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One-loop corrections to the Higgs boson invisible decay in a complex singlet
extension of the SM

2 2.8

Felix Egle,l‘* Margarete Miihlleitner,l’+ Rui Santos®, 3% and Jodo Viana

'Institute for Theoretical Physics, Karlsruhe Institute of Technology,
Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
2Centro de Fisica Tedrica e Computacional, Faculdade de Ciéncias, Universidade de Lisboa,
Campo Grande, Edificio C8, 1749-016 Lisboa, Portugal
*ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa,
1959-007 Lisboa, Portugal

® (Received 12 February 2022; accepted 1 November 2022; published 28 November 2022)

The search for dark matter (DM) at colliders is founded on the idea of looking for something invisible.
There are searches based on production and decay processes where DM may reveal itself as missing energy.
If nothing is found, our best tool to constrain the parameter space of many extensions of the Standard
Model (SM) with a DM candidate is the Higgs boson. As the measurements of the Higgs couplings become
increasingly precise, higher-order corrections will start to play a major role. The tree-level contribution to
the invisible decay width provides information about the portal coupling. Higher-order corrections also
give us access to other parameters from the dark sector of the Higgs potential that are not present in the
tree-level amplitude. In this work we will focus on the complex singlet extension of the SM in the phase
with a DM candidate. We calculate the one-loop electroweak corrections to the decay of the Higgs boson
into two DM particles. We find that the corrections are stable and of the order of a few percent. The present
measurement of the Higgs invisible branching ratio, BR(H — invisible) < 0.11, already constrains the
parameter space of the model at leading order. We expect that by the end of the LHC the experimental
measurement will require the inclusion of the electroweak corrections to the decay in order to match the
experimental accuracy. Furthermore, the only competing process, which is direct detection, is shown to

have a cross section below the neutrino floor.
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I. INTRODUCTION

The determination of the scalar potential and the search
for dark matter (DM) have replaced the search for the Higgs
boson as the main goal of particle physicists. In fact, since
the Higgs has been discovered at the Large Hadron Collider
(LHC) by the ATLAS [1] and CMS [2] Collaborations,
and the Higgs couplings have been measured with great
precision, the attention has turned to the outstanding
problems of the Standard Model (SM). The search for
DM is certainly on the top of the list especially because at
this point we cannot even be sure if it comes in the form of
an elementary particle. Therefore, even if collider physics is
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not the place to prove the existence of a DM candidate, it
can help us by hinting at some particular directions even
if only by excluding the parameter space of particular
models. The Higgs invisible decay measurements are
probably one of the best quantities to probe the dark sector
of particular models. The branching ratio of Higgs to
invisible is now bounded to below 11% by ATLAS [3].
This number will improve both in the next LHC run and in
the high luminosity stage. This increasing precision will
take us further inside the dark sector of the models.

In this work we discuss the Higgs invisible decay in the
complex singlet extension of the SM (CxSM) which
amounts to the addition of a complex scalar singlet to
the known SM fields while keeping the SM gauge
symmetries. While the tree-level decay of the Higgs into
DM involves only the portal coupling, the one-loop
corrections to the decay give us access to the quartic
coupling of the singlet field (for a review on scalar portal
models see [4,5]). Therefore, the one-loop result gives us a
more complete understanding of the Higgs potential. The
computation of the one-loop corrections for the Higgs
decay into DM particles for the dark doublet phase of the
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Next-to-minimal two-Higgs doublet model (N2HDM) was
already performed in Ref. [6]. There is a competing and
complementary measurement that is the direct detection
process. The DM-nucleon cross section is only relevant at
one-loop due to a cancellation that renders the tree-level
cross section proportional to the DM velocity and therefore
negligible [7,8]. The one-loop corrections to the direct
detection process were calculated in [9,10] and compared
to the latest experimental results from XENON [11]. We
will discuss the interplay between direct detection and the
branching ratio of the invisible Higgs decay including the
electroweak corrections in both processes.

This special feature of having a negligible DM-nucleon
cross section occurs only in the CxSM with a softly broken
(by dimension two terms) U(1) symmetry. This is the main
difference when we compare this model with the real
singlet extension of the SM. For a review of the DM real
singlet extension see [12,13], and for a previous study of
the phenomenology of the CxSM see [14].

Our analysis will be performed taking into account the
most relevant theoretical and experimental constraints on
the model. These are collider constraints and also DM
constraints. We will then calculate the next-to-leading order
(NLO) electroweak corrections to the invisible decay width
of the SM-like Higgs boson using several renormalization
schemes. Once the allowed parameter space is found, the
NLO result will be compared with the leading order (LO)
one. The final goal is to understand if the NLO Higgs
branching ratio into two DM particles can be larger than the
LO one and will hence be constrained by the experimen-
tally measured value that is fulfilled by the LO one for our
chosen parameter points. Moreover, as the new data will
become available both at the next LHC run and at the high
luminosity stage, the Higgs coupling measurements will be
more precise and the theoretical calculations need to match
this precision.

The outline of the paper is as follows. In Sec. II, we will
introduce the CxSM together with our notation. Section III
is dedicated to the description of the different renormaliza-
tion schemes used in this work. Section IV discusses
the experimental and theoretical constraints on the model.
In Sec. V, the results are presented and discussed. Our
conclusions are collected in Sec. VI. Finally, there are two
appendixes. In the first one we present the results of the
scalar pinched self-energies. In the second one we discuss
the stability of the different minima of the CxSM potential.

II. THE CxSM POTENTIAL

In this section we introduce the version of the CxSM
used in this work. The model is a simple extension of the
SM where a complex singlet field with zero isospin and
zero hypercharge is added to the model. As a singlet for the
SM gauge group, the scalar field appears only in the Higgs
potential. The SM Higgs couplings will, however, be
modified by the rotation angle from the matrix that relates

the scalar gauge eigenstates with their mass eigenstates.
The doublet field @ and the singlet field S are defined as

G+
O = _ :
(\/'E(erHJrlGO))

S—é§w+S+KM+A» (1)

where H, S, and A are real scalar fields and G and G° are
the Goldstone bosons for the Z and W+ bosons. The v, v As
and vy are the vacuum expectation values (VEVs) of the
corresponding fields and can all be, in general, nonzero in
which case mixing between all three scalar fields arises. We
will, however, focus on a model where a DM candidate is
generated by forcing the potential to be invariant under a
symmetry, unbroken by the vacuum. We choose to impose
invariance of the potential under two separate Z, sym-
metries acting on S and A, thatis, S - —S and A — —A.
The resulting renormalizable potential is

m?2 A, ) b
V=—©®®+Z(dd)?2+2DDS|?+2|S?

00+ 2 (@0P + ZoTO[S + 2|

dy s (b1

=2 -1 . 2

+4|§|+<4§+cc, (2)

where all constants are real. By choosing vy = 0, the A —
—A symmetry remains unbroken and A is stable, becoming
the DM candidate of the model. The other Z, symmetry is
broken since vg # 0, which leads to mixing between S and
H. The mass eigenstates of the CP-even field h; (i = 1,2)
relate to the gauge eigenstates H and S through

hy H
=R , 3
() == (5) ®
where the rotation matrix is given by
cosa sina c s
ro=( J=(T ) W
—sina cosa —S4  Cq4
The mass matrix in the gauge basis (H, S) is given by
A S L
2 2 v
M‘(mﬂdﬁ>+<o“>’ (5)
2 2 /l/‘s

where the tadpole parameters 7' and T, are defined via the
minimization conditions,

ov T, m? 521% v?A

= S i S 6

o ! > T T (62)
0V T2 bl + b2 527}2 U%dz
=T, = 2= . (6b
ovs 2 v 2 T4ty (6b)
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and at tree level, the minimum conditions are 7; =0
(i = 1,2). The mass of the DM candidate A is given by

—by+b, 6,0% v3d T
2 _Th 2, 02 sda _ _, 1o 7
m4 Sttt 1+Us’ (7)

while the remaining mass eigenstates are obtained via

D%,h = R,MR], D%,h = diag(m%l ) m%lz) (8)
Therefore, the scalar spectrum of the CxSM consists of two
Higgs bosons, h; and /,, one of which is the SM-like Higgs
with a mass of 125 GeV, and one DM scalar, which we call
A. Since the mixing between the two scalars is introduced
only via the rotation angle, the couplings of the two Higgs
bosons to the remaining SM particles is modified by the
same factor k; defined as

cosa, i=1

Gh,SMSM = gHSMSMSMkiv ki = .
—sina,

where gy smsm denotes the SM coupling between the SM
Higgs and the SM particle SM.

