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We study the effect of a refined electron-photon vertex on the dynamical breaking of chiral symmetry in
reduced quantum electrodynamics. We construct an educated ansatz for this vertex that satisfies the
required discrete symmetries under parity, time reversal, and charge conjugation operations. Furthermore, it
reproduces its asymptotic perturbative limit in the weak coupling regime and ensures the massless electron
propagator is multiplicatively renormalizable in its leading logarithmic expansion. Employing this vertex
ansatz, we solve the gap equation to compute dynamically generated electron mass whose dependence on
the electromagnetic coupling is found to satisfy Miransky scaling law. We also investigate the gauge
dependence of this dynamical mass as well as that of the critical coupling above which chiral symmetry is
dynamically broken. As a litmus test of our vertex construction, both these quantities are rendered virtually
gauge independent within a certain interval of values considered for the covariant gauge parameter.
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I. INTRODUCTION

Graphene, the wonder material [1,2], is a physical
system with immense potential for technological applica-
tions. It has driven a lot of research in both the applied and
theoretical physics, not only from the point of view of
condensed matter and materials sciences [3,4], but also
based on the quantum field theoretic description within the
domain of high energy physics [5] and cosmology [6–8]. Its
remarkable properties of high electric and thermal conduc-
tivity, stiffness, flexibility, and transparency have opened
the door to explore a growing family of modern relativistic
and relativisticlike materials in one, two, and three spatial
dimensions. The underlying honeycomb array of tightly
packed carbon atoms and its crystallographic description in
terms of two interimposed triangular sublattices provide
chiral and valley quantum labels to the charge carrier

electrons. This occurrence is responsible for Klein tunnel-
ing [9] as well as other exotic and novel phenomena [10]
exhibited by relativistic systems only. That makes graphene
an incarnation of quantum electrodynamics (QED) in
condensed matter realms. Along with quantum Hall sys-
tems [2,11–13] and high-Tc layered cuprate superconduc-
tors [14–18], graphene is also a system suitable for its
description in terms of relativistic quantum field theoretical
considerations, developed and refined in the domain of
particle physics [5]. This in turn allows for an exploration
of otherwise inaccessible particle physics phenomenology
in a more controlled and observable ambient of solid state
physics. A representative example in this connection is the
so-called chiral magnetic effect [19,20], which was first
predicted to take place in relativistic heavy ion collisions. It
involves chirality flip of quarks, caused by the chiral
anomaly. It is a necessary ingredient to produce a non-
dissipative current as an observable effect. This effect was
proposed to probe the nontrivial vacuum structure of
quantum chromodynamics (QCD). However, it has not
been observed in isobar collisions in the STAR
Collaboration at RHIC [21]. Nevertheless the same basic
idea of a physical system in which interactions drive a
chirality flip of the fundamental degrees of freedom was
found in ZnTe5 [22], where a neat nondissipative current
was observed when this 3D crystal is subject to an array of
adequately aligned electric and magnetic fields. After this
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first observation, nondissipative currents driven by the
chiral anomaly were also encountered in several other
similar materials [23–27].
Some theoretical ideas have also been developed to

observe a similar effect in 2D crystals such as graphene
[28,29]. More recently, it has been shown that in some 2D
materials, one may observe a novel quantum spin Hall
phenomenon [30]. A key ingredient for the theoretical
realization of these later phenomena is the description of
electromagnetic and matter fields living in mixed dimen-
sions. Mixed dimensional theories emerge naturally in the
description of 2D materials where experiments are carried
out with external electromagnetic fields that permeate the
whole space whereas the motion of the charge carriers
remains restricted to a plane.
Two independent formulations have been proposed in the

literature to describe QED of photons and electrons living in
different space dimensions. One vision exploits the equiv-
alence of a theory where electrons live in lower dimensions
than photons and aChern-Simons theory. It has been dubbed
as Pseudo-QED [31–34]. Alternatively, a brane-world
inspired scenario was developed in [35] to explore the traits
of dynamical chiral symmetry breaking (DCSB) in the so-
called ReducedQED (RQED), a nomenclaturewe choose to
adopt in this article. The equivalence of these twovisions has
already been established. It respects causality [33] and
unitarity [34]. It exhibits a Coulomb static interaction in
the case of graphene [32,36]. It contains an infrared fixed
point of the renormalization group as the Fermi velocity
tends to the speed of light [36–39]. Two-loop perturbative
analysis has been carried out in [40] and later improved with
renormalization group arguments [41]. Interestingly for the
immediate purpose of our manuscript, DCSB has been
explored within the Schwinger-Dyson [42] equations
(SDEs) and renormalization group frameworks exploiting
the duality between the gap equation in this theory and the
corresponding 1=N leading truncation in parity preserving
ordinary QED3. In the latter theory, it is known that there
exists a critical number of fermion families Nc above which
DCSB is restored. In comparison, it is observed that in the
quenched version of RQED, where electron-loop contribu-
tions to the photon propagator are neglected and the photon
dressing function reduces to its tree level expansion, DCSB
occurs provided the electromagnetic coupling α exceeds a
critical value αc. The particular values of these critical
numbers depend on the gauge parameter and provide a
natural motivation for the work we present and the solutions
we provide in this article. For the sake of completeness, we
would like to mention that DCSB has also been considered
inRQEDat finite temperature [42–44] and in the presence of
a Chern-Simons term [29]. Parity violating solutions to the
gap equation have also been explored in [45] in connection
with the presence of a Chern-Simons term. This term plays
the role of an effective dielectric constant [46], hence having
potential experimental realization in graphene related

materials. Effects of strain have also been considered,
leading to a lower value of the critical coupling required
to break chiral symmetry. Finally, RQED has also been
formulated in curved spaces [47]. For a review discussing all
this properties and applications of RQED, see [48].
Studying DCSB and its gauge invariance in RQED

naturally requires its nonperturbative treatment.
Fortunately, extensive amount of analogous research in
QED4 [49–53] and QED3 [54–57] provides necessary
groundwork to carry out similar reliable analysis in
RQED. We report the results of this continuum study
through state-of-the-art truncation schemes in SDEs.
Focusing on the quenched version of the theory, the sole
source of our starting ansatz is the electron-photon vertex.
We construct it by demanding all the key characteristics of
RQED to be faithfully respected:

(i) Ward-Fradkin-Green-Takahashi identity (WFGTI)
that connects the electron propagator with the
longitudinal part of the electron-photon vertex is
satisfied nonperturbatively by construction, known
as the Ball-Chiu (BC) vertex [58].

(ii) To expand the transverse part of the vertex, we
employ the vector basis and its coefficients in such a
manner as to ensure spurious kinematic singularities
are absent from our construction [59–61].

(iii) In the weak coupling regime, the vertex faithfully
reproduces its one-loop perturbative expansion for
the asymptotic limit of momenta k2 ≫ p2, just it
has previously been done in QED4 [49,50] and
QED3 [62–64].

(iv) The standard model of particle physics tells us of the
intimate connection between its renormalizability
and gauge invariance. In the same spirit, we require
our vertex ansatz to guarantee the multiplicative
renormalizability (MR) of the massless electron
propagator in its leading logarithmic expansion.

(v) We also require our vertex to satisfy the discrete
symmetries of parity, time reversal, and charge
conjugation.

Based upon the above-mentioned constraints, we are
able to achieve nearly gauge independent Euclidean mass
and critical coupling αc where the DCSB solution bifur-
cates away from the chirally symmetric one. We believe
that obtaining gauge independent DCSB holds the promise
to study observable effects in the 2Dmaterials described by
RQED in a reliable manner through continuum SDEs.
The article has been organized as follows: Sec. II begins

with a brief introduction to the mathematical foundations of
RQED. In Sec. III, we provide necessary preliminaries on
the vertex decomposition and its general features. In Sec. IV,
we construct a family of ansätze for the transverse vertex in
perhaps the most economical yet efficient manner by
resorting to the constraints of MR and its explicit form
in the so-called asymptotic limit at the one-loop level.
In Sec. V, we set up the gap equation and engage in a
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detailed discussion on the photon propagator in RQED and
the appropriate use of theWFGTI in order to ensure theMR
of the massless electron propagator. Section VI provides
solution of the gap equation, first in the perturbative realm
and then the nonperturbative DCSB solution in terms of the
critical coupling αc above which the massive solution
bifurcates away from the perturbative massless one. We
primarily focus on obtaining gauge independent DCSB.
Section VII contains conclusions and offers perspectives for
future work.

II. RQED FOUNDATIONS

In order to describe electrons, restricted to move in a
dimensionally reduced space-time, coupled to photons free
to propagate through the bulk space-time, one initially
begins with the well-known QED Lagrangian

LQED ¼ ψ̄ðiγμ∂μ −m0Þψ þ jμAμ

−
1

4
FμνFμν −

1

2ξ
ð∂μAμÞ2; ð1Þ

where ψ and Aμ are electron and photon fields, respectively,
coupled to each other through the electromagnetic current
jμ, where μ ¼ 0, 1, 2, 3. Furthermore, the four-dimensional
Dirac matrices γμ satisfy the anticommutation relation
fγμ; γνg ¼ 2gμν, with the commonly used convention
gμν ¼ ðþ;−;−;−Þ for the Minkowski space metric tensor.
Additionally,m0 is the bare electron mass, ξ is the covariant
gauge parameter, and Fμν ¼ ∂μAν − ∂νAμ is the usual
electromagnetic field tensor. The corresponding action
SQED ¼ R

d4xLQED can be conveniently expressed as

SQED ¼ Sð4Þ
ψ̄ψ þ 1

2

Z
d4x½jμΔ̂μνjν − AμΔ̂−1

μνAν�; ð2Þ

the kinetic and mass terms for electrons, moving in a
d-dimensional space-time read

SðdÞ
ψ̄ψ ¼

Z
ddxψ̄ðiγμ∂μ −m0Þψ ; ð3Þ

with μ ¼ 0, 1, 2,..., d − 1. Moreover, the differential
operator Δ̂μν, namely, the photon propagator in coordinate
space, can be cast in terms of its momentum space
counterpart by means of a Fourier transformation

Δ̂μν ¼ −
Z

d4q
ð2πÞ4 e

−iq·x 1

q2

�
gμν − ð1 − ξÞ qμqν

q2

�
; ð4Þ

satisfying Δ̂−1
μα Δ̂αν ¼ gνμ with its corresponding inverse

propagator. Such a Green’s function accounts for a gauge
field propagating through the whole four-dimensional
space-time with μ, ν ¼ 0, 1, 2, 3.

