} up to linear order in the product of
gradients with dissipative quantities (which includes gra-
dients of dissipative quantities) the following equation of
motion for p®

(@ — &), + (K20 + K010 + |16, + K00 n)al!

W QUL+ /Y (@) — Qi)
— 00 + o 51,
(119)

by the chain rule into

derivatives of o and 3. In principle, also i could be replaced by Eq. (79), keeping only terms up to linear order in the product
of gradients with dissipative quantities. The transport coefficients appearing in front of the various terms are listed

in Appendix C.

The equation of motion for 3* is obtained from the symmetric part of Eq. (92) following similar steps as in Eq. (119),

v d v v 1
T, AL A Es‘p + v o)y = [/ (-1

v 4 VoI = AY9,2%) — /U1

1) & v
g) + gg(zgﬁ(ﬂ)G YA

- @m (VIO + )50 + g& AFAY (A zq“%
(V w30 + gff )q(<> VAF, + gl )Gﬁ 34+ g Flepl) 4 gl qf P
+ oy AV (M) + 0 AV VIS + g (V) 5, (120)
with the transport coefficients again given in Appendix C.
Finally, the equation of motion for q%** is given by
AﬁA;},di Wlap 4 qUuwt — 27, qlurrtv vl = -0 Bool ey, + RUQWE ) 4 ﬁngzM veQyr — {,,{,aviof‘
- @gﬂ QU (T + VATL = AZ 9pr?) + g\ 3 F) 4 g7 g 17
+ gg Al AV vﬁépa + g( Jqinvig + g?)q(meﬂ(vgﬁ + géz>p<ﬂ>6 A
— 60,4 0 + gy P13l + o plVAw + g q) Ve (121)

with the transport coefficients listed in Appendix C.
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In Eq. (119), cbé” ) should in principle be replaced by
Eq. (81). However, we refrain from doing so at this point in
order to keep Eq. (119) more compact. The equation of
motion for «f contains the antisymmetric part of the
energy-momentum tensor, which has to be expressed in
terms of the dynamical spin moments. In the 14 + 24-
moment approximation, we restrict the sums in Egs. (83)
and (84), respectively, to S; and obtain

h
2ePy,T,, = — {(si‘” —mGy
m

- Zijuz(Gi—'(zlj—l - m(S’i’;’j_z) . (122a)
JESI

7 A
Thlu, = = Pugy_m* (€5, = mE(j1yp,).
JES

(122b)

where the collision terms can be expressed in terms of the
dynamical spin moments using Egs. (103), (108), (112),
and (113).

We note that the spin relaxation times' Ty, Ty, and 7 arise
from the inversion of the matrices B, cf. Eq. (116), see
also Appendix C. Thus, as claimed above, they originate
from the local part of the collision term. On the other hand,
the first terms on the right-hand sides of Egs. (119) and
(121) arise from the nonlocal part of the collision term,
cf. Egs. (107) and (108), and as mentioned above, appear in
a similar way as the Navier-Stokes terms in ordinary
dissipative hydrodynamics. Note that there is no such term
in Eq. (120), as 3" is a symmetric rank-2 tensor, while the
corresponding terms in Eq. (108b) are antisymmetric.

The calculation of the relaxation times requires the
evaluation of certain collision integrals, which is delegated
to Appendix D. In Fig. 1 we show the spin relaxation times
Ty, 73, and 7, (solid lines) in comparison to the relaxation
times 7y, 7,, and 7, (dashed lines) of the usual dissipative
quantities as a function of mf,. We choose a range for mf,
from O (for very high temperature) to mf, = 10 (corre-
sponding to a typical hadronic particle of mass m ~ 1 GeV
at a temperature 7 ~ 100 MeV). It should be noted that the
particle mass cannot be zero due to conditions (34) and
(35), therefore, the limit mf, — O corresponds to the limit
T — o0. One observes that the spin relaxation times are
smaller than the usual relaxation times by a factor of at least
1.6 for all values of mf},. This means that spin dissipates on
a slightly faster time scale than particle number or energy-
momentum. Nevertheless, the order of magnitude of spin

n the literature, the term “spin relaxation time” has some-
times a different meaning than the one used here. In this work, it
is the time scale on which a dissipative spin moment approaches
its Navier-Stokes limit, see Sec. XI.