With these definitions the parameters of the potential
can now be written as functions of our choice of input
parameters given by

v, Vs, @ My, My, My, (10)
as
2 2 2 2
my, +my +cos2a(m; —mj, )
_mj 4 mj, +cos 2a(my, —mj, ) b
2 — UQ ’ ( )
s
m? —m3 ) sin2a
52 - ( hy hZ) ’ (110)
VVg
1
m? = 5 (cos 2a(ms; —m3 )
_v(m%] +mj ) 4 vs(mj, —mj, ) sin2a (114)
1] b
1
by, = 3 <2m/§ - m%l - miz + cos 205(m%l - miz)
~ v(my —mj ) sin2a (116)
Vg ’

Note that the model depends only on four independent
parameters, because one of the Higgs bosons plays the role
of the SM-like Higgs with a mass of 125 GeV and the

doublet VEV v = 1/1/v2Gr ~ 24622 GeV, where Gy

denotes the Fermi constant. The VEV is replaced by G as
an input parameter.

III. RENORMALIZATION

Our goal is to calculate the decay width of the Higgs
bosons into a pair of DM particles, #; — AA, at NLO. Since
A only couples to the two Higgs bosons 4;, we just need to
renormalize the scalar sector. With the trilinear /; couplings
to the DM particles given by

2 .
my [ Sq. i=1

: , 12
e (12

s Cor =2

Apan =

and according to our choice of input parameters, we need to
renormalize the masses of the two scalars #;, the mass of
the DM particle m,, the singlet VEV vg, and the mixing
angle a. Besides these parameters we also need to renorm-
alize the h; and A fields and the tadpoles to work with finite
Green functions. We start by formally defining the relation
between the bare and the renormalized quantities as

Po =P+ P, (13)

where Jf is the counterterm of the physical quantity £ and
P is the bare quantity. All bare fields ¢ are related to their
renormalized version via

oZ
o= \Zybw (1 +7¢>¢, (14)

where Z is the field strength renormalization constant.

A. On-shell renormalization of the scalar sector

We start by calculating the mass and field counterterms in
the scalar sector using the on-shell scheme. The renormal-
ization constants for the DM particle are defined as

57
Ay=+/Z,Ar (1 +—A)A, D%, =D} +6D3.

2
(15)

where Z, is the field strength renormalization constant,
D3 = m3, and 6D, is the mass counterterm for A.

The two scalars i; and h, again mix at one-loop order,
and therefore both the field renormalization constants and
the mass counterterms are defined by

095030-3



EGLE, MUHLLEITNER, SANTOS, and VIANA

PHYS. REV. D 106, 095030 (2022)

) =V ) = (1+22) (1)

’ =+\/Z ~(1+—— ,
<h2,0> hh(hz 2 )\ h,

Dlzm.o = D%,h + 5D%zh’ (16)

with D, | = diag(mj, . mj, ) and the matrices 6Z,, and
5D7, defined as

57, = (5 oy 5Zhlhz>,
Z,n,  Zp,n,
8D? S5D?

sD2, = < ’2“’“ ;”hz) (17)
6Dy, p,  O6Dj

The on-shell renormalization conditions lead to the
following expressions:

5D%l,hi = Re(Xy,, (m%l)) (18a)

0%, (p?
52y = —Re(M > (18b)
[ AAd ] ap pzzm%
2 2 2 S
6Zpp, = ﬁRe(Zhihj(mh-) = oDy, )i # j). (18¢)
mhi - mh‘/_ J J

for the counterterms of the scalar fields h; where %

denotes their self-energies. Similarly, the expressions for
the DM field A read

5D = Re(Z,(m2)). (19a)
9%, (p?
57, = —Re< A(f ) > (19b)
ap pr=m?

The diagonal terms of 6D?, or 8D} are related to the
mass counterterms and to the corresponding tadpoles. The
off-diagonal terms are related to the tadpoles to be
discussed in the next section.

B. Tadpole renormalization

Tadpole renormalization is essentially the way we
choose the VEVs at one-loop order so that the minimum
conditions hold. Another way to express it is to state that
the terms proportional to the scalar fields at one-loop order
have to vanish. The VEV chosen to fulfill this condition
[15,16] is the true VEV of the theory. We will follow the
scheme proposed by Fleischer and Jegerlehner [15] for the
SM with the goal of rendering all counterterms related to
physical quantities gauge independent. The scheme was
applied to various extensions of the SM (see, e.g., [17,18]).
For the CxSM a brief description follows. We start by
defining the true VEVs by performing the shifts

v—> v+ Av,

(20a)
vg — vg + Auvg, (20b)

which lead to the following shifts in the tadpole parameters
at NLO:

v2 O Vg

Tl - Tl +7AU -+ 3 AUS = Tl +5T1, (213)
5 dy 0’
Ty, —» T, + 212”“ Av + ZTUSAUS =T, +6T,. (21b)

The minimum equations lead to the following relations
between the shifts in the VEVs and the tadpole counter-
terms:

5Ty,
Oy

Av my
_ pT 1
<Avs> B Ra 6Th2 ’ (22)

2
My

with the relation between the tadpole counterterms 67’ , in
the gauge basis and those in the mass basis, 6T, ,, given by

oT oT),
oT, oT,
The shift introduced in the VEVs can be applied to the mass

matrix from Eq. (5). The additional terms resulting from
that shift read

vAVA % (Avvg + vAD
M—>M—|—< 2( S S))

%Z(AU’US + vAvy) drvgAvg

T,vév 0
— 0 TZEAZUS . (24)
N

—_——

vanishes

The last term in Eq. (24) vanishes, because after the shift
the tadpole conditions can be applied again. The mass
matrix can now be rotated into the mass basis and all
counterterm shifts can be applied leading to

smi 0
D}, = R,ZMRY - D3, + )
0 omy,

% + vAvd %2 (Avvg 4+ vAwg) T
R %2 (Avvg +vAvg) Ly dywgAo :
2 S S Vs 2VsAls
_ smj, 0 ADj ,  ADj
=Pt o em ) T\ apz, ap2, )
iy hyhy hyhy
(25)
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Using Egs. (22) and (23) as well as the relations Eq. (11)
between the potential parameters and the input parameters
we can express the shifts AD%ihj (i.j=12)as

. -,
AD%llhl = l( l/1h hyhy ) h léThl + l( lllhlhlhz)ﬁléThz’
1 2
(26a)
o -, o -,
AD]%“hz = l(_ll,{hlhth)ﬁléThl + l(_l/lhlhzhz)ﬁléThz’
1 2
(26b)
. -,
AD%lzhz = l( l/1h hzhz) h léThl + l( ll,{hzhzhz)ﬁléThz’
2
(26¢)
with the trilinear Higgs couplings given by
3 3
4 o UsCpt s
lh]hlh] = 3mhl #’ (273.)
2m2 + m2 )s,Co(VS, — VgC,y
/1/11h1hz = ( n hZ) ( d )’ (27b)
Vg
(m% + 2m%¢ )saca(yca + USSa)
Ahohy = : 2 o0s , (27c¢)
ved — vgsd
/Ihzhth = Bm%Z ¢  oa . (27d)

VVg

In terms of Feynman diagrams this can be seen as the
contribution of the tadpole diagram (times a factor i, at
vanishing momentum transfer) to the propagators of 4; and
h,, which were not included previously in the definition of
the self-energies. We define

i (p?) = i%,, (p?) — iAD}, | (28)

and the renormalized self-energies take the form

. 5 P 5m%l1 0
Zh,.h,(l? ) =Z5,(p7) — 0 sm2
hy

52:‘:"’/ 2 2

5Zh,-h-
+ (p25h,h, - D%,hj) =, (29)