To account for a mixed-dimension system described
by RQED with electrons restricted to move on a plane
perpendicular to the x3 axis [31–35,65], the electromag-
netic current takes the form

jμ ¼
�−ieψ̄γμψδðx3Þ for μ ¼ 0; 1; 2;

0 for μ ¼ 3:
ð5Þ

Therefore, only the indices μ ¼ 0, 1, 2 contribute to the
term jμΔ̂μνjν in Eq. (2). The component μ ¼ 3 can thus be
integrated out in Eq. (4), leading to [66]

Δ̂μν ¼
Z

d3q
ð2πÞ3 e

−iq·x 1

2
ffiffiffiffiffiffiffiffi
−q2

p
�
gμν − ð1 − ξÞ qμqν

2q2

�
: ð6Þ

It entails a nonlocal differential operator. This propagator
can be obtained from the effective action for RQED
(redefining ξ ¼ 2ζ − 1)

SRQED ¼ Sð3Þ
ψ̄ψ þ

Z
d3xjμAμ

þ
Z

d3x

�
1

2
Fμν

1ffiffiffiffiffiffiffiffi
−∂2

p Fμν þ 1

ζ
∂μAμ 1ffiffiffiffiffiffiffiffi

−∂2
p ∂νAν

�
:

ð7Þ

From now on, we work in the Euclidean space defined by
the metric tensor δμν ¼ ðþ;þ;þÞ for μ, ν ¼ 4, 1, 2. In this
space, the bare photon propagator takes the form
[cf. Eq. (6)]

Δð0Þ
μν ðqÞ ¼ 1

2q

�
δμν − ð1 − ξÞ qμqν

2q2

�
; ð8Þ

where we have defined q≡ ffiffiffiffiffiffiffiffi
−q2

p
. Note that this propa-

gator has a softer infrared behavior than the photon
propagator in QED4 and QED3. Several groups differ in
conventions by the global factor of 1=2. When written
in terms of the variable ζ, this propagator can be separated
into a familiar longitudinal and a transverse component
(to qμ)

Δð0Þ
μν ðqÞ ¼ 1

2q

�
δμν −

qμqν
q2

�
þ ζ

qμqν
2q3

: ð9Þ

However, it must be emphasized that the gauge fixing
parameter ζ in RQED is different from that in QED, ξ, due
to dimensional reduction. In the above expression for the
photon propagator, Eq. (9), the ζ-independent term defines
the transverse propagator which is the only component that
gets quantum corrections. This is the reason for using
such a decomposition in other works. In contrast, the
ξ-independent term in Eq. (8) does not define a transverse
propagator. Therefore, quantum corrections affect both
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ξ-dependent and ξ-independent components. In the present
work, we restrict ourselves to work in the quenched
approximation. As there are no fermion loops present,
there are no quantum corrections to the bare photon
propagator. Therefore, both the expressions Eqs. (8), (9)
are equally suitable: we choose that of Eq. (8).
Note that the electron-photon vertex plays a vital role in

computing the nonperturbative solution of the electron
propagator through its gap equation. Therefore, we address
this three-point Green’s function at length in the following
section.

III. THE VERTEX: GENERALITIES

In its general decomposition, the three-point electron-
photon vertex can be written in terms of twelve independent
spin structures. For the kinematical configuration of Fig. 1,
the WFGTI associated with this vertex takes the form

iqμΓμðk; pÞ ¼ S−1ðkÞ − S−1ðpÞ; ð10Þ

where q ¼ k − p. This identity allows us to split the vertex
as a sum of longitudinal and transverse components, as
suggested by Ball and Chiu [58]:

Γμðk; pÞ ¼ ΓL
μ ðk; pÞ þ ΓT

μ ðk; pÞ: ð11Þ

The longitudinal part ΓL
μ ðk; pÞ alone satisfies the WFGTI

(10), and consumes four of the twelve independent spin
structures (one of them is zero in QED), so that, [58]

ΓL
μ ðk; pÞ ¼ λ1ðk; pÞγμ þ λ2ðk; pÞtμγ · t − iλ3ðk; pÞtμ; ð12Þ

with t ¼ kþ p, and

λ1ðk; pÞ ¼
1

2

�
1

Fðk2;Λ2Þ þ
1

Fðp2;Λ2Þ
�
;

λ2ðk; pÞ ¼
1

2

�
1

Fðk2;Λ2Þ −
1

Fðp2;Λ2Þ
�

1

k2 − p2
;

λ3ðk; pÞ ¼
�
Mðk2;Λ2Þ
Fðk2;Λ2Þ −

Mðp2;Λ2Þ
Fðp2;Λ2Þ

�
1

k2 − p2
; ð13Þ

where Λ is an ultraviolet (UV) cutoff regulator. Note that
Mðk2;Λ2Þ and Fðk2;Λ2Þ are the mass function and the
wave function renormalization, respectively, related to the
electron propagator SðkÞ through

SðkÞ ¼ Fðk2;Λ2Þ
iγ · kþMðk2;Λ2Þ ; ð14Þ

with Fðk2;Λ2Þ ¼ 1 and Mðk2;Λ2Þ ¼ m0 at the tree level.
The transverse part ΓT

μ ðk; pÞ of the vertex decomposition
(11), which remains undetermined by the WFGTI, is
naturally constrained by

qμΓT
μ ðk; pÞ ¼ 0: ð15Þ

In general, the ultraviolet finite transverse vertex can be
expanded out in terms of eight basis vector structures, and
their corresponding scalar form factors τiðk; pÞ [58]:

ΓT
μ ðk; pÞ ¼

X8
i¼1

τiðk; pÞTi
μðk; pÞ: ð16Þ

For the kinematical configuration of Fig. 1, we define

T1
μðk; pÞ ¼ i½pμðk · qÞ − kμðp · qÞ�;

T2
μðk; pÞ ¼ ½pμðk · qÞ − kμðp · qÞ�ðγ · tÞ;

