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It is known that mixed quantum states are highly entropic states of imperfect knowledge (i.e., incomplete
information) about a quantum system, while pure quantum states are states of perfect knowledge (i.e.,
complete information) with vanishing von Neumann entropy. In this paper, we propose an information
geometric theoretical construct to describe and, to a certain extent, understand the complex behavior of
evolutions of quantum systems in pure and mixed states. The comparative analysis is probabilistic in nature,
it uses a complexity measure that relies on a temporal averaging procedure along with a long-time limit, and
is limited to analyzing expected geodesic evolutions on the underlying manifolds. More specifically, we
study the complexity of geodesic paths on the manifolds of single-qubit pure and mixed quantum states
equipped with the Fubini-Study metric and the Sjöqvist metric, respectively. We analytically show that the
evolution of mixed quantum states in the Bloch ball is more complex than the evolution of pure states on the
Bloch sphere. We also verify that the ranking based on our proposed measure of complexity, a quantity that
represents the asymptotic temporal behavior of an averaged volume of the region explored on the manifold
during the evolution of the systems, agrees with the geodesic length-based ranking. Finally, focusing on
geodesic lengths and curvature properties in manifolds of mixed quantum states, we observed a softening of
the complexity on the Bures manifold compared to the Sjöqvist manifold.
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I. INTRODUCTION

We divide the Introduction in three parts to better
motivate the selection of our goals along with their physical
relevance. In the first part, we highlight the use of geo-
metric concepts originally introduced in quantum comput-
ing and later borrowed by high energy physicists to
describe and, to a certain extent, understand the behavior
of black holes. In particular, we emphasize the geometric
characterization of some complexity notions, including
gate complexity and state complexity. In the second part,
we outline several distinguishing features that characterize
the physics of systems specified by pure and mixed
quantum states. Neither geometry nor complexity are
mentioned in this second part. In the third part, we finally
describe our main objectives.

A. Geometry in quantum computing
and high energy physics

Geometry plays a fundamental role in science [1,2],
including quantum computing and high energy physics. In
Ref. [3], Nielsen and collaborators used methods of
Riemannian geometry to propose a way of finding efficient
quantum circuits capable of performing certain computa-
tional tasks. They proposed a geometric measure of
quantum algorithm complexity for quantum circuits con-
structed with unitary gates. Their formalism led to a

geometric continuous-time version of the discrete gate
complexity, a measure of complexity quantifying how
difficult it is to build a unitary operator [4,5]. In such
geometric context, finding optimal quantum circuits is
equivalent to finding the shortest path between two points
in a certain curved geometry. Essentially, one introduces a
Riemannian metric in the space of unitary operators acting
on a given number of qubits. The metric quantifies how
difficult it is to implement a given quantum computational
task. Then, the distance induced by the metric in the space
of unitary operators is employed as a measure of the
complexity of the quantum operation. In addition to gate
complexity, one can also introduce in quantum information
science the concept of quantum computational complexity
of a state, a measure quantifying how difficult it is to build a
unitary transformation that transforms the reference state to
the target state [4]. Geometric concepts (including actions,
path lengths, volumes, and complexity) play a fundamental
role in high energy physics as well. For instance, quantum
computational complexity measures of geometric origin
appear to play a fundamental role in encoding properties of
the interiors of black holes [6].
In Refs. [7,8], it was shown that the quantum computa-

tional complexity of the dual quantum state is proportional
to the spatial volume of the Einstein-Rosen bridge (i.e., a
structure linking two sides of the Penrose diagram of an
eternal anti–de Sitter black hole). In Refs. [9,10], it was
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argued that the quantum computational complexity of a
holographic state is proportional to the action of a certain
spacetime region termed Wheeler-DeWitt patch. For very
insightful applications of Nielsen’s geometric approach to
quantum computational complexity of states and gates in
the single-qubit and multiqubit scenarios of special rel-
evance in high energy physics, we refer to Refs. [11,12],
respectively. The analysis in Ref. [11] is rather illuminating
because it clearly shows the effects of replacing a non-
deformed Bloch sphere equipped with the usual Fubini-
Study metric with a deformed Bloch sphere with a new
metric that does not treat all directions in the tangent space
in a similar manner. Indeed, in Nielsen’s geometric
approach, the single-qubit Hilbert space is equipped with
a metric that stretches directions that are difficult to move
in, assigning them a large distance. Two main conse-
quences of this new metric can be summarized as
follows: First, geodesics are no longer generated by
time-independent Hamiltonians. Second, suitable choices
of the anisotropy penalty factors specifying the new metric
can lead to spaces with negative sectional curvature. This,
in turn, is responsible for the chaotic growth of perturba-
tions (i.e., exponential maximal complexity). For a work
focusing on the connection between a geometric measure
of quantum computational complexity and negative curva-
ture, we refer to Ref. [13].
The work in Ref. [12] attracts great interest for several

reasons, including the fact that it addresses the issue of
ergodicity of geodesics on manifolds of negative curvature.
This is especially important in view of a potential appli-
cation of thermodynamical arguments to complexity evo-
lution. As previously pointed out, Nielsen’s approach to
quantum computation defines a geometric measure on the
space of unitary operators. In Ref. [14], instead, the Fubini-
Study metric is used to define a geometry on the space of
states to propose a complexity measure assigned to a target
state. This complexity is the minimal distance as measured
by the Fubini-Study metric among all parametrized curves
on the space of states that connect the reference state to the
desired target state. Within this approach, the Fubini-Study
metric accounts for the complexity by keeping track of the
changes of the state (by means of applications of unitary
operations) throughout the preparation of the target state. In
Ref. [15], a notion of mixed state complexity is extended to
impure quantum states by replacing the Fubini-Study
metric with the Bures metric (or, alternatively, the quantum
Fisher information metric) and, at the same time, extending
the nature of quantum transformations acting on the state to
nonunitary operations. Finally, following what happens for
pure states, the complexity of mixed states is identified with
the (Bures) length of the geodesic connecting the reference
and target mixed states. To a certain extent and to the best of
our knowledge, given the novelty of the introduction of the
concept of mixed state complexity, no comparative analysis
exists in the literature between complexity behaviors

associated with physical systems specified by pure and
mixed states. We intend to cover this point in this paper.

B. Pure and mixed quantum states

In quantum information science, when one has complete
knowledge about a quantum system, one can use a pure
state to describe it. However, complete knowledge is only
available in limiting ideal (noiseless) scenarios (i.e., iso-
lated/closed quantum systems). In practice, one only has
partial knowledge about a quantum system. Indeed, small
errors may happen in the preparation, evolution, or meas-
urement of the system due to imperfect devices or to
(external) coupling with other degrees of freedom outside
of the system that one is controlling. In these realistic
(noisy) cases (i.e., open quantum systems), quantum
systems are described by mixed states. These states are
specified by classical probability distributions over pure
states and are used to represent our probabilistic ignorance
of a pure state. The density operator formalism is a very
powerful mathematical tool for incorporating a lack of
complete knowledge about a quantum system. Within this
formalism, the “quantumness” of the system resides in the
off-diagonal entries of the density matrix. These are
interference terms between the pure states that specify
the mixture that defines the mixed state. A particular
measure of noisiness of a quantum state is the purity

PðρÞ ¼def Trðρ2Þ of a density operator ρ. The purity of a pure
state is equal to one, and the purity of a mixed state is
strictly less than one with 1=N ≤ PðρÞ ≤ 1 for an N × N
density matrix. The departure of a system from a pure state
can also be quantified by means of the von Neumann

entropy SvNðρÞ ¼def − Trðρ log ρÞ. This quantity specifies the
degree of mixing of the state describing a given finite-
dimensional quantum system. For a pure state, the van
Neumann entropy vanishes. Instead, for a maximally mixed
state characterized by the complete absence of off-diagonal
entries in the density matrix (thus, describing something
noninterfering and seemingly classical), the von Neumann
is maximal and equals logð2Þ for a qubit system.
To the best of our knowledge, there does not exist any

comparative geometric analysis of the complexity of pure
and mixed states in the literature. From an intuitive stand-
point, there are several reasons why one expects mixed
states to be more complex than pure states:

(i) Mixed states are generally used to describe highly
entropic systems that can exhibit a temperature
higher than the one specifying systems in a pure
state. In statistical mechanics, for instance, a physical
system at thermal equilibrium is described by a
thermal (Gibbs) state [16]. The Gibbs state is a mixed
state with a well-defined finite temperature value.
However, at zero temperature [i.e., β ¼defðkBTÞ−1 →
∞ with kB denoting the Boltzmann constant), the
system is in a pure state. In this limiting case, the
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density matrix has every element zero except for a
single element on the diagonal. At infinite temper-
ature (i.e., β → 0), instead, the system is in a
maximally mixed state (i.e., a mixture of pure
states with equal statistical weights). For example,
consider a spin-1=2 particle in a stationary and
uniform magnetic field B0 along the z direction.
The Hamiltonian of the system can be written as

H ¼defðℏω0=2Þσz with ω0 ¼defðeB0Þ=m. Clearly, e and
m denote the electric charge and the mass of the

electron, respectively. Moreover, ℏ ¼def h=ð2πÞ is the
reduced Planck constant and, finally, σz is the Pauli
phase flip operator. At thermal equilibrium, the

density matrix of the system is given by ρTEðβÞ ¼def
e−βH=Trðe−βHÞ. A simple calculation shows that
ρTEðβÞ becomes a maximally mixed (or pure) state
as T approaches infinity (or zero). For a definition of
temperature of arbitrary quantum states, beyond
thermal (Gibbs) states used for physical systems at
thermal equilibrium, we refer to Ref. [17]. The
temperature quantifies the ability of a quantum
system to cool downor heat up a thermal environment
in Ref. [17]. Finally, for a scheme to measure the
temperature of individual pure quantum states by
means of quantum interference, we refer to Ref. [18].

(ii) Systems in mixed states are less quantum (or,
alternatively, more classical) than systems in pure
states. In Ref. [19] it is proven that entanglement, a
quintessential quantum property of physical sys-
tems, is typical of pure states, while separability is
connected with quantum mixtures. For intriguing
connections of geometric flavor among purity,
separability, and complex behavior in quantum
scattering processes, we refer to Refs. [20,21]. In
stead, for possible justifications of why chaoticity
viewed as temporal complexity is softer in quantum
systems compared with classical systems, we hint at
Refs. [22–26]. Furthermore, it is known that the
existence of speed limits is not something peculiar to
quantum systems [27–29]. Indeed, there are speed
limits for classical systems as well [30–32]. In
Ref. [32], it was shown that the quantum counterpart
of the classical speed limits derived in Ref. [30] are
obtained by quantum systems specified by density
operators describing states that become more and
more mixed as ℏ approaches zero.

(iii) Mixed quantum states can undergo a richer variety
of transformations compared to pure states [33]. In
open system dynamics, one needs to consider
general nonunitary quantum evolutions and have
the freedom to choose a variety of distance measures
between quantum states. Decoherence and measure-
ments are examples of noncontrollable and control-
lable nonunitary processes, respectively. Quantum
channels, for instance, provide us with a formalism
for discussing decoherence, the nonunitary evolu-
tion of pure states into mixed states [34]. In conven-
tional formulations of quantum mechanics, instead,
pure states can only be connected in a unitary
fashion. Moreover, the choice of geometric distance
measures between pure states is more restrained than
that between impure states.

(iv) Mixed states evolutions can exhibit higher speed
values than the ones of pure state temporal changes.
In Ref. [35], it is shown that the time optimal mixed
state evolution can be faster than the time optimal
pure state evolution. In Ref. [29], it is demonstrated
that non-Markovian (i.e., memory) effects can speed
up nonunitary quantum evolutions of arbitrarily
driven open quantum systems. In Ref. [36], it is
pointed out that finding the optimal unitary for
mixed target states is more challenging than for
pure target states.

(v) Mixed qubit states have three local degrees of
freedom, while pure qubit states only have two
local degrees of freedom. From a pure geometric
perspective, it is reasonable to expect that mixed
states are more complex than pure states [37]. For
instance, unlike what happens in optimal-speed
unitary evolutions of systems in pure states, tight
evolutions of closed quantum systems in mixed
states are typically generated by time-varying Ham-
iltonians [37]. We refer to Table I for a schematic
description of physical systems in pure and mixed
quantum states in terms of purity, von Neumann
entropy, temperature, and entanglement.

Given the lack of a geometric comparative analysis
between the complex behaviors exhibited by physical
quantum systems specified by pure and mixed quantum
states and, in addition, given the variety of distinguishing
physical features that characterize the evolution of systems
specified by pure and mixed quantum states, we intend to
capture here the complexity of these evolutions from a

TABLE I. Schematic description of physical systems in pure and mixed quantum states in terms of purity, von
Neumann entropy, temperature, and entanglement.

Knowledge
of system

Type of
state Purity

Von Neumann
entropy Temperature Entanglement

Complete Pure Maximal Minimal Low Typical
Partial Mixed Not maximal Not minimal High Less typical
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geometric standpoint and provide a geometrical picture of
these physical differences.

C. Our goals

In this paper, we aim to provide a comparative informa-
tion geometric analysis of the complexity of geodesic paths
of pure and mixed quantum states on the Bloch sphere and
in the Bloch ball, respectively. Our investigation is partially
inspired by the above mentioned geometrically flavored
investigations. Furthermore, it is motivated by our curiosity
concerning the possibility of describing and, to a certain
extent, understanding from a geometric viewpoint the
previously mentioned fingerprints of a greater degree of
complexity of mixed quantum states. Finally, it relies on
our insights into the concepts of complexity [38], geometric
formulations of optimal-speed Hamiltonian evolutions on
the Bloch sphere [39,40], and the role played by the
thermodynamic length and divergence (or, alternatively,
action) in studying the complexity of minimum entropy
production probability paths in quantum mechanical evo-
lutions [41,42]. The main questions that we address in this
paper can be summarized as follows:

(i) Can we gain physical insights by identifying the
distinguishing features that characterize the geom-
etry along evolution of pure and mixed quantum
states?

(ii) Expressing the concept of complexity in terms of
volumes of explored regions on curved manifolds,
do geodesic paths on manifolds of mixed quantum
states exhibit a higher degree of complexity com-
pared to the complexity of geodesic paths emerging
from the geometry along the evolution of pure
quantum states?

(iii) Does the choice of the metric on the space of mixed
quantum states have crucial observable physical
effects on the complexity of the underlying geodesic
paths?

The layout of the rest of the paper is as follows. In Sec. II,
we introduce our proposed measure of complexity of
geodesic paths on curved manifolds. In Sec. III, we
introduce the geodesic paths on manifolds of pure and
mixed states emerging from the Fubini-Study and the
Sjöqvist metrics, respectively. In Sec. IV, we study the
complexity of the geodesic paths expressed in terms of
temporal averages of volume regions explored by the
physical systems during the quantum evolutions. In
Sec. V, we include several physics considerations, includ-
ing comments on the concepts of metric, path length, and
curvature employed in our analysis. These comments also
help to emphasize the physical significance of our proposed
complexity measure. In Sec. VI, we present our final
remarks. Finally, several technical details, including a
comparative analysis between the Sjöqvist and the Bures
metrics for mixed quantum states, appear in Appendixes A,
B, C, D, E, and F.