This shift of contributions from the mass counterterm
matrix into the self-energy corresponds to the inclusion
of the tadpole diagrams into the self-energy. With this
change in the renormalized self-energy the following
results for the counterterms hold:

émﬁi = Re(Z}fl_C}li(m%li)), (30a)
aztad 2
5Zh»h‘ = —Re <hihi (2p ) >7 (3Ob)
it ap pZmel_
2 tad 2 H ;
6Zyp, = mRe(zhihj(mhj)) (i#Jj). (30c)

h; h;

Following a similar reasoning, the counterterms of the
field A can be expressed as

om3 = Re(X{(m3)), (31)
Ztad 2
6Zy = - e<"A7<f) ) (32)
op pr=m3

C. Renormalization of the mixing angle «

There are two parameters left to be renormalized. We
start with the rotation angle a. Previous works [6,17] lead
us to the conclusion that a scheme that is simultaneously
stable (in the sense that the NLO corrections do not become
unreasonably large) and gauge independent can be built
by combining the one proposed in Refs. [19,20] with the
gauge dependence handled by the use of the pinch
technique [21,22]. The scheme proposed in [19,20] intro-
duces a shift in «a, the angle from the rotation matrix R,

Ra,O ~ RﬁaRm (33)

and by relating it to the field renormalization matrix
constant leads to the following counterterm for a:
0Ly p, — 62,

6:
“ 4

(34)

The result is model independent, and it only assumes the
mixing of solely two fields. This relation can now be
expressed in terms of self-energies as

1

R ——
2(mj, = mj)

Re(Zjys,, (my ) + X5, (m7.)). (35)

This counterterm turns out to be gauge dependent. This in
itself would not be a problem if the complete amplitude
for the process was gauge independent, which is not the
case. There is, however, a procedure to isolate this gauge
dependence in a systematic and consistent way known as
the pinch technique [21-24]. After successfully applying
the pinch technique, the pinched self-energies can be
defined by adding the additional contributions to the
self-energies from the pinch technique. This results in
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S (%) = i, () + i ()
{e=1}

=iz, (p?)]
mh +mh

: 2
L G S U}
BT <p 2

_,g < 2_mh —l—mh

>0 Bo(g*.m%.m3)

1671’ 7 )0l]BO(q mW?m%V)

(36)

The loop integral By and the factor O;; as well as T} (P 2)

are defined in Appendix A. Note that the expresswn
with £ = 1 does not mean that a specific gauge has been
chosen. The additional terms together with the tadpole
self-energies result in a gauge-independent result which can
just be written in that form. We can now define a gauge-
independent counterterm for @, for which two different
scales will be chosen:

(i) Setting the external momenta to the respective On-
shell (OS) masses, p> = mj, , called the OS pinched
scheme.

(i) Setting the external momenta to the mean of the

m2 +m?
masses, p? = p? = 52, called the p* pinched
scheme.
In the p* pinched scheme the additional gauge-independent
terms from the pinch technique vanish so that the expres-
sion for the mixing angle counterterm becomes more
compact. We can write the counterterm for « in the p,

scheme and the OS pinched scheme as

= 2 2 ) Re (Ztha]dhz (pz) |{§:1}) ’ (373)

1 h h
daps = ————Re (mec m? ) 4+ 2P inch (2 )
o 2(’”%1 m%lz) hyhy ( h,) hyhy ( hz)

(37b)

With these definitions, da is gauge independent by
construction and the problem with the gauge dependence
is solved.

D. Renormalization of vg

The last parameter to be renormalized is the VEV vy of
the scalar singlet. We will be using a process-dependent
scheme and also a derivation thereof where the conditions
are imposed at the amplitude and not at the physical process
level, defined as the zero external momentum (ZEM)
scheme [6]. The latter, although less stable, allows one
to cover the entire parameter space because it is not
constrained by kinematic restrictions.

1. Process-dependent scheme

The process to be used needs a coupling constant
proportional to vg, and if we want to use a decay, the
only possibilities in the CxSM are h; — AA, h, — AA, and
h, — hyh,. Since we are interested in the Higgs decay into
DM, the mass m, is already constrained to be light enough
for this decay to be allowed. If /; is the 125 GeV Higgs, the
process h, — AA would not further constrain the parameter
space, whereas the process h, — hyh; would additionally
reduce the allowed parameter space. Therefore one of the
processes h; — AA will be used to extract the singlet VEV
renormalization constant, and because we want to use the
measurement of the SM-like Higgs invisible width, the
second Higgs will be used for that purpose. Note, however,
that any of the two Higgs bosons can be the SM-like one,
while the other can be either lighter or heavier than
125 GeV. Hence, there are two scenarios to be analyzed,
and we have to find vy for both.

In the process-dependent scheme the counterterm is
calculated by forcing

FIH&AA =T (38)
that is, the LO and NLO decay widths are equal. This is turn
leads to

0= Re((Ah —>AA) AIZL—%A)’ (39)

where A€, is the amplitude of the process /; — AA at
LO and AZL_?A 4 1s the amplitude at NLO. Because the LO

amplitude is just a coupling constant, the expression further
simplifies to

0 = Re(ANO, ). (40)

The NLO contribution A0, ,
the vertex corrections Ah__) a4 and the vertex counterterm
such that

can be written in terms of

= Re(A0)

= Re(Ah —>AA)

oAy 5Zupn  Anaa6Zpp,
- ﬂh,AA( AL 4 67y + —ot 4 - ) (41)
An,An 2 Anaa 2

where i, j € {1,2}, but i # j. And with the trilinear A;
couplings to the DM particles 4,44 given in Eq. (12) we
have

i=1
i=2
(42)

54, sm%  su cota,
0 OO T, () = {
/1h,-AA nmj, Vg —tana,
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Finally, the expression for the counterterm vy reads

ArC, omj,
Soi ™M = g (—Re( & AA) R "+ cotada + 67,

/1h1AA hy
OZpn,  Anyaa 6y,
, 43
T T 2 (432)
AYC, 6m2
Sv ™M — g (—Re( /{'2 AA) + 5~ lan ada + 6Z 4
hyAA i
Oy, Anaa i >
+ 20%2 + 1 1742 , 43b
2 ﬂthA 2 ( )

for the two processes. These counterterms are gauge
independent and lead to UV-finite results. The renormal-
ization scheme also leads to stable results. Therefore, the
only drawback is the kinematic restriction

my, > 2my, (44)

which forces us to be in a restricted region of the parameter
space. We discuss a solution to avoid this restriction in the
next section.

2. ZEM scheme

The ZEM scheme was introduced in [6] to avoid
kinematic restrictions on the parameter space, and we
will now apply it to the CxSM. It is a simple derivation
of the process-dependent scheme, where the square of
all external momenta are set to zero at the level of the
amplitude,

2 _ 2 .2

Pin = Pout1 = Pouz = O’ (45)

eliminating therefore the kinematic constraint. Choosing
the same physical processes, the condition now reads

0= Re(A,, ({p? = 0})). (46)

where p?> = 0 means that all squared external momenta
are set to zero. There is another difference relative to the
process-dependent scheme: the NLO leg corrections are
not canceled by the corresponding counterterms, because
the leg counterterms are defined through the OS scheme.
Therefore Eq. (46) now takes the form

0 = Re(Ay™ ({p? = 0}) + A5 ™ ({p* = 0}))

Leg
by 8Zpy, oMy
+/1ht.AA <_ h'AA+5ZA+ h;h; + 2h,
lh,-AA 2 mh

26m2  Apaams 6Zy
mi | Anan My, h,h/>. (47)

2 2
mA AhiAA mhj 2

Again, this equation can be solved for the two processes
hy —» AA and h, — AA to obtain the counterterms

