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Interactions with a background medium modify in general the dispersion relation and canonical
normalization of propagating particles. This can have an important phenomenological consequence when
considering light dark matter coupling to quarks and leptons. In this paper, we address this issue in the
vector dark matter background with the randomly distributed polarizations or a fixed polarization to the
single direction. The observations associated with particle dispersion can give constraints on new light
Abelian gauge boson models. Considering the solar neutrino transition and the electron mass measurement,
stringent bounds can be put on the gauged Lμ − Lτ model and the dark photon model. Moreover, the
classical vector field turns out to induce drastic changes in the particle normalization, which rule out a
significant parameter region of the generic vector dark matter model.
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I. INTRODUCTION

Numerous phenomenological evidences for, e.g., the
presence of dark matter (DM) advocate the point of view
in particle physics that the Standard Model (SM) is not the
end of the story. A new Uð1Þ gauge symmetry [1–4] is
typically accounted to be a minimal piece added to the SM,
and it indeed appears ubiquitously in a number of well-
motivated ultraviolet theories beyond the Standard Model.
A light and feebly interacting vector field of this new gauge
symmetry, which we call a dark gauge boson dubbed as γ0
or A0

μ, is of particular interest in phenomenological point of
view. It can be a force mediator connecting the visible
sector with the hidden sector as the concept of a portal
[5–14], and address some notable experimental anomalies
such as the muon anomalous magnetic moment [15–18]
and beryllium nuclear decays [19,20]. Although various
experiments in the energy frontier are hard to detect these
light and secluded vector bosons (and also scalars like
axions), many ongoing and proposed tests in the intensity
and cosmic frontiers will achieve remarkable sensitivities to
probe them in the near future.

Furthermore, such a light vector boson can be a viable
cold DM candidate itself. Several production mechanisms
have been recently proposed, but the common feature is
based on an oscillating homogeneous (vector-)bosonic field,
which is a coherent state of particles and comprises a
nonrelativistic component in the universe. One approach
to produce a classical vector field is the misalignment
mechanism [21], which is well known in the axion cold
DM generation [22–24]. As noted in Refs. [25,26], the large
dark gauge boson coupling RA0μA0

μ=12 to the scalar curva-
ture is required for the misalignment to effectively generate
the DM abundance. Even without a nonminimal gravita-
tional coupling, the vector dark matter (VDM) can be
produced by quantum fluctuations during the inflationary
phase due to the nonconformal coupling of the longitudinal
polarization to gravity [26]; the DM abundance depends on
the dark gauge boson mass ðmγ0 Þ and the Hubble scale of
inflation, then the current constraints on the inflationary
scale [27] demands mγ0 > 5 × 10−5 eV in order to saturate
the DM abundance. The alternative way to produce the relic
abundance of vector DM over a wide range of its mass is the
tachyonic production mediated by an initially oscillating
axion (or axionlike particle) field [28–32]. When the axion
field starts oscillating, its anomalous coupling to the dark
gauge boson induces a tachyonic instability in the equation
of motion of A0

μ that dissipates and transfers the energy
density of the initial axion condensate into the dark gauge
boson with a specific helicity. Moreover, the decay of
topological defects (e.g., a network of cosmic strings [33])
can contribute to the VDM abundance.
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In the presence of a background medium, the dispersion
relation as well as normalization of a propagating particle
can be modified [34–39]. One familiar case is photons in an
ionized plasma (e.g., the cosmological thermal bath or the
circumstance inside astrophysical compact objects) or a
material (e.g., water) that experience an index of refraction,
which deviates from unity due to their coherent interactions
with charged particles in the medium. In the effective
theory framework, quantized electromagnetic excitations in
the medium are interpreted as the superposition of all
scattered waves, and could acquire an effective mass in the
dispersion which is a a complicated function of momentum
due to the Lorentz symmetry breaking by singling out an
inertial frame. Likewise, when a particle propagates in a
bosonic field background, its coupling to such a boson
could alter its dispersion relation. We note that the effective
mass of fermions in the dispersion is distinguished from the
(chirality breaking) bare mass which can be generated, e.g.,
by the vacuum expectation value of the Higgs field in SM.
For instance, neutrinos propagating in a scalar field back-
ground can obtain effective mass-squared which is chirality
preserving [40,41].
In this paper, we discuss the medium effect on the