=== 711/ Amtp
=== T/ Amtp
== Tr/Amtp
- TD/ Amfp
— 7a/ Aty

— 73/ Amfp

4 5 6 7 8 9 10

mfy

FIG. 1. Relaxation times for the dissipative components of the
spin tensor p¥, 3, ¢’** (full lines), in comparison to those for
the standard dissipative quantities IT, n*, z** (dashed lines) in the
14 4 24-moment approximation. Note that the values for 7, and
7, in the limit mf; — O agree with those obtained in Ref. [73].

relaxation is the same as for the usual dissipative quantities,
such that it makes sense to treat spin as a dynamical degree
of freedom in second-order dissipative hydrodynamics.
By the same argument it would also be justified to con-
sider higher-order moments for the usual dissipative quan-
tities as dynamical degrees of freedom, cf. Ref. [82], as the
corresponding relaxation times are of a similar order as
the spin relaxation times, but here we refrain from doing
so in order to keep the discussion as simple as possible.
We observe that all spin relaxation times converge to the
same value of A5 when the high-temperature limit is
approached. This feature is most likely an artifact of
assuming a constant cross section.

We note that spin relaxation time has been studied
using perturbative QCD techniques [83-86], the Nambu-
Jona-Lasinio model [87], and an effective vertex for the
interaction with the thermal vorticity [88,89]. In Ref. [84],
the spin relaxation time was estimated based on the
probability to change helicity in a collision, with a result
which is orders of magnitude larger than our results. The
reason for this is that, in our case, the spin relaxation times
include also other processes where spin is dissipated, not
only particular helicity-changing processes.

X. PAULI-LUBANSKI VECTOR

Comparing the polarization of hadrons measured in
heavy-ion collisions with theoretical calculations requires
knowledge of the so-called Pauli-Lubanski vector
[9,40,90,91]. The latter quantity can be expressed in terms
of the axial-vector component of the Wigner function

A, p) = / () f(x.p.8)  (123)
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as [9,90,91]

W(p) =5 [ P ). (124

where dX, denotes the integration over the freeze-out
hypersurface and we defined

Inserting the distribution function (66) and using the
14 + 24-moment approximation, we obtain

f(x, p,8). (125)

1 h &
I1#(p) :W/dEAP'lfOp [_%Qﬂp( plp + P(p))

+ <gZ - )()(ppw - 6)(nqﬁy +)(55mp(a)
+)(qq<b>aﬂp(apﬂ)>:| (126)
where we defined
0 0 |1 0

ry =230 (B -3 ).

nGSO

ZHP” n2 ’

l’l6§0

1
Xy = _ZHP”%EH)’
nes;
=23 Hpi. (127)
nes,

In the theory of second-order dissipative spin hydrody-
namics, the spin moments are treated dynamically and
follow the equations of motion derived in Sec. IX. On long
time scales, they approach their Navier-Stokes values,
namely the first-order terms on the right-hand sides of
Egs. (119)—(121), respectively, cf. Sec. XI.

The global polarization is given as

1
ZZN/dF/dZ,lp’lél‘f(x,p, Q), (128)

with N = [ dPN. We obtain

_ h hog
M = ﬁ/ dz,; [_”A%wglzo +%A£Q’wlzl +ut (yp
+ nqqpﬂ ns“”?:ﬁ) + );)35”/1 + lfiﬂ(nJPp</1> + mqqzl)

(129)

with
0 1 0 3 0 1 1
by =8l —5m . w=—580. v =%
1 0 0) m
mpE——(m2%(—1>o_%<10) ?( 2% 12 3 ))
qu_% 1()"‘ ( 2% 12 %( ) (130)

We remark that, although the form of the Pauli-Lubanski
vector given by Eq. (124) is independent of the choice of
pseudogauge, the truncation scheme used in a hydrody-
namic framework can implicitly induce a pseudogauge
dependence on the polarization, see also Refs. [9,67,68,90]
for related discussions. In our case, the pseudogauge
dependence enters through the choice of dynamical spin
moments in the expansion of the distribution function
in Eq. (126).

