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We derive relativistic second-order dissipative fluid-dynamical equations of motion for massive spin-1=2
particles from kinetic theory using the method of moments. Besides the usual conservation laws for charge,
energy, and momentum, such a theory of relativistic dissipative spin hydrodynamics features an equation of
motion for the rank-3 spin tensor, which follows from the conservation of total angular momentum.
Extending the conventional method of moments for spin-0 particles, we expand the spin-dependent
distribution function near local equilibrium in terms of moments of the momentum and spin variables. We
work to next-to-leading order in the Planck constant ℏ. As shown in previous work, at this order in ℏ the
Boltzmann equation for spin-1=2 particles features a nonlocal collision term. From the Boltzmann
equation, we then obtain an infinite set of equations of motion for the irreducible moments of the deviation
of the single-particle distribution function from local equilibrium. In order to close this system of moment
equations, a truncation procedure is needed. We employ the “14þ 24-moment approximation”, where
“14” corresponds to the components of the charge current and the energy-momentum tensor and “24” to the
components of the spin tensor, which completes the derivation of the equations of motion of second-order
dissipative spin hydrodynamics. For applications to heavy-ion phenomenology, we also determine
dissipative corrections to the Pauli-Lubanski vector.
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I. INTRODUCTION

The derivation of a theory of relativistic hydrodynamics
when spin degrees of freedom are dynamical variables
coupled to the fluid, often referred to as “relativistic spin
hydrodynamics”, has recently attracted a lot of attention
[1–29]. One of the main motivations to develop such a
theory comes from the physics of the quark-gluon plasma
(QGP) created in nuclear collisions. In this case, the
vorticity of the hot and dense matter triggers hadron spin
polarization in the final state [30–33]. This mechanism
resembles the time-honored Barnett effect [34], which
shows the interplay between a classical property of the
system, the rotation, with the spin, which is a quantum
property of matter. Experimental evidence of these phenom-
ena comes from the analysis carried out in Refs. [35–38],
where it was shown that hadrons emitted in noncentral
nuclear collisions are indeed spin-polarized. Theoretical
models have successfully managed to describe the global-
polarization data (i.e., the polarization along the direction of
angular momentum of the collision) [33,39–45]. However,
the explanation of the longitudinal-polarization data (i.e., the
polarization along the beam direction) is still an open

question [46–56], see also important recent developments
inRefs. [57–60]. Since the spacetime evolution of theQGP is
very accurately described by relativistic hydrodynamics
[61,62], it is natural to extend conventional relativistic
hydrodynamics to incorporate the dynamics of spin. This
novel theory, besides being of fundamental interest by itself
as it connects quantum properties of matter with hydro-
dynamics, may provide an important tool towards a deeper
understanding of relativistic strong-interaction matter under
extreme conditions.
The basic idea of relativistic spin hydrodynamics, as put

forward in Ref. [1], is that, in addition to the usual hydro-
dynamic quantities such as the energy-momentum tensor,
one introduces the rank-3 spin tensor and studies its evolution
using additional equations of motion constructed from the
conservation of the total angular momentum of the system.
Over the past few years, different methods to derive rela-
tivistic spin hydrodynamics have been applied; kinetic theory
[1–19], an effective action [20–22], an entropy-current
analysis [23–28], holographic duality [63–65], and linear-
response theory [21,29]. Despite these formidable efforts, an
agreement on how to formulate a theory of relativistic
dissipative spin hydrodynamics has not yet been reached.
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An important issue in deriving this theory is that the
definitions of the energy-momentum and spin tensors are
not unique: their form is fixed only up to so-called “pseu-
dogauge transformations”, which do not change the global
charges (i.e., the global energy, momentum, and angular
momentum) [9,66]. The physical implications of various
choices of energy-momentum and spin tensors have been
investigated in different works and this topic is still intensely
debated [9,24,25,67–70]. In Ref. [7], it was proposed that in
the Hilgevoord-Wouthuysen (HW) pseudogauge choice [71]
nonlocal collisions serve as a source term in the equation of
motion of the spin tensor, providing a physical interpretation
of polarization through rotation in a manifestly relativistic
kinetic and hydrodynamic framework.
One of the most powerful ways to derive conven-

tional relativistic hydrodynamics is using the method of
moments starting from the Boltzmann equation [see, e.g.,
Refs. [72,73] and refs. therein]. In this approach, the single-
particle distribution function is expanded in momentum
space around its local-equilibrium value in terms of a series
of irreducible Lorentz tensors formed from the particle
four-momentum. In order to study deviations from equi-
librium, a consistent power-counting scheme is needed.
Usually in the context of deriving hydrodynamics from
kinetic theory, such a power counting is constructed by
comparing the mean free path λmfp of particle scattering
with the length scale Lhydro associated with gradients of the
hydrodynamical variables, the ratio of the two being the
Knudsen number Kn≡ λmfp=Lhydro. In spin kinetic theory,
however, another scale, Δ, enters via the nonlocal collision
term [7,74], allowing to mutually transfer spin and orbital
angular momentum. For a consistent power-counting
scheme, it turns out that Δ=lvort ∼ Kn, where lvort is the
length scale associated with the fluid vorticity. For
Δ ≪ λmfp, this means that lvort is not of the order Lhydro,
like typical gradients of hydrodynamical quantities, but can
be much smaller (for a related discussion, see Ref. [25]).
In this paper we extend the method of moments to

include spin dynamics. This requires the extension of
ordinary phase space by spin degrees of freedom. Here,
we choose a description in terms of a spin-four vector sμ,
which is normalized and orthogonal to the particle four-
momentum pμ. Starting from the quantum kinetic theory
with nonlocal collisions developed in Refs. [5,7,74] (see
also the related works [14,75,76]), we expand the single-
particle distribution function in terms of irreducible
moments formed by pμ and sμ. After deriving the equations
of motion for the spin moments, we employ a truncation to
close the system of equations. For the truncation we use the
HW pseudogauge and choose the “14þ 24-moment
approximation”, which extends the usual 14-moment
approximation [72] by 24 additional moments related to
the components of the spin tensor. In this way, we derive for
the first time a second-order dissipative theory of relativ-
istic spin hydrodynamics.

The paper is organized as follows. In Sec. II we briefly
review the kinetic theory developed in Refs. [7,74]. In
Sec. III we summarize the equations of motion of spin
hydrodynamics for the conserved quantities in the HW
pseudogauge. The extended power-counting scheme men-
tioned above is subject of Sec. IV. In Sec. V we generalize
the method of moments as used in Ref. [73] to include spin
degrees of freedom. In order to define the distribution
function in local equilibrium, one needs to impose match-
ing conditions, which are discussed in Sec. VI. The
equations of motion for the spin moments are derived in
Sec. VII. In Sec. VIII the linearized collision term is
expressed in terms of the spin moments. In order to obtain a
closed set of equations of motion we employ the 14þ 24-
moment approximation in Sec. IX. Furthermore, we cal-
culate the relaxation times for the spin moments and
compare them with those related to the usual dissipative
quantities. In Sec. X, in order to establish a connection with
the phenomenology of heavy-ion collisions, we give the
expression for the Pauli-Lubanski vector, which is the
observable used to quantify the particle spin polarization.
Finally, in Sec. XI we also present the Navier-Stokes limit
of the second-order equations of motion, before concluding
this work with a summary and an outlook.
We use the following notation and conventions,

a · b ¼ aμbμ, a½μbν� ≡ aμbν − aνbμ, aðμbνÞ ≡ aμbν þ aνbμ,
gμν ¼ diagðþ;−;−;−Þ, ϵ0123 ¼ −ϵ0123 ¼ 1, and repeated
indices are summed over. The dual of any rank-2 tensor Aμν

is defined as Ãμν ≡ ϵμναβAαβ.

II. KINETIC THEORY WITH SPIN

In this section we give a brief review of the kinetic theory
for massive spin-1=2 particles developed in Refs. [7,74],
which will be used to derive hydrodynamical equations of
motion in the following sections. All information about the
microscopic theory is contained in the spin-dependent
distribution function fðx; p; sÞ, which depends on space-
time coordinate xμ, four-momentum pμ, and the spin vector
sμ and is uniquely defined in terms of the Wigner function
for spinor fields, see Refs. [7,74] for details. Its dynamics is
described by the generalized Boltzmann equation

p · ∂f ¼ C½f�; ð1Þ

where C½f� is the collision term. As shown in Refs. [7,74]
this collision term contains a nonlocal part, which allows to
convert vorticity into spin. Neglecting a contribution from
pure spin exchange without momentum exchange (which
will be justified below), it reads explicitly

C½f� ¼
Z

dΓ1dΓ2dΓ0W½fðxþΔ1; p1;s1ÞfðxþΔ2; p2;s2Þ

− fðxþΔ; p;sÞfðxþΔ0; p0;s0Þ�; ð2Þ
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where the integration measure

dΓ≡ d4pδðp2 −m2ÞdSðpÞ ð3Þ

denotes integration over the extended phase space, with

dSðpÞ≡
ffiffiffiffiffi
p2

p
ffiffiffi
3

p
π
d4sδðs · sþ 3Þδðp · sÞ: ð4Þ

The transition rate W in Eq. (2) is defined as

W ≡ δð4Þðpþ p0 − p1 − p2Þ
1

8

X
s;r

hsrðp; sÞ

×
X

s0;r0;s1;s2;r1;r2

hs0r0 ðp0; s0Þhs1r1ðp1; s1Þhs2r2ðp2; s2Þ

× hp; p0; r; r0jtjp1; p2; s1; s2i
× hp1; p2; r1; r2jt†jp; p0; s; s0i; ð5Þ

with

hsrðp; sÞ≡ δsr þ s · nsrðpÞ; ð6Þ

where

nμsrðpÞ≡ 1

2m
ūsðpÞγ5γμurðpÞ: ð7Þ

The scattering matrix element for a general interaction
ρ≡ −ð1=ℏÞ∂LI=ð∂ψ̄Þ, where LI is the interaction
Lagrangian and ψ̄ is the Dirac-adjoint fermion spinor, is
defined as [77]

hp; p0; r; r0jtjp1; p2; s1; s2i

≡ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πℏÞ7

2

r
ūrðpÞouthp0; r0jρð0Þjp1; p2; s1; s2iin: ð8Þ

In Eq. (2) the nonlocality of the collision term is given by
the spatial separations

Δμ ≡ −
ℏ

2mðp · t̂þmÞ ϵ
μναβpνt̂αsβ; ð9Þ

where t̂μ is the timelike unit vector which is equal to (1,0) in
the frame where pμ is measured. The Boltzmann equa-
tion (1) is the starting point to derive dissipative equations
of motion for spin hydrodynamics.

III. EQUATIONS OF MOTION OF SPIN
HYDRODYNAMICS

The dynamical quantities in spin hydrodynamics are the
charge current Nμ, the energy-momentum tensor Tμν, and
the spin tensor Sλ;μν. It should be noted that the form of
these quantities depends on the choice of the pseudogauge.

In this paper, we choose the so-called Hilgevoord-
Wouthuysen (HW) pseudogauge [71], which corresponds
to a frame where the spin of a particle is measured in its rest
frame. As will become clear later in Sec. IX, the dynamical
moments depend on the choice of pseudogauge, which
hence affects the evolution of the system. Since the HW
spin tensor is conserved in equilibrium (see discussion in
Ref. [7]), we expect that it evolves on the same time scales
as the charge current and the energy-momentum tensor, i.e.,
on hydrodynamic time scales.
In kinetic theory the form of the charge current, as well

as the energy momentum tensor and spin tensor can be
obtained from the Wigner-function formalism, employing a
power-series expansion in ℏ [5,7,9]. In the following, we
will work up to first order in ℏ, such that the currents have
the form

Nμ ¼ hpμi; ð10aÞ

Tμν ¼ hpμpνi þ ℏTμν
i ; ð10bÞ

Sλ;μν ¼ 1

2
hpλΣμν

s i − ℏ
4m2

∂
½νhpμ�pλi: ð10cÞ

Here we defined

h� � �i≡
Z

dΓð� � �Þfðx; p; sÞ; ð11Þ

and the dipole-moment tensor

Σμν
s ≡ −

1

m
ϵμναβpαsβ: ð12Þ

The interaction contribution ℏTμν
i in Eq. (10b) is of second

order in ℏ (see below) and hence will be neglected in the
equations of motion for Tμν. However, its antisymmetric
part contributes to first order in ℏ to the equation of motion
of the spin tensor, see Eq. (13c). This antisymmetric part
arises from nonlocal collisions, which are responsible for
the conversion of orbital to spin angular momentum. The
equations of motion of spin hydrodynamics read [7]

∂μNμ ¼ 0; ð13aÞ

∂μTμν ¼ 0; ð13bÞ

∂λSλ;μν ¼
1

2

Z
dΓΣμν

s C½f�≡ T ½νμ�
i : ð13cÞ

By explicitly performing a pseudogauge transformation
from the canonical to the HW energy-momentum tensor,
we observe that Tμν ∼

R
dΓvμpν, with some vector vμ [78].