particles propagating in a (ultra-)light VDM background.
Barring the model-dependence in terms of the DM origin,
we focus on the late time cosmology (i.e., H ≪ mγ0) where
bosons already roll down and start to oscillate around the
minimum of the potential. Contrary to a scalar or axion
DM, there is an issue of the polarization. In some of the
scenarios discussed above (e.g., the production via the
misalignment mechanism or a tachyonic instability), a
specific direction is imposed on DM within the cosmo-
logical horizon, and a degree of such a preferred polari-
zation may remain unchanged for most of the universe
history [14,25]. However, the effect of cosmological
structure formation on the DM polarization is unclear so
far [42], and the randomized polarization can also be
accomplished in some scenarios (e.g., the production from
cosmic strings that the decay of long strings and the
collapse of short loops could distribute the DM polar-
izations in a democratic way). Hence, we adopt a phe-
nomenological approach as in Ref. [14] that the two
extreme cases are taken into account; the VDM with a
fixed single polarization (“polarized background”) or the
equally distributed polarizations (“unpolarized back-
ground”). As we will see, the behavior of the modified
dispersion relation is similar in both cases. Furthermore, we
are interested in the observations without directional
information that accounts for the robustness of our results.
For our discussion, we will consider the popular examples
of anomaly free Abelian symmetries such as kinetically
mixed Uð1Þ, B − L, and Lμ − Lτ and so on.
The paper is organized as follows. Section II is devoted

to the analysis of the particle dispersion and normalization
in the classical VDM for the two limited scenarios: the

unpolarized and polarized background. In Sec. III, we
confront our findings with the phenomenological observa-
tions associated with such a refractive phenomenon and
derive constraints on some gauged Uð1Þ extensions of SM.
We then provide discussions and our conclusion in Sec. IV.

II. DISPERSION OF PARTICLES IN THE MEDIUM
OF VECTOR DARK MATTER

In this section, we discuss the particle dispersions in the
VDM background. Renormalizable interactions to describe
the interplay of the dark gauge boson γ0 and a SM fermion
ψ are written as

Lγ0−ψ ¼ gψA0
μψ̄Γμψ ð1Þ

with the interaction strength gψ . The matrix Γμ becomes γμ

and γμγ5 for the vector and axial-vector current coupling
cases, respectively, but can be in general a linear combi-
nation of them. In this paper, we investigate the vector and
axial-vector current coupling cases, the results of which can
be easily applied to the generic cases.
Furthermore, even if the SM sector is not explicitly

charged under the dark Uð1Þ gauge symmetry, the gauge
boson of the dark Uð1Þ can still interact with the SM
particles via the kinetic mixing [3] (the so-called vector
portal), which is allowed for Abelian gauge symmetries.
The Lagrangian to describe such kinetic mixing reads

Lγ0−γ ¼
ε

2
FμνF0μν; ð2Þ

where Fμν ¼ ∂μAν − ∂νAμ and F0
μν ¼ ∂μA0

ν − ∂νA0
μ are the

field strength of the SM photon Aμ and the dark gauge
boson A0μ, respectively, and ε the dimensionless kinetic
mixing parameter. The effective couplings to the SM
particles through the kinetic mixing follow the form of
the vector current with the electromagnetic charge, i.e.,
Γμ → γμ and gψ ∝ eqψ with e (minus) the electron charge
and qψ the electric charge of ψ . Therefore, the dark gauge
boson in the presence of the only kinetic mixing is dubbed
the dark photon [44].
The leading order self-energy diagram to account for the

medium effect on the effective 2-point function of ψ in the
VDM background is shown in Fig. 1.
The solid lines and the wavy line represent the ψ and

dark gauge boson field, respectively. We mark ⊗ on the
wavy line to indicate the propagator of the VDM in terms of
the classical field [45]. The four momentum of the external
ψ lines and the (on-shell) VDM is denoted by p and k,
respectively; when the momentum k points into the left
(right) vertex in Fig. 1, the intermediate ψ line has pþ k
(p − k) from the momentum conservation. The self-energy
diagram in Fig. 1 results in the correction to the 2-point
operator, which reads as follows
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Leff
ψ ¼ ψ̄i=∂ψ −mψ ψ̄ψ − ψ̄=Σψ ð3Þ