XI. NAVIER-STOKES LIMIT

The Navier-Stokes limit is obtained by considering only
terms up to first order in gradients in the equations of
motion in Sec. IX. In this context it is important to note that,
in our power-counting scheme, the vorticity is considered
to be different than standard gradients, cf. Sec. IV, which
allows to account for a global-equilibrium state with
arbitrary rotation. Thus, we neglect terms of linear order
in the product of gradients and dissipative quantities, e.g.,
terms like VA7,*""#" However, this does not pertain to
terms of linear order in the product of vorticity and
dissipative quantities as, for instance, appear in expressions
~VAALTy#H where the space-like gradient also acts on
the three-space projector. Therefore we have in the Navier-
Stokes limit

pua = bt (131a)
Bl = o 4 Ty L, (131b)
QU = gt _ or qU Vel (131¢)
with
Pl = O (& — & Yu, + K0k + K1, QW
+ KAV, 0% + /e (132a)

= LAY TI, — SO0l + SUA o

(132b)
qé’;w’{ = —b<2)ﬁ00§7y€}“>”"”ua + ggl)f)(m(l/[ﬁ)
+ KREGASALVIY — R oo, (132c)

096014-17



WEICKGENANNT, WAGNER, SPERANZA, and RISCHKE

PHYS. REV. D 106, 096014 (2022)

being the Navier-Stokes values for relaxation to a non-
rotating equilibrium state. The first terms on the right-hand
sides of Egs. (132a) and (132c) arise from the nonlocal
collision term (107). This is also apparent from the fact that
the coefficient e(*) is of order ~A/f, times the dimension
of p#, while d? is of order ~A/f3, times the dimension of
q***. This follows from the definition of these quantities in
Egs. (C1b) and (C3b) and the fact that 7,, and 7, are of order

~Amfp» While gg)) and h(<)2>, cf. Egs. (109a) and (109d), are
~A /A, times appropriate powers of temperature to give
the correct dimensions. Thus, the first terms on the right-
hand sides of Eqgs. (132a) and (132c) are of order
~A/Lpyaro times the dimensions of p* and q"*, respec-

tively. On the other hand, the other terms NSQEI) in
Egs. (132)—(132c) are of order ~(A/Lnydro)(Amip/Evort)
times the dimensions of p# and ¢**, respectively. While
this is formally of order Kn?, cf. Eq. (36), we cannot simply
neglect this term, as one would usually do for the Navier-
Stokes limit. The reason is that in our power-counting
scheme we were not forced to specify the ratio Ang,/Zyor»
such that in principle it can be of order unity. Then, the

terms NRE[) are of the same order as the first terms
~e® 5@ Only if Amtp/Cvor < 1, we may drop these
terms.

We note that, when inserting Eq. (132c) into Eq. (126),
we obtain a term

I*(p) > / dZp" fopxa®® BoePP 0% pupp.  (133)

This term has a similar structure as the coupling term
between spin and thermal shear obtained in Refs. [57-60].
As we have just argued, this term arises from the nonlocal
collision term and thus is of order ~A/Lyyqr, (¥4 1S just a
combination of thermodynamic integrals). However, due to
the fact that it arises from collisions we are hesitant to call
such a term nondissipative. Therefore, it may have a
different origin in the approach of Refs. [57-60]. We
remark that the contribution (133) to the local polarization
vanishes after integration over four-momentum, therefore it
does not affect the global polarization (128).