Combining this with Eq. (13c) and the conservation of total
angular momentum Jμν ≡ Δ½μpν� þ ðℏ=2ÞΣμν

s in a micro-
scopic collision we obtain
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ℏTμν
i ¼

Z
dΓΔμpνC½f�: ð14Þ

We now show that this is of second order in ℏ. Namely,
when expanding the distribution functions in the collision
term (2) in a Taylor series around x, we recover to lowest
order the standard local collision term. Under the integral in
Eqs. (13c) or (14), respectively, this contribution vanishes
(the local collision term conserves spin or orbital angular
momentum separately, see discussion in Ref. [7]). The next
term in the Taylor series gives rise to the nonlocal collision
term, which does not separately conserve spin or orbital
angular momentum and is of linear order in the shifts (9).
These shifts are of first order in ℏ, and together with the
prefactor ∼Δμpν in Eq. (14) we obtain ℏTμν

i ∼Oðℏ2Þ.
It is convenient to decompose the quantities in Eq. (10)

with respect to the fluid velocity uμ. In this work, the latter
is defined as the normalized timelike eigenvector of Tμν

ni ≡
Tμν − ℏTμν

i ¼ hpμpνi with eigenvalue ϵ,

Tμν
ni uν ¼ ϵuμ: ð15Þ

In other words, we choose the Landau frame (with respect
to Tμν

ni ). All momenta appearing in the microscopic expres-
sions for the hydrodynamic quantities in Eq. (10) are
decomposed into parts parallel and orthogonal to the fluid
velocity,

pμ ¼ Epuμ þ phμi; ð16Þ

with Ep ≡ p · u and phμi ≡ Δμνpν, where Δμν ≡ gμν −
uμuν is the projector onto the three-space orthogonal to
the fluid velocity. Furthermore, products of two momenta
are split into parallel, orthogonal, and traceless orthogonal

parts, making use of the traceless projector Δμν
αβ ≡

ð1=2ÞΔðμ
α ΔνÞ

β − ð1=3ÞΔμνΔαβ and the notation phμpνi≡
Δμν

αβp
αpβ. The tensor decompositions of Nμ, Tμν

ni , and

Sλ;μν then take the form

Nμ ¼ nuμ þ nμ; ð17aÞ

Tμν
ni ¼ ϵuμuν − ΔμνðP0 þ ΠÞ þ πμν; ð17bÞ

Sλ;μν ¼ uλÑμν þ Δλ
αP̃

αμν þ uðαH̃λÞμνα þ Q̃λμν

−
ℏ

4m2
∂
½ν½ϵuμ�uλ − Δμ�λðP0 þ ΠÞ þ πμ�λ�: ð17cÞ

Here we defined the usual hydrodynamic currents, which
are given by the particle density n≡ hEpi, the particle
diffusion current nμ ≡ hphμii, the energy density ϵ≡ hE2

pi,
the thermodynamic pressure P0, the bulk viscous pressure
Π with P0 þ Π≡ −ð1=3ÞhΔμνpμpνi, and the shear-stress

tensor πμν ≡ hphμpνii. In addition, the following new
quantities associated with spin transport occur,

Ñμν ≡ −
1

2m
ϵμναβuαhE2

psβi; ð18aÞ

P̃αμν ≡ −
1

6m
ϵαμνβhΔρσpρpσsβi; ð18bÞ

H̃λμνα ≡ −
1

2m
ϵμναβhEpphλisβi; ð18cÞ

Q̃λμν ≡ −
1

2m
ϵμναβhphλpαisβi; ð18dÞ

which are dual to the spin-energy tensor

Nμν ≡ −
1

2m
uμhE2

psνi; ð19aÞ

the spin-pressure tensor

Pμ ≡ −
1

6m
hΔρσpρpσsμi; ð19bÞ

the spin-diffusion tensor

Hλμ ≡ −
1

2m
hEpphλisμi; ð19cÞ

and the spin-stress tensor

Qλμν ≡ −
1

2m
hphμpνisλi: ð19dÞ

We remark that the 24 degrees of freedom of the spin tensor
in Eq. (17c) are distributed as follows: three from the spin-
energy tensor, three from the spin-pressure tensor, nine
from the spin-diffusion tensor, and nine from the spin-stress
tensor. Although Eqs. (19) in principle contain more than
these degrees of freedom, as we will see later, certain
components will be fixed by the matching conditions and
constraints, such that the number of dynamical components
in our framework reduces to 24. As in standard (spin-
averaged) dissipative hydrodynamics, the system of equa-
tions of motion (13) is not sufficient to determine all 14þ
24 ¼ 38 dynamical degrees of freedom of the system. In
the remainder of this paper we will derive additional
equations of motion for the dissipative currents from the
Boltzmann equation (1) using the method of moments, and
thus close the system of equations of motion [73].

IV. POWER-COUNTING SCHEME

In this section we introduce a novel power-counting
scheme, which allows to extend the concept of local
equilibrium in the presence of spin and nonlocal collisions,
and expand the distribution function fðx; p; sÞ around this
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equilibrium state. In kinetic theory, local equilibrium is
defined by the condition that the collision term vanishes.
However, in Ref. [7], it was found that the nonlocal part of
the collision term vanishes only in global equilibrium. This
means that the single-particle distribution function assumes
the equilibrium form

feqðx; p; sÞ ¼
1

ð2πℏÞ3 exp
�
−β0u · pþ α0 þ

ℏ
4
ΩμνΣ

μν
s

�
;

ð20Þ
where β0 ≡ 1=T is the inverse temperature, α0 ≡ β0μ, with
μ being the chemical potential, and Ωμν the so-called spin
potential, and the following global-equilibrium conditions
are fulfilled,

∂μα0 ¼ 0; ð21aÞ

∂ðμβ0uνÞ ¼ 0; ð21bÞ

Ωμν ¼ ϖμν ≡ −
1

2
∂½μβ0uν�; ð21cÞ

where ϖμν is the so-called thermal vorticity.
However, having to abandon the concept of local

equilibrium in the presence of spin and nonlocal collisions
seems to be too restrictive. On the one hand, the local part
of the collision term vanishes also in local equilibrium,
without imposing the global-equilibrium conditions (21),
just as in conventional kinetic theory. On the other hand, the
nonlocal collision term captures physics on a length scale
∼Δ ∼ ℏ=m, i.e., on the order of the Compton wavelength of
a particle. This is typically smaller or on the order of the
range of the interaction lint, which is usually assumed to be
much smaller than the mean free path λmfp, such that the
particles can be treated as free between collisions. Finally,
in order to derive hydrodynamics from kinetic theory, it is
assumed that hydrodynamic quantities vary over a scale
Lhydro which is much larger than the mean free path, i.e., an
expansion in powers of the Knudsen number Kn≡
λmfp=Lhydro is applicable. Thus, the scales in the problem
are ordered as follows:

Δ≲ lint ≪ λmfp ≪ Lhydro: ð22Þ

Weexpect that physics on the scaleΔ shouldnot have amajor
influence onwhat happens on the hydrodynamic scaleLhydro.
Thus, we should be able to extend the concept of local
equilibrium to situations where terms of order Δ=Lhydro can
be neglected. This requires a novel power-counting scheme,
which will be introduced in the following.
We start by defining the hydrodynamic scale Lhydro as

1

m
p · ∂f0p ∼

1

Lhydro
f0p; ð23Þ

where

f0p ≡ 1

ð2πℏÞ3 e
−β0u·pþα0 ð24Þ

is the local-equilibrium distribution function (20) to zeroth
order in ℏ. Equation (23) yields

∂μα0 ∼OðL−1
hydroÞ; ð25aÞ

1

β0
∂ðμβ0uνÞ ∼OðL−1

hydroÞ: ð25bÞ

These conditions relax the more restrictive global-equilib-
rium conditions (21a) and (21b) to situations where local
equilibrium is established. If Lhydro → ∞, or in other words
hydrodynamic gradients vanish, global equilibrium is
recovered. Note that only the symmetric part of ∂μβ0uν
enters the local-equilibrium conditions (25). The antisym-
metric part, which is equal to the thermal vorticity (21c),
does not appear. In fact, this part is not even constrained by
the global-equilibrium conditions (21), because there exist
global-equilibrium states with arbitrarily large thermal
vorticity [79]. This fact will become important below, as
it will allow us to deviate from the standard power-counting
of gradients of hydrodynamic quantities.
We now decompose Eq. (25b) with respect to the fluid

velocity uμ. To this end, we define ∇μ ≡ Δμ
ν∂

ν and _A≡ u ·
∂A≡ dA=dτ, as well as the expansion scalar θ≡∇ · u, the
shear tensor σμν ≡∇hμuνi, and the fluid vorticity ωμν≡
ð1=2Þ∇½μuν�. Contracting Eq. (25b) with uμuν yields

_β0
β0

∼OðL−1
hydroÞ: ð26Þ

Furthermore, we obtain by contracting with Δμν
αβ and Δμν,

respectively,

σαβ ∼OðL−1
hydroÞ; ð27aÞ

θ ∼OðL−1
hydroÞ: ð27bÞ

Contracting with Δμ
αuν gives

1

β0
∇αβ0 þ _uα ∼OðL−1

hydroÞ: ð28Þ

While in principle only the sum of ð1=β0Þ∇αβ0 and _uα is of
order OðL−1

hydroÞ, we will consider situations where both are
independently of this order of magnitude. This is valid when
being sufficiently far away from the boundary of a rigidly
rotating system close to equilibrium.
Now consider the thermal vorticityϖμν, cf. Eq. (21c). As

discussed above, this quantity does not enter Eq. (23), and it
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can be arbitrarily large, even in global equilibrium.
Contracting ϖμν with Δμ

αuν, we obtain

1

β0
∇αβ0 − _uα ∼OðL−1

hydroÞ; ð29Þ

where we used the fact that both ð1=β0Þ∇αβ0 and _uα are of
order OðL−1

hydroÞ. However, contracting ϖμν with Δμ
αΔν

β and
dividing by β0 yields (up to a sign) the fluid vorticity ωαβ.
We assume that this quantity is associated with a different
scale, which we call lvort,

ωαβ ∼Oðl−1
vortÞ: ð30Þ

This assumption forms the basis of the novel power-
counting scheme introduced here [for a related discussion,
see Ref. [25]]. A priori, lvort can be arbitrarily small, even
in global equilibrium. We will later on restrict it in order to
neglect terms of higher order in ℏ.
The mean free path λmfp is related to the collision term

(2) by

1

m
C½f� ∼ 1

λmfp
f: ð31Þ

However, the nonlocal part of the collision term is propor-
tional to the scale Δ, cf. Eq. (9), which characterizes the
nonlocality of the collision. It is also a microscopic scale
and should not be larger than the interaction range,
cf. Eq. (22). Furthermore, it is important to note that both
Δ and the polarization are of order ℏ. We consider here a
situation where polarization is only generated by nonlocal
collisions, i.e., there is no initial polarization. For the
semiclassical expansion to apply we need

Δ∂f ∼
ℏ
m
∂f ≪ f: ð32Þ

Comparison to Eq. (23) shows that we have to require that

Δ∂f ≪
Lhydro

m
p · ∂f; ð33Þ

which implies

Δ ≪ Lhydro; ð34Þ
which is consistent with Eq. (22). However, the gradient in
Eq. (32), when acting on the local-equilibrium distribution
function (24), also generates a term proportional to the
vorticity. Considering Eq. (30), we therefore have to
demand that

Δ ≪ lvort; ð35Þ
i.e., lvort can no longer be arbitrarily small, such as in a
global-equilibrium situation with arbitrarily fast rotation.