with the amplitude

−i=Σ ¼ ð−ig2fÞ
Z

d4k
ð2πÞ4 Γ

μ
ðpþ =kþmψ Þ
ðpþ kÞ2 −m2

ψ
ΓνΔγ0

μν; ð4Þ

where mψ is the bare ψ mass, and Δγ0
μν accounts for the

propagator of the dark gauge boson in the loop. The

background part of Δγ0
μν can be written as follow

Δγ0
μνjDM ¼

X
a

ϵa�μ ϵaνð2πδðk2 −m2
γ0 Þfaγ0 Þ; ð5Þ

where and faγ0 is the DM distribution function of a
polarization state a. The term in the parenthesis of
Eq. (5) can be interpreted as the spectral density function
of the DM (for one-particle states). We assume the
distribution function to be monochromatic

faγ0 ¼ ð2πÞ3δð3Þ½k⃗ − k⃗γ0 �ðΘðk0Þnγ0 þ Θð−k0Þnγ0 Þξa; ð6Þ

where k⃗γ0 is the spatial momentum of the VDM back-
ground, nγ0 the total DM number density with the fraction
ξa for the polarization a (

P
a ξ

a ¼ 1). Here the real
condition of vector bosons imposes nγ0 ¼ nγ̄0 where γ̄0 is
the anti-particle of γ0. Since the DM is nonrelativistic as
mγ0 ≫ jk⃗γ0 j, the spatial momentum of the DM gives a
negligible effect on the particle dispersions that the results
would not hinge on the explicit distribution function.
Therefore, our assumption in Eq. (6) turns out to be
plausible. We dub kγ0 the monochromatic four momentum
of the VDM background in order to distinguish it from k
the integration four momentum in Eq. (4).

A. Unpolarized background

When the DM distribution is independent of polar-
izations as ξa ¼ 1=3 for all a, the polarization sum can
be prescribed as the metric tensor

P
ϵ�μϵν → −gμνþ

kμkν=m2
γ0 . The classical vector field background breaks

the gauge symmetry, hence the amplitude of the self-energy
diagram in Fig. 1 does not follow the Ward-Takahashi
identity [46,47] that the term of kμkν=m2

γ0 in the polarization
sum gives the finite contribution. The amplitude is given by

−i=Σ ≃ −iðpΣp þ =kγ0Σk ∓ mψΣmÞ ð7Þ

with − (þ) sign in the last term for the vector (axial-vector)
current and

Σp ¼ δm2
ψ

3

Δþm2
γ0

ðΔþm2
γ0 Þ2 − 4m2

γ0E
2
; ð8Þ

Σk ¼
2δm2

ψ

3

Δ − 2m2
γ0

ðΔþm2
γ0 Þ2 − 4m2

γ0E
2

�
E
mγ0

�
; ð9Þ

Σm ¼ 3Σp; ð10Þ

where we define

Δ ¼ E2 − jp⃗j2 −m2
ψ ð11Þ

with pμ ¼ ðE; p⃗Þ. The δm2
ψ factor parametrizes how

coherent interactions with the DM contribute to modifica-
tions of the dispersion, and reads as follows

δm2
ψ ¼ g2ψ

ργ0

m2
γ0

ð12Þ

with ργ0 ¼ mγ0nγ0 the energy density of the VDM and mγ0

the dark gauge boson mass.
The effective Lagrangian in Eq. (3) gives the equation of

motion for ψ as follows

p −mψ − =Σ ≃ γ0ðEð1 − ΣpÞ −mγ0ΣkÞ − γ⃗ · p⃗ð1 − ΣpÞ
−mψ ð1 ∓ ΣmÞ ¼ 0: ð13Þ

In order to account for the dispersion relation, which is
parametrized by Δ in Eq. (11), we need to solve

ðEð1 − ΣpÞ −mγ0ΣkÞ2 ¼ jp⃗j2ð1 − ΣpÞ2 þm2
ψ ð1 − αmΣpÞ2;

ð14Þ

where αm ¼ �3 for the vector and axial-vector current
coupling cases, respectively. We find the full expression in
expansion with respect to Δ as follows

X5
i¼0

ϒiΔi ¼ 0 ð15Þ

with

FIG. 1. Self-energy diagram of a ψ field (solid) in the vector
dark matter background (wavy with ⊗). The momentums of the
external ψ legs and the dark matter are denoted by p and k,
respectively. The momentum of the intermediate ψ line p� k
accounts for the contribution from the dark matter or antidark
matter distribution.