II. INFORMATION GEOMETRIC COMPLEXITY

In this section, we present the notion of information
geometric complexity (IGC) along with the concept of
information geometric entropy (IGE). These quantities will
help quantify how complex are the evolutions of pure and
mixed states. Before introducing formal details, let us
emphasize at the outset that the IGC is essentially the
exponential of the IGE. The latter, in turn, is the logarithm
of the volume of the parametric region explored by the
system during its evolution from an initial to a final
configuration on the underlying manifold. The IGE is an
indicator of complexity that was initially proposed in
Ref. [43] in the framework of the information geometric
approach to chaos (IGAC) [44]. For clarity, we mention in
this paper only the necessary information on the IGAC.
However, we recommend the interested reader to consider
the compact discussions on the IGAC in Refs. [45,46].
In what follows, we begin by presenting the IGE in its

original classical setting characterized by probability den-
sity functions. Obviously, when transitioning from classical
to quantum settings, parametrized families of probability
distributions are replaced by families of parametrized
density operators.
Assume that N-real valued variables ðξ1;…; ξNÞ para-

metrize the points fpðx; ξÞg of an N-dimensional curved
statistical manifold Ms,

Ms ¼def fpðx; ξÞ∶ξ ¼def ðξ1;…; ξNÞ ∈ Dtot
ξ g: ð1Þ

In addition, assume that the microvariables x specifying the
probability distributions fpðx; ξÞg are elements of the
(continuous) microspace X while the macrovariables ξ
belong to the parameter space Dtot

ξ defined as

Dtot
ξ ¼def ðI ξ1 ⊗ I ξ2 ... ⊗ IξN Þ ⊆ RN: ð2Þ

Note that Iξj in Eq. (2) is a subset of RN and characterizes
the range of acceptable values for the statistical macro-
variables ξk with 1 ≤ k ≤ N. Within the IGAC framework,
it is argued that the IGE is a good measure of temporal
complexity of geodesic paths on Ms. The IGE is given by

SMs
ðτÞ ¼def log fvol½DξðτÞ�; ð3Þ

with the average dynamical statistical volume fvol½DξðτÞ�
being defined as

fvol½DξðτÞ� ¼def
1

τ

Z
τ

0

vol½Dξðτ0Þ�dτ0: ð4Þ

Note thatDξðτ0Þ in Eq. (4) is an N-dimensional subspace of

Dtot
ξ ⊆ RN whose elements fξgwith ξ ¼def ðξ1;…; ξNÞ satisfy

ξkðτ0Þ ≤ ξk ≤ ξjðτ0 þ τ0Þ with τ0 denoting the initial value
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taken by the affine parameter τ0 that characterizes the
geodesics on Ms as will be described in more detail
shortly. In Eq. (4), the temporal average operation is
denoted with the tilde symbol. We also emphasize thattwo
sequential integration procedures define fvol½DξðτÞ� in
Eq. (4). The first integration is defined on the explored
parameter space Dξðτ0Þ and leads to vol½Dξðτ0Þ�. Then, the
second integration describes a temporal averaging pro-
cedure, is performed over the duration τ of the evolution on
Ms, and finally yields fvol½DξðτÞ�. The volume vol½Dξðτ0Þ�
in the right-hand side of Eq. (4) is the volume of an
extended region on Ms and is given by

vol½Dξðτ0Þ� ¼def
Z
Dξðτ0Þ

ρðξ1;…; ξNÞdNξ: ð5Þ

Sincewe are limiting our present discussion to the IGE in the
context of a statistical manifold Ms of classical probability
distributions, ρðξ1;…; ξNÞ in Eq. (5) is the so-called Fisher
density and equals the square root of the determinant gðξÞ
of the Fisher-Rao information metric tensor gFRμν ðξÞ,
gFRðξÞ ¼def det ½gFRμν ðξÞ�. Therefore, ρðξ1;…; ξNÞ ¼def

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gFRðξÞ

p
.

Recall that in the continuous microspace setting, gFRμν ðξÞ is
defined as

gFRμν ðξÞ ¼def
Z

pðxjξÞ∂μ logpðxjξÞ∂ν logpðxjξÞdx; ð6Þ

with ∂μ ¼def ∂=∂ξμ. Note that vol½Dθðτ0Þ� in Eq. (5) assumes a
more simple expression for manifolds equipped with metric
tensors specified by factorizable determinants,

gðξÞ ¼ gðξ1;…; ξNÞ ¼
YN
k¼1

gkðξkÞ: ð7Þ

In such a scenario, the IGE in Eq. (3) reduces to

SMs
ðτÞ

¼ log

�
1

τ

Z
τ

0

�YN
k¼1

�Z
τ0þτ0

τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk½ξkðηÞ�

q dξk

dη
dη

��
dτ0
�
: ð8Þ

We remark the gðθÞ is not factorizable when the micro-
variables fxg are correlated. Therefore, in this case, one is
forced to use the general definition of the IGE. We refer to
Ref. [47] for a study on the effects of microscopic correla-
tions on the IGE of Gaussian statistical models.
In the IGAC theoretical setting, the leading asymptotic

behavior of SMs
ðτÞ in Eq. (8) characterizes the complexity

of the statistical models being analyzed. To this end, we
consider the leading asymptotic term in the equation for
the IGE,

Sasymptotic
Ms

ðτÞ ∼ lim
τ→∞

½SMs
ðτÞ�: ð9Þ

Observe that Dξðτ0Þ specifies the domain of integration that
appears in the expression of vol½Dξðτ0Þ� in Eq. (5), and is
defined as

Dξðτ0Þ ¼deffξ∶ξkðτ0Þ ≤ ξk ≤ ξkðτ0 þ τ0Þg; ð10Þ

where τ0 ≤ η ≤ τ0 þ τ0 and τ0 is the initial value of the
affine parameter η. In Eq. (10), ξk ¼ ξkðηÞ satisfies the
geodesic equations

d2ξk

dη2
þ Γk

ij
dξi

dη
dξj

dη
¼ 0; ð11Þ

with Γj
ik in Eq. (11) being the usual Christoffel connection

coefficients,

Γk
ij ¼def

1

2
gklð∂iglj þ ∂jgil − ∂lgijÞ: ð12Þ

Note that the elements of Dξðτ0Þ in Eq. (10), an
N-dimensional subspace ofDtot

ξ , are N-dimensional macro-
variables fξg with components ξj bounded by fixed
integration limits ξjðτ0Þ and ξjðτ0 þ τ0Þ. The temporal
functional form of such limits can be determined by
integrating the N-coupled nonlinear second order
(Ordinary Differential Equations) ODEs in Eq. (11).
Having introduced the IGE, we term information geometric
complexity the quantity CMs

ðτÞ given by

CMs
ðτÞ ¼def fvol ½DξðτÞ� ¼ eSMs ðτÞ: ð13Þ

As mentioned earlier, we shall focus on the asymptotic
temporal behavior of the IGC as specified by
Casymptotic
Ms

ðτÞ ∼τ→∞ eSMs ðτÞ.
The IGC CMs

ðτÞ can be interpreted by explaining the
meaning of the IGE SMs

ðτÞ in Eq. (3). The IGE is an affine
temporal average of the N-fold integral of the Fisher
density over geodesics regarded as maximum probability
trajectories and, in addition, measures the number of the
explored macrostates in Ms. In particular, the IGE at a
given instant is the logarithm of the volume of the effective
parameter space navigated by the system at that specific
instant. The temporal averaging procedure in Eq. (4) is
introduced to average out the conceivably very complicated
fine details of the probabilistic dynamical description of the
system on Ms. Furthermore, the long-time limit in Eq. (9)
is used to properly specify the selected dynamical indica-
tors of complexity by neglecting the transient effects
which enter the calculation of the expected value of the
volume of the effective parameter space. In summary, the
IGE provides an asymptotic coarse-grained inferential

COMPLEXITY OF PURE AND MIXED QUBIT GEODESIC PATHS … PHYS. REV. D 106, 096004 (2022)

096004-5



characterization of the complex dynamics of a system in the
presence of partial knowledge. For further details on the
IGC and IGE, we refer to Refs. [38,48,49].
Our discussion has followed the original IGAC setting

where we assumed to deal with an underlying continuous
microspace yielding a macrospace equipped with a
classical Fisher-Rao information metric in its integral form.
However, shifting to a discrete microspace leading to
a macrospace with a Fisher-Rao information metric
expressed in terms of a summation is straightforward,

gFRμν ðξÞ ¼
XN
k¼1

1

pkðξÞ
∂pkðξÞ
∂ξμ

∂pkðξÞ
∂ξν

: ð14Þ

From Eq. (14), the Fisher-Rao infinitesimal line element
ds2FR becomes

ds2FR ¼ gFRμν ðξÞdξμdξν ¼
XN
k¼1

dp2
k

pk
; ð15Þ

where dpk ¼def ð∂μpkÞdξμ. Moreover, the parameters
fξkg1≤k≤N were originally viewed in the IGAC context
as statistical macrovariables emerging, for instance, as
suitable expectation values of the microvariables of the
physical system in the presence of partial knowledge.
However, due to the fact that in principle the IGE can
be fully constructed from a geometric standpoint once the
infinitesimal line element ds2 is known, its extension to
quantum manifolds of density matrices fρξðxÞg specified
by a set of parameters fξg with ξ ∈ Dtot

ξ ⊆ RN , including
experimentally controllable parameters such as temperature
and magnetic field intensity, is simple as well. For clarity,

note that ρξðxÞ ∈ MðquantumÞ
s replaces pξðxÞ ¼defpðx; ξÞ ∈

MðclassicalÞ
s with MðclassicalÞ

s equal to Ms in Eq. (1).
Clearly, to provide estimates of the IGE and of the IGC

in Eqs. (3) and (13), respectively, we need to first find the
geodesic paths on the manifolds. Therefore, in the next
section, we present the geodesic paths on the manifolds of
pure and mixed states equipped with the Fubini-Study and
Sjöqvist metrics, respectively.

III. GEODESIC PATHS

We introduce here the geodesic paths on manifolds of
pure and mixed states equipped with the Fubini-Study and
the Sjöqvist metrics, respectively.

A. Geodesic paths on the Bloch sphere:
The Fubini-Study metric

We begin by discussing geodesic paths on manifolds
of pure states equipped with the Fubini-Study metric. In
quantum mechanics, it is known that the only Riemannian

metric on the set of rays, up to a constant factor, which is
invariant under all unitary transformations is the angle in
Hilbert space (also known as the Wootters angle),

θWoottersðjψ ii; jψfiÞ ¼def arccos½jhψ ijψfij�; ð16Þ

with jψ ii and jψfi being two pure states. It is also known
that a concept of statistical distance can be defined between
different preparations of the same quantum system, or to
put it another way, between different rays in the same
Hilbert space [50]. This notion of statistical distance is
specified completely by the size of statistical fluctuations
taking place in measurements prepared to discriminate one
state from another. A major finding obtained byWootters in
Ref. [50] was showing that such statistical distance coin-
cides with the usual distance (i.e., angle) between rays. The
infinitesimal line element that corresponds to the Hilbert
space angle is the so-called Fubini-Study metric gFSμν ðξÞ, the
natural metric on the manifold of Hilbert space rays. The
physical interpretation of this metric in terms of statistical
fluctuations in the outcomes of intrinsically probabilistic
quantum measurements that aim at distinguishing one pure
state from another is a major result obtained in Ref. [50].
Before introducing the Fubini-Study metric gFSμν ðξÞ in an
explicit manner, we remark that the extension of Wootters’s
reasoning to the problem of distinguishing mixed quantum
states was carried out by Braunstein and Caves in Ref. [51].
In the case of mixed states, the Bures angle θBures and the
Bures metric gBuresμν ðξÞ replace the Hilbert space angle
θWootters and the Fubini-Study metric gFSμν , respectively.
The Bures angle represents the length of a geodesic joining
two density operators ρi and ρf and is given by

θBuresðρi; ρfÞ ¼def arccos ½FBðρi; ρfÞ�: ð17Þ

In Eq. (17), FBðρi; ρfÞ is the Bures fidelity defined as

FBðρi; ρfÞ ¼def
h
Tr
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ1=2i ρfρ
1=2
i

q 
i2
: ð18Þ

For clarity, we point out that using Eqs. (17) and
(18), θBuresðρi; ρfÞ equals arccosð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihψ ijρfjψ ii

p Þ when

ρi ¼def jψ iihψ ij. Furthermore, when both ρi and ρf are pure
states, θBuresðρi; ρfÞ reduces to θWoottersðjψ ii; jψfiÞ in
Eq. (16). Finally, for completeness, we remark here that
the Bures distance dBuresðρi; ρfÞ is different from the Bures
angle in Eq. (17) and is formally defined as

dBuresðρi; ρfÞ ¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FBðρi; ρfÞ

q ir
: ð19Þ

Returning to the formal introduction of gFSμν ðξÞ, consider
two neighboring single qubit pure states jψi and jψ̄i
defined as
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jψi¼def
X1
k¼0

ffiffiffiffiffi
pk

p
eiϕk jeki;

jψ̄i¼def
X1
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk þ dpk

p
eiðϕkþdϕkÞjeki; ð20Þ

respectively, with fjekig being an orthonormal basis of the
Hilbert space of single qubit state vectors. The infinitesimal
line element between jψi and jψ̄i in Eq. (20) is given by the
Fubini-Study metric ds2FS [51],

ds2FS¼def1 − jhψ̄ jψij2

¼ 1

4

X1
k¼0

dp2
k

pk
þ
�X1
k¼0

pkdϕ2
k −
�X1

k¼0

pkdϕk

�2�
: ð21Þ

Using the Bloch sphere parametrization of single qubit
states,

jψi ¼ jψðθ;φÞi¼def cos
�
θ

2

�
j0i þ eiφ sin

�
θ

2

�
j1i; ð22Þ

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π, we get by comparing
Eqs. (20) and (22) that

p0ðθ;φÞ ¼ cos2
�
θ

2

�
; p1ðθ;φÞ ¼ sin2

�
θ

2

�
;

ϕ0ðθ;φÞ ¼ 0; ϕ1ðθ;φÞ ¼ φ: ð23Þ

Therefore, substituting Eq. (23) into Eq. (21), the Fubini-
Study metric ds2FS reduces to

ds2FS ¼ gFSμν ðξÞdξμdξν ¼
1

4
½dθ2 þ sin2ðθÞdφ2�: ð24Þ

In Eq. (24), gFSμν ðξÞ is the Fubini-Study metric tensor, 1 ≤ μ,

ν ≤ 2, and ξ ¼ ðξ1; ξ2Þ ¼defðθ;φÞ. For completeness, we
point out that the Fubini-Study distance between two
antipodal (i.e., orthogonal) states on the Bloch sphere is
π=2. Instead, the geodesic distance between two antipodal
states is π. Indeed, ds2FS ¼ ð1=4Þds2BSM where ds2BSM
denotes the Bloch sphere metric (BSM) defined as [52]

ds2BSM ¼def dn̂ · dn̂: ð25Þ

In Eq. (25), n̂ is the unit vector in R3 given by

n̂ ¼def hψðθ;φÞjσ⃗jψðθ;φÞihψðθ;φÞjψðθ;φÞi
¼ ðsinðθÞ cosðφÞ; sinðθÞ sinðφÞ; cosðθÞÞ; ð26Þ

with σ⃗ ¼def ðσx; σy; σzÞ being the Pauli vector operator and
jψðθ;φÞi given in Eq. (22). From Eq. (24), the only
nonvanishing Christoffel connection coefficients are

Γ1
22 ¼ − sinðθÞ cosðθÞ; Γ2

12 ¼ Γ2
21 ¼

cosðθÞ
sinðθÞ : ð27Þ

Therefore, geodesic paths satisfy the geodesic equations in
Eq. (11) being specified by the following system of two
coupled second order nonlinear ODEs:

θ̈ − sinðθÞ cosðθÞ _φ2 ¼ 0; φ̈þ 2
cosðθÞ
sinðθÞ

_θ _φ ¼ 0; ð28Þ

where _θ ¼def dθ=dη with η being an affine parameter.
Integration of Eq. (28) under suitable working conditions
yields geodesic paths given by

θðηÞ ¼ cos−1½aFS sinðηÞ�;
φðηÞ ¼ φi þ tan−1½cFS tanðηÞ�; ð29Þ

where a2FS¼def1−c2FS and cFS ¼ cFSðθi; _φiÞ ¼def _φi sin2ðθiÞ ¼
const. Note that both θðηÞ and φðηÞ in Eq. (29) are bounded
functions for any η ≥ 0. We remark that the speed of
evolution along these paths is constant and equals

vFS¼defð1=2Þ½_θ2 þ sin2ðθÞ _φ2�1=2. For a detailed derivation
of the relations in Eq. (29) along with their extension to
arbitrary working conditions, we refer to Appendix A.
Having found the geodesic paths in Eq. (29), we focus
now on geodesics on manifolds of mixed quantum states
equipped with the Sjöqvist metric.