T3
μðk; pÞ ¼ q2γμ − qμðγ · qÞ;

T4
μðk; pÞ ¼ iq2½γμðγ · tÞ − tμ� þ 2qμpνkρσνρ;

T5
μðk; pÞ ¼ σμνqν;

T6
μðk; pÞ ¼ −γμðk2 − p2Þ þ tμðγ · qÞ;

T7
μðk; pÞ ¼

i
2
ðk2 − p2Þ½γμðγ · tÞ − tμ� þ tμpνkρσνρ;

T8
μðk; pÞ ¼ −iγμpνkρσνρ − pμðγ · kÞ þ kμðγ · pÞ; ð17Þ

with

σνρ ¼
i
2
½γν; γρ�: ð18Þ

This basis is not exactly the one adopted in [58]. We choose
to work with a modification of this initial basis which was
put forward in [59] and later employed in [60] as well. This
modified choice of the basis vectors ensures all transverse
form factors of the vertex are independent of any kinematic
singularities in one-loop perturbation theory in an arbitrary
covariant gauge.
As stated earlier in Sec. I, any ansatz for the full vertex

must have the same transformation properties as the bare
vertex under charge conjugation operation. This requires all
the τi’s in (16) to be symmetric under the interchange
k ↔ p, except τ4 and τ6, which are odd:

q=k−p

p

k

Γμ

FIG. 1. Diagrammatic representation of the full electron-photon
vertex Γμðk; pÞ, with momentum flow indicated.
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τiðk; pÞ ¼ τiðp; kÞ; i ¼ 1; 2; 3; 5; 7; 8; ð19Þ

τiðk; pÞ ¼ −τiðp; kÞ; i ¼ 4; 6: ð20Þ

From Eq. (13), it is obvious that λ1ðk; pÞ, λ2ðk; pÞ, and
λ3ðk; pÞ are symmetric under k ↔ p, as they should be, in
order to preserve the correct transformation properties
under charge conjugation operation for the full vertex.
In the following section, we construct the transverse

vertex, putting forward an ansatz which complies with the
key requirements expected of it as detailed in Sec. I. It is
also effective, economical, and yields practically gauge
invariant DCSB as we see in subsequent sections.

IV. THE TRANSVERSE VERTEX

The transverse vertex is completely determined once the
form factors in Eqs. (16), (17) are known. We now proceed
to construct an ansatz for it.

A. A general ansatz for the transverse vertex

We start out by recalling a fairly general ansatz which
was first proposed in [52], generally referred to as the BB
vertex, and later successfully employed in several related
works, e.g., [53,61,67]

τ1ðk; pÞ ¼
a1

ðk2 þ p2Þ λ3ðk; pÞ; ð21Þ

τ2ðk; pÞ ¼
2a2

ðk2 þ p2Þ λ2ðk; pÞ; ð22Þ

τ3ðk; pÞ ¼ 2a3λ2ðk; pÞ; ð23Þ

τ4ðk; pÞ ¼
a4ðk2 − p2Þ

4k2p2
λ3ðk; pÞ; ð24Þ

τ5ðk; pÞ ¼ −a5λ3ðk; pÞ; ð25Þ

τ6ðk; pÞ ¼ −
2a6ðk2 þ p2Þ
ðk2 − p2Þ λ2ðk; pÞ; ð26Þ

τ7ðk; pÞ ¼ −
�
a4q2

2k2p2
þ a7
k2 þ p2

�
λ3ðk; pÞ; ð27Þ

τ8ðk; pÞ ¼ 2a8λ2ðk; pÞ: ð28Þ

Before we proceed any further, we summarize the follow-
ing important points:

(i) All eight transverse form factors are taken into
consideration, which implies the generality of this
ansatz.

(ii) All form factors are proportional to the same
structures which appear in the longitudinal vertex,
namely, λ2ðk; pÞ and λ3ðk; pÞ.

(iii) The form factor τ6ðk; pÞ has a kinematic singularity
for k2 ¼ p2. For the QED4 gap equation, we can
employ this form factor with impunity because it
cancels with the corresponding term proportional to
λ2ðk; pÞ coming from the longitudinal vertex. How-
ever, for RQED, this cancellation does not take place
and we need to modify this form factor to avoid the
kinematic singularity. We propose an economical
and effective modification:

τ6ðk; pÞ ¼ a6
ðk2 − p2Þ
ðk2 þ p2Þ λ2ðk; pÞ: ð29Þ

We now try to constrain the coefficients ai through the one-
loop expression for the transverse vertex. We may call this
as the modified BB vertex for RQED.

B. One-loop electron-photon vertex

In perturbation theory, the one-loop order expansion of
the electron-photon vertex is

Γð1Þ
μ ðk; pÞ ¼ γμ −

α

2π2

Z
d3ωγαSðp − ωÞγμ

× Sðk − ωÞγβΔαβðωÞ: ð30Þ

In analogy with [64,68,69], we have computed the one-
loop corrections to the electron-photon vertex in the
asymptotic limit, defined as the perturbative expansion
with p2 ≫ k2 ≫ m2

0. The leading logarithmic term of the
transverse vertex at this level of approximation reads

ΓT
μ ðk; pÞ ¼p2≫k2 −

α

8πp2

�
ξ −

1

3

�
log

�
p2

k2

�
Tasy
μ ; ð31Þ

with

Tasy
μ ¼ p2γμ − pμγ · p: ð32Þ

Hence, in this limit, the transverse vertex can be expressed
as [cf. Eq. (58)]