PARTICLE DISPERSION IN THE CLASSICAL VECTOR DARK … PHYS. REV. D 106, 095027 (2022)

095027-3



ϒ0 ¼
1

9
m4

γ0δm
2
ψ ½δm2

ψ ð8jp⃗j2 þ ð9 − α2mÞm2
ψ Þ

þ 6ðm2
γ0 − 4m2

ψ − 4jp⃗j2Þð4jp⃗j2 þ ð3þ αmÞm2
ψ Þ�;

ð16Þ

ϒ1 ¼ m2
γ0

�
−
2

9
δm2

ψðδm2
ψð10jp⃗j2 þ ð9þ α2mÞm2

ψ Þ

− 12ðm2
ψ þ jp⃗j2Þð2jp⃗j2 þ ð3 − αmÞm2

ψ ÞÞ

þ 1

3
m2

γ0 ð48ðm2
ψ þ jp⃗j2Þ2

− 2δm2
ψð22jp⃗j2 þ ð21þ αmÞm2

ψ Þ þ 3δm4
ψ Þ

þ 2m4
γ0 ð−4ðm2

ψ þ jp⃗j2Þ þ δm2
ψÞ þm6

γ0

�
; ð17Þ

ϒ2 ¼
8

9
δm4

ψ

�
jp⃗j2 þ 9 − α2m

8
m2

ψ

�

− δm2
ψm2

γ0

�
2δm2

ψ −
42 − 2αm

3
m2

ψ −
40

3
jp⃗j2

�
þ 2m4

γ0 ð8ðm2
ψ þ jp⃗j2Þ − 3δm2

ψÞ − 4m6
γ0 ; ð18Þ

ϒ3 ¼ δm4
ψ −

2

3
δm2

ψð2jp⃗j2 þ ð3 − αmÞm2
ψÞ

þm2
γ0 ð6δm2 − 8ðm2

ψ þ jp⃗j2ÞÞ þ 6m4
γ0 ; ð19Þ

ϒ4 ¼ −2δm2
ψ − 4m2

γ0 ; ϒ5 ¼ 1: ð20Þ

Since the equation in Eq. (15) is quintic with the coef-
ficients given in Eqs. (16)–(20), there are basically five
solutions of Δ. Note that the unique branch of the solutions
fulfills the relevant conditions; the solution is real and
positive, and vanishes when gψ → 0. We describe the value
of Δ in this branch for some limits, which cover the cases
of interest. The DM background singles out an inertial
frame to break Lorentz invariance (also gauge invariance as
discussed previously) that accounts for the effective
dispersion relations in function of the momentum.
We first focus on the case of phenomenological interest;

mψ > δmψ ; mγ0 that corresponds to the realistic parameter
space of the condensed VDM. It will be interesting to see
that the SM fermions develop distinctive dispersion rela-
tions depending on whether they have vector or axial-vector
coupling to the DM. The full momentum dependence of the
dispersion relations, Δðjp⃗jÞ, can be obtained numerically
for given values of the parameters. We will show some
sample plots later. Let us now present approximate analytic
expressions valid at particular limits.

1. Vector coupling

Two regimes of the parameter space distinguished by
the hierarchy between δm2

ψ and mψmγ0 show different

behaviors of the dispersion relations. In the regime of
δm2

ψ < mψmγ0 , we find

Δ ≈

8<
:

2δm2
ψm2

γ0
δm2

ψþ3m2

γ0
for jp⃗j ≫ mψ

δm2
ψ for jp⃗j ≪ mψ

: ð21Þ

In the opposite regime of δm2
ψ > mψmγ0 , we get

Δ ≈

(
2ffiffi
3

p δmψ jp⃗j for jp⃗j ≫ δmψ

δm2
ψ for jp⃗j ≪ δmψ

ð22Þ

which has a totally different behavior at the relativis-
tic limit.