B. Geodesic paths in the Bloch ball:
The Sjöqvist metric

We begin by mentioning the motivation underlying
the introduction of the Sjöqvist metric from a practical
standpoint in science. From a physical standpoint, the
Sjöqvist metric can be related to measurable quantities in
suitably prepared interferometric measurements. For this
reason, it is sometimes called “interferometric” metric. The
metric can be regarded as the infinitesimal distance
δs2ðρ; ρþ δρÞ ≈ gð_ρ; _ρÞδt2 between two neighboring
mixed states ρ and ρþ δρ with δρ ¼ _ρδt. The mixed state
ρ encodes the internal degree of freedom of a particle
entering a Mach-Zehnder interferometer with two beam

splitters. The mixed state ρ0 ¼def ρþ δρ equals UρU† with U
being a unitary applied to the particle for a small but finite
time δt. From an experimental standpoint, the line element
δs2 is related to the probability P0 of finding the particle in
the 0-beam (that is, the beam where the unitary trans-
formation U was applied) after passing the second beam
splitter. In particular, up to the leading nontrivial order in δt,
one finds that P0 ¼ 1 − ð1=4Þδs2. For more details on a
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direct experimental access to the Sjöqvist line element, we
refer to Refs. [53,54]. In Ref. [54], the Sjöqvist metric is
generalized by extending its applicability to degenerate
density matrices as well. Interestingly, studying finite-
temperature equilibrium phase transitions, dramatically
different behaviors between the Sjöqvist and the Bures
metrics are noticed in Ref. [54]. Specifically, the Sjöqvist
metric appears to be more sensitive to the change in
parameters than the Bures one. Indeed, unlike what
happens for the Bures metric, the Sjöqvist metric infers
both zero-temperature and finite-temperature phase tran-
sitions. We will return to this point on the difference
between the Sjöqvist and Bures metrics later in our
paper.
Resuming the formal introduction of the Sjöqvist metric,

consider two rank-two neighboring nondegenerate density
operators ρðtÞ and ρðtþ dtÞ connected via a smooth path
t ↦ ρðtÞ characterizing the evolution of a quantum system.
The nondegeneracy requirement assures that the gauge
freedom in the spectral decomposition of the density
operators is represented by the phase of the eigenvectors.
This, in turn, implies there is a one-to-one correspondence
between a rank-two nondegenerate density operator ρðtÞ
and the set of two orthogonal rays feiϕkðtÞjekðtÞi∶0 ≤
ϕkðtÞ < 2πg that specify the spectral decomposition along
the path t ↦ ρðtÞ. Clearly, if some nonzero eigenvalue of
ρðtÞ was degenerate, the above mentioned correspondence
would not be valid any longer. The infinitesimal line
element between ρðtÞ and ρðtþ dtÞ in the working
assumption that f ffiffiffiffiffiffiffiffiffiffiffi

pkðtÞ
p

eiϕkðtÞjekðtÞigk¼0;1 represents
the spectral decompositions along the path t ↦ ρðtÞ is
given by the Sjöqvist metric ds2Sjöqvist [53],

ds2Sjöqvist¼def min ½d2ðt; tþ dtÞ�; ð30Þ

with d2ðt; tþ dtÞ defined as

d2ðt; tþdtÞ ¼def
X1
k¼0

k
ffiffiffiffiffiffiffiffiffiffiffi
pkðtÞ

p
eiϕkðtÞjekðtÞi

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkðtþdtÞ

p
eiϕkðtþdtÞjekðtþdtÞik2: ð31Þ

Following the line of reasoning in Ref. [53], ds2Sjöqvist can be
recast as

ds2Sjöqvist ¼
1

4

X1
k¼0

dp2
k

pk
þ
X1
k¼0

pkds2k; ð32Þ

where dpk ¼ _pkdt and, recalling Ref. [55], ds2k in Eq. (32)
is the Fubini-Study metric along the pure state jeki

ds2k ¼defh_ekjð1̂− jekihekjÞj_eki
¼hdekjdeki− jhekjdekij2; ð33Þ

with 1̂ being the identity operator on the Hilbert space of
single qubit quantum states. Using the Bloch sphere para-
metrization of single qubit mixed states in the Bloch ball,
we have

ρ ¼ 1̂þ r⃗ · σ⃗
2

¼ 1

2

�
1þ r cosðθÞ r sinðθÞe−iφ
r sinðθÞeiφ 1 − r cosðθÞ

�
; ð34Þ

where r⃗ is the polarization vector given by r⃗ ¼def rn̂ with n̂
defined in Eq. (26). Note that for mixed quantum states,
0 ≤ r < 1 and detðρÞ ¼ ð1=2Þð1 − r⃗2Þ ≥ 0 because of the
positiveness of ρ. For pure quantum states, instead, r ¼ 1
and detðρÞ ¼ 0. From Eq. (34), we observe that the spectral
decomposition of ρ is given by

ρ ¼
X1
k¼0

pkjekihekj: ð35Þ

The two distinct eigenvalues fpkgk¼0;1 are given by

p0 ¼ p0ðr; θ;φÞ ¼def
1þ r
2

;

p1 ¼ p1ðr; θ;φÞ ¼def
1 − r
2

; ð36Þ

respectively. The orthonormal eigenvectors corresponding
to p0 and p1 in Eq. (36) are

je0i ¼ je0ðr; θ;φÞi¼def
1ffiffiffi
2

p
 
e−iφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðθÞp
sinðθÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þcosðθÞ

p

!

¼
�
e−iφ cosðθ

2
Þ

sinðθ
2
Þ

�
; ð37Þ

and

je1i ¼ je1ðr; θ;φÞi¼def
1ffiffiffi
2

p
 −e−iφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosðθÞp

sinðθÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1−cosðθÞ

p

!

¼
�−e−iφ sinðθ

2
Þ

cosðθ
2
Þ

�
; ð38Þ

respectively. Finally, using Eqs. (36), (37), and (38),
ds2Sjöqvist in Eq. (32) becomes

ds2Sjöqvist ¼ gSjöqvistμν ðξÞdξμdξν ¼ 1

4

h dr2

1 − r2
þ dΩ2

i
; ð39Þ
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with dΩ2¼defdθ2 þ sin2ðθÞdφ2. In Eq. (39), gSjöqvistμν ðξÞ is the
Sjöqvist metric tensor, 1 ≤ μ, ν ≤ 3, and ξ ¼ ðξ1; ξ2; ξ3Þ ¼def
ðr; θ;φÞ. Note when r is constant and equals one, ds2Sjöqvist
in Eq. (39) reduces to ds2FS in Eq. (24). For completeness,
we recall that the Bures metric extends to mixed quantum
states and reduces to the Fubini-Study metric on pure states
[56–58]. Furthermore, as shown in Ref. [51], it is equiv-
alent, up to a proportionality factor of four, to the quantum
Fisher information metric. Interestingly, we remark that the
Bures infinitesimal line element ds2Bures between ρ and
ρþ dρ with ρ given in Eq. (34) is given by

ds2Bures ¼ gBuresμν ðξÞdξμdξν ¼ 1

4

�
dr2

1 − r2
þ r2dΩ2

�
: ð40Þ

For an explicit derivation of Eq. (40), we refer to
Appendix B. From Eqs. (39) and (40), we notice that
the angular part of ds2Sjöqvist does not exhibit the r2-factor
which, instead, appears in ds2Bures. The lack of this factor
implies that the Sjöqvist metric is singular at the origin of
the Bloch ball where r ¼ 0 and, unlike the Bures metric, is
not defined for degenerate density operators. Finally, we
refer to Ref. [54] for a recent extension of the Sjöqvist
metric for the space of nondegenerate density matrices, to
the degenerate case, i.e., the case in which the eigenspaces
have dimension greater than or equal to one. We will go
back to this point on the difference between the Sjöqvist
and Bures metrics later in our paper (see also Appendix C
and Appendix D).
Returning to the Sjöqvist metric analysis, we see from

Eq. (39) that the only nonvanishing Christoffel connection
coefficients are

Γ1
11¼

r
1−r2

; Γ2
33¼−sinðθÞcosðθÞ; Γ3

23¼Γ3
32¼

cosðθÞ
sinðθÞ :

ð41Þ

Therefore, geodesics satisfy the geodesic equations in
Eq. (11) described in terms of a system of three coupled
second order nonlinear ODEs,

̈rþ r
1 − r2

_r2 ¼ 0; θ̈ − sinðθÞ cosðθÞ _φ2 ¼ 0;

φ̈þ 2
cosðθÞ
sinðθÞ

_θ _φ ¼ 0; ð42Þ

where _r ¼def dr=dη with η being an affine parameter.
Interestingly, observe that although the ODE satisfied by
the radial parameter r in Eq. (42) is nonlinear, it is not
coupled to the ODEs describing the evolution of the
angular parameters θ and φ. Furthermore, the angular
motion is identical to the one that emerges when employing
the Fubini-Study metric. Therefore, we refer to Eq. (29) and

to Appendix A for details on the angular motion. Instead,
integration of the radial equation of motion in Eq. (42)
yields,

rSjöqvistðηÞ ¼ sin

�
sin−1ðriÞ þ

_riffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2i

p η

�
; ð43Þ

where ri¼defrðηiÞ, _ri¼def _rðηiÞ, and ηi is set equal to zero. We
emphasize that the speed of evolution along geodesic paths

is constant and equals vSjöqvist¼defð1=2Þ½ð1 − r2Þ−1 _r2 þ _θ2þ
sin2ðθÞ _φ2�1=2. For an explicit derivation of Eq. (43) along
with a discussion on alternative geodesic parametrizations
like the one used in Ref. [53], we refer to Appendix C.
Finally, for a discussion on the integration of the geodesic
equations in a Bloch ball equipped with the Bures metric
gBuresμν ðξÞ, we refer to Appendix D. In Appendix E, instead,
we present a summary of curvature properties of the
manifold of pure states equipped with gFSμν ðξÞ along with
those of a manifold of mixed quantum states endowed with
gSjöqvistμν ðξÞ and gBuresμν ðξÞ. More specifically, for each sce-
nario, we find the expressions of the tensor metric compo-
nents, infinitesimal line elements, Christoffel connection
coefficients, Ricci tensor components, Riemann curvature
tensor components, scalar curvatures and, finally, sectional
curvatures.
At this point, having found the geodesic paths on curved

manifolds equipped with the Fubini-Study and Sjöqvist
metrics, we are ready to use our complexity quantifiers in
Eqs. (3) and (13) to determine how complex evolutions on
pure and mixed states are.

IV. COMPLEXITY OF QUANTUM EVOLUTION

We study here the complexity of the geodesic paths
expressed in terms of temporal averages of volume regions
explored by the physical systems during the quantum
evolutions.

A. Actions, lengths, and accessible volumes

Before studying the complexity, let us first comment on
the relevance of the concepts of length and action in the
geometric formulation of physical theories. In the
Introduction, we mentioned these concepts play a key role
in the understanding of the physics of black holes [7–10].
However, lengths and actions also play a very important role
in thegeometric formulation of thermodynamics [59]. In this
case, these two quantities are generally termed thermody-
namic length and thermodynamic divergence, respectively.
Indeed, including the theory of fluctuations into the axioms
of equilibrium thermodynamics [60], thermodynamic sys-
tems can be characterized by Riemannian manifolds fur-
nished of a thermodynamic metric tensor that is identical to
the Fisher-Rao information metric [61]. Within this geo-
metric setting for thermodynamics, the above mentioned
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Riemannian structure allows one to introduce a notion of
length for fluctuations about equilibrium states as well as for
thermodynamic processes proceeding via equilibrium
states. In analogy to Wootters’s statistical distance between
probability distributions as presented in Ref. [50], the
thermodynamic length of a path connecting two points on
a manifold of thermal states can be viewed as a measure of
the maximal number of statistically distinguishable thermo-
dynamic states along the path [62]. In particular, the larger
the fluctuations, the closer the points are together. The
thermodynamic divergence of a path, instead, is ameasure of
the losses in the process quantified by the total entropy
produced along the path. For more details, we refer to
Refs. [60,63,64]. Having in mindWootters’s approach, note
that the concepts of action and length are formally different
when studying the geometry along the evolution of states.
For the sake of reasoning, assume that the line element of the
Riemannian space is given by ds2 ¼def gμνðξÞdξμdξν. Then,
the action A is given by

A ¼def 1
2
m
Z

τ

0

gμνðξÞ_ξμ _ξνdη; ð44Þ

with _ξ ¼defdξ=dη. The lengthL of a path ξμðηÞwith 0 ≤ η ≤ τ,
instead, is defined as

L¼def
Z

τ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνðξÞ_ξμ _ξν

q
dη: ð45Þ

However, for particles of mass m moving along geodesics
with constant velocity, both velocity and energy are con-
served. In this case, the path L and the action A are linearly
related. Indeed, one has

A ¼
ffiffiffiffiffiffiffi
mE
2

r
L; ð46Þ

whereE ¼defð1=2Þmv2 and v2 ¼defgμνðξÞ_ξμ _ξν are both constant.
Interestingly, we remark that while the length L is invariant
under reparametrization of the affine parameter η, the action
A is not. Before proceedingwith the calculation of lengths in
Eq. (45) and volumes of explored regions in Eq. (4) yielding
the complexity of geodesic paths on manifolds of quantum
states, we make a couple of remarks that can help our
intuition when considering the Sjöqvist and Bures cases
with pure calculations. First, considering Eqs. (39) and (40)
while performing a change of variables defined by

r ¼def sinðαrÞ with 0 ≤ αr ≤ π=2, we find that 4ds2Sjöqvist ¼
dα2r þ dΩ2

sphere and 4ds2Bures ¼ dα2r þ sin2ðαrÞdΩ2
sphere with

dΩ2
sphere¼defdθ2 þ sin2ðθÞdφ2. The structure of the Sjöqvist

line element recast in this new form is reminiscent of
the structure of a line element in the usual cylindrical
coordinates ðρ;φ; zÞ, ds2cylinder ¼ dz2 þ dΩ2

cylinder with

dΩ2
cylinder¼defdρ2 þ ρ2dφ2, once one identifies the pair

ðαr; dΩsphereÞ with the pair ðρ; dΩcylinderÞ. Therefore, one
can imagine associating a cylinder with a constant (varying)
radius to the Sjöqvist (Bures) geometry, respectively. Note
that the varying radius in the Bures case is upper bounded by
the constant value that specifies the radius in the Sjöqvist
geometry. Second, the volumes of the accessible regions of
the manifolds in the Sjöqvist and Bures scenarios are
given by

VðaccessibleÞ
Sjöqvist ¼def 1

8

Z
1

0

Z
π

0

Z
2π

0

sinðθÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p drdθdφ ¼ π2

4
; ð47Þ

and

VðaccessibleÞ
Bures ¼def 1

8

Z
1

0

Z
π

0

Z
2π

0

r2 sinðθÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p drdθdφ ¼ π2

8
; ð48Þ

respectively. Clearly, from Eqs. (47) and (48), we note that

VðaccessibleÞ
Bures ≤ VðaccessibleÞ

Sjöqvist . This fact, in turn, is compatible
with our intuitive picture proposed in our first remark. We
remark that it is possible that only parts of the accessible
geometric regions are indeed explored during the evolution.
Inwhat follows, we shall finally calculate the lengths and the
volumes of the effectively explored regions of the manifolds
in the (pure) Fubini-Study and (mixed) Sjöqvist cases.