However, lvort can be smaller than Lhydro and does not even
need to be larger than the mean free path.
We now consider a situation in which lvort ≪ Lhydro such

that

Δ
lvort

∼
λmfp

Lhydro
≡ Kn: ð36Þ

In principle, it would not be necessary to require that
Δ=lvort is of order Kn, i.e., we could have introduced
another quantity related to this ratio. This, however, is not
necessary for our purposes.
We will now show that the distribution function

feqðx; p; sÞ ¼ f0p

�
1þ ℏ

4
ΩμνΣ

μν
s

�
þOðℏ2Þ ð37Þ

leads to a vanishing collision term in Eq. (2), if one neglects
terms of order Δ=Lhydro ≪ λmfp=Lhydro ¼ Kn, where we
have used that Δ≲ lint ≪ λmfp. Here, Ωμν ¼ −Ωνμ is the
Lagrange multiplier of the total angular momentum, and
not just of the spin angular momentum. This means that
β0uμ contains a contribution from the rotational motion of
the fluid, or in other words, that Ωμν also enters β0uμ,

β0uμ ¼ bμ þ Ωμνxν; ð38Þ

where bμ is the Lagrange multiplier for the linear momen-
tum of the fluid.
We now expand each distribution function in Eq. (2) to

linear order in Δ and insert Eq. (37), see Ref. [7] for details.
In the terms linear in Δ, the derivatives of the distribution
functions lead to terms proportional to ∂νβ0uμ. According
to Eq. (25b), the symmetric part of the latter gives rise to
terms of order Δ=Lhydro, or with Eq. (38),

1

β0
Δλ

∂λbμ ∼
1

β0
Δλxν∂λΩμν ∼OðΔ=LhydroÞ: ð39Þ

This is much smaller than the leading dissipative correc-
tions, which are of first order in Knudsen number, and will
be neglected in our extended concept of local equilibrium.
However, the antisymmetric part of ∂νβ0uμ has to be

kept, because it can be nonzero even in global equilibrium
(for instance, for a globally rotating system). Requiring that
the nonlocal collision term vanishes up to corrections of
order OðΔ=LhydroÞ leads to the condition

1

β0
∂
νβ0uμ ¼

1

β0
Ωμν þOðL−1

hydroÞ; ð40Þ

i.e., the spin potential is equal to the thermal vorticity up to
terms of order OðL−1

hydroÞ, which vanish in global equilib-
rium. This is then consistent with Eqs. (21b) and (21c).
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As an antisymmetric rank-2 tensor, the spin potential
contains six independent parameters. It is convenient to
decompose Ωμν as

Ωμν ¼ ϵμναβuαω0β þ u½μκν�0 ; ð41Þ

with

κμ0 ≡ −Ωμνuν ð42Þ

and

ωμ
0 ≡ 1

2
ϵμναβuνΩαβ: ð43Þ

Since κ0 · u ¼ 0 (because Ωμν ¼ −Ωνμ) and ω0 · u ¼ 0,
both κμ0 and ωμ

0 contain three independent parameters.
Multiplying Eq. (40) with uν, from Eq. (42) we see that

κμ0
β0

∼OðL−1
hydroÞ; ð44Þ

where we have used Eq. (26) and the fact that
_uμ ∼OðL−1

hydroÞ. Multiplying Eq. (41) with Δλ
μ and anti-

symmetrizing the resulting equation in the indices ðλ; νÞ,
we then derive

β0ω
μν ¼ ϵμναβuαω0β þOðL−1

hydroÞ: ð45Þ

With Eq. (30) it follows that

ωμ
0

β0
∼Oðl−1

vortÞ ≫
κμ0
β0

: ð46Þ

V. EXPANSION AROUND EQUILIBRIUM

In this section we discuss the expansion of the distri-
bution function around local equilibrium, using the method
of moments. Wewill generalize the approach of Ref. [73] to
also include spin degrees of freedom. Our starting point is
the decomposition

fps ≡ feq þ δfps; ð47Þ

with feq from Eq. (37) and

δfps ≡ f0pðϕp þ s · ζpÞ: ð48Þ

The spin-independent part ϕp has the same form as in
Ref. [73], i.e.,

ϕp ≡
X∞
l¼0

λhμ1���μlip phμ1 � � �pμli; ð49Þ

where

λhμ1���μlip ≡XNl

n¼0

HðlÞ
pnρ

μ1���μl
n : ð50Þ

Here, phμ1 � � �pμli are the irreducible tensors in momentum
space and

ρμ1���μln ≡ hEn
pphμ1 � � �pμliiδ ð51Þ

are the spin-independent irreducible moments of the
deviation of the single-particle distribution function from
local equilibrium, with

h� � �iδ ≡ h� � �i − h� � �ieq; ð52Þ

where

h� � �ieq ≡
Z

dΓð� � �Þfeqðx; p; sÞ: ð53Þ

The function HðlÞ
pn in Eq. (49) is defined as

HðlÞ
pn ¼ wðlÞ

l!

XNl

m¼n

aðlÞmnP
ðlÞ
pm; ð54Þ

where

PðlÞ
pn ≡

Xn
r¼0

aðlÞnrEr
p ð55Þ

are orthogonal polynomials in energy, the coefficients aðlÞnr
of which are determined such that

2

Z
dP

wðlÞ

ð2lþ 1Þ!! ðΔ
αβpαpβÞlf0pPðlÞ

pmP
ðlÞ
pn ¼ δmn; ð56Þ

where we defined dP≡ d3p=ð2p0Þ. The normalization in
Eq. (54) is determined as wðlÞ ¼ ð−1Þl=I2l;l, where

Inqðα0; β0Þ≡ 1

ð2qþ 1Þ!! hE
n−2q
p ð−ΔαβpαpβÞqieq ð57Þ

are standard thermodynamic integrals.
Extending the approach of Ref. [73] to spin degrees of

freedom requires us to introduce the four-vector ζμp in
Eq. (48), which has an expansion in terms of the irreducible
tensors in momentum space,

ζμp ¼
X∞
l¼0

ημ;hμ1���μlip phμ1 � � �pμli: ð58Þ

Without loss of generality, we may assume that ζμp is
orthogonal to pμ, p · ζp ¼ 0, since any part parallel to pμ
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would vanish in Eq. (48) anyway because of the constraint
s · p ¼ 0. Using p · ζμp ¼ 0 we obtain

u · ζp ¼ −
1

Ep
phμiζ

hμi
p : ð59Þ

Therefore, the expansion (58) takes the form

ζμp ¼
�
gμν −

phνi
Ep

uμ
�X∞

l¼0

ηhνi;hμ1���μlip phμ1 � � �pμli: ð60Þ

The coefficients ηhμi;hμ1���μlip are further expanded in terms of
polynomials in energy

ηhμi;hμ1���μlip ¼
X
n∈Sl

dμ;hμ1���μlin PðlÞ
pn; ð61Þ

with

dμ;hμ1���μlin ¼ −
wðlÞ

l!
hPðlÞ

pnshμiphμ1 � � �pμliiδ: ð62Þ

In Eq. (61), Sl ⊂ N0 is the set of indices of the spin
moments which will be considered as dynamical degrees of
freedom. We will specify Sl for any given l further below.
In order to prove Eq. (62), insert δfps from Eq. (48) with
Eqs. (58) and (61) on the right-hand side, and use

Z
dSðpÞsμ ¼ 0;

Z
dSðpÞsμsν ¼ −2

�
gμν −

pμpν

p2

�
;

ð63Þ

the fact that p · ζp ¼ 0, as well as the orthogonality
relations (56) and (A7).
Defining the spin moments

τμ;μ1���μln ≡ hEn
psμphμ1 � � �pμliiδ; ð64Þ

we obtain

ηhμi;hμ1���μlip ¼ −
X
n∈Sl

HðlÞ
pnτ

hμi;μ1���μl
n : ð65Þ

Thus, the distribution function (47) can be written as

fps ¼ f0p

�
1þ ℏ

4
ΩμνΣ

μν
s þ

X∞
l¼0

�
λhμ1���μlip

þ
�
gμν −

phμi
Ep

uν

�
sνηhμi;hμ1���μlip

�
phμ1 � � �pμli

�
: ð66Þ

Making use of the local-equilibrium distribution function
(37), we can split the components (19) of the spin tensor
into equilibrium and nonequilibrium parts,

Nμν ≡ nμν
0 −

1

2m
uμnν; ð67aÞ

Pμ ≡ pμ0 −
1

6m
ðm2pμ − nμÞ; ð67bÞ

Hλμ ≡ hλμ0 −
1

2m
hλμ; ð67cÞ

Qλμν ≡ −
1

2m
qλμν; ð67dÞ

with the equilibrium quantities

nμν
0 ≡ −

1

2m
uμhE2

psνieq; ð68aÞ

pμ0 ≡ −
1

6m
hΔρσpρpσsμieq; ð68bÞ

hλμ0 ≡ −
1

2m
hEpphλisμieq; ð68cÞ

and the terms

nν ≡ τν2; pμ ≡ τμ0; hλμ ≡ τμ;λ1 ; qλμν ≡ τλ;μν0 ; ð69Þ

pertaining to nonequilibrium.
It should be noted that not all spin moments are

independent, since ζμp has only three independent compo-
nents because of p · ζp ¼ 0. Using Eq. (16) and s · p ¼ 0,
we compute

uμτ
μ;μ1���μn
r ¼

Z
dΓEr

pðu · sÞphμ1 � � �pμniδfps

¼ −
Z

dΓEr−1
p sνphνiphμ1 � � �pμniδfps: ð70Þ

Rearranging the projection operators, the right-hand side
can now be expressed in terms of a linear combination of
the spin moments. For specific n, this will be shown
explicitly below. For this reason, in the following we will
derive equations of motion only for the components of
τμ;μ1���μnr orthogonal to uμ, from which also the ones parallel
to uμ can be obtained.

VI. MATCHING CONDITIONS
AND EQUATIONS OF MOTION FOR

HYDRODYNAMIC VARIABLES

The dynamical degrees of freedom of the local-
equilibrium distribution function (37) are the Lagrange
multipliers α0, β0, uμ, and Ωμν. A priori, these fields are not
specified and constitute additional degrees of freedom. By
imposing a choice for the hydrodynamic frame, see, e.g.,
Eq. (15), and so-called matching conditions for the
moments of the distribution function, they can be related
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to physical quantities, e.g., the particle number density, the
energy density, and the angular-momentum density of the
system, and at the same time one can eliminate some of
the irreducible moments of the nonequilibrium part of the
distribution function.
In order to define α0 and β0, we impose the matching

conditions

n ¼ n0 ≡ hEpieq; ϵ ¼ ϵ0 ≡ hE2
pieq; ð71Þ

i.e., the particle number and energy densities of the
fictitious local-equilibrium state match those of the actual
system. Furthermore, in order to define the spin potential
Ωμν, we require that the total angular momentum of the
system matches that of the local-equilibrium state,

uλJλ;μν ¼ uλJ
λ;μν
eq ; ð72Þ

where

Jλ;μν ≡ xμTλν − xνTλμ þ ℏSλ;μν ð73Þ

is the total angular-momentum tensor. This matching
condition is chosen in analogy to the Landau matching
condition for the energy-momentum tensor, such that the
total angular-momentum density in the fluid rest frame
equals its equilibrium value. We note that some works
[6,10] use the spin tensor Sλ;μν for the matching condition
Eq. (72). We prefer not to do so, since only the total angular
momentum is conserved in the presence of nonlocal
collisions. Only for conserved quantities the corresponding
global charge transforms as a tensor under Lorentz trans-
formations [9]. The latter is not the case for the generally
nonconserved spin tensor Sλ;μν.

The matching condition (72) allows to express some of
the components of the spin tensor in terms of the interacting
part of the energy-momentum tensor. Inserting the angular
momentum tensor (73) with the spin tensor (17c) into
Eq. (72) and using the Landau condition (15) we find

uλT
λ½ν
i xμ� þ Ñμν þ H̃μνλ

λ ¼ ñμν
0 þ 2h̃μνλ0λ : ð74Þ

Here, we dropped the terms proportional to the derivatives
of Π and πμν in Eq. (17c), since these terms would lead to
second-order derivatives of dissipative quantities in the
equations of motion, which are generally not considered in
second-order hydrodynamic theories. Contracting this
equation with ϵαβμν and then either with uα or Δα

μΔ
β
ν,

respectively, results in the following relations for the
dissipative spin moments,

nhμi − uλhμλ ¼ 2muαϵμαρνuλxρT iλν; ð75aÞ
1

2
h½νhμi� ¼ mΔμ

αΔν
βϵ

αβρσuλxρT iλσ; ð75bÞ

where A½μhνi� ≡ A½μ
α Δν�α, which lead to

1

2
h½λμ� ¼ 1

2
u½λτμ�2 þmϵλμαβuρxαT iρβ: ð76Þ

In the following, we choose t̂μ ¼ uμ in Eq. (9), i.e., we
describe collisions in the fluid rest frame. In this case,
uλTλν

i ¼ 0 and the right-hand sides of Eqs. (75) as well as
the last term in Eq. (76) vanish.
From the conservation equations [(13a) and (13b)] we

obtain the following comoving derivatives [remember that
Tμν
i is neglected in the equation of motion (13b)],

_α0 ¼
1

D20

f−I30ðn0θ þ ∂ · nÞ þ I20½ðϵ0 þ P0 þ ΠÞθ − πμνσμν�g; ð77Þ

_β0 ¼
1

D20

f−I20ðn0θ þ ∂ · nÞ þ I10½ðϵ0 þ P0 þ ΠÞθ − πμνσμν�g; ð78Þ

_uμ ¼ 1

ϵ0 þ P0

ð∇μP0 − Π _uμ þ∇μΠ − Δμ
α∂βπ

αβÞ; ð79Þ

where we defined

Dnq ≡ Iðnþ1ÞqIðn−1Þq − I2nq: ð80Þ

Equations (77)–(79) are identical to the ones in standard second-order hydrodynamics without spin degrees of freedom.
Analogously, using the decomposition (17c), after multiplying the equation of motion Eq. (13c) by ϵμναβuβ and uν,

respectively, we obtain
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ℏ
m2