2. Axial-vector coupling

It has a peculiar behavior that a common solution exists
for the both regimes:

Δ ≈

8>><
>>:

2δm2
ψm2

γ0
δm2

ψþ3m2

γ0
for jp⃗j ≫ mψ

2
3

δm2
ψm2

γ0
δm2

ψþm2

γ0
jp⃗j2
m2

ψ
for jp⃗j ≪ mψ

; ð23Þ

and there appears an additional solution in the regime of
δm2

ψ > m2
γ0 :

Δ ≈

(
2ffiffi
3

p δmψ jp⃗j for jp⃗j ≫ mψ

2δmψmψ þ δm2
ψ for jp⃗j ≪ mψ

: ð24Þ

Notice that the dispersion relations at the relativistic limit
are the same for the vector and axial-vector couplings.
For the sake of completeness, let us consider the strong

background effect allowing δm2
ψ > m2

ψ which is not of
phenomenological interest. For the vector (axial-vector)
coupling of DM, the solution of Δ is found to be

Δ ≈
� 2ffiffi

3
p δmψ jp⃗j for jp⃗j ≫ δmψ

δm2
ψðþ2δmψmψ Þ for jp⃗j ≪ δmψ

ð25Þ

which is basically the same as the solution (22) or (24).
We remark that there appears a crucial difference
between dispersion relations in the vector and scalar
background. In the ultrarelativistic limit, the dispersive
behavior of fermions in the vector medium shows Δ ∝ jp⃗j
as discussed above, while it goes like Δ ∼ δm2

ψ in the scalar
medium [40,41].
Another important medium effect is the modification of

field normalization of the particles interacting with the
medium. Generalizing the discussion of [38], we find the
normalization factor Z given by
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Z ¼
�
∂

∂E
ðV0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
p þM2

q
Þ
�
−1

pole
; ð26Þ

where V0 ≡ Eð1 − ΣpÞ −mγ0Σk, Vp ¼ jp⃗jð1 − ΣpÞ, and
M≡mψð1 ∓ ΣmÞ considering the positive energy solution
of (14). The fermions following the dispersion relations
given in Eqs. (21)–(25) have also distinct normalization
factors.

3. Vector coupling

The behavior of the normalization factor for the solution
(21) is distinguished further by the hierarchy between δm2

ψ

andm2
γ0 . In the regime of δm2

ψ ≪ m2
γ0 < mψmγ0 , the normali-

zation factor becomes trivial (Z → 1) manifesting the sup-
pressed medium effect. In the opposite regime of m2

γ0 <

δm2
ψ <mψmγ0 , the normalization factor becomes momentum-

dependent and shows a different limiting behavior:

Z ≈

8<
:

3m2

γ0
δm2

ψþ3m2

γ0
for jp⃗j ≫ mψ

1 for jp⃗j ≪ mψ

: ð27Þ

The explicit transition behavior will be shown later in the
sample plots together withΔ. For the solution (22) applicable
to the regime δm2

ψ > mψmγ0 , we have

Z ≈

(
1=2 for jp⃗j ≫ δmψ

δm2
ψ=2

2m2
ψþδm2

ψ
for jp⃗j ≪ δmψ

: ð28Þ

4. Axial-vector coupling

It is interesting to see that the normalization factors are
almost momentum-independent in this case. Depending
on the hierarchy between δm2

ψ and m2
γ0 , the normalization

factor has two different values corresponding to the
dispersion relations (23) and (24), respectively:

Z ≈ 1 for δm2
ψ < m2

γ0 ; ð29Þ

Z ≈ 1=2 for m2
γ0 < δm2

ψ : ð30Þ

A notable feature is that we always have Z ≈ 1 for
δmψ ≪ mγ0 , and Z ≈ 1=2 for the branches with
Δ ∝ δmψ jp⃗j. Furthermore, the strong background of
δm2

ψ ≫ m2
ψ (25) allows the constant normalization factor

Z ≈ 1=2 for both the vector and axial-vector coupling.
Let us now present the plots for the full momentum

dependence of Δ and Z to see the transition behaviors
between the limiting solutions discussed above. Figure 2
shows the numerical solutions obtained with mγ0=mψ ¼
10−3 and two sample values of δmψ=mψ ; 10−1ðδm2

ψ >
mψmγ0 Þ and 10−2ðδm2

ψ < mψmγ0 Þ for the vector coupling in

the upper panel, and 10−2ðδm2
ψ > m2

γ0 Þ and 10−4ðδm2
ψ <

m2
γ0 Þ for the axial-vector coupling in the lower panel. The

former corresponds to the red lines, and the latter to the blue
lines. The solid and dashed lines show the momentum
dependence of Δ=m2

ψ and Z, respectively.