B. Evolution on the Bloch sphere

1. Length

In what follows, we focus on calculating the length of
geodesics in the unit Bloch ball that lay int the xz-plane
specified by the condition φ ¼ 0. In the Fubini-Study
metric case, we have

LFSðηfÞ ¼def
1

2

Z
ηf

0

dθ
dη

dη ¼ 1

2
_θiηf; ð49Þ

or, alternatively, in terms of the angular variable θ,

LFSðθfÞ ¼def
θf
2
: ð50Þ

Note that LFS in Eq. (50) denotes the Fubini-Study distance
(θf=2) and is half the geodesic distance (θf) on the Bloch
sphere. For completeness, we emphasize that in obtaining
Eq. (49) we exploited the relation θ̈ ¼ 0. This relation can
be obtained from Eq. (28) once one imposes the constraint
of constant φ. Moreover, in getting Eq. (50), we assumed

θi ¼def θðηiÞ ¼ 0, with ηi ¼ 0.
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2. Complexity

From the Fubini-Study metric ds2FS in Eq. (24), we note
that gFSðθ;φÞ ¼ sin2ðθÞ=16 with gFS denoting the deter-
minant of the metric tensor gFSμν . Therefore, using Eq. (29),
the instantaneous explored volume region VFSðηÞ as
defined in Eq. (5) becomes

VFSðηÞ ¼
1

4
aFS sinðηÞ arctan ½cFS tanðηÞ�: ð51Þ

Recall that a2FS¼def1 − c2FS with cFS ¼ cFSðθi; _φiÞ ¼def
_φi sin2ðθiÞ ¼ const. Then, setting θi ¼ π=2 for illustrative
purposes, we note that the modulus of the volume of the
explored region of the manifold of pure states in Eq. (51) is
upper bounded by π=8, jVFSðηÞj ≤ π=8. Therefore, at a
time η, less than one-eighth of the accessible region of the

manifold is actually explored since VðaccessibleÞ
FS ¼ π. From

Eq. (51), the average explored region as given in Eq. (4)
represents the IGC in Eq. (13) and turns into

CFSðτÞ ¼
1

4
aFS

IVFS
ðτÞ
τ

: ð52Þ

The function IVFS
ðτÞ in Eq. (52) is defined as the integral of

VFSðηÞ with 0 ≤ η ≤ τ and is given by

IVFS
ðτÞ ¼def cFSffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2FS − 1
p arctan

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2FS − 1

q
sinðτÞ

i
− cosðτÞ arctan ½cFS tanðτÞ�: ð53Þ

The above mentioned integral was performed with the help
of the Mathematica software. Furthermore, we remark that
IVFS

ðτÞ is a bounded function for any τ ≥ 0. The asymptotic
temporal expression of the IGC CFSðτÞ in Eq. (52) will be
compared with the one that we obtain in the case of mixed
state evolutions with the distinguishability metric provided
by gSjöqvistμν ðξÞ.

C. Evolution in the Bloch ball

1. Length

In what follows, we focus on calculating the length of
geodesics in the unit Bloch ball that lay int the xz-plane
specified by the condition φ ¼ 0. In the Sjöqvist metric
case, recall that r02ð1 − r2Þ−1 ¼ const and θ̈ ¼ 0.
Therefore, the length LSjöqvistðηfÞ is given by

LSjöqvistðηfÞ ¼def
1

2

Z
ηf

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

1 − r2

r
dθ
dη

dη

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02i

1 − r2i

s
_θiηf; ð54Þ

or, alternatively,

LSjöqvistðθfÞ ¼def
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2f þ ½sin−1ðrfÞ − sin−1ðriÞ�2

q
: ð55Þ

Comparing Eqs. (55) and (50), we note thatLSjöqvist reduces
to LFS when rf ¼ ri ¼ 1. For rf ≠ ri, we generally have

LSjöqvistðθfÞ ≥ LFSðθfÞ: ð56Þ

Equation (56) implies that the length of a geodesic

path connecting two arbitrary points Pi ¼defðri; θi; 0Þ and

Pf ¼defðrf; θf; 0Þ with ri ≠ rf in the Bloch ball laying in the
xz-plane (i.e., φ ¼ 0) is longer than the length of two

arbitrary points P̃i¼defðθi; 0Þ and P̃f¼defðθf; 0Þ laying on the
Bloch sphere with ri ¼ rf ¼ 1 that intercepts the xz-plane
(i.e., φ ¼ 0). Equation (56) hints to what might happen
when comparing the information geometric complexity of
the evolutions of pure and quantum states as we shall see
shortly. Complexities are expressed in terms of volumes. In
parametric spaces of dimension higher than one, relations
between length and volumes are not straightforward.
Therefore, we could not easily take the hint as a “proof”
of the higher complexity of the evolution of mixed quantum
states. For this reason, we actually estimate this quantity in
an explicit manner in the following subsection.

2. Complexity

From the Sjöqvist metric ds2Sjöqvist in Eq. (39), we
observe that the determinant of the metric tensor gSjöqvistμν

satisfies the relation

gSjöqvistðr; θ;φÞ ¼
1

64

sin2ðθÞ
1 − r2

: ð57Þ

Therefore, making use of Eqs. (43) and (29), the instanta-
neous explored volume region VSjöqvistðηÞ as given in
Eq. (5) turns into

VSjöqvistðηÞ¼
1

8
aFS

_riffiffiffiffiffiffiffiffiffiffiffi
1− r2i

p ηsinðηÞarctan ½cFS tanðηÞ�: ð58Þ

Recall that a2FS¼def1 − c2FS with cFS ¼ cFSðθi; _φiÞ ¼def
_φi sin2ðθiÞ ¼ const. Then, putting θi ¼ π=2 for simplicity,
we observe that the modulus jVSjöqvistðηÞj of the volume of
the explored region of the manifold of mixed states in
Eq. (58) is upper bounded by a function that grows linearly
with ηwith proportionality coefficient given by _ri=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2i

p
and not by a constant function as in the case of the
evolution of pure quantum states. Moreover, recalling that

VðaccessibleÞ
Sjöqvist ¼ π2=4 ≤ π ¼ VðaccessibleÞ

FS , we clearly expect a
more complex behavior for sufficiently large values of η in
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the case of the geometry along evolution of mixed states
since

VðexploredÞ
Sjöqvist ðηÞ
VðaccessibleÞ
Sjöqvist

≥
VðexploredÞ
FS ðηÞ
VðaccessibleÞ
FS

: ð59Þ

From Eq. (58), the average explored region as given in
Eq. (4) denotes the IGC in Eq. (13) and becomes

CSjöqvistðτÞ ¼
1

τ

Z
τ

0

VSjöqvistðηÞdη; ð60Þ

that is,

CSjöqvistðτÞ ¼
1

8
aFS

_riffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2i

p
×
1

τ

Z
τ

0

η sinðηÞ arctan ½cFS tanðηÞ�dη: ð61Þ

Denoting fðηÞ ¼def η and _gðηÞ ¼def sinðηÞ arctan ½cFS tanðηÞ�,
we integrate by parts the integral in Eq. (61) and getZ

τ

0

η sinðηÞ arctan ½cFS tanðηÞ�dη

¼ ½ηIVFS
ðηÞ�η¼τ

η¼0 −
Z

τ

0

IVFS
ðηÞdη: ð62Þ

Note that gðηÞ ¼ IVFS
ðηÞ with IVFS

ðηÞ given in Eq. (53).
Finally, substituting Eq. (62) into Eq. (61) and considering
the asymptotic temporal behavior of CSjöqvistðτÞ, we obtain

Casymptotic
Sjöqvist ðτÞ ¼ 1

8
aFS

_riffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2i

p Iasymptotic
VFS

ðτÞ: ð63Þ

At this point, considering the ratio between Casymptotic
Sjöqvist ðτÞ in

Eq. (63) and the asymptotic temporal behavior of CFSðτÞ in
Eq. (52), we get that the relative asymptotic complexity
growth in terms of a ratio exhibits a linear behavior given by

Casymptotic
Sjöqvist ðτÞ

Casymptotic
FS ðτÞ ∼ τ: ð64Þ

In the long-time limit, Eq. (64) expresses the fact that the
evolution of mixed states in the Bloch ball equipped with
the Sjöqvist metric explores averaged volumes of regions
larger that the ones inspected during the evolution of pure
states on the Bloch sphere supplied with the Fubini-Study
metric. In particular, there appears to be an asymptotic
linear growth of the ratio between the two IGCs. Finally, in
terms of the IGE defined in Eq. (3), we obtain an
asymptotic entropy growth of the relative difference
between the two IGEs given by

Sasymptotic
Sjöqvist ðτÞ − Sasymptotic

FS ðτÞ ∼ logðτÞ: ð65Þ

Equation (65) displays the asymptotic logarithmic discrep-
ancy between the IGE in the mixed and pure quantum state
scenarios. Since the IGC is simply the exponential of the
IGE, we can interpret this entropic deviation as follows. To
a larger IGE there corresponds a larger IGC. Larger IGCs
are larger asymptotic averaged explored volumes. Larger
volumes encode, via the metric, larger fluctuations. The
larger the fluctuations, the closer the points (i.e., the states)
are together. The closer points are together, the greater is
the likelihood of incorrectly distinguishing quantum states
during the evolutions of the quantum system. This, in turn,
leads to higher entropic configurations which are typical of
quantum systems in a mixed quantum state. Note that
Eqs. (56), (59), (64), and (65) are nonconflicting and
consistent relations in support of arguments yielding to a
higher degree of complexity of evolutions of mixed states
compared to pure quantum states from a geometric per-
spective. Indeed, Eq. (56) is an inequality in terms of
lengths. Equation (59) is an inequality between ratios
expressed by means of accessible and instantaneous
explored volumes. Finally, Eqs. (64) and (65) are complex-
ity and entropic relations that are expressed by means of
long-time limits of averaged explored volumes of regions
on and inside the Bloch ball. Interestingly, note that the
asymptotic temporal rates of change of the two IGCs in
Eq. (64) scale in a similar fashion, dCasymptotic

Sjöqvist =dτ ∼
dCasymptotic

FS =dτ. This is a consequence of a balancing effect
that occurs between the asymptotic averaged explored
volumes, V̄asymptotic

Sjöqvist ∼ τV̄asymptotic
FS , and between the asymp-

totic temporal rates of change of the averaged explored
volumes, dV̄asymptotic

FS =dτ ∼ ð1=τÞdV̄asymptotic
Sjöqvist =dτ. From a

curvature analysis perspective, the manifold of pure states
equipped with the Fubini-Study metric is an isotropic two-
dimensional manifold of constant positive sectional curva-
ture KFS ¼ 4 and constant scalar curvature RFS ¼ 8.
Instead, the manifold of mixed states equipped with the
Sjöqvist metric is an anisotropic three-dimensional mani-
fold of nonconstant but positive sectional curvature and
constant scalar curvature RSjöqvist ¼ 8. The positivity of
sectional curvatures in both scenarios leads to the presence
of convergence in the geodesic spread analysis on both
manifolds. However, given the anisotropic nature in the
mixed quantum states manifold with the Sjöqvist metric,
the study of the geodesic spread equation would be more
complicated in the scenario of mixed states distinguished
via the Sjöqvist metric. Our remarks concerning the
asymptotic rates of change of volumes and IGEs are an
indication of this distinct convergent behavior in the pure
and mixed quantum states scenarios. For further details on
curvature properties along with a comparison between the
Sjöqvist and Bures manifolds, we refer to Appendix E.
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V. PHYSICAL CONSIDERATIONS

In this section, we present physical comments on the
concepts of metric, path length, and curvature employed in
our investigation. Moreover, we clarify the physics behind
the evolution of quantum states on curved manifolds in
terms of Bloch coordinates. These comments will help
highlight even further the physical significance of our
proposed complexity measure in Eq. (13).

A. Metric, path length, and curvature

For completeness, we begin by recalling that in quantum
mechanics a physical state is not represented by a norma-
lized state vector jψðtÞi ∈ Hnf0g but by a ray. A ray is the
one-dimensional subspace to which this vector belongs.
Two normalized vectors are equivalent, jψ 0i ∼ jψi, if they
belong to the same ray, i.e., if jψ 0i ¼ eiϕjψiwith ϕ ∈ Uð1Þ.
This equivalence relation specifies equivalence classes on
the sphere S2NHþ1, with dimC H ¼ NH þ 1. Finally, the set
of equivalence classes S2NHþ1=Uð1Þ forms the space of
physical states (rays) which is denoted here byP. The space
of rays is the projective Hilbert space P which, in turn, is
isomorphic to the complex projective space CPN .