_ωhαi
0 ¼ −

2

I30 − I31

��
ℏ

2m2
ð2θI30 − I40 _β0 þ I30 _α0Þ þ

ℏ
2m2

ðI41 _β0 − I31 _α0Þ −
1

6

ℏ
m2

I31θ

�
ωα
0

þ uλ∇α 1

3m
ðm2τλ0 − τλ2Þ − uλ

1

3m
ðm2τλ0 − τλ2Þ _uα þ

1

3m
θðm2τhαi0 − τhαi2 Þ

−
1

2

ℏ
m2

ϵhαiλμνκ0νð−I41uμ∇λβ0 þ I31uμ∇λα0 þ 3I31uμ _uλÞ −
1

2

ℏ
m2

ϵhαiλμνI31uμ∇λκ0ν

−
ℏ
m2

I31ðσαλ þ ωαλÞω0λ −
1

2m
Δα

β∇λτ
ρ;ðλ
1 ΔβÞ

ρ þ 1

2m
τhαi;ν1 _uν þ

1

m
uβΔα

ρ∇λτ
½β;ρ�λ
0

−
1

m
uβτ

β;αλ
0 _uλ þ 2ϵαβμνℏT iμνuβ

�
; ð81Þ

and

ℏ
m2

_κhμi0 ¼ −
1

I31

�
ℏ

2m2
I30ϵμναβ _uαω0βuν þ

ℏ
2m2

ϵαμνβuν½−I31∇αω0β þ ðI41∇αβ0 − I31∇αα0Þω0β�

−
1

3m
ϵαμνβuν∇αðm2τ0β − τ2βÞ þ

1

3m
ϵαμνβuν _uαðm2τ0β − τ2βÞ −

ℏ
2m2

I31ðσμν þ ωμνÞκ0ν

þ 1

2m
ϵμναβuατ1ðβ;λÞðσλν þ ωλ

νÞ þ
ℏ
m2

�
4

3
I31θ − I41 _β0 þ I31 _α0

�
κμ0

−
1

m
ϵμναβuνð∇λτ0β;αλ − _uλτ0β;αλÞ þ 2ℏTμν

i uν

�
; ð82Þ

where we used the matching conditions in Eq. (76). Using Eqs. (9) and (14), the last term in Eq. (81) is given by

2ϵαβμνuβ

Z
dΓΔμpνC½f� ¼

ℏ
m

Z
dΓ

�
ðEp −mÞshαi − Ep

Ep þm
ðu · sÞphαi

�
C½f�

¼ ℏ
m

Z
dΓðEp −mÞ

�
shαi −

1

E2
p

X∞
j¼0

�
m2

E2
p

�
j

ðu · sÞphαi
�
C½f�; ð83Þ

where we used the geometric series to express 1=ð1 −m2=E2
pÞ. Similarly, we have for the last term in Eq. (82)

Z
dΓEpΔμ ¼ −

ℏ
2m

ϵμναβuα

Z
dΓ

1

Ep
ðEp −mÞ

X∞
j¼0

�
m2

E2
p

�
j

phνisβ: ð84Þ

Equations (81) and (82) thus contain an infinite sum of moments with negative r, however, we as will show in Sec. IX, such
moments can be expressed in terms of those with positive r.

VII. EQUATIONS OF MOTION FOR SPIN MOMENTS

In this section, we derive the equations of motion for the spin moments τhμi;μ1…μn
r . In our truncation scheme, we only need

these moments up to tensor-rank two in momentum. From the definition (64) we find

_τμ;hμ1…μni
r ¼ Δμ1…μn

ν1…νn

d
dτ

Z
dΓEr

pphν1 � � �pνnisμδfps; ð85Þ

Using Eq. (47) with Eq. (37), up to order OðℏÞ the Boltzmann equation (1) can be written in the form

δ _fps ¼ − _f0p

�
1þ ℏ

4
ΩαβΣ

αβ
s

�
−
ℏ
4
f0p _ΩαβΣ

αβ
s − E−1

p p ·∇
�
f0p

�
1þ ℏ

4
ΩαβΣ

αβ
s

��
− E−1

p p · ∇δfps þ E−1
p C½f�: ð86Þ

In the following, we define Iμ ≡∇μα0, the thermodynamic function
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Gnm ≡ In0Im0 − Iðn−1Þ0Iðmþ1Þ0; ð87Þ

as well as the collision integrals

Cμ;hμ1���μni
r ≡

Z
dΓEr

pphμ1 � � �pμnisμC½f�: ð88Þ

We also make use of the relation

∇μP0 ¼
n0
β0

∇μα0 −
ϵ0 þ P0

β0
∇μβ0; ð89Þ

which is unaffected by spin effects up to OðℏÞ. After a
straightforward calculation using the properties of irreduc-
ible tensors inAppendixA, we obtain the equation ofmotion
for the spin moment of tensor-rank zero in momentum as

_τhμir − Chμi
r−1 ¼

ℏ
2m

�
ξð0Þr θ þ G2ðrþ1Þ

D20

Πθ −
G2ðrþ1Þ
D20

πλνσλν −
G3r

D20

∂ · n

�
ωμ
0 −

ℏ
4m

Iðrþ1Þ1Δ
μ
λ∇νΩ̃λν

−
ℏ
4m

Ω̃hμiν
�
Iðrþ1Þ1Iν − Iðrþ2Þ1

β0
ϵ0 þ P0

ð−Π _uν þ∇νΠ − Δνλ∂ρπ
λρÞ

�
þ r _uντ

hμi;ν
r−1 þ ðr − 1Þσαβτhμi;αβr−2

− Δμ
λ∇ντ

λ;ν
r−1 −

1

3
½ðrþ 2Þτhμir − ðr − 1Þm2τhμir−2�θ −

ℏ
4m

Iðrþ1Þ0ϵμναβuν _Ωαβ; ð90Þ

where we defined

ξð0Þr ≡ −Iðrþ1Þ0 − rIðrþ1Þ1 −
1

D20

½G2ðrþ1Þðϵ0 þ P0Þ − G3ðrþ1Þn0�: ð91Þ

Furthermore, for the spin moment of tensor-rank one in momentum we find the equation of motion

_τhμi;hνir − Chμi;hνi
r−1 ¼ ℏ

4m
Δμ

ρΔν
λΩ̃

ρλ

�
ξð1Þr θ þ G3ðrþ2Þ

D20

∂ · n −
G2ðrþ2Þ
D20

ðΠθ − παβσαβÞ
�
þ ℏ
4m

Δμ
ρΔν

λ
_̃Ωρλ

Iðrþ2Þ1

þ ℏ
2m

ωμ
0

�
β0

ϵ0 þ P0

Iðrþ3Þ1ð−Π _uν þ∇νΠ − Δν
λ∂ρπ

λρÞ − Iðrþ2Þ1Iν
�
−

ℏ
2m

β0Iðrþ3Þ2Ω̃
hμi
λ σνλ

−
ℏ
4m

Iðrþ2Þ1Δ
μ
ρð∇νΩ̃ρλÞuλ þ ων

ρτ
hμi;ρ
r þ 1

3
½ðr − 1Þm2τhμi;νr−2 − ðrþ 3Þτhμi;νr �θ − Δν

λΔ
μ
α∇ρτ

α;λρ
r−1

þ r _uρτ
hμi;νρ
r−1 þ 1

5
½2ðr − 1Þm2τhμi;λr−2 − ð2rþ 3Þτhμi;λr �σνλ þ

1

3
_uν½m2rτhμir−1 − ðrþ 3Þτhμirþ1�

−
1

3
Δμ

λ∇νðm2τλr−1 − τλrþ1Þ þ ðr − 1Þσλρτhμi;νλρr−2 ; ð92Þ

with

ξð1Þr ≡G3ðrþ2Þ
D20

n0 −
G2ðrþ2Þ
D20

ðϵ0 þ P0Þ −
5

3
β0Iðrþ3Þ2; ð93Þ

and finally for the spin moment of tensor-rank two in momentum the equation of motion reads

_τhμi;hνλir − Chμi;hνλi
r−1 ¼ ℏ

2m
ξð2Þr Ω̃hμihνIλi þ ℏ

2m
Iðrþ3Þ2Δ

μ
ρΔνλ

αβ∇αΩ̃ρβ −
ℏ
2m

Ω̃μρβ0uρσνλIðrþ4Þ2

−
ℏ
2m

β0
ϵ0 þ P0

Iðrþ4Þ2Ω̃hμihνð−Π _uλi þ∇λiΠ − Δλi
α ∂βπ

αβÞ þ r _uρτ
hμi;νλρ
r−1 þ 2

5
½m2τhμi;hνr−1 − ðrþ 5Þτhμi;hνrþ1 � _uλi

− Δμ
γΔνλ

αβ∇ρτ
γ;αβρ
r−1 þ Δμ

ρ
2

5
Δνλ

αβ∇βðτρ;αrþ1 −m2τρ;αr−1Þ þ
1

3
½ðr − 1Þm2τhμi;νλr−2 − ðrþ 4Þτhμi;νλr �θ

þ ðr − 1Þσρττhμi;νλρτr−2 þ 2

7
½2ðr − 1Þm2τhμi;ρhνr−2 − ð2rþ 5Þτhμi;ρhνr �σλiρ þ 2τhμi;ρhνr ωλi

ρ

þ 2

15
½ðr − 1Þm4τhμir−2 − ð2rþ 3Þm2τhμir þ ðrþ 4Þτhμirþ2�σνλ; ð94Þ
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with

ξð2Þr ≡ Iðrþ3Þ2 −
n0

ϵ0 þ P0

Iðrþ4Þ2: ð95Þ

We note that the equations of motion for the spin-
independent irreducible moments ρr, ρ

μ
r , and ρμνr take the

same form as in Ref. [73]. The reason is that the terms
proportional to Σμν

s and proportional to ζμ in δfps in
Eq. (86) vanish when integrating over spin space. This,
however, does not mean that these moments do not couple
to the spin moments τμr , τ

μ;ν
r , and τμ;νλr , since such a coupling

may arise from the collision term in Eq. (86). We will
discuss this further in the next section.
Apart from the ℏ expansion, which is truncated at first

order, the above equations of motion are exact. In order to
close the system of equations, we need to employ a
truncation procedure. The Navier-Stokes limit is obtained
by taking into account only terms linear in gradients of
order OðL−1

hydroÞ, see Sec. IV. However, in this approxima-
tion, the spin moments are not dynamical. Going beyond
the Navier-Stokes limit and keeping terms which are linear
in the product of gradients of order OðL−1

hydroÞ and a
dissipative quantity, one arrives at the second-order equa-
tions of motion, where the spin moments are determined
dynamically. In principle, one could now follow the DNMR
approach [73] by considering only the slowest microscopic
time scales as dynamical, approximating the faster time
scales by their Navier-Stokes limit, and systematically
resumming higher-order moments in energy. This will be

discussed in a forthcoming work. In this paper, we will
apply a procedure similar to Israel-Stewart theory [80],
which employs an explicit truncation of the moment
expansion at tensor-rank two in momentum and in the
lowest order in moments of energy [72]. In conventional
hydrodynamics, this is known as the “14-moment approxi-
mation”. Since the spin tensor has 24 dynamical degrees of
freedom, the analogue of this approximation in the case of
spin hydrodynamics will be referred to as “14þ 24-
moment approximation”.

VIII. COLLISION TERMS

In order to close the system of equations of motion (90),
(92), and (94), we have to express the collision integrals
(88) in terms of spin-independent irreducible moments and
spin moments. We will neglect terms of second order in
dissipative quantities, which means that we keep only linear
terms in ϕ and ζμ in the collision term (2). (This means that
terms of second order in inverse Reynolds number are
neglected, cf. the discussion in Ref. [81], where such terms
were computed.) Furthermore, we keep terms of linear
order in ℏ, in gradients of order OðL−1

hydroÞ, as well as in the
product of the two. Using Eq. (47) with Eqs. (37) and (48)
we obtain

C½f�≡ C̄½f� þ Ĉ½f� þOðℏ2;Δ∂δfÞ; ð96Þ

where

C̄½f�≡
Z

dΓ1dΓ2dΓ0Wf0pf0p0 ðϕ1 þ ϕ2 − ϕ − ϕ0 þ s1 · ζ1 þ s2 · ζ2 − s · ζ − s0 · ζ0Þ; ð97aÞ

Ĉ½f�≡
Z

dΓ1dΓ2dΓ0Wf0pf0p0

�
−ð∂μβ0uνÞ½Δμ

1p
ν
1ð1þ ϕ2Þ þ Δμ

2p
ν
2ð1þ ϕ1Þ − Δμpνð1þ ϕ0Þ þ Δ0μp0νð1þ ϕÞ�

þ ℏ
4
Ωμν½Σμν

s1 ð1þ ϕ2Þ þ Σμν
s2 ð1þ ϕ1Þ − Σμν

s ð1þ ϕ0Þ − Σμν
s0 ð1þ ϕÞ�

�
; ð97bÞ

where we have abbreviated ϕ≡ ϕp, ϕ0 ≡ ϕp0 , ϕ1 ≡ ϕp1
,

ϕ2 ≡ ϕp2
, ζμ ≡ ζμp, ζ0μ ≡ ζμp0 , ζ

μ
1 ≡ ζμp1

, and ζ2 ≡ ζμp2
, re-

spectively.Note that C̄½f� is the local part of the collision term
and, up to the terms proportional to the spin vectors, formally
identical with the collision term in the standard Boltzmann
equation. On the other hand, Ĉ½f� corresponds to the non-
local part of the collision term and is responsible for the
mutual conversion of orbital angularmomentumand spin.As
we shall see below, it is the local part C̄½f�which determines
the spin relaxation times, while the nonlocal part Ĉ½f� enters
the equations of motion for the spin-dependent moments in a
similar way as the Navier-Stokes terms in the equations of
motion for the usual dissipative quantities.