ΓT
μ ðk; pÞ ¼p2≫k2 1

2

�
1

Fðk2Þ −
1

Fðp2Þ
�

Tasy
μ

k2 − p2
: ð33Þ

On the other hand, from Eqs. (16), (17), it is straightforward
to see that the leading structure of the transverse vertex in
this limit acquires the following form:

ΓT
μ ðk; pÞ ¼p2≫k2 ðτ3 þ τ6ÞTasy

μ ; ð34Þ

where τ3;6 ≡ τ3;6ðk; pÞ. Moreover, we have used the fact
that, in the asymptotic expansion, the dominant contribu-
tions to the transverse vertex come from T3

μ and T6
μ which

simplify to
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T3asy
μ ¼ T6asy

μ ≡ Tasy
μ : ð35Þ

As the simplest construction of the transverse vertex, we
can single out τ3ðk; pÞ and τ6ðk; pÞwhich correctly provide
this desired limit. Writing out these form factors explicitly,

τ3ðk; pÞ ¼ a3

�
1

Fðk2Þ −
1

Fðp2Þ
�

1

k2 − p2
; ð36Þ

τ6ðk; pÞ ¼ a6

�
1

Fðk2Þ −
1

Fðp2Þ
�

1

k2 þ p2
: ð37Þ

It is thus straightforward to see from Eqs. (33), (34) that the
one-loop behavior of the vertex in the asymptotic limit
requires

a3 − a6 ¼ 1=2: ð38Þ

Our aim is to compute nonperturbative solutions of the gap
equation using various vertex ansätze. Our preferred choice
is the electron-photon vertex consonant with the WFGTI
and perturbation theory. It consists of the longitudinal
BC-vertex, Eq. (12), and the transverse component con-
structed in terms of the vector structures T3

μ and T6
μ alone.

For the sake of completeness, we also compute and depict
some results obtained by employing the bare vertex, the
central BC vertex and the full BC vertex.
The starting point for such an endeavor is naturally the

gap equation for the electron propagator. This is what we
proceed to set up and study in the next section.

V. SETTING UP THE GAP EQUATION

The SDE for the electron propagator, also known as the
electron gap equation, is diagrammatically depicted in Fig. 2.
Mathematically, the gap equation is written as

S−1ðkÞ¼S−10 ðkÞþ α

2π2

Z
E
d3pγνSðpÞΓμðk;pÞΔμνðqÞ; ð39Þ

where the subscript E indicates that the integral is per-
formed in the Euclidean space, the subscript “0” denotes
the tree level of the corresponding propagator and
α ¼ e2=4π is the electromagnetic coupling. We have

already provided a detailed discussion on the full elec-
tron-photon vertex Γμðk; pÞ. A similar analysis of the
photon propagator ΔμνðqÞ is in place now.

A. The photon propagator

For the sake of an appropriate implementation of the
WFGTI in the gap equation, let us split the photon
propagator of Eq. (8) in a longitudinal piece

ΔL
μνðqÞ ¼ ϱκ

qμqν
q3

; ð40Þ

and a remaining nonlongitudinal component

ΔNL
μν ðqÞ ¼

ϱ

q

�
δμν − χ

qμqν
q2

�
; ð41Þ

expressed in Euclidean space such that

ΔμνðqÞ ¼ ΔL
μνðqÞ þ ΔNL

μν ðqÞ; ð42Þ

where χ ≡ 1 − ϵe, κ≡ χξ, ϱ ¼ Γ½χ�=ð4πÞϵe . It is important
to notice that RQED (ϵe ¼ 1=2) yields χ ¼ ϱ ¼ 1=2 and
κ ¼ ξ=2. We have opted for this notation of arbitrary
dimensions in alignment with the one adopted in [65].
This separation of the photon propagator, Eqs. (40), (41),

plays an important role in QED where it has been
demonstrated that it is imperative to apply the WFGTI
to the divergence term qμΓμ which arises from the con-
traction of the vertex with the longitudinal (gauge depen-
dent) contribution of the photon propagator in the gap
equation. This recipe ensures the absence of spurious terms
which are a characteristic of the UV cutoff regularization
scheme due to the fact that it breaks translational invariance
and can violate gauge invariance if not used carefully
[50,70]. Providing a vertex that satisfies the WFGTI and
employing this identity in the gap equation only for the
appropriate part of the photon propagator are crucial to
guarantee the local gauge covariance of the electron
propagator. In the quenched approximation, the electron
wave function renormalization for QED4 has been shown to
be explicitly renormalizable to all orders in perturbation
theory provided an ansatz for the vertex in close analogy
with full QED4 is constructed [49]. In the leading loga-
rithmic approximation, the electron wave function renorm-
alization exhibits a power law behavior

Fðk2Þ ¼ 1þ
X∞
n¼1

βn

n!
logn

�
k2

Λ2

�
¼

�
k2

Λ2

�
β

; ð43Þ

where β ¼ βðαÞ is an unknown coefficient that can be
computed order by order in perturbation theory. In the
leading logarithmic approximation of QED4, it is known
that β ¼ αξ=ð4πÞ. For quenched RQED we demonstrate
that β ¼ αðξ − 1=3Þ=ð4πÞ.