1. Metric

The metric [Eqs. (24), (39), and (40)] on the manifold of
quantum states is fixed once the quantum mechanical
fluctuation in energy is specified [55]. Focusing on pure
states, when the uncertainty ΔAðηÞ in the generator of
motion AðηÞ with respect to the parameter η in the
projective Hilbert space P is provided, the metric

ds2FS ¼ gμνðξÞ
dξμ

dη
dξν

dη
dη2 ¼ ΔA2ðηÞdη2 ð66Þ

is fixed. In particular, assuming η ¼ t and AðηÞ ¼ HðtÞ=ℏ,
we have that dsFS ¼ ½ΔEðtÞ=ℏ�dt and the dispersion ΔEðtÞ
of the generator of motion can originate from a variety of
Hamiltonians H(t). Therefore, the geometry of the projec-
tive Hilbert space, specified by the metric on it, cannot be
modified by the dynamics of the system governed by the
Hamiltonian H(t) [65]. This was a major result obtained by
Anandan and Aharonov in Ref. [66]. For pure states, the
distance function in the projective Hilbert space P is the
distance between two quantum states along a given curve in
P as measured by the Fubini-Study metric defined from the
inner product of the representative states in the ðNH þ 1Þ-
dimensional Hilbert space H. Anandan and Aharonov
showed that this distance equals the time integral of the
uncertainty of the energy, and does not depend on the
particular Hamiltonian used to move the quantum system
along a given curve in P. It is dependent only on the points
in P to which the quantum states project. In summary, from
a physics standpoint, the metric tensor and its components
on the projective Hilbert space P are linked to the

dispersion of suitable quantum-mechanical operators (for
instance, the Hamiltonian operator) acting on the underling
Hilbert space H. This connection between metrics and
quantum fluctuations is an important physical considera-
tion to keep in mind throughout our work. This connection
extends to the geometric analysis of quantum mixed states
as well [53,67,68].

2. Path length

To explain the physical meaning of the Riemannian
distance [Eqs. (49) and (54)] between two arbitrarily
chosen pure quantum states, we follow Wootters [50].
For mixed states, we hint to the work by Braunstein and
Caves in Ref. [51]. Two infinitesimally close points ξ and
ξþ dξ along a path ξðηÞ with η1 ≤ η ≤ η2 are statistically
distinguishable if dξ is at least equal to the standard
fluctuation of ξ [62]. The line element along the path is
dsFS with ds2FS ¼ gFSμν ðξÞdξμdξν. The length of the path ξðηÞ
with η1 ≤ η ≤ η2 between ξ1 ¼def ξðη1Þ and ξ2 ¼def ξðη2Þ is
defined as

L ¼def
Z

ξ2

ξ1

ffiffiffiffiffiffiffiffiffi
ds2FS

q
¼
Z

η2

η1

ffiffiffiffiffiffiffiffiffi
ds2FS
dη2

s
dη; ð67Þ

and represents the maximal number Ñ of statistically
distinguishable states along the path. In particular, the
geodesic distance between ξ1 and ξ2 is the path of shortest
distance between ξ1 and ξ2 and is the minimum of Ñ. This
connection between path length and number of statistically
distinguishable states along the path is a relevant physical
remark to consider throughout our investigation. This
viewpoint extends naturally to the geometric analysis of
quantum mixed states as well [51].

3. Curvature

What is the physical significance of curvature
(Appendix E) in our investigation? We recall that in the
Riemannian geometrization of classical Newtonian
mechanics [1], the curvature R of the manifold corre-
sponds, roughly speaking, to the curvature of the potential
V expressed by means of the second derivative of V,
R ∼ ∂

2V, with the Hamiltonian of the system given by
Hðp; qÞ ¼ p2=ð2mÞ þ VðqÞ. More generally, in arbitrary
differential geometric settings, the curvature of the mani-
fold determines the stability (or, alternatively, the insta-
bility) of the geodesics via the Jacobi equation of geodesic
spread. This latter curvature interpretation remains valid in
our work. However, we can provide a more specific
interpretation for the concept of curvature in our analysis.
As pointed out by Braunstein and Caves in Ref. [69], unlike
what happens in general relativity, the geometry on the
space of quantum states does not describe the dynamical
evolution of the physical system. Rather, it places limits on
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our ability to discriminate one state from another via
measurements. In a sense, the geometry of quantum states
puts the emphasis on the fact that quantum mechanics is
rooted in making statistical inferences based on observed
experimental data. Quantum measurement theory, in turn,
is statistical inference in its essence [70]. Therefore, given
the fact that the problem of distinguishing neighboring
quantum states can be formulated as a parameter estimation
problem [51], given that quantum mechanics can be
regarded as a theory for making statistical inferences based
on observed experimental data [70], and, finally, since the
curvature of a manifold is a measure of how difficult it is to
do estimations at a given point in statistical science [71], it
is reasonable to interpret the curvature of a manifold of
quantum states equipped with suitably defined metric
structures as an indicator of how difficult it is to distinguish
quantum states by means of parameter estimation at a given
point of the state space. In particular, the higher the
curvature, the more difficult it is to do estimation at that
point. This is the point of view that we adopt in this paper.
For remarks on a physical interpretation of curvature of
manifolds underlying the information geometry of non-
interacting gases satisfying the Fermi-Dirac and Bose-
Einstein statistics, we refer to Ref. [72]. Finally, for a
work on the estimation of the curvature of a quantum
manifold via measurement on a quantum particle con-
strained to propagate on the manifold itself, we refer the
reader to Ref. [73].

B. Evolution of Bloch coordinates

Having clarified the meaning of metric, path length, and
curvature employed in our work we devote some time
explaining the relation between Bloch coordinates and
quantum states on the Bloch sphere and inside the Bloch
ball (Appendixes A, C, and D). Let us point out from the
start that in our work ξμðηÞ ¼defðξ1ðηÞ; ξ2ðηÞ; ξ3ðηÞÞ in
Eq. (66) is specified by the Bloch coordinates, that is,
ξμðηÞ ¼ ðrðηÞ; θðηÞ;φðηÞÞ. In this paper, we focused on the
integration of evolution equations for Bloch coordinates
used to parametrize quantum states, either pure or mixed.
This choice was not dictated by mathematical convenience
only. Indeed, there is a clear physical path connecting
Bloch coordinates, Bloch vectors, and, finally, pure and
mixed quantum states. For simplicity, we set η ¼ t in this
discussion. We observe that from the time evolution of the
Bloch coordinates, both radial and angular, one can
generally recover the time evolution of the density oper-
ators for arbitrary quantum states via the time evolution of
the Bloch vector. Conversely, the opposite is also possible.
For a detailed study concerning the time evolution of the
Bloch vector of a single two-level atom that interacts with a
single quantized electromagnetic field mode according
to the Jaynes-Cummings model, we refer to Ref. [74].
To be explicit here, we note that the Bloch vector p⃗ðtÞ is
defined as

p⃗ðtÞ ¼def tr½ρðtÞσ⃗�
¼ ðr sin θ cosφ; r sin θ sinφ; r cos θÞ; ð68Þ

with r ¼ rðtÞ, θ ¼ θðtÞ, and φ ¼ φðtÞ. Focusing for sim-
plicity on the case of unitary quantum evolution, the density
operator ρðtÞ ¼ ð1=2Þ½Iþ p⃗ðtÞ · σ⃗� in Eq. (68) satisfies the

von Neumann equation iℏ_ρ ¼ ½HðtÞ; ρðtÞ� with _ρ ¼def dρ=dt
and I denoting the identity operator on the single-qubit
quantum state space. Moreover, for a system in a pure state
that evolves under a time independent Hamiltonian H,
ρðtÞ ¼ jψðtÞihψðtÞj ¼ UðtÞρð0ÞU†ðtÞ with UðtÞ being the
unitary time evolution operator given by exp ½−ði=ℏÞHt�
and jψðtÞi ¼ cos ½θðtÞ=2�j0i þ eiφðtÞ sin ½θðtÞ=2�j1i in the
Bloch sphere parametrization. To make very clear this link
among Bloch coordinates, Bloch vectors, pure states, and
mixed states, we consider a simple illustrative example for
pure states evolution. Assume the system, a spin-1=2
particle, is initially in the state jψð0Þi parametrized in
terms of ðθð0Þ;φð0ÞÞ¼ðπ=2;0Þ. Solving the Schrödinger’s

evolution equation iℏ∂tjψðtÞi¼HðtÞjψðtÞiwith H¼defℏω0σz,
we get

ρðtÞ ¼ jψðtÞihψðtÞj ¼ 1

2

�
1 e−2iωot

e2iωot 1

�
¼ 1

2
½Iþ p⃗ðtÞ · σ⃗�; ð69Þ

with p⃗ðtÞ ¼ ðcos ð2ω0tÞ; sin ð2ω0tÞ; 0Þ. Furthermore, the
Bloch angles at time t become ðθðtÞ;φðtÞÞ ¼ ðπ=2; 2ω0tÞ.
In general, the state jψðtÞi ¼ UðtÞjψð0Þi can be para-
metrized as jψðtÞi ¼ aðtÞj0i þ bðtÞj1i with C ∋ aðtÞ ¼
jaðtÞjeiφaðtÞ, C ∋ bðtÞ ¼ jbðtÞjeiφbðtÞ, φa;bðtÞ ∈ R, and
jaðtÞj2 þ jbðtÞj2 ¼ 1. With this pure state parametriza-
tion, the Bloch angles θðtÞ and φðtÞ satisfy the rela-
tions, tan ½θðtÞ� ¼ jbðtÞj=jaðtÞj and φðtÞ ¼ φbðtÞ − φaðtÞ,
respectively.
Having clarified the physical meaning of geometrical

concepts employed in our analysis, the main take-home
message is the following. We have estimated in this paper
the complexity of geodesic paths of both pure and mixed
quantum states by means of a complexity measure
[Eq. (13)] expressed in terms of explored volumes of the
suitably metricized curved manifolds that underlay the
dynamics (i.e., the change in Bloch parameters, with
changes specified by the parametric evolution operator).
The metric structure on the curved manifolds of quantum
states is fixed by quantum-mechanical fluctuations.
Moreover, just as path lengths can be interpreted in terms
of the maximal number of distinguishable states traversed
during the evolution along the path, the volumes of the
parametric space explored in a fixed temporal interval can
be regarded as representing the maximal number of differ-
ent states visited during the regional exploration. Clearly,
the role played by the infinitesimal increment dξ in the
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path exploration is replaced by the infinitesimal volume

element dV ¼def ffiffiffiffiffiffiffiffiffi
gðξÞp

dNξ in the regional travel, with

gðξÞ ¼def det ½gμνðξÞ� and N being the dimensionality of the
curved manifold. Essentially, the Riemannian volume
element dV helps gauging the number of distinct states
explored within an infinitesimal volume of a region of the
manifold [75]. We are ready now for our conclusions.

VI. CONCLUDING REMARKS

We present here a summary of our main findings along
with limitations and possible future directions.

A. Summary of results

In this paper, we provided a comparative information
geometric analysis of the complexity of geodesic paths of
pure and mixed quantum states on the Bloch sphere and
inside the Bloch ball, respectively. In this geometric setting,
pure and mixed states were chosen to be distinguished by
means of the Fubini-Study [Eq. (24)] and the Sjöqvist metric
[Eq. (39)], respectively. After finding the geodesic paths
connecting arbitrary points on (see Appendix A) and inside
the Bloch ball (see Appendix C), we analytically estimated
the IGE [Eq. (3)] and the IGC [Eq. (13)] in both scenarios.
The long-time limit of this pair of entropic measures of
complexity of evolution of system in pure [see Eq. (52)] and
mixed [see Eq. (63)] states were compared. We observed a
degree of complexity for the evolution of mixed states with
the Sjöqvist geometry higher than the one specifying the
complexity for the evolution of pure states with the Fubini-
Study geometry [see Eqs. (64) and (65)].
The metric structure on the manifold of quantum states is

specified by quantum fluctuations. Path lengths and vol-
umes can be physically interpreted as indicators of the
maximal number of distinguishable states crossed along
trajectories and in volumes of regions of the manifold,
respectively. To a higher count of distinct states passed over
in a fixed time interval, there corresponds a higher degree
of complexity of the evolution on the underlying manifold.
Within this physically meaningful geometric description,
mixed state (geodesic) evolutions appear to be generally
more complex than pure state evolutions.
Our main findings can be outlined as follows:
(1) We proposed a different information geometric

way [Eqs. (3) and (13)] to describe and, to a certain

extent, understand the complex behavior of evolu-
tions of quantum systems in pure and mixed
states. The ranking is probabilistic in nature; it
requires a temporal averaging procedure along with
a long-time limit, and is limited to comparing
expected geodesic evolutions on the underlying
manifolds.

(2) We showed [Eqs. (64) and (65)] that the complexity
of geodesic paths (Appendix C) corresponding to the
evolution of mixed quantum states in the Bloch ball
equipped with the Sjöqvist metric is higher than the
complexity of geodesic paths (Appendix A) arising
from the evolution of pure states on the Bloch sphere
furnished with the Fubini-Study metric.

(3) We found that the ranking in terms of the informa-
tion geometric complexity (64), a quantity that
represents the asymptotic temporal behavior of an
averaged volume of the region explored on the
manifold during the evolution, is in agreement with
the ranking in terms of lengths [Eq. (56)] and, in
addition, volume ratios in terms of accessible and
instantaneous explored volumes (59). For a sche-
matic summary, we refer to Table II.

(4) We confirmed that the choice of the metric on the
space of mixed states matters. Specifically, we
observed fingerprints of a softening of the complex-
ity on the Bures manifold [Eq. (D20)] compared to
the Sjöqvist manifold. This is in agreement with
the presence of longer lengths of geodesic paths
on the Sjöqvist manifold [Eq. (D19)]. Furthermore,
the two manifolds exhibit different curvature proper-
ties. The Bures manifold is isotropic, while the
Sjöqvist manifold is anisotropic (Appendix E).
For a schematic outline, we refer the reader to
Table III.

B. Outlook

Like most scientific studies, our investigation suffers a
few limitations. From a computational standpoint, our
proposed complexity measure requires volume calculations
which are much more difficult than action or path length
calculations since there are differential equations to be
solved. This particular point is in agreement with what was
stated in Ref. [10]. Therefore, exact analytical solutions are
rare and approximate numerical solutions are unavoidable
in more realistic physical scenarios. From a conceptual

TABLE II. Schematic description of geometric properties (i.e., curvature, length, and complexity) along
evolutions of pure and mixed quantum states on manifolds equipped with the Fubini-Study and Sjöqvist metrics,
respectively.

Type of state Metric
Sectional
curvature Path length

Information geometric
complexity

Pure Fubini-Study Constant Shorter Lower
Mixed Sjöqvist Nonconstant Longer Higher
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perspective, there are at least two weaknesses. First, there is
a freedom in the choice of the metric for mixed quantum
states. For further details on the Sjöqvist metric that
concern its extension to the degenerate case along with
its relation to the Bures metric, we refer to Appendix F.
Second, we only limited our work to the study of two-level
quantum systems. The ambiguity in the metric affects the
notion of speed which, in turn, is related to the concepts of
length, action, and complexity. The dependence of the ratio
of distance and time on the choice of the metric on the
space of mixed quantum states is in agreement with the
considerations carried out in Ref. [76]. The restriction to a
single qubit, while simple and insightful, cannot be
expected to cover the full richness of a higher-dimensional
quantum dynamics occurring in an exponentially larger
Hilbert space. In particular, scaling laws with respect to the
dimensionality of the Hilbert space of suitable physical
quantities cannot be addressed in this limiting scenario.
Moreover, one fundamental quantum phenomenon that
escapes a single qubit treatment is entanglement. This
second limitation is similar to the one presented in
Ref. [11].
Despite these limitations, we believe our work is relevant

also in view of the fact that it paves the way to further lines
of inquiry. For instance, it naturally triggers the following
questions:

(i) Using our findings along with the ones presented in
Refs. [3,11], can one compare the complexity of
geodesic motion on differently deformed Bloch
spheres by adding anisotropic penalty factors to
the Fubini-Study metric?