Using Eq. (96), the spin-dependent collision integrals
(88) are split into two parts,

Cμ;hμ1���μni
r−1 ¼ C̄μ;hμ1���μni

r−1 þ Ĉμ;hμ1���μni
r−1 ; ð98Þ

where

C̄μ;hμ1���μni
r−1 ≡

Z
dΓEr−1

p phμ1 � � �pμnisμC̄½f�; ð99aÞ

Ĉμ;hμ1���μni
r−1 ≡

Z
dΓEr−1

p phμ1 � � �pμnisμĈ½f�: ð99bÞ
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Inserting the expansion of the distribution function (66) we find

C̄μ;hμ1���μni
r−1 ¼ 16

X∞
l¼0

Z
½dP�Er−1

p phμ1 � � �pμnif0pf0p0 ½−W0phν1 � � �pνliη
μ;hν1���νli
p

þ wμðp1hν1 � � �p1νliλ
hν1���νli
p1

þ p2hν1 � � �p2νliλ
hν2���νli
p1

− phν1 � � �pνliλ
hν1���νli
p − p0

hν1 � � �p0
νliλ

hν1���νli
p0 Þ

þ wμ
1νη

ν;hν1���νli
p1

p1hν1 � � �p1νli þ wμ
2νη

ν;hν2���νli
p2

p2hν1 � � �p2νli − w0μ
ν η

ν;hν1���νli
p0 p0

hν1 � � �p0
νli�; ð100Þ

where we defined ½dP�≡ dPdP0dP1dP2 and used
p · ζ ¼ 0, cf. the discussion after Eq. (58). We also defined

W0 ≡ 1

24

Z
½dS�W; ð101aÞ

wμ ≡ 1

24

Z
½dS�sμW; ð101bÞ

wμν
i ≡ 1

24

Z
½dS�sμsνiW; ð101cÞ

with ½dS�≡ dSðpÞdS0ðp0ÞdS1ðp1ÞdS2ðp2Þ.
In this work, we focus on parity-conserving interactions,

and in particular on scalar and vector interactions. It is
shown in Appendix B that in the case of a scalar interaction
Eqs. (101b) and (101c) vanish, respectively. For a vector
interaction, Eq. (101b) also vanishes, while Eq. (101c) is
nonzero. However, in the limit of small momentum trans-
fer, Eq. (101c) is zero also for the vector interaction, while
the only nonzero contribution comes from Eq. (101a). For
this reason, in the following we will consider the situation
of either a scalar interaction or a vector interaction in the
limit of small momentum transfer and drop the terms in
Eqs. (101b) and (101c). One can then immediately con-
clude that the collision integrals for the spin-independent
irreducible moments ρμ1���μlr ,

Chμ1���μni
r−1 ¼

Z
dΓEr−1

p phμ1 � � �pμnifC̄½f� þ Ĉ½f�g; ð102Þ

only contain terms proportional to W0 and do not involve
the spin moments τμ;μ1���μlr . Therefore, the equations of
motion for the ρμ1���μlr are not affected by contributions from
spin, at least up to order OðℏÞ, and decouple from the
equations of motion for the spin moments. Hence, the
standard dissipative currents, i.e., the bulk viscous pressure,
the particle diffusion current, and the shear-stress tensor
follow the same equations of motion as derived in Ref. [73].
We remark at this point that Eq. (101b) is nonzero only

for parity-violating interactions and, in this case, leads to a
coupling between the equations of motion for the spin-
independent irreducible moments ρμ1���μlr and the spin
moments τμ;μ1���μlr . In this case, the time evolution of

Π; nμ, and πμν will be influenced by spin effects. More
detailed studies of this are left for future work.
Keeping only terms proportional toW0 in Eq. (100), we

obtain with Eq. (65)

C̄μ;hμ1���μli
r−1 ¼ −

X∞
m¼0

X
n∈Sm

ðBðlÞ
rn Þhμ1���μlihν1���νmiτ

μ;hν1���νmi
n ; ð103Þ

with

ðBðlÞ
rn Þhμ1���μlihν1���νmi ≡ −16

Z
½dP�W0f0pf0p0Er−1

p phμ1 � � �pμli

×HðmÞ
pn phν1 � � �pνmi: ð104Þ

This tensor can only be nonzero for l ¼ m and it must be
traceless and orthogonal to uμ. Therefore, cf. Appendix D
and Ref. [73], we arrive at

C̄μ;hμ1���μli
r−1 ¼ −

X
n∈Sl

BðlÞ
rn τ

μ;hμ1���μli
n ; ð105Þ

with

BðlÞ
rn ≡ 1

2lþ 1
Δν1���νl

μ1���μlðBðlÞ
rn Þhμ1���μlihν1���νli : ð106Þ

Finally, we consider the collision integral (99b) with
Eq. (97b). Since we neglect terms proportional to wμν

i ,
cf. Eq. (101c), all terms involving s0, s1, and s2 vanish.
Using the conservation of total angular momentum in
binary collisions, we are left with

Ĉμ;hμ1���μni
r−1 ¼

Z
½dΓ�WEr−1

p phμ1 � � �pμnisμf0pf0p0

×

�
−
ℏ
4
ðΩαβ −ϖαβÞΣαβ

s þ 1

2
∂ðαβ0uβÞΔαpβ

�
:

ð107Þ
These terms give corrections to the spin moments which
come from the difference between thermal vorticity and
spin potential and from thermal shear ∂ðαβ0uβÞ=2.
Remembering that t̂μ was chosen to be equal to uμ, we
thus obtain for the full collision integrals up to tensor-rank
two in momentum
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Cμ
r−1 ¼ −

X
n∈S0

Bð0Þ
rn τ

μ
n þ gð0Þr ðΩ̃μν − ϖ̃μνÞuν; ð108aÞ

Cμ;hνi
r−1 ¼ −

X
n∈S1

Bð1Þ
rn τ

μ;hνi
n þ gð1Þr ðΩ̃μhνi − ϖ̃μhνiÞ

þ hð1Þr ðβ0 _uλ þ∇λβ0Þϵμναλuα; ð108bÞ

Cμ;hνλi
r−1 ¼ −

X
n∈S2

Bð2Þ
rn τ

μ;hνλi
n þ hð2Þr β0σ

hν
ρ ϵλiμαρuα; ð108cÞ

where we used the orthogonality relation (A7) (see also
Appendix D) and defined

gð0Þr ≡ 4ℏ
m

Z
½dP�W0Er

pf0pf0p0 ; ð109aÞ

gð1Þr ≡ 4ℏ
3m

Z
½dP�W0Er−1

p f0pf0p0 ðΔαβpαpβÞ; ð109bÞ

hð1Þr ≡ −
4ℏ
3m

Z
½dP� 1

Ep þm
W0Er−1

p f0pf0p0 ðΔαβpαpβÞ;

ð109cÞ

hð2Þr ≡ −
16ℏ
15m

Z
½dP� 1

Ep þm
W0Er−1

p f0pf0p0 ðΔαβpαpβÞ2:

ð109dÞ

IX. SECOND-ORDER EQUATIONS OF MOTION
IN THE 14+ 24-MOMENT APPROXIMATION

In this section we close the set of equations of motion by
a direct truncation of the moment expansion. Analogously
to the 14-moment approximation, we assume that only the
moments which appear in the conservation laws contribute
to the moment expansion. In this case there are 24
independent variables for the spin degrees of freedom,
which constitute the minimal number of additional degrees
of freedom in the dissipative case. Together with the 14
moments from the lowest-order approximation in the spin-
independent case we call this truncation “14þ 24-moment
approximation”.
One may wonder what would have happened if we had

chosen a different pseudogauge. If we had used, for
example, the canonical currents [9], we would have had
fewer degrees of freedom due to the fact that the canonical
spin tensor is completely antisymmetric. However, the
canonical spin tensor is not conserved even in global
equilibrium [9], so its equations of motion do not corre-
spond to conservation laws. On the other hand, the HW
spin tensor is conserved in global equilibrium, which is
physically more intuitive, since the mutual conversion of
orbital angular momentum into spin should balance to zero
in this case. As a consequence, (at least some of the) spin
dynamics must occur on large, i.e., hydrodynamic scales.

Hence, it is natural to favor the HW pseudogauge over the
canonical one.
In order to express the moments which do not appear in

the conservation laws in terms of those which do appear, we
first note that inserting Eq. (66) into Eq. (64) and using the
orthogonality relation (A7) we derive the identity,

τμ;μ1���μlr ¼
X
n∈Sl

τμ;μ1���μln FðlÞ
rn ; ð110Þ

with

FðlÞ
rn ≡ 2l!

ð2lþ 1Þ!!
Z

dPEr
pH

ðlÞ
pnðΔαβpαpβÞlf0p; ð111Þ

cf. Ref. [72]. This relation is exact for r ∈ Sl and approx-
imately valid for all other values of r. Keeping only the
moments which appear in Eqs. (19) we obtain S0 ¼ f0; 2g,
S1 ¼ f1g, S2 ¼ f0g, while Sl is an empty set for l ≥ 3. We
thus arrive at the following approximate relations,

τhμir ≃Fð0Þ
r0 p

hμi þFð0Þ
r2 n

hμi; ð112aÞ

τhμi;νr ≃Fð1Þ
r1 h

hμiν ¼ 1

2
Fð1Þ

r1 z
μν; ð112bÞ

τhμi;νλr ≃Fð2Þ
r0 q

hμiνλ; ð112cÞ

τμ;νλρ���r ≃ 0; ð112dÞ

where we defined zμν ≡ hðhμiνÞ and used Eq. (75b). The
components of the spinmoments parallel to the fluid velocity
are then obtained from Eq. (70) as

uμτ
μ
r ¼ −τμr−1;μ

≃ −
1

2
Fð1Þ

ðr−1Þ1z
μ
μ; ð113aÞ

uμτ
μ;ν
r ¼ −τμ;νr−1μ −

1

3
ðm2τhνir−1 − τhνirþ1Þ

≃ −Fð2Þ
ðr−1Þ0q

μν
μ −

1

3
ðm2Fð0Þ

ðr−1Þ0 −Fð0Þ
ðrþ1Þ0Þphνi

−
1

3
ðm2Fð0Þ

ðr−1Þ2 −Fð0Þ
ðrþ1Þ2Þnhνi; ð113bÞ

uμτ
μ;νλ
r ¼ −τμ;νλr−1μ þ

2

15
ðm2τμr−1;μ − τμrþ1;μÞΔνλ

−
1

5
ðm2τðhνi;λÞr−1 − τðhνi;λÞrþ1 Þ

≃
1

15
ðm2Fð1Þ

ðr−1Þ1 −Fð1Þ
ðrþ1Þ1ÞzμμΔνλ

−
1

5
ðm2Fð1Þ

ðr−1Þ1 −Fð1Þ
ðrþ1Þ1Þzνλ: ð113cÞ

From Eqs. (75a) and the first line of Eq. (113b) for r ¼ 1we
conclude with the definitions (69) that
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2

3
nhνi ¼ −qμνμ −

1

3
m2phνi: ð114Þ

Hence, nhνi can be expressed through the other dynamical
moments and we do not need to consider an additional
equation of motion for this quantity.