B. Polarized background

In the assumption that the classical VDM background
prefers a specific polarization, we set such a polarization
as z-direction without loss of generality so ξ3 ¼ 1. We
consider the homogeneous background at the leading order
that ∂iAμ ¼ 0 implies A0 ¼ 0. Following the same steps in
the previous subsection, the amplitude of the self-energy
diagram is written by

−i=Σ ≃ −i½ðpþ 2jp⃗zjγ3ÞΣ̃p þ =kγ0 Σ̃k ∓ mψ Σ̃p� ð31Þ

with

FIG. 2. Examples of numerical solution of the modification to
the particle dispersion relation Δ and the normalization factor Z.
All the mass parameters are in unit of mψ . In the upper panel, the
blue (red) solid and dashed lines correspond to Δ in (21) [(22)]
and Z in (27) [(28)], respectively. In the lower panel, the blue
(red) solid and dashed lines correspond to Δ in (23) [(24)] and
Z in (29) [(30)], respectively.
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Σ̃p ¼ δm2
ψ

Δþm2
γ0

ðΔþm2
γ0 Þ2 − 4m2

γ0E
2
; ð32Þ

Σ̃k ¼ δm2
ψ

−2mγ0E

ðΔþm2
γ0 Þ2 − 4m2

γ0E
2
; ð33Þ

and p⃗i ¼ ðî · p⃗Þî. The equation of motion with the self-
energy term induces the dispersion relation as following

ðEð1 − Σ̃pÞ −mγ0 Σ̃kÞ2 −m2
ψ ð1 − α̃mΣ̃pÞ2

¼
X
i≠z

jp⃗ij2ð1 − Σ̃pÞ2 þ jp⃗zj2ð1þ Σ̃pÞ2; ð34Þ

where α̃m ¼ �1 for the vector and axial-vector current
coupling cases, respectively.
Finding the proper solution for Δ are summarized in the

Appendix. Except the extreme case of δm2
ψ cos2 θ ≪ m2

γ0

with cos θ ¼ ẑ · p⃗=jp⃗j, we appreciate that the modification
of the dispersion relation is similar to the unpolarized
case in each kinematic region. Indeed, averaging over the
angular information, which replaces cos2 θ with 1=3, gives
the consistent results with the unpolarized background. At
the next section, we evaluate the constraints on the classical
VDM from the phenomenological observations where such
a directional information of a momentum is unimportant. In
this context, we take into account the dispersion relation in
the unpolarized VDM in the remainder of this paper.

III. CONSTRAINTS

Let us discuss the constraints on the classical VDM
from the phenomenologies associated with the particle
dispersion and normalization. The scenarios with anomaly
free gauged Uð1Þ gauge extensions, which are ubiquitous
in UV models and appealing for some phenomenological
aspects, are examined: the lepton flavor-dependent sym-
metries such as Uð1ÞLe−Lμ

, Uð1ÞLe−Lτ
, and Uð1ÞLμ−Lτ

, the
flavor-universal Uð1ÞB−L (it is anomaly free if right-handed
neutrinos are introduced). We also investigate the so-called
dark photon model where the kinetic mixing of an addi-
tional gauge boson with the SM photon is the only source
for its interaction to the SM particles.
There are a few important features of the medium effect

providing strong constraints on the model parameter space.
(i) In the cases of the vector coupling or the axial-vector

coupling with δm2
ψ > mψmγ0 , the fermion ψ devel-

ops an medium induced mass-squared Δ ¼ δm2
ψ or

δmψmψ at the small momentum limit δm2
ψ ≫ jp⃗j2.

This may contract with the measurements of the
fermion mass mψ described in the SM.