(ii) What happens to the evolution of mixed states inside
a deformed Bloch ball when introducing anisotropic
penalty factors? Is the relative ranking in terms of
complexity between pure and mixed states preserved
under any arbitrary deformations of the Bloch
sphere?

(iii) Can one compare the complexity of geodesic paths
on a deformed Bloch sphere with the complexity of
geodesic paths in a nondeformed Bloch ball?

(iv) Is there a minimal complexity metric for mixed
quantum states?

(v) Using our curvature calculations and the analysis
presented in Ref. [12], how much does one need
to deform the Bloch sphere (that is, introducing

anisotropic penalty factors to get negative sectional
curvature) and how high should the dimensionality
of a quantum system be in order to address the issue
of ergodicity and properly apply thermodynamic
arguments to complexity evolution?

The introduction of anisotropic penalty factors can be
motivated by experimental considerations. For example,
considering a spin-1=2 particle in an external magnetic
field, it may be the case that is is easier to apply the field in
some direction rather that in another. In this case, the
penalty factor would be larger where it is more complicated
to apply the field. Incorporating these factors in our
analysis would open up the lines of investigation of
relevance in the context of finding optimal Hamiltonian
evolutions, both in terms of efficiency [39,40,77–81] and
complexity [41,42], in the presence of physical constraints
dictated by experimental limitations.
We hope our work will inspire other scientists and pave

the way toward further investigations in this fascinating
research direction. For the time being, we leave a more in-
depth quantitative discussion on these potential extensions
and applications of our theoretical findings to future
scientific efforts.
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APPENDIX A: GEODESIC PATHS
ON THE BLOCH SPERE

In this appendix, we derive the geodesic paths on the
two-sphere. In the first derivation, we use simple geometric
arguments to obtain the equation of a great circle in
spherical coordinates. In the second derivation, we integrate
the geodesic equations to get explicit expressions of
geodesic paths θ ¼ θðηÞ and φ ¼ φðηÞ. Then, combining
the geodesic paths equations, we show that we also get the
equation of a great circle in spherical coordinates that
matches our first derivation.

1. Geometric derivation

Geodesics on the two-sphere lie on great circles. Great
circles, in turn, can be obtained by intersecting a plane
passing through the origin in R3 with the two-sphere.
Assume that the equations of the plane and the two-sphere
of unit radius are given by

αxþ βyþ γz ¼ 0; and x2 þ y2 þ z2 ¼ 1; ðA1Þ

TABLE III. Schematic description of distinct features of the
Sjöqvist and Bures metrics in terms of sectional curvatures, path
lengths, and information geometric complexities.

Metric
Sectional
curvature

Path
length

Information
geometric
complexity

Sjöqvist Nonconstant Longer Stronger
Bures Constant Shorter Weaker
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respectively. In Eq. (A1), α, β, and γ belong to R.

Using spherical coordinates, we set x ¼def sinðθÞ cosðφÞ,
y¼def sinðθÞ sinðφÞ, and z¼def cosðθÞ. Finally, combining the
two relations in Eq. (A1), we get the equation of a great
circle in spherical coordinates

cotðθÞ ¼ �a cos ðφ − φ̄Þ: ðA2Þ

The constants a and φ̄ in Eq. (A2) are such that

a2 ¼defðα2 þ β2Þ=γ2 and tanðφ̄Þ ¼defβ=α, respectively.

2. Dynamics derivation

Consider the system of two coupled second order non-
linear ODEs,

8<:
d2θ
dη2 − sinðθÞ cosðθÞðdφdηÞ2 ¼ 0

d2φ
dη2 þ 2

cosðθÞ
sinðθÞ

dθ
dη

dφ
dη ¼ 0

: ðA3Þ

Note that the second relation in Eq. (A3) is equivalent to

d
dη

�
dφ
dη

sin2ðθÞ
�

¼ 0; ðA4Þ

that is,

�
dφ
dη

�
2

¼ c2FS
sin4ðθÞ ; ðA5Þ

with cFS ¼ cFSðθi; _φiÞ ¼def _φi sin2ðθiÞ being a real constant

where θi¼defθðηiÞ and _φi¼defðdφ=dηÞη¼ηi
with ηi set equal to

zero. Using Eq. (A5), the first relation in Eq. (A3) yields

d2θ
dη2

¼ c2FS
cosðθÞ
sin3ðθÞ : ðA6Þ

From Eqs. (A5) and (A6), we note that the original system
of coupled ODEs in Eq. (A3) can be uncoupled. However,
Eq. (A6) is nonlinear and we shall use some tricks to find a
way of integrating it. Imposing the unit-speed condition,
_θ2 þ _φ2 sin2ðθÞ ¼ const with const ¼ 1, we employ
Eqs. (A5) and (A6) to get

Z
dη ¼ �

Z
sinðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2ðθÞ − c2FS
p dθ: ðA7Þ

Let us perform a change of variables and put ϵ¼def cosðθÞ.
Then, integration of Eq. (A7) yields

η ¼ ηi �
�
arctan

�
ϵiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2FS − ϵ2i
p �

− arctan

�
ϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2FS − ϵ2
p ��

;

ðA8Þ

where a2FS¼def1 − c2FS. For simplicity, assume θi¼defθðηiÞ ¼
cos−1ðϵiÞ ¼ π=2 with ηi ¼ 0. Then, ϵi ¼ 0 and manipula-
tion of Eq. (A8) yields

cosðθÞ ¼ �aFS sinðηÞ: ðA9Þ

We remark that for an arbitrary θi, the analog of Eq. (A9)
squared is simply given by

cos2ðθÞ ¼ a2FSsin
2

�
ηþ arctan

�
ϵiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2FS − ϵ2i
p ��

: ðA10Þ

As a consistency check, we note that for ηi ¼ 0, Eq. (A10)
correctly yields

cos2ðθiÞ ¼ a2FS sin
2

�
arctan

�
ϵiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2FS − ϵ2i
p ��

¼ ϵ2i : ðA11Þ

We also point out here that we could have set ṽ2FS ¼def _θ2 þ
_φ2 sin2ðθÞ ¼ const with const ≠ 1. Then, Eq. (A9) would

simply become cosðθÞ ¼ �aFS sin ðṽFSηÞ with a2FS ¼def
1 − ðcFS=ṽFSÞ2. Equation (A9) allows us to express
θ ¼ θðηÞ. Next, we need to find the relation φ ¼ φðηÞ.
Using Eqs. (A5) and (A9), we get

dφ
dη

¼ cFS
1 − a2FS sin

2ðηÞ : ðA12Þ

Integration of Eq. (A12) leads to

φðηÞ¼φiþ
cFSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−1þa2FS
p tanh−1

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þa2FS

q
tanðηÞ

i
: ðA13Þ

Note that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ a2FS

p
¼ icFS, with i ∈ C denoting the

imaginary unit. Furthermore, recalling from Ref. [82] that
the inverse hyperbolic tangent function of a complex
variable satisfies the relation tanh−1ðzÞ ¼ −i tan−1 ðizÞ,
setting z ¼def ix with x ∈ R and z ∈ C, we obtain

−i tanh−1 ðixÞ ¼ arctanðxÞ: ðA14Þ

Finally, using Eqs. (A13) and (A14), we get

φðηÞ ¼ φi þ tan−1 ½cFS tanðηÞ�; ðA15Þ

that is,

tan ½φðηÞ − φi� ¼ cFS tanðηÞ: ðA16Þ
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For completeness, we point out that using Eqs. (A9)
and (A16) along with the following two trigonometric
identities,

cos2ðθÞ¼ cot2ðθÞ
1þ cot2ðθÞ ; sin2ðηÞ¼ tan2ðηÞ

1þ tan2ðηÞ ; ðA17Þ

we get after some straightforward algebraic manipulations
the equation of a great circle,

cotðθÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2FS
c2FS

s
sin ðφ − φiÞ: ðA18Þ

Equation (A18) is identical to Eq. (A2) once we identify a

and φ̄ with

ffiffiffiffiffiffiffiffiffi
1−c2FS
c2FS

r
and φi þ π=2, respectively.

APPENDIX B: THE BURES
INFINITESIMAL ELEMENT

In this appendix, we derive Eq. (40). Recall that for the
single qubit case the Bures distance between two infini-
tesimally close density matrices ρ and ρþ dρ is given
by [83]

ds2Bures¼def
1

2

X1
n;m¼0

jhemjdρjenij2
pm þ pn

; ðB1Þ

where fjenign¼0;1 is an orthonormal basis of eigenvec-
tors of ρ with eigenvalues fpngn¼0;1. Therefore, ρ ¼
p0je0ihe0j þ p1je1ihe1j. From the expression of ρ in
Eq. (34), we get

dρ ¼ ∂ρ

∂r
drþ ∂ρ

∂θ
dθ þ ∂ρ

∂φ
dφ; ðB2Þ

that is,

dρ ¼ 1

2

�
cosðθÞdr − r sinðθÞdθ e−iφ½sinðθÞdrþ r cosðθÞ − ir sinðθÞdφ�

eiφ½sinðθÞdrþ r cosðθÞ þ ir sinðθÞdφ� − cosðθÞdrþ r sinðθÞdθ

�
: ðB3Þ

Finally, using Eqs. (36), (37), (38), and (B3), ds2Bures in
Eq. (B1) reduces to ds2Bures in Eq. (40). For further details
on the Bures metric for high-dimensional quantum systems,
we refer to Refs. [84,85].

APPENDIX C: GEODESIC PATHS IN THE
BLOCH BALL WITH THE SJÖQVIST METRIC

In this appendix, we study the geodesic paths in the
Bloch ball using the Sjöqvist metric. Recall that the form of
the geodesic equation remains unchanged under affine
transformations. An affine transformation of a parameter
η is the change of variable η → η0 ¼ ã ηþ b̃, with ã and b̃
in R. Any other transformation will generate extra terms in
the geodesic equation [86]. The affine parameter for a
geodesic is unique up to an affine change of variables.
Therefore, it is important to keep in mind that geodesics are
curves with a preferred parametrization. In what follows,
we explicitly analyze geodesic paths parametrized in terms
of two distinct affine parametrizations.

1. The Sjöqvist θ-affine parametrization

In Ref. [53], Sjöqvist focused on finding geodesic paths
connecting points in the Bloch ball laying in a plane that
contains the origin. In other words, using spherical coor-
dinates ðr; θ;φÞ and keeping φ ¼ const, geodesics were
obtained by minimizing

R
dsSjöqvist over all curves con-

necting points ðri; θiÞ and ðrf; θfÞ. More specifically, one

obtains the curve ½θi; θf� ∋ θ ↦ rSjöqvistðθÞ ∈ ð0; 1� that
minimizes the length LSjöqvistðθi; θfÞ defined as

LSjöqvistðθi; θfÞ ¼def
Z

sf

si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds2Sjöqvist

q
¼ 1

2

Z
θf

θi

Lðr0; r; θÞdθ:

ðC1Þ

In Eq. (C1), r0 ¼defdr=dθ and Lðr0; r; θÞ is the Lagrangian-
like function given by

Lðr0; r; θÞ ¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

1 − r2

r
: ðC2Þ

From Eq. (C2), note that L ¼ Lðr0; rÞ does not depend
explicitly on θ. Therefore, ∂L=∂θ ¼ 0. In this case, it
happens that the Euler-Lagrange equation

d
dθ

∂Lðr0; rÞ
∂r0

−
∂Lðr0; rÞ

∂r
¼ 0; ðC3Þ

reduces to the so-called Beltrami identity,

Lðr0; rÞ − r0
∂Lðr0; rÞ

∂r0
¼ const: ðC4Þ

Indeed, combining Eq. (C3) with the identity
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dLðr0; rÞ
dθ

¼ ∂Lðr0; rÞ
∂r0

r00 þ ∂Lðr0; rÞ
∂r

r0; ðC5Þ

we get

dLðr0; rÞ
dθ

¼ d
dθ

�
r0
∂Lðr0; rÞ

∂r0

�
: ðC6Þ

Equation (C6) finally leads to the Beltrami identity in
Eq. (C4). Using Eqs. (C2) and (C4), we get

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

1−r2

q ¼ const≡ cS; ðC7Þ

that is,

r02

1 − r2
¼ const≡ k¼def 1 − c2S

c2S
; ðC8Þ

Integrating Eq. (C8) and imposing the boundary conditions
rðθiÞ ¼ ri and rðθfÞ ¼ rf with θi ¼ 0, we finally get the
geodesic path

rSjöqvistðθÞ¼ sin

�
sin−1ðriÞþ

sin−1ðrfÞ− sin−1ðriÞ
θf

θ

�
: ðC9Þ

Evaluating Eq. (C7) at θi ¼ 0 and using Eq. (C9), we note
that the constant cS can be expressed in terms of ri, rf, and
θf as

cS ¼ cSðri; rf; θfÞ

¼def θfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2f þ ½sin−1ðrfÞ − sin−1ðriÞ�2

q ; ðC10Þ

with 0 ≤ cS ≤ 1, as correctly expected. For completeness,
we point out that in terms of initial conditions rðθiÞ ¼ ri
and r0ðθiÞ ¼ r0i with θi ¼ 0, rSjöqvistðθÞ in Eq. (C9) can be
recast as

rSjöqvistðθÞ ¼ sin

�
sin−1ðriÞ þ

r0iffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2i

p θ

�
; ðC11Þ

where we used cos ½sin−1ðriÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2i

p
in the raw

solution of the form rðθÞ ¼ sin ðc1θ þ c2Þ with real inte-
grations constants c1 and c2. As a final remark, observe
from Eq. (C9) that θ plays the role of the affine parameter
that characterizes the points on the curve of minimal length
connecting the initial and final points in the Bloch ball.

2. The canonical η-affine parametrization

To find the geodesic paths in the Bloch ball suing
the Sjöqvist metric and parametrized in terms of the

“canonical” affine parameter η, we need to integrate
Eq. (42). We note from Eq. (42) that the differential
equations for the angular and radial motion are not coupled.
In particular, the angular motion is identical to the one that
emerges when using the Fubini-Study metric. Therefore,
we refer to Appendix A for the characterization of the
angular motion. Let us focus here on the radial motion
specified by the relation

̈rþ r
1 − r2

_r2 ¼ 0; ðC12Þ

with _r ¼def dr=dη. Assuming initial conditions given by
rðηiÞ ¼ ri and _rðηiÞ ¼ _ri with ηi ¼ 0, integration of
Eq. (C12) yields

rSjöqvistðηÞ ¼ sin

�
sin−1ðriÞ þ

_riffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2i

p η

�
: ðC13Þ

Equation (C13) represents the radial geodesic path para-
metrized in terms of the affine parameter η, the time
coordinate, related to the proper length dsSjöqvist. Note that
the speed of evolution along geodesic paths is constant and
equals,

vSjöqvist ¼def ð1=2Þ½ð1− r2Þ−1 _r2þ _θ2þ sin2ðθÞ _φ2�1=2: ðC14Þ

The constancy of vSjöqvist in Eq. (C14) can be verified by
exploiting the constancy of vFS along with the constancy of
ð1 − r2Þ−1 _r2 by means of Eq. (C13). Interestingly, assum-
ing φ ¼ const, the geodesic equation θðηÞ becomes θ̈ ¼ 0.
Therefore, assuming θðηiÞ ¼ 0 and θðηfÞ ¼ θf, we get
θðηÞ ¼ ðθf=ηfÞη. Then, considering an affine change of

variables defined by η → θ ¼ θðηÞ ¼defðθf=ηfÞη, Eq. (C12)
becomes

r00 þ r
1 − r2

r02 ¼ 0; ðC15Þ

with r0 ¼def dr=dη. Finally, assuming rðθiÞ ¼ ri and
rðθfÞ ¼ rf, integration of Eq. (C15) yields exactly
rSjöqvistðθÞ in Eq. (C9).