5y LM —AA
S
. ke Ah1—>AA({p2 _ O}) + Aﬁle;AA({pz _ O})
’ Ap, AA
20m%: 67 57
+ cotada — 6Z, — ";A ot h1h2>’
my 2 2
(48a)
5U?EM.h2—>AA
Y Ahz_)AA({pz — O}) + AI}?C;AA({IJZ _ O})
’ )“thA
257}12 5Zh2 hy 52/’12/1]
—tanada — 6Z, — %‘A— > —tana > .
(48b)

We now just have to check if the final result is finite and
gauge independent. The question of gauge dependence in
the alternative tadpole scheme is always related to wave
function renormalization constants. A thorough analysis
leads to the conclusion that although finite the result is
gauge dependent due to the term

6Z, »  A.mi 8Zp
hih; h hih; (49)

M
2 T ami 2

for the corresponding process h; — AA. The problem was
solved by simply replacing the self-energies in the wave
function renormalization constants in Eq. (48) by their
pinched versions. This way dvg becomes gauge indepen-
dent. This change in the 6Z;, ;, , however, is applied only to
terms appearing in Eq. (48) where the ZEM counterterm of
vg is defined and not anywhere else. Otherwise, a gauge
dependence in the overall amplitude of the renormalized
process could be reintroduced. Therefore, the resulting
counterterms for vg in this modified ZEM scheme read

ZEMGL 1, —AA
ov

S
h;—AA h;—AA
Y Ay ({p? = 0}) + AL, ({p? = 0})
S lh AA
25 2 6Zp1nched 5Zpinched
+cotada — 6Z, — n;A hTh‘ cota—nr )
A

(50a)
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5U%EMGLh2—>AA
o[ g [AVE T UP? = 0D + AL ({p? = 0))
’ T
26m2 7pinched §5zpinched
—tana&a—éZA—#_%_tana h22h1 .
my
(SOb)

The renormalization is now complete, and before mov-
ing to the presentation of the NLO results we will discuss
the constraints imposed on the model.

IV. CONSTRAINTS ON THE MODEL

The constraints imposed to find the allowed parameter
space are implemented in SCANNERS [25-27]. In this
section we will just briefly review the most relevant
theoretical and experimental constraints considered.

A. Theoretical constraints

(1) Boundedness from below The conditions to have a
stable minimum are easily obtained by writing
®'® = x and |S|> =y and by writing the quartic
terms of the potential

A 13} d
una.rtic(x’ y) = sz + szy + ZZyZ

i) G w)G) e

Forcing the potential to be bounded in all directions
leads to the following conditions at tree level:

/1>O/\d2>0/\(5%<j.d2 1f52<0) (52)
(ii) Perturbative unitarity constraints Following [28] we
force the eigenvalues of the scattering matrix M,_,,

of all possible two-to-two scalar scattering inter-
actions to obey

|4;] < 8=, (53)
leading to

|A] <167 A |dy| < 167 A |5,] < 167,

3 3 2
Shtdydg[(Sa-dy) +253

(iii) Stability of the vacuum In the CxSM the most
general vacuum structure is obtained by the follow-
ing expectation values for the fields:

A <16z. (54)

1 /0 1 .
@ =) S =sring. (9

because of the SU(2) invariance. Therefore, the
value of the tree-level potential at each vacuum
configuration is given by V(v,wvg,v,). We have
chosen to work in the configuration where the
potential is V(v, v5,0) to have one DM candidate.
In Appendix B we show that by choosing the
vacuum configuration with nonzero » and vy (and
v4 = 0) to be a minimum automatically implies that
this configuration is the absolute minimum at
tree level.

B. Experimental constraints

Before moving to the experimental constraints we note
that p = m3,/(m%c%) where my , are the masses of the
massive W and Z bosons, respectively, and c,, denotes the
cosine of the Weinberg angle, is equal to 1 at tree level, as in
the SM. Also, no tree-level flavor-changing neutral currents
are introduced because the gauge singlet does not couple to
fermions and to gauge bosons in the gauge basis.

We will now briefly review the experimental constraints
implemented in SCANNERS and used for the generation of
parameter points.

(1) S, T, U precision parameters The additional scalar
fields in the CxSM contribute to the gauge bosons
self-energies, and this implies deviations from the
SM predictions. These deviations relative to the SM
have to be within experimental bounds, i.e., SCAN-
NERS compares the model predictions with the
electroweak precision results from experiment. Then
the program applies a consistency check on the S, 7',
U parameters [29] with 95% confidence level to
check if the constraints are fulfilled.

(ii)) Compatibility with the LHC Higgs data and ex-
clusion bounds There are two important constraints
coming from colliders. The most relevant one is the
one coming from the LHC related to the measure-
ments of the discovered Higgs boson. The searches
for additional scalars also play a role in restricting
the parameter space of the model. SCANNERS
enforces these bounds by the interfaces with Higgs-
Signals [30,31] and HiggsBounds [32,33]. Agreement of
the signal rates of the SM-like Higgs boson of the
CxSM with the observations at 2¢ level is checked
by HiggsSignals-2.6.1. Through HiggsBounds-5.9.0 the ex-
clusion bounds from searches for extra scalars are
taken into account.

(iii) DM relic density The CxSM has a scalar DM
candidate, and therefore the predicted DM relic
density of this model should not exceed the mea-
sured value. Smaller values are not excluded since
they allow for additional contributions coming from
other sources. SCANNERS is interfaced with the
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program package MictOMEGAs [34] to include this
constraint from the relic density.

(iv) DM direct detection As previously stated, the DM-
nucleon cross section is only relevant at one-loop
order due to a cancellation that renders the tree-level
cross section proportional to the DM velocity and
therefore negligible [7,8]. However, one-loop cor-
rections to the DM-nucleon spin-independent cross
section have to be below the present experimentally
measured result from XENONIT [11], as discussed
in [9,10]. We will come back to this important
constraint in the next section.

V. RESULTS AND DISCUSSION

A. Higgs decay into dark matter

The CxSM has two CP-even scalars h; or h, and any of
them can play the role of the 125 GeV SM-like Higgs
boson denoted /4,5 in the following. The non SM-like
Higgs can be either heavier or lighter than 125 GeV. To
optimize the analysis we fixed /; to always be the lightest
of the two and considered two distinct scenarios:

(i) my, = my, (scenario I): the width is calculated
from h; — AA and the process h, — AA is chosen
for the renormalization of vg.

(i) my, = my, (scenario II): the width is calculated
from h, — AA and the process 7; — AA is chosen
for the renormalization of vg.

We now proceed to the calculation of the 125 GeV Higgs
partial decay width into two DM particles at electroweak
NLO. The calculations of the NLO corrections were
performed using FeynRules 2.335 [35-37], FeynArts 3.10
[38,39], and FeynCalc 9.3.1 [40,41]. Loop integrals were
computed using LoopTools [42,43]. The model file was
independently generated using SARAH 4.14.2 [44-48]. We
performed two independent calculations and found agree-
ment between both results.

The LO decay width is given by

2 2 2
LO ( hips* A mA) |.ALO |2 (56)
h125—>AA 3277”’[2[25 hips—AAL

while the NLO expression can be written as
2 2 2
[0, = e ) (o e
2mmy, 12
+ 2Re (A0 ) AN 1)), (5T)
with A(x,y,z) = x> + y*> + z2 = 2xy — 2xz — 2yz and A

and AN'O denoting the LO and NLO amplitudes,
respectively.

The LO amplitude is simply the coupling constant
lAh SAA T M'h,»AAv (58)
and therefore the decay width takes the form

2 2 2 2
Samp, A(mj, ,mj, my)

o, , (59a)
=AA T 3270}
o _mdbnmod)
hy—sAA — ,
2 327[1}_2g

where both /; and A, can be the SM-like Higgs /5.