The solution of Egs. (131) is obtained analogously to the
calculation outlined in Ref. [92] as

3 3
5§IUS — |:2/10A;wa/1 + l] <A;w _ 5 Euy) (A(z/i _ E Ea[)’)
— 20,8 @f — 20,8 W @IP 4 20,0 W @Y) &

1
+ g AMDAaﬂi| 5nraﬁ’ (1343)

v 3 3 o
o6 = [pnoae (a0 -3 (- 32
_ 211250:(0&)/1)(;)/3 _ 27]3.'5{)’(”(?)’1)/} + 2n4&)a(u®1)é)ﬁ}
X Qorap (134b)

where we defined w = /0w, /2 and & = - /.
Furthermore, we defined the unit vector along the vorticity
direction @ = w*/w and the projector orthogonal to both
the fluid velocity and vorticity vector,

B = g — i+ @GV (135)

The coefficients in Egs. (134) are given in Appendix C.

XII. CONCLUSIONS

In this paper, we derived the second-order dissipative
equations of motion for relativistic spin hydrodynamics
using the method of moments. The starting point was the
quantum kinetic theory for massive spin-1/2 particles
developed in Refs. [5,7,74], which takes into account
nonlocal collisions. We constructed relativistic spin hydro-
dynamics using the HW pseudogauge for the energy-
momentum and spin tensors. In our framework, we treated
the components of the HW spin tensor as the dynamical
variables of the theory. Furthermore, we argued that the
choice of the pseudogauge affects the evolution of the
system, since in different pseudogauges different moments
are treated dynamically. The equations of motion of the
HW spin tensor correspond to conservation laws in global
equilibrium, unlike in the case of the canonical pseu-
dogauge [9]. As a consequence, (at least some) spin
dynamics must occur on large, i.e., hydrodynamic scales.

In order to define our expansion, we proposed a novel
power-counting scheme, which generalizes the concept of
local equilibrium in the presence of spin dynamics with
nonlocal collisions. We then extended the method of
moments presented in Ref. [73] to include spin dynamics.
In particular, we expanded the distribution function around
a local-equilibrium state in terms of the usual irreducible
moments in momentum space [73] and, in addition, of so-
called spin moments containing the phase-space variable
g#. For the truncation we chose the “14 + 24-moment
approximation”, where “l14” corresponds to the usual
components of the charge current and the energy-
momentum tensor and “24” to the components of the spin
tensor. Our result is a closed set of equations of motion for
the dynamical spin moments, where the latter approach
their Navier-Stokes limits on time scales corresponding to
characteristic relaxation times. Remarkably, the spin relax-
ation times are determined by the local part of the collision
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term in the Boltzmann equation. On the other hand, the
nonlocal part, which is responsible for the mutual con-
version of orbital angular momentum and spin, gives rise to
terms which appear in the same way as the conventional
Navier-Stokes terms, albeit their power counting is differ-
ent: they are of order A/Lyyqy,, not of order Kn. Moreover,
we find that the spin relaxation times are comparable in
magnitude to the relaxation times of the conventional
dissipative quantities such as bulk, shear stress, and particle
diffusion. This implies that it is reasonable to treat spin as
dynamical variable in relativistic second-order spin hydro-
dynamics. Finally, we gave an expression for the Pauli-
Lubanski vector which takes into account dissipative spin
effects. In the Navier-Stokes limit, we obtained a coupling
term between spin and the shear-stress tensor, similar as in
Refs. [57-60], although the origin of this term in our
approach may be different.

Our work establishes a theory of relativistic second-order
dissipative spin hydrodynamics for applications in heavy-
ion collisions as well as astrophysics. In particular, it can be
used to solve and understand the puzzle related to the
longitudinal polarization of Lambda particles. The equa-
tions of motion derived in this work provide the starting
point for a numerical implementation of relativistic spin
hydrodynamics. In this respect, a crucial future task is to
analyze the conditions under which our theory of spin
hydrodynamics is causal and stable. This is challenging
because of the larger number of variables and equations of

|

motion of relativistic spin hydrodynamics compared to the
conventional case, and due to the presence of vorticity
fields [93]. It will also be interesting to investigate how the
choice of different hydrodynamic frames (i.e., different
matching conditions) [93-99] affect the theory presented
here as far as its causality and stability is concerned. For a
study regarding conventional relativistic hydrodynamics
using the method of moments with general matching
conditions see Ref. [100].
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APPENDIX A: PROPERTIES OF IRREDUCIBLE
TENSORS