=
k k

− 1 − 1

q=k−p

S

p kk
S ΓνΓμS ΓνΓμ

Δμν

FIG. 2. The gap equation for the electron propagator. The color-
filled blobs labeled with S, Δμν, and Γμ stand for the fully dressed
electron and photon propagators, and the three-point vertex,
respectively.
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As mentioned earlier, careless implementation of an
ultraviolet cutoff regularization breaks gauge invariance
and it is manifest in the appearance of spurious terms even
in one-loop calculations. An appropriate use and manipu-
lation of theWFGTI in the gap equation is key to getting rid
of such spurious terms. For this purpose, it is worth noting
that in quenched RQED we can redefine the longitudinal
and nonlongitudinal components of the photon propagator
by shifting χ and κ with an arbitrary factor η such that the
complete photon propagator, Eq. (42), remains the same:

χ → χ − η; ð44Þ

κ → κ − η: ð45Þ

Bear in mind that the photon propagator and consequently
the electron SDE, Eq. (39), remain invariant under the shifts
prescribed by Eqs. (44), (45).
We apply the WFGTI, Eq. (10), on the longitudinal

photon propagator term in the gap equation without loss of
generality, leading to

Z
E
d3pγνSðpÞΓμðk; pÞΔL

μνðqÞ

¼ ϱκ

Z
E

d3q
q3

γ · q − iϱκ
Z
E

d3p
q3

γ · qSðpÞS−1ðkÞ; ð46Þ

where we have shifted d3p → d3q in the first term on the
right-hand side of the above equation in order to show that
such a term vanishes in a translationally invariant theory as
it is an odd integral. Moreover, for the term Γμðk; pÞΔNL

μν ðqÞ

in Eq. (39) we use the explicit form of the vertex defined
through Eqs. (11)–(13), (16), (17). After bringing out the
subtle role played by the photon propagator in RQED, we
can now focus on the mathematical and technical details of
the gap equation itself.

B. The gap equation

We can project out two coupled, integral equations for
M and F from the matrix gap equation. In an arbitrary
gauge, these equations can, respectively, be written as

Mðk2Þ
Fðk2Þ ¼ m0 þ

αϱκ

2π2

Z
E

d3p
q3

Fðp2Þ
p2 þM2ðp2Þ

1

Fðk2Þ
× fMðp2Þq · k −Mðk2Þq · pg

þ αϱ

2π2

Z
E
d3p

Fðp2Þ
p2 þM2ðp2ÞGMðk; pÞ; ð47Þ

1

Fðk2Þ ¼ 1 −
αϱκ

2π2

Z
E

d3p
q3

Fðp2Þ
p2 þM2ðp2Þ

1

Fðk2Þ

×

�
q · pþMðk2ÞMðp2Þ q · k

k2

�

þ αϱ

2π2

Z
E

d3p
k2

Fðp2Þ
p2 þM2ðp2ÞGFðk; pÞ; ð48Þ

where we have adopted the notation Fðk2Þ≡ Fðk2;Λ2Þ and
the same forM. Moreover, the electron-photon vertex form
factors contribute to the gap equation via the scalar
functions GM and GF:

qGMðk; pÞ ¼ ð3 − χÞMðp2Þλ1 þ
�
t2 −

ðk2 − p2Þ2
q2

χ

�
Mðp2Þλ2 −

�
t · p −

ðq · pÞðk2 − p2Þ
q2

χ

�
λ3

þ∇ðk; pÞτ1 þ 2∇ðk; pÞMðp2Þτ2 þ 2q2Mðp2Þτ3 − 2½ðk2 − p2Þðq · pÞ þ∇ðk; pÞ�τ4
− 2ðq · pÞτ5 − 2ðk2 − p2ÞMðp2Þτ6 − ½ðk2 − p2Þðt · pÞ −∇ðk; pÞ�τ7; ð49Þ

qGFðk; pÞ ¼ ½ð1 − 3χÞk · pþ 2χuðk; pÞ�λ1 −
�
ðk · pÞt2 þ 2∇ðk; pÞ − ðk · pÞðk2 − p2Þ2

q2
χ

�
λ2

−
�
t · k −

ðq · kÞðk2 − p2Þ
q2

χ

�
Mðp2Þλ3 þ∇ðk; pÞMðp2Þτ1 − ðk2 þ p2Þ∇ðk; pÞτ2

þ 2ðq · kÞðq · pÞτ3 þ 2½q2ðt · kÞ −∇ðk; pÞ�Mðp2Þτ4 þ 2ðq · kÞMðp2Þτ5 − 2ðk2 − p2Þðk · pÞτ6
þ ½ðk2 − p2Þðt · kÞ þ∇ðk; pÞ�Mðp2Þτ7 þ∇ðk; pÞτ8; ð50Þ

where we have used the simplifying notation λi ≡ λiðk; pÞ and τi ≡ τiðk; pÞ. We have also defined

∇ðk; pÞ ¼ k2p2 − ðk · pÞ2; ð51Þ

uðk; pÞ ¼ 2k · p −
∇ðk; pÞ

q2
: ð52Þ
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We are now in a position to go ahead and solve these
coupled equations for any given vertex ansatz. We take up
this task in perturbative and nonperturbative realms in the
next section.

VI. SOLVING THE GAP EQUATION

In order to have a better intuitive grasp over the solutions
of the gap equation, we start from perturbation theory. It is
only natural to demand that any physically acceptable
nonperturbative solution must reduce to its perturbative
counterpart in the weak coupling regime.