We note that the matrices whose components BðlÞ
rn appear

in Eq. (105) are invertible. For l ≠ 1, we can thus
straightforwardly obtain

τμ;μ1���μln ¼ −
X
r∈Sl

TðlÞ
nr C̄

μ;hμ1���μli
r−1 ; ð115Þ

where we defined the matrix

TðlÞ ≡ ðBðlÞÞ−1: ð116Þ

Since τhνi2 is fixed by the matching conditions, cf. Eq. (114),
r ¼ 2 has to be excluded from the set S0 when performing
the sum in Eq. (115) for l ¼ 0. The reason for this is that an
equation analogous to Eq. (70) relates the components of
uμCμ;hμ1���μni to the components ofChμi;hμ1���μni, implying that

more than six components of the collision integrals can be
related to collisional invariants. On the other hand, for
l ¼ 1 Eq. (105) reads with the approximation (112)

C̄μ;hνi
r−1 ¼ −

X
n∈S1

Bð1Þ
rn τ

μ;ν
n ¼ −

1

2

X
n∈S1

Bð1Þ
rn F

ð1Þ
n1 ðτðhμi;νÞ1 þ uμτhνi2 Þ;

ð117Þ
where we have used Eqs. (69) and (75a). This implies for
the symmetric part orthogonal to the fluid velocity

τðhμi;νÞ1 ¼ −
X
r∈S1

Tð1Þ
1r C̄

ðhμi;hνiÞ
r−1 : ð118Þ

We now multiply the equations of motion for the spin

moments (90), (92), and (94) with TðlÞ
nr , sum over r in each

equation, and use Eq. (112). We then obtain with S0 ¼ f0g,
S1 ¼ f1g, and S2 ¼ f0g up to linear order in the product of
gradients with dissipative quantities (which includes gra-
dients of dissipative quantities) the following equation of
motion for phμi,

τpΔ
μ
ν
d
dτ

phνi þ phμi ¼ eð0ÞðΩ̃μν − ϖ̃μνÞuν þ ðKð0Þ
θωθ þKð0Þ

θωΠΠθ þKð0Þ
πσωπλνσλν þKð0Þ

nω∂ · nÞωμ
0

þ ½Kð0Þ
IΩ Iν þKð0Þ

ΠΩð−Π _uν þ∇νΠ − Δνλ∂ρπ
λρÞ�Ω̃hμiν þKð0Þ

∇ΩΔ
μ
λ∇νΩ̃λν þKð0Þ

_Ω
ð _ωhμi

0 − Ω̃hμiν _uνÞ
þ gð0Þ1 zμνFν þ gð0Þ2 σαβqhμiαβ − gð0Þ3 Δμ

λ∇νzλν þ gð0Þ4 θphμi − gð0Þ5 θqνμν þ gð0Þ6 zμνIν

þ ðgð0Þ7 pν þ gð0Þ8 qλνλÞðσνμ þ ωνμÞ þ gð0Þ9 zννFμ: ð119Þ
Here we defined Fμ ≡∇μP0. We also converted derivatives of the thermodynamic integrals Inq by the chain rule into
derivatives of α0 and β0. In principle, also _uμ could be replaced by Eq. (79), keeping only terms up to linear order in the product
of gradients with dissipative quantities. The transport coefficients appearing in front of the various terms are listed
in Appendix C.
The equation of motion for zμν is obtained from the symmetric part of Eq. (92) following similar steps as in Eq. (119),

τzΔ
μ
λΔν

ρ
d
dτ

zλρ þ zμν þ τzω
ðν
ρ zμÞρ ¼ ½Kð1Þ

ωΠð−Π _uðν þ∇ðνΠ − Δðν
λ ∂ρπ

λρÞ −Kð1Þ
ωI I

ðν�ωμÞ
0 þKð1Þ

ΩσΩ̃
ðhμi
λ σνÞλ

−Kð1Þ
∇ΩΔ

ðμ
ρ ð∇νÞΩ̃ρλÞuλ þ gð1Þ1 zμνθ þ gð1Þ2 Δðν

λ Δ
μÞ
τ ∇ρðΔτ

αqα;λρÞ
þ gð1Þ3 ð∇ρuðμÞzhνÞρi þ gð1Þ4 qðhμi;νÞλFλ þ gð1Þ5 σðνλ z

μÞλ þ gð1Þ6 FðνphμiÞ þ gð1Þ7 qρðνρ FμÞ

þ gð1Þ8 Δðμ
λ ∇νÞðΔλ

ρpρÞ þ gð1Þ9 Δðμ
λ ∇νÞqρλρ þ gð1Þ10 ð∇ðνuμÞÞzλλ; ð120Þ

with the transport coefficients again given in Appendix C.
Finally, the equation of motion for qhμiνλ is given by

τqΔ
μ
ρΔνλ

αβ

d
dτ

qhρiαβ þ qhμiνλ − 2τqqhμi;ρhνω
λi
ρ ¼ −dð2Þβ0σ

hν
ρ ϵλiμαρuα þKð2Þ

ΩI Ω̃
hμihνIλi þKð2Þ

∇ΩΔ
μ
ρΔνλ

αβ∇αΩ̃ρβ −Kð2Þ
ωσσνλω

μ
0

−Kð2Þ
ΩΠΩ̃

hμihνð−Π _uλi þ∇λiΠ − Δλi
α ∂βπ

αβÞ þ gð2Þ1 zμhνFλi þ gð2Þ2 zμhνIλi

þ gð2Þ3 Δμ
ρΔνλ

αβ∇βzρα þ gð2Þ4 qhμi;νλθ þ gð2Þ5 qhμi;ρhνσλiρ þ gð2Þ6 phμiσνλ

− 6gð2Þ7 qρμρ σνλ þ gð2Þ8 Fμzhνλi þ gð2Þ9 phν∇λiuμ þ gð2Þ10 q
ρhν
ρ ∇λiuμ; ð121Þ

with the transport coefficients listed in Appendix C.
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In Eq. (119), _ωhμi
0 should in principle be replaced by

Eq. (81). However, we refrain from doing so at this point in
order to keep Eq. (119) more compact. The equation of
motion for ωμ

0 contains the antisymmetric part of the
energy-momentum tensor, which has to be expressed in
terms of the dynamical spin moments. In the 14þ 24-
moment approximation, we restrict the sums in Eqs. (83)
and (84), respectively, to S1 and obtain

2ϵαβμνuβTμν ¼
ℏ
m

�
Chαi

1 −mChαi
0

−
X
j∈S1

m2juλðCλ;α
−2j−1 −mCλ;α

−2j−2Þ
�
; ð122aÞ

T ½μν�uν ¼ −
ℏ
2m

ϵμναβuα
X
j∈S1

m2jðC−2jβ;ν −mCð−2j−1Þβ;νÞ;

ð122bÞ

where the collision terms can be expressed in terms of the
dynamical spin moments using Eqs. (103), (108), (112),
and (113).
We note that the spin relaxation times1 τp, τz, and τq arise

from the inversion of the matrices BðlÞ, cf. Eq. (116), see
also Appendix C. Thus, as claimed above, they originate
from the local part of the collision term. On the other hand,
the first terms on the right-hand sides of Eqs. (119) and
(121) arise from the nonlocal part of the collision term,
cf. Eqs. (107) and (108), and as mentioned above, appear in
a similar way as the Navier-Stokes terms in ordinary
dissipative hydrodynamics. Note that there is no such term
in Eq. (120), as zμν is a symmetric rank-2 tensor, while the
corresponding terms in Eq. (108b) are antisymmetric.
The calculation of the relaxation times requires the

evaluation of certain collision integrals, which is delegated
to Appendix D. In Fig. 1 we show the spin relaxation times
τp, τz, and τq (solid lines) in comparison to the relaxation
times τΠ, τn, and τπ (dashed lines) of the usual dissipative
quantities as a function of mβ0. We choose a range for mβ0
from 0 (for very high temperature) to mβ0 ¼ 10 (corre-
sponding to a typical hadronic particle of mass m ∼ 1 GeV
at a temperature T ∼ 100 MeV). It should be noted that the
particle mass cannot be zero due to conditions (34) and
(35), therefore, the limit mβ0 → 0 corresponds to the limit
T → ∞. One observes that the spin relaxation times are
smaller than the usual relaxation times by a factor of at least
1.6 for all values ofmβ0. This means that spin dissipates on
a slightly faster time scale than particle number or energy-
momentum. Nevertheless, the order of magnitude of spin

relaxation is the same as for the usual dissipative quantities,
such that it makes sense to treat spin as a dynamical degree
of freedom in second-order dissipative hydrodynamics.
By the same argument it would also be justified to con-
sider higher-order moments for the usual dissipative quan-
tities as dynamical degrees of freedom, cf. Ref. [82], as the
corresponding relaxation times are of a similar order as
the spin relaxation times, but here we refrain from doing
so in order to keep the discussion as simple as possible.
We observe that all spin relaxation times converge to the
same value of λmfp when the high-temperature limit is
approached. This feature is most likely an artifact of
assuming a constant cross section.
We note that spin relaxation time has been studied

using perturbative QCD techniques [83–86], the Nambu-
Jona-Lasinio model [87], and an effective vertex for the
interaction with the thermal vorticity [88,89]. In Ref. [84],
the spin relaxation time was estimated based on the
probability to change helicity in a collision, with a result
which is orders of magnitude larger than our results. The
reason for this is that, in our case, the spin relaxation times
include also other processes where spin is dissipated, not
only particular helicity-changing processes.

X. PAULI-LUBANSKI VECTOR

Comparing the polarization of hadrons measured in
heavy-ion collisions with theoretical calculations requires
knowledge of the so-called Pauli-Lubanski vector
[9,40,90,91]. The latter quantity can be expressed in terms
of the axial-vector component of the Wigner function

Aμðx; pÞ ¼
Z

dSðpÞsμfðx; p; sÞ ð123Þ

FIG. 1. Relaxation times for the dissipative components of the
spin tensor pμ, zμν, qλμν (full lines), in comparison to those for
the standard dissipative quantities Π, nμ, πμν (dashed lines) in the
14þ 24-moment approximation. Note that the values for τn and
τπ in the limit mβ0 → 0 agree with those obtained in Ref. [73].

1In the literature, the term “spin relaxation time” has some-
times a different meaning than the one used here. In this work, it
is the time scale on which a dissipative spin moment approaches
its Navier-Stokes limit, see Sec. XI.
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as [9,90,91]

ΠμðpÞ ¼ 1

2N

Z
dΣλpλAμðx; pÞ; ð124Þ

where dΣλ denotes the integration over the freeze-out
hypersurface and we defined

N ≡
Z

dΣλpλ

Z
dSðpÞfðx; p; sÞ: ð125Þ

Inserting the distribution function (66) and using the
14þ 24-moment approximation, we obtain

ΠμðpÞ ¼ 1

2N

Z
dΣλpλf0p

�
−

ℏ
2m

Ω̃μρðEpuρ þ phρiÞ

þ
�
gμν −

phνi
Ep

uμ
�
ðχpphνi − 6χnq

ρν
ρ þ χzzναphαi

þ χqqhνiαβphαpβiÞ
�

ð126Þ

where we defined

χp ≡ −2
X
n∈S0

Hð0Þ
pn

�
Fð0Þ

n0 −
1

2
m2Fð0Þ

n2

�
;

χn ≡ −
1

2

X
n∈S0

Hð0Þ
pnF

ð0Þ
n2 ;

χz ≡ −
X
n∈S1

Hð1Þ
pnF

ð1Þ
n1 ;

χq ≡ −2
X
n∈S2

Hð2Þ
pnF

ð2Þ
n0 : ð127Þ

In the theory of second-order dissipative spin hydrody-
namics, the spin moments are treated dynamically and
follow the equations of motion derived in Sec. IX. On long
time scales, they approach their Navier-Stokes values,
namely the first-order terms on the right-hand sides of
Eqs. (119)–(121), respectively, cf. Sec. XI.
The global polarization is given as

Π̄μ ¼ 1

2N

Z
dΓ

Z
dΣλpλsμfðx; p; sÞ; ð128Þ

with N ≡ R
dPN . We obtain

Π̄μ ¼ 1

2N

Z
dΣλ

�
−uλ

ℏ
2m

ωμ
0I20 þ

ℏ
2m

Δλ
νΩ̃μνI21 þ uλðypphμi

þ yqq
ρμ
ρ − yzuμz

ρ
ρÞ þ yzzμλ þ uμðwpphλi þwqq

ρλ
ρ Þ

�
;

ð129Þ

with

yp ≡Fð0Þ
10 −

1

2
m2Fð0Þ

12 ; yq ≡−
3

2
Fð0Þ

12 ; yz ≡ 1

2
Fð1Þ

01 ;

wp ≡−
1

3
ðm2Fð0Þ

−10 −Fð0Þ
10 Þ þ

m2

6
ðm2Fð0Þ

−12 −Fð0Þ
12 Þ;

wq ≡−Fð2Þ
−10 þ

1

2
ðm2Fð0Þ

−12 −Fð0Þ
12 Þ: ð130Þ

We remark that, although the form of the Pauli-Lubanski
vector given by Eq. (124) is independent of the choice of
pseudogauge, the truncation scheme used in a hydrody-
namic framework can implicitly induce a pseudogauge
dependence on the polarization, see also Refs. [9,67,68,90]
for related discussions. In our case, the pseudogauge
dependence enters through the choice of dynamical spin
moments in the expansion of the distribution function
in Eq. (126).