For the NLO amplitude we need to compute the vertex
corrections together with the counterterm contributions.
The vertex corrections are just the sum of all irreducible
contributions at one-loop order while the vertex counter-
term can be read off the Lagrangian yielding

+
Anaa 2

(60)

S5,
AST 0 = —zhiAA< MAA | 574+

6Zpy,  Anaa 5Zhjhi>
oy 2 ’

where i, j € {1,2} buti # j. We finally arrive at the overall
NLO contributions for the processes h; — AA,

6mh Svg
AI:lL—?AA ‘Ah ~aa = Anaa ( e l P
1
6Z mj, 57
187, + 221 | ot —W’l), (61a)
2 m; 2
om?  Sv
AI:}—E)AA = Ah2—>AA Anyan < mzhz - TS + cot ada
hy s
o7 m? 57
+6Zy + 2 4 tana ;" h‘h2> (61b)
2 my 2

which will be calculated numerically using Eq. (57). The
value obtained for the width depends on the renormaliza-
tion scheme used, which will be discussed in the next
section. We have explicitly checked that for all scenarios
the NLO width is UV-finite and gauge independent.

B. Allowed parameter space

For our numerical investigation we performed a scan in
the CxSM parameter space using SCANNERS [25-27] and
kept only those points that are compatible with the above
described theoretical (calculated at LO) and experimental
constraints. The scan ranges for the input parameters are
summarized in Table I. The DM mass has to be below
62.5 GeV for h,5 — AA to be kinematically allowed. The
SM input parameters are taken from [49], and their values
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TABLE I. The scan ranges used for the generation of parameter
points with SCANNERS.

Range
Parameter Lower Upper
my 30 GeV 1000 GeV
my 10 GeV 62 GeV
Vg 1 GeV 1000 GeV
a -1.57 1.57
TABLE II. The SM parameter values used in the numerical
evaluation taken from [49].
SM parameter Value
a 1/137
mgz 91.1876 GeV
my 80.379 GeV
My, 125.09 GeV
m, 1.777 GeV
m, 4.7 GeV
m; 172.5 GeV

are given in Table II. Note that all these parameters enter the
calculation via the electroweak (EW) one-loop corrections.

We have also used the program BSMPT [50,51] to check
for the possibility of having a strong first order EW phase
transition (SFOEWPT). We found that in the parameter
space probed there were no points with a SFOEWPT.
Before starting the discussion of the allowed parameter
space we again remind the reader that there is a kinematical
constraint that applies to the process-dependent scheme but
not to the ZEM scheme of the counterterm dvy.

As previously discussed, two of six parameters are fixed,
one is by G and the other one is the 125 GeV Higgs boson
mass. This leaves us with the four input parameters
mg, my,a, vg where m, denotes the scalar mass of the
non-125 GeV Higgs boson. In Fig. 1 we show correlations
between a, vg, and m;. In the upper row a strong correlation
can be seen between a and vg. This is to be expected since
all SM couplings to the %55 Higgs boson have an addi-
tional ¢, in scenario I or s, in scenario II. These couplings
are very well measured, and only small deviations are
allowed. Thus, the additional factor has to be close to 1 and
a has to be close to 0 or &7, respectively. Moreover, the
parameters a and vg are connected through the decay width

[CE]

T |

2

vl

1000 1

800 1

600 7

ms [GeV]

400 T

200 1

7120

100

T80

| 160

740

0 200 400 600 800

FIG. 1.

Input parameters a vs vg in the upper row and m vs vg in the lower row. The red plots on the left side are for the scenario where

the 125 GeV Higgs boson is the lighter scalar particle, and the blue plots on the right are for the heavier Higgs scenario.
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of the 125 GeV Higgs boson into DM particles. As can be
seen in Eq. (59), the LO decay width in scenario I is
proportional to

s
FIE?QAA & v_; : (62)

Thus, in order for the LO branching ratio of the 125 GeV
Higgs into DM particles in the CxSM not to exceed
experimental limits [3], this ratio has to be small.
Therefore, if vg is small, & has to be small. This behavior
can be seen in Fig. 1. In scenario II the LO decay width is
proportional to

c2

N

Therefore, if vg is small, @ has to be close to +Z, which can
be seen in Fig. 1 as well. One should also mention that there
is a hard bound on a coming from the Higgs coupling
measurements.

The plots in the lower row in Fig. 1 show the relation
between vy and m,. The two parameters m, and vg can be
related via d,. Because in scenario [ m; = m;,, and a cannot
deviate much from zero, we can write

m? 4+ m2 + cos(2a)(m? — m? 2
= s ¢ vi )Oms = ) ﬂzzjs . (64)
s 5

Using again the small angle approximation in Eq. (11), 4
and 8, can be expressed as

wo0 2m3 2m?
A= =, (65)
5,°2%0. (66)

With these simplified expressions the fourth constraint in
Eq. (54) results in

3 3

m, < Vdnuvg, (67)

<16z

:dzﬁgﬂi

where d, was considered to be positive. This relation
explains the line in Fig. 1 (lower left) for scenario I,
showing m, and vg are linearly related with the correctly
predicted slope. The same calculation applies to scenario II.
In this case, m; = my, and the angle a is close to +7. The
conclusion is again that m, and vy are linearly related. For
example, setting m, to the highest possible value in this
scenario, i.e., about 125 GeV, vg has to be at least 35 GeV.
In this scenario only a small part of the parameter space is
constrained, but in Fig. 1 (right) we see that the far left side

of the plot indeed contains no parameter points in sce-
nario II.

Figure 2 shows the parameter space spanned by m, and
my. The blue points (scenario II) are the ones where the
kinematical constraint (due to the process-dependent
scheme) appears. As expected the constraint is not there
for scenario I (red points). In scenario I the DM mass m4
prefers values close to 125/2 GeV, whereas in scenario II
(blue points), m4 has values close to half of m, or also close
to half of my, ,  in the ZEM scheme where the kinematic
constraint 2m, < m, from the renormalization condition
on vg ceases to apply. This behavior results from DM
constraints applied on the DM mass m,, with the dominant
constraints coming from the relic density. To visualize the
effect of DM constraints, we show in green the points that
passed all constraints except the dark matter ones. The
reason for these constraints is the requirement that the
relic density obtained in the CxSM must not exceed the
observed value of the relic density. Therefore, the thermal
annihilation processes of two DM particles A into one of
the scalar particles h; must be efficient enough. This
annihilation is enhanced close to the threshold, so that
the DM mass m is preferably close to half of the 125 GeV
or half of m;.

In Fig. 3 (left) we present a histogram showing the
points frequency as a function of the relic density for both
scenarios. This plot clearly shows us that there are points
that saturate the relic density but most of the points have
a low h’Q.;, and would need other DM candidates.
The percentage of points that is in the range —5¢ <
Q< 26, where h*QCY s the experimental central
value, is around 1% and the preferred values for the
parameters are for the two resonant regions already dis-
cussed. In the right panel we present the relic density as a
function of the DM mass with m, presented by the color bar
for the scenario where m;, = 125 GeV. There are points
that saturate the relic density in the entire DM mass range
probed. We clearly see that these points all have a DM mass
that is half of m, or half of m;,,. There are also some outliers
that saturate the relic density in the region where m, is
roughly between 30 and 50 GeV for a DM mass above
30 GeV. For the other scenario, since only the case half of
125 GeV is possible, all values of my, can in principle
saturate the relic density. Thus, the model is able to explain
the observed relic density.

In Fig. 4 we show a histogram of the frequency of the
variable a without and with the relic density constraint for
scenario I. Without the DM constraints there is a bound on
a that forces it to be close to zero. This is related to the
already discussed bounds from colliders. The Boltzmann
equation is given by

d
d—’: +3Hn = (ov)(n2, — n?), (68)
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FIG. 2. my vs the non-125 GeV scalar mass mg. The red points are for the scenario where the 125 GeV Higgs is the lighter scalar
particle and the blue points the other scenario. The green points are parameter points rejected by DM constraints.
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FIG. 3. Left: Histogram showing the points frequency as a function of the relic density. The vertical dashed line indicates the observed
DM relic density and the superscript cv stands for central value. The other two vertical lines correspond to the bounds that we consider to
saturate the relic density. Right: Relic density as a function of the DM mass with m presented by the color bar for the scenario where
my, = 125 GeV.

where n is the DM number density, H is the Hubble  equilibrium with the photon bath. The annihilation cross
parameter, (ov) is the velocity-averaged cross section, and  section 6(AA - SMSM), where SM are SM particles, is

nﬁq is the density of DM particles when in thermal  proportional to sinacosa. Hence, if either sina — 0 or
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FIG. 4. Histogram of the frequency of the variable a without (left) and with (right) the relic density constraint for scenario I.

cosa — 0, we get (ov) — 0 and no freeze-out will occur
or the relic density will be extremely high at the end of
freeze-out.