A. Perturbative solution

Note that in the weak coupling regime, the gap equation
is expected to reproduce the perturbative result for the
electron propagator. In the chiral limit (m0 ¼ 0), the
leading logarithmic expansion for the wave function
renormalization in quenched RQED at one-loop order reads

Fðk2Þ ¼ 1þ αϱ

π
ðκ − ϕÞ log

�
k2

Λ2

�
þ 2

3

αϱ

π
ϕ; ð53Þ

where the last term in the above Eq. (53), parametrized by
the constant ϕ ¼ χ − 1=3, spoils the power law behaviour
of Fðk2Þ, Eq. (43). This term is spurious. It does not appear
if we work in the dimensional regularization scheme. Just
like in QED4, its presence owes itself to the use of the cutoff
regulator which we cannot avoid for the nonperturbative
treatment presented in the next section. The good news is
that just like in QED4, we can cure the inadequacy of the
cutoff regulator by an appropriate use of the WFGTI which
ensures this spurious term is formally removed. It is
achieved by redefining χ and κ as prescribed through
Eqs. (44), (45). To clarify how to achieve this, we focus on
the survey of two special cases:

Case 1: Let us choose not to apply the WFGTI in any
term of the kernel of the gap equation. It is equivalent
to taking η ¼ κ in Eqs. (44), (45). It implies making
the following shift:

χ → χ0 ¼ ð1 − ϵeÞð1 − ξÞ; ð54Þ

κ → κ0 ¼ 0; ð55Þ

yielding ϕ ¼ −ðξ − 1=3Þ=2.
Case 2: Like the case of QED4, we can be selective in
applying the WFGTI on a redefined longitudinal part
of the photon propagator such that ϕ ¼ 0. According
to Eqs. (44), (45), it entails making the shift

χ → χ̃ ¼ 1=3; ð56Þ

κ → κ̃ ¼ ϵe − 2=3þ ξð1 − ϵeÞ: ð57Þ

In this second case, the wave function renormaliza-
tion exhibits the power law behavior of Eq. (43)
in the leading logarithmic approximation with
β ¼ αðξ − 1=3Þ=ð4πÞ as stated before.

It is also worth noticing that for both the cases consid-
ered, we have

1

Fðk2Þ −
1

Fðp2Þ ¼ −
α

4π

�
ξ −

1

3

�
log

�
k2

p2

�
; ð58Þ

which proves to be a useful guide to express the one-loop
corrections to the electron-photon vertex in terms of the
electron dressing functions, as we study in Sec. IV, thus
helping us construct a nonperturbative ansatz for the
electron-photon vertex.
So far, we have shown that ensuring the MR for the

massless electron propagator, i.e., the power law behavior
of Eq. (43), at the one-loop level only requires a specific
shifting of χ and κ, cf. Eqs. (56), (57). However, two-loop
and higher order perturbative expansions of the electron
propagator and its gauge covariance will be sensitive to the
choice of the vertex ansatz. For the sake of comparison, we
compute the two-loop contributions to the electron dressing
functions for the bare vertex (Γμ ¼ γμ) and the BC-vertex,
Eqs. (12), (13). For this purpose, we first compute the one-
loop corrections to F and M from Eqs. (47), (48) for the
case of a small mass (i.e., we neglect squared mass terms).
The result is used recursively in the gap equation in order to
compute two-loop contributions. Up to leading logarithmic
terms, we arrive at the following expressions:

Fðk2Þ ¼ 1þ β log

�
k2

Λ2

�
þ 1

2
ΦFβ

2 log2
�
k2

Λ2

�
; ð59Þ

Mðk2Þ
m0

¼ 1þ λ log

�
Λ2

k2

�
þ 1

2
ΦMλ2 log2

�
Λ2

k2

�
; ð60Þ

where β ¼ αϱðκ − χ þ 1=3Þ=π in consonance with the one-
loop expansion for F, Eq. (53), and λ ¼ 8αϱ=ð3πÞ.
Moreover, for the bare vertex we have

ΦF¼ðκþχ−1=3Þ=ðκ−χþ1=3Þ;
ΦM¼f23þ6ðκþχÞ−3ðκ−χÞ½8þ3ðκ−χÞ�g=32; ð61Þ

and for the BC vertex

ΦF ¼ ðκ − χ þ 4=3Þ=ðκ − χ þ 1=3Þ;
ΦM ¼ f40 − 3ðκ − χÞ½1þ 3ðκ − χÞ�g=32: ð62Þ

It is important to notice from Eqs. (59), (60) that a power
law solution for F and M, cf. Eq. (53), demands
ΦF ¼ ΦM ¼ 1. However, there is no shift in χ and κ that
ensures this requirement. Moreover, for both bare and BC
vertices, the mass function picks up a gauge dependence at
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second order in perturbation theory via κ ∼ ξ in ΦM.
These results show that even the full longitudinal
vertex fails to ensure the local gauge covariance of the
electron propagator and highlights the necessity of incor-
porating a transverse component for the electron-photon
vertex.
In order to elucidate the analytical structure of the

transverse vertex and its impact on the gauge covariance
of the electron propagator, it is worth realizing that the
leading logarithmic contributions to F andM at two loops,
Eqs. (59), (60), arise from integrals of the form

Z
Λ

k

dp
p

¼ 1

2
log

�
Λ2

k2

�
;

Z
Λ

k

dp
p

log

�
p2

Λ2

�
¼ 1

4
log2

�
Λ2

k2

�
;

which in turn correspond to evaluating the integrals in the
so-called asymptotic regime where p2 ≫ k2 ≫ m2

0. Since
the two-loop contributions to the electron propagator are
determined by the one-loop corrections of the electron-
photon vertex, in particular its transverse pieces, we
reaffirm that not only a proper treatment of the photon
propagator and an adequate use of the WFGTI are essential
to study the gap equation but an inclusion of a refined
transverse vertex is also required to incorporate the con-
straints of gauge covariance and perturbation theory as
advocated before as well.