XI. NAVIER-STOKES LIMIT

The Navier-Stokes limit is obtained by considering only
terms up to first order in gradients in the equations of
motion in Sec. IX. In this context it is important to note that,
in our power-counting scheme, the vorticity is considered
to be different than standard gradients, cf. Sec. IV, which
allows to account for a global-equilibrium state with
arbitrary rotation. Thus, we neglect terms of linear order
in the product of gradients and dissipative quantities, e.g.,
terms like ∇λτν;μ1���μnr . However, this does not pertain to
terms of linear order in the product of vorticity and
dissipative quantities as, for instance, appear in expressions
∼∇λΔλ

ατ
α;μ1���μn
r , where the space-like gradient also acts on

the three-space projector. Therefore we have in the Navier-
Stokes limit

phμiNS ¼ phμinr ; ð131aÞ

zμνNS ¼ zμνnr þ τzω
ðν
ρ z

μÞρ
NS ; ð131bÞ

qhμiνλNS ¼ qhμiνλnr − 2τqq
hμiρhν
NS ωλi

ρ ; ð131cÞ

with

phμinr ¼ eð0ÞðΩ̃μν − ϖ̃μνÞuν þKð0Þ
θωθω

μ
0 þKð0Þ

IΩ IνΩ̃
hμiν

þKð0Þ
∇ΩΔ

μ
λ∇νΩ̃λν þKð0Þ

_Ω
_ωhμi
0 ; ð132aÞ

zμνnr ¼ −Kð1Þ
∇ΩΔ

ðμ
ρ ð∇νÞΩ̃ρλÞuλ −Kð1Þ

ωI I
ðνωμÞ

0 þKð1Þ
ΩσΩ̃

ðhμi
λ σνÞλ;

ð132bÞ

qhμiνλnr ¼ −dð2Þβ0σ
hν
ρ ϵλiμαρuα þKð2Þ

ΩI Ω̃
hμihνIλi

þKð2Þ
∇ΩΔ

μ
ρΔνλ

αβ∇αΩ̃ρβ −Kð2Þ
ωσσνλω

μ
0; ð132cÞ
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being the Navier-Stokes values for relaxation to a non-
rotating equilibrium state. The first terms on the right-hand
sides of Eqs. (132a) and (132c) arise from the nonlocal
collision term (107). This is also apparent from the fact that
the coefficient eð0Þ is of order ∼Δ=β0 times the dimension
of pμ, while dð2Þ is of order ∼Δ=β0 times the dimension of
qμνλ. This follows from the definition of these quantities in
Eqs. (C1b) and (C3b) and the fact that τp and τq are of order

∼λmfp, while gð0Þ0 and hð2Þ0 , cf. Eqs. (109a) and (109d), are
∼Δ=λmfp times appropriate powers of temperature to give
the correct dimensions. Thus, the first terms on the right-
hand sides of Eqs. (132a) and (132c) are of order
∼Δ=Lhydro times the dimensions of pμ and qμνλ, respec-

tively. On the other hand, the other terms ∼KðlÞ
i in

Eqs. (132)–(132c) are of order ∼ðΔ=LhydroÞðλmfp=lvortÞ
times the dimensions of pμ and qμνλ, respectively. While
this is formally of order Kn2, cf. Eq. (36), we cannot simply
neglect this term, as one would usually do for the Navier-
Stokes limit. The reason is that in our power-counting
scheme we were not forced to specify the ratio λmfp=lvort,
such that in principle it can be of order unity. Then, the

terms ∼KðlÞ
i are of the same order as the first terms

∼eð0Þ; dð2Þ. Only if λmfp=lvort ≪ 1, we may drop these
terms.
We note that, when inserting Eq. (132c) into Eq. (126),

we obtain a term

ΠμðpÞ ∋
Z

dΣλpλf0pχqdð2Þβ0ϵμβσρuσσαρphαpβi: ð133Þ

This term has a similar structure as the coupling term
between spin and thermal shear obtained in Refs. [57–60].
As we have just argued, this term arises from the nonlocal
collision term and thus is of order ∼Δ=Lhydro (χq is just a
combination of thermodynamic integrals). However, due to
the fact that it arises from collisions we are hesitant to call
such a term nondissipative. Therefore, it may have a
different origin in the approach of Refs. [57–60]. We
remark that the contribution (133) to the local polarization
vanishes after integration over four-momentum, therefore it
does not affect the global polarization (128).
The solution of Eqs. (131) is obtained analogously to the

calculation outlined in Ref. [92] as

zμνNS ¼
�
2λ0Δμναβ þ λ1

�
Δμν −

3

2
Ξμν

��
Δαβ −

3

2
Ξαβ

�
− 2λ2Ξαðμω̂νÞω̂β − 2λ3Ξαðμω̂νÞβ þ 2λ4ω̂

αðμω̂νÞω̂β

þ 1

3
ΔμνΔαβ

�
znrαβ; ð134aÞ

qhμiνλNS ¼
�
2η0Δνλαβ þ η1

�
Δνλ −

3

2
Ξνλ

��
Δαβ −

3

2
Ξαβ

�

− 2η2Ξαðνω̂λÞω̂β − 2η3Ξαðνω̂λÞβ þ 2η4ω̂
αðνω̂λÞω̂β

�

× qhμinrαβ; ð134bÞ

where we defined ω≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωμνωμν=2

p
and ω̂μν ≡ −ωμν=ω.

Furthermore, we defined the unit vector along the vorticity
direction ω̂μ ≡ ωμ=ω and the projector orthogonal to both
the fluid velocity and vorticity vector,

Ξμν ≡ gμν − uμuν þ ω̂μω̂ν: ð135Þ

The coefficients in Eqs. (134) are given in Appendix C.

XII. CONCLUSIONS

In this paper, we derived the second-order dissipative
equations of motion for relativistic spin hydrodynamics
using the method of moments. The starting point was the
quantum kinetic theory for massive spin-1=2 particles
developed in Refs. [5,7,74], which takes into account
nonlocal collisions. We constructed relativistic spin hydro-
dynamics using the HW pseudogauge for the energy-
momentum and spin tensors. In our framework, we treated
the components of the HW spin tensor as the dynamical
variables of the theory. Furthermore, we argued that the
choice of the pseudogauge affects the evolution of the
system, since in different pseudogauges different moments
are treated dynamically. The equations of motion of the
HW spin tensor correspond to conservation laws in global
equilibrium, unlike in the case of the canonical pseu-
dogauge [9]. As a consequence, (at least some) spin
dynamics must occur on large, i.e., hydrodynamic scales.
In order to define our expansion, we proposed a novel

power-counting scheme, which generalizes the concept of
local equilibrium in the presence of spin dynamics with
nonlocal collisions. We then extended the method of
moments presented in Ref. [73] to include spin dynamics.
In particular, we expanded the distribution function around
a local-equilibrium state in terms of the usual irreducible
moments in momentum space [73] and, in addition, of so-
called spin moments containing the phase-space variable
sμ. For the truncation we chose the “14þ 24-moment
approximation”, where “14” corresponds to the usual
components of the charge current and the energy-
momentum tensor and “24” to the components of the spin
tensor. Our result is a closed set of equations of motion for
the dynamical spin moments, where the latter approach
their Navier-Stokes limits on time scales corresponding to
characteristic relaxation times. Remarkably, the spin relax-
ation times are determined by the local part of the collision
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term in the Boltzmann equation. On the other hand, the
nonlocal part, which is responsible for the mutual con-
version of orbital angular momentum and spin, gives rise to
terms which appear in the same way as the conventional
Navier-Stokes terms, albeit their power counting is differ-
ent: they are of order Δ=Lhydro, not of order Kn. Moreover,
we find that the spin relaxation times are comparable in
magnitude to the relaxation times of the conventional
dissipative quantities such as bulk, shear stress, and particle
diffusion. This implies that it is reasonable to treat spin as
dynamical variable in relativistic second-order spin hydro-
dynamics. Finally, we gave an expression for the Pauli-
Lubanski vector which takes into account dissipative spin
effects. In the Navier-Stokes limit, we obtained a coupling
term between spin and the shear-stress tensor, similar as in
Refs. [57–60], although the origin of this term in our
approach may be different.
Our work establishes a theory of relativistic second-order

dissipative spin hydrodynamics for applications in heavy-
ion collisions as well as astrophysics. In particular, it can be
used to solve and understand the puzzle related to the
longitudinal polarization of Lambda particles. The equa-
tions of motion derived in this work provide the starting
point for a numerical implementation of relativistic spin
hydrodynamics. In this respect, a crucial future task is to
analyze the conditions under which our theory of spin
hydrodynamics is causal and stable. This is challenging
because of the larger number of variables and equations of

motion of relativistic spin hydrodynamics compared to the
conventional case, and due to the presence of vorticity
fields [93]. It will also be interesting to investigate how the
choice of different hydrodynamic frames (i.e., different
matching conditions) [93–99] affect the theory presented
here as far as its causality and stability is concerned. For a
study regarding conventional relativistic hydrodynamics
using the method of moments with general matching
conditions see Ref. [100].
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APPENDIX A: PROPERTIES OF IRREDUCIBLE
TENSORS

In the calculations in Sec. VII we make use of the
following relations [101],

pμ ¼ Epuμ þ phμi; ðA1Þ

Δαβpαpβ ¼ m2 − E2
p; ðA2Þ

phμiphνi ¼ phμpνi þ 1

3
ðm2 − E2

pÞΔμν; ðA3Þ

phμiphνiphλi ¼ phμpνpλi þ 1

5
ðm2 − E2

pÞðphμiΔνλ þ phνiΔλμ þ phλiΔμνÞ; ðA4Þ

phμiphνiphλiphρi ¼ phμpνpλpρi þ 1

7
ðphμiphνiΔλρ þ phμiphλiΔνρ þ phμiphρiΔλν þ phλiphνiΔμρ þ phρiphνiΔλμ

þphλiphρiΔμνÞðm2 − E2
pÞ −

1

35
ðΔμνΔλρ þ ΔμλΔνρ þ ΔμρΔνλÞðm2 − E2

pÞ2

¼ phμpνpλpρi þ 1

7
ðphμpνiΔλρ þ phμpλiΔνρ þ phμpρiΔλν þ phλpνiΔμρ þ phρpνiΔλμ

þphλpρiΔμνÞðm2 − E2
pÞ þ

1

15
ðΔμνΔλρ þ ΔμλΔνρ þ ΔμρΔνλÞðm2 − E2

pÞ2; ðA5Þ
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phμiphνiphλiphρiphσi ¼ phμpνpλpρpσi þ 1

9
ðm2 − E2

pÞðphμiphνiphλiΔρσ þ perm:Þ

−
1

63
ðm2 − E2

pÞ2ðphμiΔνλΔρσ þ permÞ

¼ phμpνpλpρpσi þ 1

9
ðm2 − E2

pÞðphμpνpλiΔρσ þ perm:Þ

þ 1

35
ðm2 − E2

pÞ2ðphμiΔνλΔρσ þ perm:Þ; ðA6Þ

where “perm.” denotes all distinct permutations of indices. We also utilize the orthogonality relation

Z
dPphμ1 � � �pμmiphν1 � � �pνniFðEpÞ ¼

m!δmn

ð2mþ 1Þ!!Δ
μ1���μm
ν1���νm

Z
dPðΔαβpαpβÞmFðEpÞ ðA7Þ

for an arbitrary function FðEpÞ.

APPENDIX B: SCATTERING MATRIX
ELEMENTS

In this appendix we show some details of the calculation
of the scattering matrix elements in the collision term. The
vacuum scattering matrix elements are defined as [77,102]

hp; p0; r; r0jtjp1; p2; s1; s2i
¼ hp; p0; r; r0j∶HIð0Þ∶jp1; p2; s1; s2i; ðB1Þ

where HI is the effective interaction Hamiltonian, which is
here taken to be of an NJL-type form [103,104]

HIðxÞ ¼ Gψ̄ðxÞΓaψðxÞψ̄ðxÞΓaψðxÞ; ðB2Þ

where G is a coupling constant and Γa is in general a linear
combination of elements of the Clifford algebra in a given
representation of the Lorentz group, e.g., for scalar inter-
actions Γa ¼ 1, for vector interactions Γa ¼ γμ, and for
parity-violating interactions Γa ¼ ð1 − γ5Þγμ. Inserting the
free-field expansion of the spinors,

ψðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð2πℏÞ3
s X

r

Z
dPe−

i
ℏp·xurðpÞarðpÞ; ðB3Þ

and making use of the anticommutation relation of the
creation and annihilation operators

farðpÞ; a†sðp0Þg ¼ p0δð3Þðp − p0Þδrs; ðB4Þ

we find

hp; p0; r; r0jtjp1; p2; r1; r2i ¼ Ḡ½ūrðpÞΓaur2ðp2Þūr0 ðp0ÞΓaur1ðp1Þ − ūrðpÞΓaur1ðp1Þūr0 ðp0ÞΓaur2ðp2Þ�; ðB5Þ

with Ḡ≡ 8=ð2πℏÞ6G. For Eq. (101a) we then obtain using Eq. (5)Z
½dS�W ¼ jḠj2δð4Þðpþ p0 − p1 − p2Þ½ūrðpÞΓaur2ðp2Þūr0 ðp0ÞΓaur1ðp1Þ − ūrðpÞΓaur1ðp1Þūr0 ðp0ÞΓaur2ðp2Þ�

× ½ūrðpÞΓbur2ðp2Þūr0 ðp0ÞΓbur1ðp1Þ − ūrðpÞΓbur1ðp1Þūr0 ðp0ÞΓbur2ðp2Þ�†
¼ jḠj2δð4Þðpþ p0 − p1 − p2ÞfTr½ðpþmÞΓaðp2 þmÞΓb�Tr½ðp0 þmÞΓaðp1 þmÞΓb�
− Tr½ðpþmÞΓaðp2 þmÞΓbðp0 þmÞΓaðp1 þmÞΓb�
− Tr½ðpþmÞΓaðp1 þmÞΓbðp0 þmÞΓaðp2 þmÞΓb�
þ Tr½ðpþmÞΓaðp1 þmÞΓb�Tr½ðp0 þmÞΓaðp2 þmÞΓb�g: ðB6Þ