The interesting feature is then that as we move closer to
the limit where the couplings are all SM-like (@~ 0 is
scenario I), we lose the DM candidate because of the
constraints from DM. This is not surprising because in this
limit the portal coupling 0, vanishes [compare with
Eq. (11c¢)] and freeze-out is no longer possible.

We note that all parameters were sampled from a uniform
distribution and no correlations have been imposed. Our
goal is to show that, by sampling in this way, we see that
there are regions which are preferred, such as those with a
low DM relic density, and that there are strongly disfavored
regions, such as the ones with the mixing angle « too close
to zero.

Let us now move to the last constraint coming from DM,
the direct detection process. Since we allow DM not to
saturate the relic density, we need to define a DM fraction

Qh?
fan = it (69)
where (QAh?), is the calculated relic density for each point
in the CxSM and (QAh%)% is the central value of the
experimental measurement. In the comparison with the
data, we are actually comparing an effective DM annihi-
lation cross section defined by

Oeit = faa0an- (70)

where f 44 and o4y, the direct detection DM nucleon cross
section, are calculated by MictOMEGAs. This is because the
experimental limits assume the DM candidate to make up
for all of the DM abundance.

This constraint is particularly relevant because it directly
probes the portal coupling just as the invisible decay. Even
if, as we have already discussed, the DM nucleon cross

section is only relevant at one-loop order, it could be that
the experimental bound from XENONIT [11] would
provide a stronger restriction than the one from the invisible
Higgs decay. It turns out, however, that it does not. In Fig. 5
we present the effective spin-independent DM nucleon
cross section [9,10] as a function of the DM mass for
scenario I (left) and scenario II (right). The neutrino floor
[52] is also presented as a gray shaded region. For the range
of masses considered it is below a line of about 107 cm?.
We can see that the points are not only below the
XENONIT line but they are also below the neutrino floor
and therefore have extremely small chances of being
detected directly. Therefore, in the near future, and perhaps
also in the far future, information about the dark sector of
the CxSM will come only from the LHC. This shows the
importance of taking into account the radiative corrections
for the invisible Higgs decay.

C. Numerical results and analysis of the SM Higgs
decay into DM

In the following, we present and discuss the LO and
NLO decay widths for all allowed points in the parameter
space, for the two scenarios. There are a total of four
schemes corresponding to the combination of the choices
of the counterterms da (p* pinched and OS pinched) and
ovg (process dependent and ZEM). We display results for
the relative size of the NLO decay width with respect to the
LO result, defined as

NLO NLO
Al = Fh,25—>AA 1 2Re(.,4h125_)AA) (71)
F};Ss —AA AI}ZSS —AA

In Fig. 6 we present Al as a function of m for the two
scenarios and for the four different possible combinations
of renormalization conditions. The relative NLO correc-
tions in scenario II (blue points) are quite small in the
process-dependent scheme (denoted by “pd” in the plot),
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FIG. 5. Effective spin independent nucleon DM cross section as a function of the DM mass for scenario I (left) and scenario II (right).
Also shown is the XENONIT [11] exclusion line (black line). The gray shaded region corresponds to the neutrino floor.
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FIG. 6. AT plotted against the scalar mass m,, where hy,5 = h; (red points) and 55 = h, (blue points). All different combinations of
possible renormalization schemes are shown. Interesting sections (indicated by the red band) of the two plots in the second row are also

shown in more detail.

but become comparatively large in the ZEM scheme with
respect to scenario I (red points). Both in scenario I and in
scenario II, AT is barely affected by the choice of the
renormalization scheme of a. Larger differences occur

when changing the renormalization scheme of »; from
the process-dependent to the ZEM scheme, but they still
remain relatively stable, i.e., of O(1%), in scenario 1. Note,
that the peaks in scenario I in the ZEM scheme that induce
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larger AT are related to kinematical thresholds of the B,
and C, functions of the loop integrals. They are better
visualized by the zoomed insets in Fig. 6. In scenario II, the
change in A" when turning from the process-dependent to
the ZEM scheme has a large effect. Here, AI" can go from
—50% to 10%, whereas in the process-dependent scheme,
AT varies between —3% and 3%. Thus, the ZEM scheme
can result in relatively large, with a maximum of 50%,
corrections at NLO. These large corrections, however,
occur only in a small number of points. These points have
a very small tree-level width in the sense that although the
ratio of the NLO to the LO width can vary by as much as
50%, the total LO width is nevertheless well below its
maximum value of 1 MeV. Also, these are the points that
would be rejected by the additional kinematic constraint
that in scenario II is effective in the process-dependent
scheme. They hence occur only in the ZEM scheme.

One further remark is in order here. One has to be careful
when directly comparing the results for AT in the different
renormalization schemes. A consistent comparison would
require the proper conversion of the input parameters when
going from one scheme to the other. This requires the
implementation of the conversion formulas, which is
beyond the scope of this paper. Our goal here is to show
primarily which sizes of relative corrections at all can be
expected in the various schemes. Apart from the ZEM
scheme, they are all relatively small and numerically stable
in the sense defined above.

In Fig. 7 we present Al as a function of m, with all other
input parameters fixed. The resulting scenarios do not
necessarily fulfill all theoretical or experimental constraints
any more but are shown here for illustrative reasons. The

® process-dependent and p*

process-dependent and OS pinched
ZEM and p*
ZEM and OS pinched

0.10 °
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FIG. 7. AT plotted against the scalar mass m,, and all other
parameters have been set to fixed values, with a = 0.01,
vg = 100 GeV, and m, = 40 GeV. All possible combinations
of renormalization schemes are shown.

peaks that can be seen in the figure originate from thresh-
olds in the loop functions and depend on the chosen scheme
as the two schemes used for the derivation of da are
evaluated at different scales. For example, the peak in the
OS pinched scheme seen in Fig. 7 at mg = xog = 250 GeV
appears in the p* pinched scheme at the mg = x,,- value
equal to 330 GeV because

m? —&—xz*
xgs =L, (72)

since in the p* pinched scheme the self-energies are
evaluated at the mean of the scalar masses. The peaks
only occur in scenario I, because most of the SM masses
occurring in the calculation (e.g., the W and Z boson mass)
are of order of 100 GeV.

The purpose of this analysis is to improve the precision
of the calculation of the Higgs invisible decay width so
that it can be used to constrain the parameters from the
dark sector. The current observed limit on the branching
ratio of the 125 GeV Higgs decay into invisible particles is
given by [3]

BR(h55 — invisible) < 0.117005, 73)

at 95% confidence level. To compare results the calculated
branching ratio is needed, which in turn means that we need
the total decay width of the 125 GeV Higgs boson in the
CxSM including NLO EW corrections. Since the correc-
tions are not available for all decays in the model, we can
only estimate the branching ratio using the total decay
width of the 125 GeV Higgs boson in the SM without EW
corrections,! which is taken from [53,54] and is given by

SVt — 0.4068 x 1072 GeV. (74)

To translate this decay width into the CxSM setup, it will be
multiplied by the appropriate squared angular factor k2,
where the index i is chosen according to the mass scenario.
Also the NLO h,5 — AA width is added to obtain the total
decay width in the CxSM. Furthermore, in scenario II the
125 GeV Higgs boson is the heavier of the two scalar
particles (hy,5 = h,). If h; is light enough, the decay 4, —
hihy is also allowed and is added to the total decay width.
Thus, the LO and approximate NLO branching ratio of the
decay hy,5 — AA is given by

LO/NLO
BRESS/LI\/I[LO(hlzs d AA) ~ hjps—AA
SM, LO/NLO >
o AR DAy b
(75)

Tt includes, however, the relevant higher-order QCD correc-
tions that can be taken over from the SM to the CxSM.
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FIG. 8.