In the calculations in Sec. VII we make use of the
following relations [101],

1
p<ﬂ>p<y>p<i>p<p> — p(ﬂpl’p/{p/» + 5 (p(/")p(l’) Aﬂ/) + p</‘>p<j'> Ayp + p<ﬂ>p<ﬂ> AAU + p<’1>p<y>Aﬂp + p<p>p<l’> Aﬂﬂ

pﬂ — Epl/t” + p<ﬂ>’ (Al)
Aaﬁpapﬁ — m2 _ E%,, (AZ)
1
pUIp) = plipt) 43 (m? — E3)A, (A3)
_ E%,)(p<”>AM + p<U>A/1ﬂ + p(@Al‘l/)’ (A4)
1
+p W pPIA) (m? = E) = 22 (AAY - AN - AN (m? — E7)?
= p<ﬂ ppt pﬂ> -+ % ( p<ﬂ pv> AP 4 p<ﬂ p/1> AV p<ﬂ pﬂ> AW p<ﬂ pv> AFP L p<ﬂ p”> A
(A5)

1
_I_p(/lpp)A/w)(mZ _ E%’) +B(A/ADA/1/) + AHAAVP + AﬂpAu/l)(mZ _E%)Z’
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1
p<ﬂ>p<y>p<}“>p</)>p<5> — p<ﬂpl’p1pl’p6> + 5 (m2 —_ E%})(p<ﬂ>p<”>p<ﬂ>A/”’— + perm)

1
——(m? - Ef,)z(pw> AY*AP? 4 perm)

63

= pW¥p?p'pp? +

1
+— (m* — E2)*(p" A¥* A% + perm.),

35

O —

(m? — E5)(p% p* p" A” + perm.)

(A6)

where “perm.” denotes all distinct permutations of indices. We also utilize the orthogonality relation

/de<ﬂl .. .pl"m>p<”l .. .p’/”)F(Ep) — (

for an arbitrary function F(E),).
APPENDIX B: SCATTERING MATRIX
ELEMENTS

In this appendix we show some details of the calculation
of the scattering matrix elements in the collision term. The
vacuum scattering matrix elements are defined as [77,102]

<p’p/;r’ r/|t|p1’p2;sl752>

={(p,p'sr.”'|:H(0):]|p1, p2s 1, 82), (B1)

where H; is the effective interaction Hamiltonian, which is
here taken to be of an NJL-type form [103,104]

Hy(x) = Gp(x)Ty () ()L (), (B2)

(p.p'sr.P|tlpy, pair.ra) = Gla,(p)Tu,, (p2) iy (p')Tau,, (p1) — i, (p)0u,, (p1)iay (p')Tqity, (p2)].

m!o,,,
2m+ 1)!!

AL / dP(A* p,ps)"F(E,) (A7)

I
where G is a coupling constant and I',, is in general a linear
combination of elements of the Clifford algebra in a given
representation of the Lorentz group, e.g., for scalar inter-
actions I'* = 1, for vector interactions ['* = y#, and for
parity-violating interactions I'“ = (1 — y5)y*. Inserting the
free-field expansion of the spinors,

wix) = ,/ﬁ; [ areirupap). (3

and making use of the anticommutation relation of the
creation and annihilation operators
{a,(p).a3(p")} = p°6D(p = p))6,.  (B4)

we find

with G = 8/(227)°G. For Eq. (101a) we then obtain using Eq. (5)

/[dS]W = ‘G|25(4)(p + p/ —P1— pZ)[ur(p)Faurz (pZ)ﬁr’(p/)Faurl (pl) - ﬁr(p)raur] (pl)ﬁr’ (p/)raurz (pZ)]

x [, (p)Tu,, (p2)iy (P")Cpty, (p1) = ,(P)TPu (1) ity (P )Tty (p2)]

= [G[?6¥ (p + p' = p1 = p){Tr[(p + m)T(py + m)DP|Te[(p + m)Ty () + m)T]
= Tr[(p + m)T(py + m)Ty (¢ + m)Ty (7 + m)I7]
= Tr[(p + m)T(py + m)Ty (¢ + m)Ty (5 + m)I7]