Furthermore we have for Eq. (101b)
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Z
½dS�sαW ¼ −jḠj2δð4Þðpþ p0 − p1 − p2Þ½ūrðpÞΓaur2ðp2Þūr0 ðp0ÞΓaur1ðp1Þ − ūrðpÞΓaur1ðp1Þūr0 ðp0ÞΓaur2ðp2Þ�

× ½ūsðpÞΓbur2ðp2Þūr0 ðp0ÞΓbur1ðp1Þ − ūsðpÞΓbur1ðp1Þūr0 ðp0ÞΓbur2ðp2Þ�†
1

2m
ūsðpÞγ5γαurðpÞ

¼ −
jḠj2
2m

δð4Þðpþ p0 − p1 − p2ÞfTr½ðpþmÞγ5γαðpþmÞΓaðp2 þmÞΓb�
× Tr½ðp0 þmÞΓaðp1 þmÞΓb�
− Tr½ðpþmÞγ5γαðpþmÞΓaðp2 þmÞΓbðp0 þmÞΓaðp1 þmÞΓb�
− Tr½ðpþmÞγ5γαðpþmÞΓaðp1 þmÞΓbðp0 þmÞΓaðp2 þmÞΓb�
þ Tr½ðpþmÞγ5γαðpþmÞΓaðp1 þmÞΓb�Tr½ðp0 þmÞΓaðp2 þmÞΓb�g; ðB7Þ

and for Eq. (101c)

Z
½dS�sαs0βW ¼ jḠj2

ð2mÞ2 δ
ð4Þðpþ p0 − p1 − p2ÞfTr½ðpþmÞγ5γαðpþmÞΓaðp2 þmÞΓb�

× Tr½ðp0 þmÞγ5γβðp0 þmÞΓaðp1 þmÞΓb�
− Tr½ðpþmÞγ5γαðpþmÞΓaðp2 þmÞΓbðp0 þmÞγ5γβðp0 þmÞΓaðp1 þmÞΓb�
− Tr½ðpþmÞγ5γαðpþmÞΓaðp1 þmÞΓbðp0 þmÞγ5γβðp0 þmÞΓaðp2 þmÞΓb�
þ Tr½ðpþmÞγ5γαðpþmÞΓaðp1 þmÞΓb�Tr½ðp0 þmÞγ5γβðp0 þmÞΓaðp2 þmÞΓb�g: ðB8Þ

In the case of a scalar intercation, Γa ¼ 1, evaluating the
traces ofDiracmatrices yields that Eqs. (B7) and (B8) vanish,
respectively. For a vector interaction, Γa ¼ γμ, Eq. (B7) also
vanishes, while Eq. (B8) is nonzero. However, in the limit of
small momentum transfer (s ¼ 4m2, t ¼ u ¼ 0) Eq. (B8) is
zero also for the vector interaction, while the only nonzero
contribution comes from Eq. (B6).

APPENDIX C: TRANSPORT COEFFICIENTS

The relaxation times and transport coefficients in
Eq. (119) are given by

τp ¼ Tð0Þ
00 ; ðC1aÞ

eð0Þ ¼ τpg
ð0Þ
0 ; ðC1bÞ

Kð0Þ
θω ¼ ℏ

2m
τpξ

ð0Þ
0 ; ðC1cÞ

Kð0Þ
θωΠ ¼ ℏ

2m
G21

D20

τp ¼ −Kð0Þ
πσω; ðC1dÞ

Kð0Þ
nω ¼ −

ℏ
2m

G30

D20

τp; ðC1eÞ

Kð0Þ
IΩ ¼ −

ℏ
4m

I11τp ¼ Kð0Þ
∇Ω; ðC1fÞ

Kð0Þ
ΠΩ ¼ ℏ

4m
β0I21

ϵ0 þ P0

τp; ðC1gÞ

Kð0Þ
_Ω

¼ −
ℏ
4m

I10τp; ðC1hÞ

gð0Þ1 ¼ 1

2
τp

∂Fð1Þ
−11

∂β0

β0
ϵ0 þ P0

; ðC1iÞ

gð0Þ2 ¼ −τpF
ð2Þ
−20; ðC1jÞ

gð0Þ3 ¼ 1

2
τpF

ð1Þ
−11; ðC1kÞ

gð0Þ4 ¼ −
1

9
τpð7 − 4m2Fð0Þ

−20 þ 2m4Fð0Þ
−22Þ; ðC1lÞ

gð0Þ5 ¼ 1

3
τpð2m2Fð0Þ

−22 −Fð2Þ
−20Þ; ðC1mÞ

gð0Þ6 ¼ −
1

2
τp

�
∂Fð1Þ

−11
∂α0

þ ∂Fð1Þ
−11

∂β0

n0
ϵ0 þ P0

�
; ðC1nÞ

gð0Þ7 ¼ 1

3
τp

�
m2Fð0Þ

−20 − 1 −
1

2
m4Fð0Þ

−22

�
; ðC1oÞ

gð0Þ8 ¼ τp

�
Fð2Þ

−20 −
1

2
m2Fð0Þ

−22

�
; ðC1pÞ

gð0Þ9 ¼ 1

2ðϵ0 þ P0Þ
τpF

ð1Þ
−11: ðC1qÞ
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Furthermore, the relaxation time and transport coefficients
of Eq. (120) read

τz ¼ Tð1Þ
11 ; ðC2aÞ

Kð1Þ
ωΠ ¼ ℏ

2m
β0I41

ϵ0 þ P0

τz; ðC2bÞ

Kð1Þ
ωI ¼ ℏ

2m
β0I31

ϵ0 þ P0

τz; ðC2cÞ

Kð1Þ
Ωσ ¼ −

ℏ
2m

β0I42τz; ðC2dÞ

Kð1Þ
∇Ω ¼ ℏ

4m
I31τz; ðC2eÞ

gð1Þ1 ¼ −
4

3
τz; ðC2fÞ

gð1Þ2 ¼ −τz; ðC2gÞ

gð1Þ3 ¼ 1

5
τzðm2Fð1Þ

−11 − 1Þ; ðC2hÞ

gð1Þ4 ¼ τz
1

ϵ0 þ P0

; ðC2iÞ

gð1Þ5 ¼ −
1

2
τz; ðC2jÞ

gð1Þ6 ¼ 3

2

m2

ðϵ0 þ P0Þ
τz; ðC2kÞ

gð1Þ7 ¼ 7

2

1

ϵ0 þ P0

τz; ðC2lÞ

gð1Þ8 ¼ −
1

2
m2τz; ðC2mÞ

gð1Þ9 ¼ −
1

2
τz; ðC2nÞ

gð1Þ10 ¼ 1

6
τzðm2Fð1Þ

−11 − 1Þ: ðC2oÞ

Finally, the relaxation time and transport coefficients in
Eq. (121) are

τq ¼ Tð2Þ
00 ; ðC3aÞ

dð2Þ ¼ τqh
ð2Þ
0 ; ðC3bÞ

Kð2Þ
ΩI ¼

ℏ
2m

τqξ
ð2Þ
0 ; ðC3cÞ

Kð2Þ
∇Ω ¼ ℏ

2m
I32τq; ðC3dÞ

Kð2Þ
ωσ ¼ ℏ

2m
β0I42τq; ðC3eÞ

Kð2Þ
ΩΠ ¼ ℏ

2m
β0I42

ϵ0 þ P0

τq; ðC3fÞ

gð2Þ1 ¼ 1

5
τq

1

ϵ0 þ P0

�
m2Fð1Þ

−11 − 5Fð1Þ
11 þm2

∂Fð1Þ
−11

∂β0
β0

�
;

ðC3gÞ

gð2Þ2 ¼ −
m2

5
τq

�
∂Fð1Þ

−11
∂α0

þ n0
ϵ0 þ P0

∂Fð1Þ
−11

∂β0

�
; ðC3hÞ

gð2Þ3 ¼ 1

5
τqðFð1Þ

11 −m2Fð1Þ
−11Þ; ðC3iÞ

gð2Þ4 ¼ 1

3
τqð−m2Fð2Þ

−20 − 4Þ; ðC3jÞ

gð2Þ5 ¼ 2

7
τqð−2m2Fð2Þ

−20 − 5Þ; ðC3kÞ

gð2Þ6 ¼ 2m2

15
τq

�
1

2
m4Fð0Þ

−22 −m2Fð0Þ
−20 − 5

�
; ðC3lÞ

gð2Þ7 ¼ 2

15
τq

�
1 −

m4

4
Fð0Þ

−22

�
; ðC3mÞ

gð2Þ8 ¼ 1

5ðϵ0 þ P0Þ
τqðm2Fð1Þ

−11 − 1Þ; ðC3nÞ

gð2Þ9 ¼ −
2

15
τq

�
5

2
m2 −m4Fð2Þ

−20 þ
1

2
m6Fð0Þ

−22

�
; ðC3oÞ

gð2Þ10 ¼ 2

5
τq

�
−
3

2
þm2Fð2Þ

−20 −
1

2
m4Fð0Þ

−22

�
: ðC3pÞ

Furthermore, the coefficients of the Navier-Stokes values
in Sec. XI read

λ0 ¼
1

1þ 4ðτzωÞ2
; ðC4aÞ

λ1 ¼
16

3
ðτzωÞ2λ0; ðC4bÞ

λ2 ¼ ðτzωÞ2ðλ0 þ λ4Þ; ðC4cÞ

λ3 ¼ τzωλ0; ðC4dÞ

λ4 ¼ −
τzω

1þ ðτzωÞ2
; ðC4eÞ

η0 ¼
1

1þ 4ðτqωÞ2
; ðC4fÞ
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η1 ¼
16

3
ðτqωÞ2η0; ðC4gÞ

η2 ¼ ðτqωÞ2ðη0 þ η4Þ; ðC4hÞ

η3 ¼ τqωη0; ðC4iÞ

η4 ¼ −
τqω

1þ ðτqωÞ2
: ðC4jÞ

APPENDIX D: COLLISION INTEGRALS

1. Reducing tensor structures through
orthogonality relations

Here we explain how to obtain Eqs. (105) and (108).
Consider an integral of the form (104)

Z
½dP�Wf0pf0p0Er−1

p phμ1 � � �pμliHðmÞ
pn phν1 � � �pνmi; ðD1Þ

whereW is a function of p, p0, p1, and p2 andH
ðmÞ
pn can be

expressed as a polynomial of Ep. After integration over p0,
p1, and p2 the result must assume the form

Z
dPphμ1 � � �pμmiphν1 � � �pνniFðEpÞ; ðD2Þ

and one can apply Eq. (A7). An analogous argument can be
used to simplify Eq. (107).

2. Collision integrals for constant cross section

Here we show the calculation of the collision integrals
used to compute the relaxation times in Sec. IX. The
procedure is similar to the one presented in Ref. [73],
however, we do not consider the ultrarelativistic limit, since
we intend to describe massive particles. The matrix B in
Eq. (106) is given as

BðlÞ
rn ¼ 16

2lþ 1

Z
½dP�W0f0pf0p0Er−1

p phμ1 � � �pμli

×HðlÞ
pnphμ1 � � �pμli: ðD3Þ

The transition amplitude W0 is taken to be of the from

W0 ¼ δð4Þðpþ p0 − p1 − p2Þsσðs;ΘÞ; ðD4Þ

where s≡ ðpþ p0Þ2 is a Mandelstam variable and
cosΘ≡ ðp − p0Þ · ðp1 − p2Þ=ðp − p0Þ2. Furthermore, we
introduced the differential cross section σðs;ΘÞ. We also
define the total cross section

σT ≡ 2π

Z
dΘ sinΘσðs;ΘÞ; ðD5Þ

which is here assumed to be constant. First performing the
p1 and p2 integrations in Eq. (D3) in the center-of-
momentum frame yieldsZ

dP1dP2W0 ¼
1

8

ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p
σT: ðD6Þ

We then insert Eqs. (54) and (55) to obtain

Bð0Þ
rn ¼ 2σTwð0Þ X

m∈S0;m≥n
að0Þmn

Xm
q¼0

að0Þmq

Z
dPdP0f0pf0p0Er−1þq

p
ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p
; ðD7aÞ

Bð1Þ
rn ¼ 2σT

wð1Þ

3

X
m∈S1;m≥n

að1Þmn

Xm
q¼0

að1Þmq

Z
dPdP0f0pf0p0Er−1þq

p phμipμ
ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p
; ðD7bÞ

Bð2Þ
rn ¼ σT

wð2Þ

5

X
m∈S2;m≥n

að2Þmn

Xm
q¼0

að2Þmq

Z
dPdP0f0pf0p0Er−1þq

p phμpνipμpν
ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p
: ðD7cÞ

The remaining integrals are then solved numerically.
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