The calculated branching ratios for the decay h;,5 — AA at NLO vs LO for all generated parameter points and all

renormalization schemes. The experimental limit is indicated by the dashed line with the uncertainty on the limit given by the red band.

Red (blue) points correspond to scenario I (II).

where 6 is defined as

(76)

1, mhlzs > 21’)1‘Y
0, mh|25 < 2ms '

This expression is approximate in the sense that the NLO
EW corrections are only included in the Higgs-to-invisible
decay but not in the SM-like CxSM Higgs decays into SM
particles. It is justified, however, if the EW corrections to
these decay widths are small enough compared to the EW
corrections to the /1,5 — AA decay.2 Moreover, for a better
approximation the NLO corrections to the decay /5 —
hyh; have to be included as well unless its contribution to
the total width is negligibly small.

In Fig. 8 the calculated approximate NLO branching
ratios for all generated parameter points are displayed vs

From Ref. [55], where for the 2HDM and the N2HDM the
EW corrections have been calculated for all the allowed param-
eter sets and in different renormalization schemes, it can be
concluded that the EW corrections to the decay widths of the SM-
like Higgs into SM particles amount up to a few percent only.

the corresponding LO values. The experimental limit on the
branching ratio is shown as well. However, the limit is only
indicated for the NLO result, since the parameter points are
generated with respect to the limit at LO. The LO branching
ratios hence fulfill all the constraints described in the
previous sections and in particular the experimental limit
on the Higgs invisible branching ratio. Since the NLO
corrections are small, not many points will violate this
limit. In fact, almost all parameter points have an NLO
branching ratio below the experimental limit. Only about
0.2% of the points are above the experimental limit. The
highest obtained branching ratio is, however, around 0.121
and therefore still lies well within the experimental uncer-
tainty. The relative change of the branching ratio at NLO
with respect to LO has been calculated and increases
the LO value by up to 7%—8% at most. Thus, the NLO
contributions to the branching ratio are too small to further
constrain the model. Moreover, it is interesting to see that
the points from scenario II result in smaller branching
ratios, especially when using the ZEM scheme. This is to be
expected, since many points in that scenario have negative
relative NLO contributions to the decay width.
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VI. CONCLUSIONS

In this work we have calculated the EW NLO corrections
of the Higgs decay into two dark matter particles in the
CxSM. We have used four different renormalization
schemes but with all masses and fields renormalized on-
shell. Except for very particular regions of the parameter
space corresponding to thresholds in the Passarino-Veltman
functions, the corrections were shown to be quite small, on
the percent level in all renormalization schemes. There is
one exception, however, given by the ZEM scheme with /,
being the SM-like Higgs. Here, points that could not be
used in the process-dependent scheme for the renormaliza-
tion of vy due to kinematic constraints lead to relatively
large corrections that amount up to a few tens of percent.

The central value of the measured invisible Higgs
branching ratio is now at 0.11. The inclusion of the EW
NLO corrections to the decay width of the process hj,5 —
AA does not lead to extra constraints on the parameter space
because the calculated approximate NLO branching ratios
for all allowed parameter points are found to be within
the experimental error. Calculating the EW corrections to
all decays of the SM-like CxSM Higgs boson into SM
particles (and, if kinematically allowed into a pair of
lighter scalars) will further improve the obtained result.
But more importantly, tighter experimental constraints will
be obtained in the near future in the upcoming LHC run
[56] and even more at the high luminosity stage.

We have also shown why it is crucial to have a precise
measurement of the invisible width—it is the only direct
probe of the portal coupling. In fact, the other possible
way to probe the same coupling would be through the
DM-nucleon cross section. However, we have shown that
this cross section is not only below the present experimental
bound from XENONIT [11] but is also below the neutrino
|

floor, which makes it virtually unusable. Therefore, in the
near future’ and perhaps also in the far future, information
about the dark sector of the CxSM will come only from the
LHC. This shows the importance of having the radiative
corrections for the invisible Higgs decay.
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APPENDIX A: THE SCALAR PINCHED
SELF-ENERGY IN THE CxSM

In this appendix we will present the result for the scalar
pinched self-energy in the CxSM. We define the quantity
(i,j=12)

Oij = kikj7

(A1)

to write all couplings in the CxSM between the scalars and
the SM particles X, Y as

Ixyn, = gil\)ﬁ[Hki, (A2a)
Ixynn, = 9xvunOijs (A2b)

where g3M, and g3, are the corresponding couplings
between the SM particles X and Y and one or two SM
Higgs bosons and k; is given in Eq. (9). With these

definitions the self-energies iZ*;l‘?,‘fj are given by

i m; +ms —ig? mi +m?
add N g h; h. g > h; h; 2
2y (7)) = o2 0 <q2 —TI> By(q*. myy, m )+—32ﬂzc‘2v' 0jj <q T ’)Bo(qz’m%vmz)
.9 2 +m2 2 2
i Aw , My, h; s o \Pww(@®) + Pwe,w(q)
+ 022 0ij<<q S > aw = (" - mh[mhj) ) =
) m2 +m? 2 2
ig*A, hy T M, Bz2(q°) + Pzz,2(q”)
L R e e

Here my, ; denote the masses of the W and Z bosons,

g =2my\/V2Gp is the SU(2) gauge coupling, c,, the
cosine of the weak mixing angle, &, (V = W, Z) are the bare
gauge couplings, and Ay = 1 — &y,.. The integrals are defined
as

i 1
—B p2’m2’m2 = / ,
1677.'2 0( 1 2) i (kz—m%)((k+p)2—m2)
(A3a)

i 1
—ay = s
162> " A (k2 = m) (k> = &ymy)

(A3b)

3Recent results from LUX-ZEPLIN [57] do not exclude any of
the allowed parameter points since the spin-independent cross
sections are still well below the experimental threshold.
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ﬁﬁv.vz(l’z)
1
- A (k2 = my, )(k* = &y, myy )((k + p)* —my,)

1

@ﬂvlgvzvz(lﬂ)

(A3c)

B 1
a /{ (K = m3, )(k* = &y,m3, )((k + p)* = &y,my,)
(A3d)

APPENDIX B: MINIMA OF THE CxSM HIGGS
POTENTIAL

To analyze all possible vacuum configurations, the scalar
potential of the CxSM,

m? A 1) b
= — D+ 2 (D) + 2D D|S|? + =2|S|
Vscala.r ) +4( ) =+ ) |§| + 2 |§|
d b
+Zz|§|4+ <71§2+c.c.>, (B1)
has to be considered with the fields defined as
< o ) S ! (S +iA) (B2)
-5 (H +iG?) V2

Because of the SU(2) invariance we can choose a con-

figuration where only the fields H, S, and A can acquire a

nonzero VEV, in the following labeled xpy, xg, and x,.
The stationary conditions of the potential read

m? A3 [ 2 2\
Boxy +4xp +Fxy(xg+x3) =0

it g+ Lxg (3 +x3) + G x5y =0

3_‘1 PN bz;b‘xA+%xA(x§+xf,)—l—i—2xAx%{:0,
a¢ (¢i)=x; 0=0
0=0

0=0

(B3)

with the scalar fields collected in the vector [GT=

1/V2(Gy - iG,)]

-

¢o=(H, S, A, G Gy, G,)". (B4)

The three nontrivial equations in Eq. (B3) can be written as

m* A B
(g yh 2w ed) o (65

2 4

b b d
Xs(1+ 2+—2 A

5
(2 +22) + —%%,) =0, (B5b)

b,—b d o
m(22‘+fu%w®+f%)—a (BSc)

from which we read off that for all VEVs a possible
solution is to set them to zero or solve the equations in
brackets. Thus, eight different cases, in general, have to be
considered. Moreover, if xg and x, are simultaneously
nonzero, the terms in brackets in Egs. (B5b) and (B5c) have
to be zero. Since these two terms differ only in the sign in
front of the parameter b, this can be achieved only if b, is
set to zero. Here, however, b; is always chosen to be
nonzero, and thus these cases cannot result in a minimum of
the potential.