APPENDIX D: GEODESIC PATHS IN THE
BLOCH BALL WITH THE BURES METRIC

In this appendix, we study the geodesic paths in the
Bloch ball using the Bures metric.

1. The Sjöqvist-like θ-affine parametrization

Following the line of reasoning used in the Sjöqvist
affine parametrization case in Appendix C, we use spheri-
cal coordinates ðr; θ;φÞ and keep φ ¼ const. Then, geo-
desics are obtained by minimizing

R
dsBures over all curves
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connecting points ðri; θiÞ and ðrf; θfÞ. More specifically,
one arrives at the curve ½θi; θf� ∋ θ ↦ rBuresðθÞ ∈ ½0; 1�
that minimizes the length LBuresðθi; θfÞ defined as

LBuresðθi;θfÞ ¼def
Z

sf

si

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ds2Bures

q
¼ 1

2

Z
θf

θi

Lðr0;r;θÞdθ: ðD1Þ

In Eq. (D1), r0 ¼def dr=dθ and Lðr0; r; θÞ is the Lagrangian-
like function given by

Lðr0; r; θÞ ¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02

1 − r2

r
: ðD2Þ

From Eq. (D2), we follow step-by-step the analysis carried
out in the Sjöqvist metric case and arrive at the following
analog of Eq. (C7):

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02

1−r2

q ¼ const:≡ cB: ðD3Þ

Manipulating Eq. (D3) and imposing the boundary con-
ditions rðθiÞ ¼ ri and rðθfÞ ¼ rf with θi ¼ 0, we obtainZ

rf

ri

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðr2c2B − 1Þð1 − r2Þ

q ¼
Z

θf

θi

dθ; ðD4Þ

with 0 < cB ≤ r ≤ 1. For notational simplicity, let us put

aB¼def1=c2B > 1. Then, integration of Eq. (D4) by use of
Mathematica gives

IðrÞ ¼def
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðr2c2B − 1Þð1 − r2Þ

q
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aBr2 − 1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−r2ðr2 − 1ÞðaBr2 − 1Þ

p tanh−1
� ffiffiffiffiffiffiffiffiffiffiffiffi

r2 − 1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aBr2 − 1

p �
þ const: ðD5Þ

Manipulation of Eq. (D5) yields

IðrÞ ¼ i tanh−1
�
i

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aBr2 − 1

p �
þ const; ðD6Þ

that is,

IðrÞ ¼ − arctan

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aBr2 − 1

p �
þ const: ðD7Þ

Substituting Eq. (D7) into Eq. (D5), we finally get that the
radial geodesic path in the Bures case is given by

rBuresðθÞ ¼
�

1þ tan2½A − ðθ − θiÞ�
1þ aBtan2½A − ðθ − θiÞ�

�
1=2

; ðD8Þ

where the constant A in Eq. (D8) is defined as

A ¼ Aðri; aBÞ ¼def arctan
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 − r2i
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aBr2i − 1

p �
: ðD9Þ

For consistency’s check, we note that we correctly obtain
rBuresðθiÞ ¼ ri with rBuresðθÞ in Eq. (D8). Moreover, 0 ≤
rBuresðθÞ ≤ 1 since aB > 1 in Eq. (D8). Clearly, Eq. (D8)
with θi set equal to zero should be compared, for a given
pair of initial conditions ri and r0i, with its corresponding
analog in the framework of Sjöqvist metric [that is,
Eq. (C11)]. Such comparison can be carried out once we
express aB and A in Eq. (D8) in terms of ri and r0i. After
some algebra, it happens that

aB ¼ aBðri; r0iÞ ¼def
1

r2i
þ r02i
r4i ð1 − r2i Þ

; and

A ¼ Aðri; r0iÞ ¼def tan−1
�
ri
r0i
ð1 − r2i Þ

�
: ðD10Þ

For completeness, we point out that aB and A can only be
implicitly expressed in terms of the two boundary con-
ditions ri ¼ rðθiÞ and rf ¼ rðθfÞ via the two relations

r2i ¼
1þ tan2A

1þ aB tan2A
; r2f ¼

1þ tan2 ðA− θfÞ
1þ aB tan2 ðA− θfÞ

: ðD11Þ

Finally, setting θi ¼ 0 and using Eq. (D10), rBuresðθÞ in
Eq. (D8) can be formally compared with rSjöqvistðθÞ
in Eq. (C11).

2. The canonical η-affine parametrization

From Eq. (40), the only nonvanishing Christoffel con-
nection coefficients are

Γ1
11 ¼

r
1 − r2

; Γ1
22 ¼ −ð1 − r2Þr;

Γ1
33 ¼ −ð1 − r2Þr sin2ðθÞ;

Γ2
12 ¼ Γ2

21 ¼
1

r
; Γ2

33 ¼ − sinðθÞ cosðθÞ;

Γ3
13 ¼ Γ3

31 ¼
1

r
; Γ3

23 ¼ Γ3
32 ¼

cosðθÞ
sinðθÞ : ðD12Þ

Therefore, geodesics satisfy the geodesic equations in
Eq. (11) described in terms of a system of three coupled
second order nonlinear ODEs,
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8>><>>:
̈rþ r

1−r2 _r
2 − ð1 − r2Þr½_θ2 þ sin2ðθÞ _φ2� ¼ 0

θ̈ þ 2
r _r

_θ− sinðθÞ cosðθÞ _φ2 ¼ 0

φ̈þ 2
r _r _φþ2

cosðθÞ
sinðθÞ _θ _φ ¼ 0

; ðD13Þ

where _r ¼def dr=dηwith η being an affine parameter. We note
from Eqs. (42) and (D13) that, unlike what happens with
the Sjöqvist metric, when using the Bures metric in the
Bloch ball, the radial and angular evolutions are coupled.
Integration of the system in Eq. (D13) is rather complicated
and, in what follows, we limit our attention to geodesic
paths with constant φ. In this case, Eq. (D13) reduces to

� ̈rþ r
1−r2 _r

2 − ð1 − r2Þr_θ2 ¼ 0

θ̈ þ 2
r _r

_θ ¼ 0
: ðD14Þ

Manipulating the second relation in Eq. (D14), we note that
r2 _θ ¼ const. Then, given our knowledge of r ¼ rðθÞ in
Eq. (D8), we get Z

θ

θi

r2ðθÞdθ ¼ r2i _θiη; ðD15Þ

where ηi is assumed to be equal to zero. Using Eq. (D8),
integration of Eq. (D15) with Mathematica along with
some algebraic manipulations yield θ ¼ θðηÞ as

θBuresðηÞ
¼ θi þA

− tan−1
�

1ffiffiffiffiffi
aB

p tan ½tan−1ð ffiffiffiffiffi
aB

p
tanAÞ − ffiffiffiffiffi

aB
p

r2i _θiη�
�
:

ðD16Þ

Observe that θBuresðηÞ is a bounded function for any η ≥ 0.
For consistency, note that we correctly obtain from
Eq. (D16) that θBuresðηiÞ¼θi and _θBuresðηiÞ ¼ _θi. Finally,
using Eq. (D16) and recalling that r2 _θ ¼ r2i _θi, we get
r ¼ rðηÞ as

rBuresðηÞ

¼
�

aB þ tan2 ½tan−1 ð ffiffiffiffiffi
aB

p
tanAÞ − ffiffiffiffiffi

aB
p

r2i _θiη�
aB þ aB tan2 ½tan−1 ð ffiffiffiffiffi

aB
p

tanAÞ − ffiffiffiffiffi
aB

p
r2i _θiη�

�1=2

:

ðD17Þ

Note that, 0 ≤ rBuresðηÞ ≤ 1 for any η ≥ 0 since aB > 1 in
Eq. (D17). As a side remark, note that the speed of
evolution along these geodesic paths with φ-fixed is
constant and equals,

vBures¼defð1=2Þ½ð1 − r2Þ−1 _r2 þ r2 _θ2�1=2: ðD18Þ

The constancy of vBures in Eq. (D18) is a consequence
of Eq. (D3) along with the constancy of r2 _θ. As a
consistency check, observe that Eq. (D17) correctly leads
to rBuresðηiÞ ¼ ri and r2BuresðηÞ_θBuresðηÞ ¼ r2i _θi ¼ const.
Observe that rBuresðηÞ in Eq. (D17) is the analog of
rSjöqvistðηÞ in Eq. (C13). It is evident from Eq. (D17) that
the radial variable rBuresðηÞ depends on the angular motion
via _θi and r0i ¼ ðdr=dθÞθ¼θi

. This latter quantity enters the
expressions of aB and A as presented in Eq. (D10).
In what follows, we briefly compare features that appear

in the Bures and Sjöqvist cases. Using Eq. (D3) and
exploiting the constancy of r2 _θ, we have

LBuresðθfÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ

r02i
1 − r2i

s
_θiηf ≤ LSjöqvistðθfÞ; ðD19Þ

with LSjöqvistðθfÞ in Eq. (54). Moreover, using Eqs. (A9),

(C13), (D16), and (D17) and noting that VðaccessibleÞ
Sjöqvist ¼

π2=4 ¼ 2VðaccessibleÞ
Bures , we get after some algebra that for

sufficiently large values of η and fixing φ,

VðexploredÞ
Bures;φ¼constðηÞ
VðaccessibleÞ
Bures

≤
VðexploredÞ
Sjöqvist;φ¼constðηÞ
VðaccessibleÞ
Sjöqvist

: ðD20Þ

In particular, the qualitative behavior of the explored
volumes in Eq. (D20) is given by

VSjöqvist;φ¼constðηÞ ∼ η cos−1 ½sinðηÞ�; and

VBures;φ¼constðηÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2ðηÞ

1þ tan2ðηÞ

s
tan−1ðηÞ: ðD21Þ

Since the sequential application of the averaging and
asymptotic limit procedures preserve the ranking in
Eq. (D20), we expect that the complexity of the evolution
on the Bures manifold is softer than that on the Sjöqvist
manifold. This is not completely unexpected given that
LBuresðθfÞ ≤ LSjöqvistðθfÞ and, above all, the presence of a
correlational structure in the equations of motion between
the radial and angular directions. Such a structure is absent
in the Sjöqvist case. Correlational structures do tend to
shrink the explored volumes of regions on the manifold
underlying the dynamics and, therefore, tend to weaken the
complexity of the evolution [87,88]. In summary, although
Eq. (D20) assumes φ ¼ const, the information geometric
complexity of the evolution of quantum systems in mixed
quantum states seems to depend on the choice of the metric
selected on the underlying manifold.
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APPENDIX E: CURVATURE OF QUANTUM
STATE MANIFOLDS

In this appendix, we outline some curvature properties of
the manifold of pure states equipped with the Fubini-Study
metric along with those of a manifold of mixed quantum
states endowed with the Sjöqvist and Bures metrics. In
particular, for each case, we report expressions of the tensor
metric components, infinitesimal line elements, Christoffel
connection coefficients, Ricci tensor components, Riemann
curvature tensor components, scalar curvatures and, finally,
sectional curvatures.

1. Preliminaries

Given a metric tensor gμνðξÞ with corresponding line

element ds2¼def gμνdξμdξν, the Christoffel connection coef-
ficients are defined as [89]

Γρ
μν¼def 1

2
gρσð∂μgσν þ ∂νgμσ − ∂σgμνÞ; ðE1Þ

where ∂μ¼def∂=∂ξμ and gρσ are the coefficients of the inverse

metric tensor such that gρσgσβ¼defδρβ with δ denoting the
Kronecker delta symbol. From the expression of the
Christoffel connection coefficients in Eq. (E1), the Ricci
tensor and Riemann curvature tensor components can be
defined as [89]

Rμν ¼def ∂αΓα
μν − ∂νΓα

μα þ Γα
μνΓ

β
αβ − Γγ

μαΓα
νγ; ðE2Þ

and

Rα
μνρ ¼def ∂νΓα

μρ − ∂ρΓα
μν þ Γα

βνΓ
β
μρ − Γα

βρΓ
β
μν; ðE3Þ

respectively. In terms of the quantities in Eqs. (E2) and
(E3), the scalar curvature R is given by

R ¼def Rμνgμν ¼ Rαβγδgαγgβδ: ðE4Þ

We remark that the sign of the scalar curvature of a curved
manifold is subject to convention. For instance, following
Weinberg’s sign convention [89], the scalar curvature of a
two-sphere of unit radius equals −2. Here, however, we are
using the opposite sign convention. In Weinberg’s book,

ðRμνÞWeinberg¼
def −Rμν with Rμν in Eq. (E2). Adopting our

sign convention, the scalar curvature of a two-sphere of unit
radius equals þ2. The scalar curvatureR of a manifoldM
in Eq. (E4) can also be recast as the sum of all sectional
curvatures Kðêi; êjÞ of planes spanned by pairs fêi; êjg of
orthonormal basis elements fêkg with 1≤k≤ jTpMj [90],

R ¼
X
i≠j

Kðêi; êjÞ: ðE5Þ

The pair fêi; êjg is a basis for a 2-plane Π ⊂ TPM, a two-
dimensional subspace of the tangent space to M at P. The
sectional curvature Kðêi; êjÞ is defined as [89]

Kðêi; êjÞ ¼def
Riemannðêi; êj; êj; êiÞ

hêi; êiihêj; êji − hêi; êji2
ðE6Þ

where Riemannða; b; b; aÞ¼defRαβγδaαbβbγaδ with a, b
being two arbitrary vectors on the 2-plane Π spanned by

fêi; êjg and, finally, ha; bi ¼defgμνaμbν. The constancy of the
sectional curvatures is related to the concept of maximally
symmetric manifold. Specifically, an isotropic n-dimen-
sional manifold M is a maximally symmetric manifold
with nðnþ 1Þ=2 independent Killing vectors where the
geometry does not depend on directions. For a maximally
symmetric manifold, the following simplifying relations
hold true among the scalar curvature R, the constant
sectional curvature K, the Ricci tensor components Rαβ,
and the Riemann curvature tensor components Rαβγδ [91],

R ¼ nðn − 1ÞK; Rαβ ¼ ðn − 1ÞKgαβ;