+ Tr[(p + m)T (1 + m)I?Tr[(p" + m)To(p + m)T, ]}

Furthermore we have for Eq. (101b)

(B6)
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/ [dS]8*W = —|G|*6W (p + p' — p1 — p2)[it,(p)Tu,,(p2)it, (p")Tuuy, (p1) = it,(p)Tu,, (1)t (P )T atty, (p2)]

X (D)t ()0 (Tt () = 0 (D)t (52 ()t ()] ()7, ()
|2
= —%5(4) (P +p -p - pz){Tr[(ﬂ—l- m)J/SJ/a(ﬂ—F m)[(p, + m)rb]

x Tr[(p + m)Ty(p) + m)T]
= Tr[(p + m)y’r* (5 + m)T(p, + m)T,(p + m)T,(py + m)[?]
= Tr[(p + m)y’r* (5 + m)T*(p; + m)T,(p + m)T, (2 + m)[?]

+ Tr[(p + m)r’r*(p + m)T(py + m)TP|Te[(p" + m)Cy(p2 + m)T]}, (B7)
and for Eq. (101c)
dslaegp _ |G|2 (4) r_ _ 5.,a a b
dS|sTW = g 8 P £ P = o= p )Tl )y ()T (o - m)T]
X Tr[(p' +m)yyP (¢’ + m)To(py +m)T)]
= Tr((p + m)y’r*(p + m)l(py + m)Dy(# + m)y°y’(# + m)Ty(py +m)I”]
= Tr[(p + m)y’r*(p + m)l (g + m)Dy(p' +m)y° P (# + m)Ty(p + m)I”]
+ Tr[(p +m)y’y* (p + m)T(p1 + m)T|Te[(p' + m)py’ (7 + m)Tu(pr + m)Ty]}. (BS)
In the case of a scalar intercation, I'* = 1, evaluating the 0 7
traces of Dirac matrices yields that Egs. (B7) and (B8) vanish, K, = —4—1 10Tps (Clh)
respectively. For a vector interaction, I'* = y#, Eq. (B7) also "
vanishes, while Eq. (B8) is nonzero. However, in the limit of 1 0%(1) y;
small momentum transfer (s = 4m?, t = u = 0) Eq. (B8) is gi()) =-1, —11 o (C1i)
zero also for the vector interaction, while the only nonzero 27 9y e+ Py
contribution comes from Eq. (B6). ) @ _
9 = _Tp%_zo, (C1j)
APPENDIX C: TRANSPORT COEFFICIENTS
o o o _1 0 Clk
The relaxation times and transport coefficients in 33 3 i (Clk)
Eq. (119) are given by
o __1 0 ©
Tp = (3(()(()))? (Cla) U= _§Tp(7 B 4m2%_20 + 2m4%_22), (1)
0 _ . (0 1
@ =1, (C1b) o = 372§, - ). (Clm)
0 _ " _ 0
Kow = 2m wéo s (Cle) o _ 1 ‘3%91)1 0%91)1 o
4y = —57p , (Cln)
0 h G 0 2 aao aﬂ() €0 + PO
/O == 22— gl (C1d)
@ 2m D20 0 1 0 1 0
Qg ) = 27 ng(—z)o -1- _m4%<-2)2 ) (CIO)
/) = - 1 G, (Cle) 3 2
e 2m D20 L
(0) @ _1 2q0
0 0 g _Tp(%_ —omF ) (Clp)
R;g) = __mIHTP = R(Vgl’ (le) 8 20 2 22
h Bl (0) 1 (1)
/) = o2, Cl e . Cl
ne = . 0 + Py P (Clg) 99 2(eo + Po) Tp%—n (Clq)
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Furthermore, the relaxation time and transport coefficients
of Eq. (120) read

= (1(111)7 (C2a)
Sh=a ef ‘f;)o . (C2b)
o 2’;%75, (C2¢)
ﬁg}; = Polsnt;, (C2d)
K94 %13115 (C2e)
g =- 43_115, (C2f)
0 = (C2g)
gy = ;Ts(ng(_lfl 1), (C2h)
o) =, - i - (C2i)
of = —%ra, (C2j)
& =S (c2)
0\ ;60 i BT (c21)
oy = %mzré, (C2m)
ng = —%75» (C2n)
alg = éfé(mz%ilfl —1). (C20)