Furthermore, it has to be checked whether the stationary
point is indeed a minimum of the potential, i.e., the Hessian
matrix of the potential has to be positive definite. The
general form of the Hessian matrix reads

A (SZXTHXS fsszHXA 0O 0 0
ézxé.,xs B dzxzsxA 0 0 0
Oy Xy X drxgx
VHesse = : g ’ 22S ! ¢ 0 00 ’ (B6)
0 0 0 D 0 O
0 0 0 0 D O
0 0 0 0 0 D
where the diagonal elements are
m*  5y(x3+x3)  3Ax3
A=— § A Loy B7
2 T g 4 (B7a)
by+by dry(3x3+x3)  Suxy
B = B
2 4 4 (B7b)
—bl + b2 dz(xg + 3xi) 52]('%_]
C= , B7
2 4 ;> (B70)
m?>  &(x% +x%)  Ax2
D—=—y22\A TS TPH B7d
2 + 4 + 4 ( )

To start with the remaining cases, first the desired
minimum is considered, namely the configuration with
the VEVs xy and x4 to be nonzero and x, to be zero. Since
the VEVs are chosen to be input parameters, they are in this
case relabeled as » and vy and the Egs. (B5) can be solved
for other parameters resulting in

095030-18



ONE-LOOP CORRECTIONS TO THE HIGGS BOSON INVISIBLE ...

PHYS. REV. D 106, 095030 (2022)

-1 -1
m2 = 7 (/11}2 + 521]?9), bl + b2 = 7(61’20% + 521}2).

(B8)
Next, the positive definiteness of the Hessian matrix has

to be checked. For this Eq. (B8) is used to simplify the
Hessian matrix in Eq. (B6) leading to

a0 000
as B 000
VHesse(xH:uxS:UerA:O): 0 0 _bl 000
0 0 0 000
0 0 0 000
0 0 0 000
(B9)

The matrix is positive definite if the determinants of all
minors are positive; i.e., the relations

A>0Ady,>0AAdy >3 Aby <0  (B10)

have to be satisfied. If these inequalities hold, the potential
is automatically bounded from below [compare with
Eq. (52)]. Moreover, the Hessian matrix of the potential
resembles the mass matrix of the scalar fields; i.e., the
eigenvalues of the matrix are the squared masses of the
corresponding particles, and thus the eigenvalues have to be
positive; i.e., the Hessian matrix has to be positive definite.
Furthermore, the parameter b; is just given by —m3.

This means that if the VEVs » and vg are given as input
parameters, the VEV for the field A is chosen to be zero,
and the potential parameters fulfill the relations in
Eq. (B10), this configuration of VEVs is a minimum of
the potential, as desired. The remaining question now is,
whether this minimum is automatically the global mini-
mum of the potential. Thus, the values of the potential at all
minimum configurations have to be calculated and com-
pared. For the desired configuration the value of the
potential at the minimum reads

V(xg = v, x5 = v5,x4 = 0) = V(v, v5,0)

1
=1 (Av* + 26,0%0% + dyv}).

(B11)
Now all other VEV configurations have to be checked
for their potential values at the stationary point and whether
they are indeed a minimum of the potential.
(i) Case xyg =xg=2x4 =0:
This is the most trivial configuration, and the
value of the potential at this point reads

(i)

(iif)

095030-19

V(0,0,0) = 0. (B12)
Thus, the difference between the values of the
potential at the two configurations results in

V(v,vg,0) = V(0,0,0)

1
= —— (A* +26,0*0% + dv}) < 0.

v (B13)

The inequality is true because of the relation among
05, 4, and d, from Eq. (B10).
Case xg = x4 = 0,xy5 #0:

Here the nontrivial equation from Egs. (B5) can
be solved for xy and results in

—2m?
A

Xy = =x,. (B14)

Here m? has to be negative. The value of the
potential results in

—m* (Av? + 6,0%)?
V. 0.0) === ———5—

(B15)

where in the second step the relations Eq. (B8) were
used. The difference between the values of the
potential of the different configurations reads

(dyA — 5%)”§

61 < 0.

V(v,v5,0) — V(x,0,0) = —
(B16)

The inequality again holds because of the rela-
tions Eq. (B10).
Case xyg = x4 = 0,x3 #0:

Here the nontrivial equation from Egs. (B5) can
be solved for xg and results in

~|=2(by+by)
Xg = —_— = X».

. (B17)

Here b, + b, has to be negative. The value of the
potential results in

_ (bi b))t (507 4 dyrg)?
V(0,x,0) = Ad, 16d,

(B18)

where in the second step the relations Eq. (B8) were
used. The difference between the values of the
potential of the different configurations reads
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(iv)

(dz/l - 5%)’[)4

16d, < 0.

V(v,vg,0) = V(0,x,,0) = —
(B19)

The inequality again holds because of the rela-
tions Eq. (B10).
Case xy = xg =0,x4 #0:

Here the nontrivial equation from Eqgs. (B5) can
be solved for x, and results in

(b, —
Xy = (by = b)) -

= (B20)

Here b, — by has to be negative. The value of the
potential results in

b, — b,)?
V(0,0,x3) = _%
2

__ (4b1 + 52’[]2 + dz’[}%)z (BZl)
164, ’

where in the second step the relations Eq. (B8) were
used. Here the parameter b; does not get canceled
and the difference between the values of the poten-
tial of this configuration with respect to the desired
minimum state depends additionally on b; and an
inequality similar to the other cases cannot be shown
as straightforwardly. It is, however, sufficient to look
at the Hessian matrix. It results in

E 0 0 0 0 O
0 b 0 0 0 O
0 0 by—-b, 0 0 O
Vhesse (0,0, x3) = 0 0 0 E 0 0
0 O 0 0 E O
0 O 0 0 0 FE
(B22)

where E is a combination of potential parameters. It

can be seen that b; is a negative eigenvalue of the
matrix. Thus, it cannot be positive definite, and this

VEV configuration cannot be a minimum.
(v) Case xg =0, xyg #0, x4 #0:

The last case is a bit more complicated, since now
two VEVs are nonzero. Here it is easier to redo the

same steps as in the desired minimum configuration.
First, the VEVs are relabeled as w and w,. Next, the
stationary conditions from Eqgs. (BS5) are solved for
other parameters to obtain the relations

1
m? = -5 (Aw? + 8,m7),

1
bz - bl = —5 (52W2 + d2Wi) (B23)

Similar to the last case, the value of the potential
of this configuration will again depend on b;, so
comparing values with the desired minimum con-
figuration will not lead to a simple inequality. Thus,
the Hessian matrix is again considered. With the
help of Eqgs. (B23) it can be simplified to

w? Sywwy
bt 2w o0 0
0O b 0 00O
Syww, dyw?
VHesse (W, O, WA) = % 0 2 0 0 O
0 0 0 000
0 0 0 000
0 0 0 000

(B24)

Again, b, is a negative eigenvalue of the matrix;
thus, it cannot be a positive definite matrix and the
configuration is not a minimum.

Moreover, the similarity between the two cases
with two nonzero VEVs is interesting. If the
configuration with w and w, would be chosen as
the desired minimum configuration, then b; would
necessarily be positive and the minimum configu-
ration with » and vy would no longer be a minimum.
The sign in front of b; is essentially the only
difference between the fields S and A and therefore
also the only difference between these VEV con-
figurations.

To conclude, if the nonzero VEV parameters v and vg are
given as input parameters and the remaining potential
parameters are chosen such that the relations Eq. (B10)

are fulfilled, then this configuration is a minimum of the
potential, and it is the global minimum (the potential is also

bounded from below with the same relations, so it really is
the global minimum of the potential).
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