B. Nonperturbative solution and the DCSB

In order to compute non perturbative solutions of the
electron SDE or the gap equation, Eq. (39), it is necessary
to choose an ansatz for the electron-photon vertex defined
through Eqs. (11), (12), (16), (17). We compute dynami-
cally generated massive solutions for the electron propa-
gator in the chiral limit, i.e., when the bare electron mass
m0 ¼ 0. In this case, the electron mass generated is entirely
dynamical in nature. In particular, we compute ME ¼
Mðk2Þ which can be interpreted as the Euclidean mass.
Note that the only mass scale available in quenched RQED
is the ultraviolet regulator Λ. The dynamically generated
mass ME is naturally proportional to it. Therefore, we
choose to plot ME=Λ as a function of the electromagnetic
coupling α. At α ¼ αc, a DCSB solution emerges, bifurcat-
ing away from the perturbative solution ME ¼ 0 which
corresponds to the fact that no electron mass is generated at
any order in perturbation theory if we start from the bare
mass m0 ¼ 0. As αc separates the phase of massless
electrons from that of massive electrons, we expect it to
be gauge invariant just as the Euclidean mass itself.1 Note

that we only depict results after the appropriate use of the
WFGTI in the kernel of the gap equation. To start with, we
compare the results of the following two vertices:

(i) Bare, with λ1 ¼ 1 and λ2;3 ¼ τ1;2;…;8 ¼ 0.
(ii) Our ansatz, with λ1;2;3 defined in Eq. (13) and all τ’s

set to zero except τ6 defined in Eq. (37)
with a6 ¼ −1=2.

Figure 3 clearly depicts the fact that the bare vertex results
in a considerable amount of undesirable gauge dependence
in the Euclidean mass ME and αc. We now repeat the
exercise for our proposed vertex ansatz which not only
agrees with the asymptotic one-loop result for the full
vertex but also guarantees the wave-function renormaliza-
tion to be MR in the leading logarithmic approximation,
see Fig. 4.
The gauge independence is almost magically instated.

We find that our choice of the vertex yields αcðξÞ ≈ 0.212.

FIG. 3. Dynamically generated dimensionless Euclidean mass
ME=Λ as a function of the electromagnetic coupling α for the
bare vertex ansatz for different values of the covariant gauge
parameter ξ. The gauge dependence of ME=Λ and αc is notice-
ably sizable even in a small interval of ξ ¼, i.e., (0,1).

FIG. 4. Dynamically generated dimensionless Euclidean elec-
tron mass ME=Λ as a function of the electromagnetic coupling α
for our proposed vertex construction for different values of the
covariant gauge parameter ξ. Both ME=Λ and αc are now
practically gauge independent.

1It is the Minkowski pole mass which should strictly be gauge
invariant. However, asME lies close toMð0Þ, we would expect it
to be at least nearly gauge invariant.
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We confirm that the α dependence of ME=Λ in the close
vicinity of αc satisfies Miransky scaling law, see Fig. 5:

ME

Λ
¼ Exp

�
−

πκ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α=αc − 1

p þ κ2

�
; ð63Þ

where κ1 ¼ 0.051 and κ2 ¼ −12.857.
At this point, it appears worth its while to plot the

dynamical massME=Λ as a function of the covariant gauge
parameter ξ, Fig. 6. We choose α ¼ 0.35 merely as a
representative value to bring out the stark difference
between the two truncation schemes as regards the gauge
dependence of this physical observable. It is remarkable to
note the potency of our proposal in this connection.
We also plot αcðξÞ to have a more quantitative insight

into its gauge (in)dependence, Fig. 7. Moreover, one
might consider it illustrative to also compare the results
with the following two vertices occasionally adopted in
literature:

(i) Central Ball-Chiu (CBC), with λ1 defined in
Eq. (13) and λ2;3 ¼ τ1;2;…;8 ¼ 0.

(ii) Ball-Chiu (BC), with λ1;2;3 defined in Eq. (13)
and τ1;2;…;8 ¼ 0.

Notably the bare vertex and the CBC-vertex perform
almost equally badly. The BC vertex reduces the gauge
dependence. However, our proposal renders αc practically
gauge independent. These observations naturally lead us to
conclude the article on a positive note.

VII. CONCLUSIONS AND PERSPECTIVES

It is quite satisfactory to observe that a truncation of the
infinite tower of SDEs which respects key features of the
underlying quantum field theory of RQED, namely, its
discrete symmetries, matching with perturbation theory in
the domain of weak coupling and the MR of the massless
electron propagator expectedly leads to practically gauge
invariant results, within the interval (0,1) of the gauge
parameter ξ for the observables under study, i.e., the
dynamically generated Euclidean mass and the critical
coupling which marks the onslaught of DCSB. What is
remarkable is that only one transverse form factor τ6ðk; pÞ
suffices to construct our vertex ansatz and to achieve the
goal we set ourselves. Having constructed a reliable
truncation of the infinite tower of the SDEs, we believe
we are now in a pole position to study the physical
properties of graphene and other relevant materials of
interest within this formalism. This is for the future.
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FIG. 5. Miransky scaling using our vertex for ξ ¼ 1=3.
FIG. 7. The critical coupling αc as a a function of the covariant
gauge parameter ξ for four different choices of the vertex ansatz,
mentioned in the text.

FIG. 6. Dynamically generated dimensional Euclidean mass as
a function of the covariant gauge parameter ξ for the bare vertex
and our proposed vertex ansatz. We choose α ¼ 0.35 to
draw the plot.
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