Finally, the relaxation time and transport coefficients in
Eq. (121) are

7, =I5 (C3a)
8@ = 7, A", (C3b)
2 h 2
ol = 5,7k (C3¢)
h
2
{8 5 T2t (C3d)

h
@((022 = %ﬁohzfm (C3e)
) h Poly ¢
SKan = 2mey + Py fo (C3f)
2 1 1 1 1 %
o = ey (et s e i),
(C3g)
2
@) m oF_ 1 ny 0F.
__m : C3h
% 5° <aa0 e+ Po o (C3h)
1 .
g = 57(&) —mF). (C3i)
1 .
g = 37a(-m*F o~ 4). (C3j)
) 2 2
o) = ?Tq(—znﬂg(_;o -5), (C3Kk)
2m?
o =5t ( ', 2%920—5), (&)
2
a7 = 1——% % (C3m)
150
oL m C3n
a3 5(€0+P0) ( % - 1), ( )
2 5
2 3 1
o =2, (—5+ng<3; -Emwz). ()

Furthermore, the coefficients of the Navier-Stokes values
in Sec. XI read

4

A0 =1 T 4(z,0) (Cda)
16
/11 = ? (75(0) /10, (C4b)
do = (7,0)* (Ao + A4) (C4c)
/13 = Téa)lo, (C4d)
7,00

Ay =— s C4
4 1+ (T‘,)a))z’ (Cde)
= ! (C4f)

" 4,0
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16
n = 3 (qu)zﬂm (C4g)
N = (Tqa’)z(’?o +14), (C4h)
13 = Tq0No, (C4i)
Tqa) .
= C4
N4 1+ (qu)Z ( J)

APPENDIX D: COLLISION INTEGRALS
1. Reducing tensor structures through
orthogonality relations

Here we explain how to obtain Eqgs. (105) and (108).
Consider an integral of the form (104)

/ [dPIW S opfop B p - pH piy - p,, 5, (DI)

where W is a function of p, p’, p;, and p, and H%) can be
expressed as a polynomial of E,. After integration over p/,
p1, and p, the result must assume the form

/ de(/"l

and one can apply Eq. (A7). An analogous argument can be
used to simplify Eq. (107).

- pfpy e py F(E,), (D2)

0
B£n> = ZGTW
MmESy,m>n

1)
\ —
BY =20, — > amnzamq / APAP'fo, o, Ey " puy pv/5V s — 4m?,

meS,m>n

(2)
w r—
DY z / dPAP'fo,for E}

meS, ,m>n

The remaining integrals are then solved numerically.

E amn g amq

2. Collision integrals for constant cross section

Here we show the calculation of the collision integrals
used to compute the relaxation times in Sec. IX. The
procedure is similar to the one presented in Ref. [73],
however, we do not consider the ultrarelativistic limit, since
we intend to describe massive particles. The matrix B in
Eq. (106) is given as

16

()
By = ——
21 +1

[dP]Wofopfop'EZ_1P<”' .. pm>

I
X HE”)ZPOH o 'pm)' (D3)

The transition amplitude WV, is taken to be of the from

W, = 6@

—p2)so(s,©),  (D4)

(p+p —pi
where s=(p+ p/)* is a Mandelstam variable and
cos® = (p—p')-(p,— p2)/(p—p')?. Furthermore, we
introduced the differential cross section o(s,®). We also
define the total cross section

or = 27:/ d®sin Oo(s, ©), (D5)

which is here assumed to be constant. First performing the
p1 and p, integrations in Eq. (D3) in the center-of-
momentum frame yields

/ dP AP,y = %\/E\/mop (D6)

We then insert Eqgs. (54) and (55) to obtain
/ dAPAP'fo, fo, Ey TIN5 \/s — dm?, (D7a)
(D7b)
Py P PV s — dm?, (D7c)
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