Rαβγδ ¼
R

nðn − 1Þ ðgβδgαγ − gβγgαδÞ: ðE7Þ

Isometries play a key role in the characterization of
maximally symmetric manifolds. Recall that an isometry
of the metric gμνðξÞ is a distance-preserving transformation
ξ → ξ0 such that [89]

gμνðξÞ ¼
∂ξ0ρ

∂ξμ
∂ξ0σ

∂ξν
gρσðξ0Þ: ðE8Þ

All the infinitesimal isometries of the metric gμνðξÞ are
determined by the Killing vectors of the metric. Consider

an infinitesimal coordinate transformation ξμ → ξ0μ ¼def
ξμ þ ϵkμðξÞ, with jϵj ≪ 1. A vector field kμðξÞ is a
Killing vector for the metric gμνðξÞ if it satisfies the so-
called Killing condition,

Dρkσ þDσkρ ¼ 0; ðE9Þ

where Dρkσ¼def∂ρkσ − Γλ
σρkλ and ∂ρ¼def∂=∂ξρ. For complete-

ness, we point out that what really determines the infini-
tesimal isometries of a metric gμνðξÞ is the space of vector
fields spanned by the Killing vectors since any linear
combination of Killing vectors with constant coefficients is
a Killing vector. In general, it is highly nontrivial solving
the Killing conditions in Eq. (E9).
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2. Type of manifold

a. Manifold equipped with the Fubini-Study metric

In the case of the two-dimensional manifold of pure
states equipped with the Fubini-Study metric gFSμν ðξÞ with

ξ ¼defðξ1; ξ2Þ ¼ ðθ;φÞ, the infinitesimal line element is given

by ds2FS¼defð1=4Þ½dθ2 þ sin2ðθÞdφ2�. In this case, the non-
zero Christoffel connection coefficients in Eq. (E1) are
given by

Γ1
22 ¼ − sinðθÞ cosðθÞ; Γ2

12 ¼
cosðθÞ
sinðθÞ : ðE10Þ

Furthermore, using Eq. (E10), the nonzero Ricci and
Riemann curvature tensor components in Eqs. (E2) and
(E3) are

R11 ¼ 1; R22 ¼ sin2ðθÞ; ðE11Þ

and

R1212 ¼
1

4
sin2ðθÞ; ðE12Þ

respectively. For completeness, we point out that exploiting
the symmetry properties of the Riemann curvature tensor,
we also have R1221¼R2112¼−R1212 and R2121 ¼ R1212.
To calculate the sectional curvatures Kðêi; êjÞ in Eq. (E6),
we note that the unit tangent vectors fêr; êθ; êφg in
spherical coordinates are given by

êr¼def
∂rr⃗

k∂rr⃗k
¼ sinðθÞ cosðφÞx̂þ sinðθÞ sinðφÞŷþ cosðθÞẑ;

êθ¼def
∂θr⃗

k∂θr⃗k
¼ cosðθÞ cosðφÞx̂þ cosðθÞ sinðφÞŷ − sinðθÞẑ;

êφ¼def
∂φr⃗

k∂φr⃗k
¼ − sinðφÞx̂þ cosðφÞŷ; ðE13Þ

where r⃗ ¼def r sinðθÞ cosðφÞx̂þ r sinðθÞ sinðφÞŷþ r cosðθÞẑ,
and k·k denotes the usual Euclidean norm. In the Fubini-
Study case, we have that ds2FS ¼ dsFS · dsFS with the
infinitesimal vector element dsFS given by

dsFS¼def
1

2
êθdθ þ

1

2
sinðθÞêφdφ; ðE14Þ

where 1=2 and ð1=2Þ sinðθÞ in Eq. (E14) denote the so-
called scale factors of the metric [92]. Then, inserting
Eqs. (E13) and (E12) into Eq. (E6), we find

KFSðêθ; êφÞ ¼ KFSðêφ; êθÞ ¼ 4: ðE15Þ

Thus, from Eq. (E15), we conclude that the manifold of
pure states equipped with the Fubini-Study metric is an

isotropic manifold of constant (positive) sectional curvature
with (positive) constant Ricci curvature RFS ¼ 8. As a
final remark, we emphasize that for a two-sphere with

metric 4ds2FS ¼def dθ2 þ sin2ðθÞdφ2, Killing vectors can be
found [93]

k1¼defLx=iℏ ¼ sinðφÞ∂θ þ cotðθÞ cosðφÞ∂φ;
k2¼defLy=iℏ ¼ − cosðφÞ∂θ þ cotðθÞ sinðφÞ∂φ;
k3¼defLz=iℏ ¼ −∂φ: ðE16Þ

Then, the most general Killing vector k is a linear
combination of these three independent Killing vectors
fk1; k2; k3g. The three vectors describe rotations and are
just the angular momentum operators fLx; Ly; Lzg, the
generators of the three-dimensional rotation group
SOð3;RÞ, expressed in spherical coordinates [94].

b. Manifold equipped with the Sjöqvist metric

For the three-dimensional manifold of mixed states
equipped with the Sjöqvist metric gSjöqvistμν ðξÞ with

ξ ¼defðξ1; ξ2; ξ3Þ ¼ ðr; θ;φÞ, the infinitesimal line element

is ds2Sjöqvist¼defð1=4Þ½ð1−r2Þ−1dr2þdθ2þsin2ðθÞdφ2�. The
nonzero Christoffel connection coefficients in Eq. (E1) are

Γ1
11¼

r
1− r2

; Γ2
33¼−sinðθÞcosðθÞ; and Γ3

23¼
cosðθÞ
sinðθÞ :

ðE17Þ

Moreover, exploiting Eq. (E17), the nonvanishing Ricci
and Riemann curvature tensor components in Eqs. (E2) and
(E3) become

R22 ¼ 1; R33 ¼ sin2ðθÞ; ðE18Þ

and

R2323 ¼
1

4
sin2ðθÞ; ðE19Þ

respectively. For completeness, we emphasize that exploit-
ing the symmetry properties of the Riemann curvature
tensor, we also have R2332 ¼ R3223 ¼ −R2323 and
R3232 ¼ R2323. In the Sjöqvist metric, we have that
ds2Sjöqvist ¼ dsSjöqvist · dsSjöqvist with the infinitesimal vector
element dsSjöqvist defined as

dsSjöqvist¼def
1

2

1ffiffiffiffiffiffiffiffiffiffiffi
1− r2

p êrdrþ
1

2
êθdθþ

1

2
sinðθÞêφdφ; ðE20Þ
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whereð1=2Þð1 − r2Þ−1=2, 1=2 and ð1=2Þ sinðθÞ in Eq. (E20)
denote the so-called scale factors of the metric. Then,
inserting Eqs. (E13) and (E19) into Eq. (E6), we find

KSjöqvistðêθ; êφÞ ¼ KSjöqvistðêφ; êθÞ ¼ 4; ðE21Þ

and

KSjöqvistðêr; êθÞ ¼ KSjöqvistðêθ; êrÞ ¼ KSjöqvistðêr; êφÞ
¼ KSjöqvistðêφ; êrÞ ¼ 0: ðE22Þ

Thus, from Eqs. (E21) and (E22), we conclude that the
manifold of mixed states equipped with the Sjöqvist metric
is an anisotropic manifold of nonconstant (positive) sec-
tional curvature with an overall (positive) constant Ricci
curvature RSjöqvist ¼ 8.

c. Manifold equipped with the Bures metric

In the case of the three-dimensional manifold of mixed
states equipped with the Bures metric gBuresμν ðξÞ with

ξ¼defðξ1; ξ2; ξ3Þ ¼ ðr; θ;φÞ, the infinitesimal line element

is given by ds2Bures¼defð1=4Þ½ð1 − r2Þ−1dr2 þ r2dθ2 þ
r2 sin2ðθÞdφ2�. In this case, the nonzero Christoffel con-
nection coefficients in Eq. (E1) are given by

Γ1
11¼

r
1− r2

; Γ1
22¼−rð1− r2Þ;

Γ1
33¼−rð1− r2Þsin2ðθÞ; Γ2

12¼
1

r
;

Γ2
33¼−sinðθÞcosðθÞ; Γ3

13¼
1

r
; Γ3

23¼
cosðθÞ
sinðθÞ : ðE23Þ

Furthermore, employing Eq. (E23), the nonzero Ricci and
Riemann curvature tensor components in Eqs. (E2) and
(E3) are

R11 ¼
2

1− r2
; R22 ¼ 2r2; R33 ¼ 2r2 sin2ðθÞ; ðE24Þ

and, modulo symmetries of the Riemann curvature tensor,

R1212 ¼
1

4

r2

1 − r2
; R1313 ¼

1

4

r2

1 − r2
sin2ðθÞ;

R2323 ¼
1

4
r4 sin2ðθÞ; ðE25Þ

respectively. In the Bures case, we have that ds2Bures ¼
dsBures · dsBures with the infinitesimal vector element
dsBures given by

dsBures¼def
1

2

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p êrdrþ
r
2
êθdθ þ

r
2
sinðθÞêφdφ; ðE26Þ

where ð1=2Þð1 − r2Þ−1=2, r=2 and ðr=2Þ sinðθÞ in Eq. (E26)
are the scale factors of the metric. Then, inserting
Eqs. (E13) and (E25) into Eq. (E6), we find

KBuresðêr; êθÞ ¼ KBuresðêθ; êrÞ ¼ KBuresðêr; êφÞ
¼ KBuresðêφ; êrÞ ¼ KBuresðêθ; êφÞ
¼ KBuresðêφ; êθÞ ¼ 4: ðE27Þ

Thus, from Eq. (E27), we conclude that the manifold of
mixed states equipped with the Bures metric is an isotropic
manifold of constant (positive) sectional curvature with
(positive) constant Ricci curvature RBures ¼ 24.

APPENDIX F: FURTHER DETAILS ON THE
SJÖQVIST METRIC

In this appendix, we provide some comparative state-
ments between the Bures and the Sjöqvist metrics.
Furthermore, we briefly present the extension of the
original Sjöqvist metric to degenerate mixed quantum
states.

1. Comparison with the Bures metric

Following the Morozova-Cencov-Petz theorem as
reported in Ref. [85], every (Riemannian and monotone)
metric in the Bloch ball at a point where the density
matrix is diagonal, ρ ¼ ð1=2Þdiagð1þ r; 1 − rÞ, can be
expressed as

ds2 ¼ 1

4

�
dr2

1 − r2
þ 1

fð1−r
1þrÞ

r2

1þ r
dΩ2

�
; ðF1Þ

with 0 < r < 1. In Eq. (F1), dΩ2¼defdθ2 þ sin2ðθÞdφ2 is the
metric on the unit 2-sphere while f∶ Rþ → Rþ is the so-
called Morozova-Cencov function f ¼ fðtÞ. This function
satisfies three conditions: (i) f is operator monotone, (ii) f
is self-inversive with fð1=tÞ ¼ fðtÞ=t, (iii) fð1Þ ¼ 1. From
Eq. (F1), we emphasize that condition (iii), fð1Þ ¼ 1 ≠ 0,
serves to avoid a conical singularity in the metric at

the maximally mixed state where r ¼ 0 [that is, t ¼ tðrÞ ¼def
ð1 − rÞ=ð1þ rÞ ¼ 1]. For details on the Morozova-
Cencov-Petz theorem and further discussion on the mean-
ing of conditions (i), (ii), and (iii), we refer to Refs. [85,95].
For details on the monotonicity of operator functions, we
refer to Refs. [96–100]. In the case of the Bures metric,

ds2Bures ¼
1

4

�
dr2

1 − r2
þ r2dΩ2

�
: ðF2Þ

From Eqs. (F1) and (F2), we find that fBuresðtÞ ¼defð1þ tÞ=2.
Clearly, fBuresðtÞ satisfies conditions (i), (ii), and (iii). In the
case of the Sjöqvist metric,
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ds2Sjöqvist ¼
1

4

�
dr2

1 − r2
þ dΩ2

�
: ðF3Þ

From Eqs. (F1) and (F3), we find that fSjöqvistðtÞ ¼def
ð1=2Þ½ð1 − tÞ2=ð1þ tÞ�. We observe that although
fSjöqvistðtÞ is self-inversive, fSjöqvistð1Þ ¼ 0. Therefore, as
pointed out in Ref. [53], the Sjöqvist metric in Eq. (F3) is
singular at the origin of the Bloch ball where r ¼ 0 (i.e.,
t≡ tð0Þ ¼ 1) and the angular components of the metric
tensor diverge because fSjöqvistð1Þ ¼ 0. For this reason, the
original Sjöqvist metric is limited to nondegenerate mixed
quantum states. When considering degenerate quantum
states ρ, the Sjöqvist metric must be generalized as
discussed in Refs. [54,101]. We briefly address this point
in the next subsection.

2. Extension to the degenerate case

From Ref. [53] and the main text of this paper [see
Eq. (32)], we recall that in the n-dimensional case ds2Sjöqvist
can be recast as

ðds2SjöqvistÞðnon-degenerateÞ ¼
1

4

Xn
k¼1

dp2
k

pk
þ
Xn
k¼1

pkds2k; ðF4Þ

where dpk ¼ _pkdt, ds2k ¼defhdekjdeki − jhekjdekij2 is the
Fubini-Study metric along the pure state jeki, and 1̂ being
the identity operator on the n-dimensional Hilbert space.
Equation (F4) is valid in the nondegenerate case. Before
introducing its extension to the degenerate case, we make a
remark. Both the Bures and the Sjöqvist metrics can
be viewed as the sum of a classical and a quantum
contribution. In both cases, the classical contribution is the
Fisher-Rao metric between two probability distributions.

The quantum contributions, however, differ in general. In
the Bures case [see Eq. (B1)], the quantum contribution
emerges from the noncommutativity of the density matrices
ρ and ρþ dρ. When ½ρþ dρ; ρ� ¼ 0, the problem becomes
classical and the Bures metric reduces to the classical
Fisher-Rao metric. In the Sjöqvist case [see Eq. (F4)], the
quantum contribution is the sum of the pure state Fubini-
Study metrics ds2k along the state vectors fjekig weighted
with their corresponding probability fpkg,

P
k pkds2k.

Returning to the extension of ds2Sjöqvist in Eq. (F4) to the
case of degenerate mixed quantum states, following
Refs. [54,101], we have

ðds2SjöqvistÞðdegenerateÞ ¼
1

4

Xm
k¼1

rk
dp2

k

pk
þ
Xm
k¼1

pktrðPkdPkdPkÞ;

ðF5Þ

where ρ¼defPm
k¼1 pkPk, rk¼deftrðPkÞ is the rank of the

orthogonal projector Pk, and r¼defPm
k¼1 rk is the rank of

the state ρ. Obviously, unlike what happens in Eq. (F4), in
Eq. (F5) not all projectors Pk are rank-one operators
because of the possible presence of degenerate eigenvalues
of ρ. Note that m ≤ l with l denoting the cardinality of the
set of pure states that specify the probabilistic mixture (i.e.,
quantum ensemble) that defines ρ ∈ Cn×n. Observe also
that l can be greater than n when ρ is nondegenerate. For a
complete classification of quantum ensembles yielding a
given density matrix, we refer to [102]. For completeness,
we note that when Pk ¼ jekihekj and rk ¼ 1 for any
1 ≤ k ≤ m, trðPkdPkdPkÞ equals hdekjdeki − jhekjdekij2
and, in addition, Eq. (F5) reduces to Eq. (F4). For details
on the derivation of Eq. (F5), we refer the reader to
Refs. [54,101].
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