(ii) For δm2
ψ ≫ mψmγ0 with jp⃗j2 ≫ δm2

ψ , the DM con-
tribution to the particle dispersion is quantified by
Δ ¼ ffiffiffiffiffiffiffiffi

4=3
p jp⃗jδmψ as shown in Eq. (22). Thus, it

gives a constant shift to the energy δEψ ∼ δmψ

which may alter neutrino oscillations significantly
if flavor-dependent.

(iii) If the normalization factor for the fermions interact-
ing with VDM deviates from the trivial value Z ¼ 1,
it may lead to an observable field/flavor dependence
of the SM couplings which has been tested precisely.

As the first example, we can employ the precise
measurement of the electron mass in the ground experi-
ments and the relativistic degree of neutrinos at the epoch
of matter-radiation equality zeq ≃ 3400. In most of the
experimental setups to measure the electron mass, elec-
trons are well electromagnetically trapped inside a system
(e.g., penning traps [48,49]) that their velocity is less than
10−3c [50]. Moreover, since the distribution of the DM in
the Earth reference frame translates into an characteristic
velocity of Oð10−3Þc [51–55], one can consider that
electrons in the experiments are nonrelativistic with
respect to the VDM. The well-measured electron mass
(me;meas ≃ 0.511 MeV [56]) is to be accounted by

me;meas ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ δm2
e

p
where the bare and medium-

induced mass-squared are positive-definite by construction.
As a consequence, one can apply the conservative con-
straint: δm2

e < m2
e;meas that leads to

ge < 3.3 × 10−12
�

mγ0

10−20 eV

��
0.3 GeV=cm3

ρ⊕DM

�
1=2

; ð35Þ

where ρ⊕DM indicates the local DM density with
0.3 GeV=cm3 at the 2-σ level [57]. Note that this constraint
can be further improved if the electron dispersion relation is
evaluated in distinct environments with respect to the dark
matter background. As an example, since the deviation
of the dispersion relation is momentum-dependent as
discussed in the previous section, a robust bound may
arise from a comparison between electron mass estimates at
different velocities with respect to the DM background.
In the cosmology side, neutrinos also get an effective

mass contribution from the DM, and δm2
ν with respect to

the bath temperature T reads as follows

δm2
νðTÞ ¼ g2ν

ρ0DM
m2

γ0

�
g�sðTÞT3

g�sðT0ÞT3
0

�
; ð36Þ

where ρ0DM ¼ 1.26 keV=cm3 denotes the current DM
density, g�sðTÞ the entropic degrees of freedom, and T0 ¼
2.726 K [58–60] the current cosmic microwave back-
ground (CMB) temperature. In order for relic neutrinos
to compose the background radiation at the matter-radiation
equality (Teq ¼ zeqT0 ≃ 0.80 eV) appropriately, as a naive
estimation, δmν should not exceed the temperature of
neutrinos Tν ¼ ð4=11Þ1=3T, then we obtain the constraint
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gν < 9.3 × 10−21
�

mγ0

10−20 eV

��
1.26 keV=cm3

ρ0DM

�
1=2

×

�
3400

zeq

�
1=2

�
3.94

g�sðTeqÞ
�

1=2
: ð37Þ

The medium effect at the ultrarelativistic limit can alter
significantly neutrino oscillations. Neutrino flavor oscilla-
tions hinge on the differences between the neutrino masses-
squared, not the mass scale. The consequent neutrino
mass-squared differences are given by an order of
Oð10−3Þ and Oð10−5Þ eV2 [61–64], whereas the mass
scale involves much milder bounds that mν < Oð1Þ eV
from laboratory probes (e.g., the kinematic search in tritium
decay from KATRIN [65,66]) and mν < Oð0.1Þ eV [67]
from cosmological implications associated with the CMB
spectrum and the matter power spectrum. Thus, one can put
an bound of δmν < mν whose precision depends on the
measurement. More importantly, if the DM contribution to
the neutrino dispersion relations is lepton flavor-dependent,
a tiny shift in the neutrino energy can contribute signifi-
cantly to the neutrino oscillation. For instance, the solar
neutrino transition is governed by the Mikheev-Smirnov-
Wolfenstein (MSW) effect [68,69] through the effective
potential induced by the solar medium. Thus the same kind
of contribution from the DM, δE ∼ jΔgνjδmν with Δgν ¼
− cos2 θ13ðgνe − gνμÞ=2þ ðsin2 θ23 − sin2 θ13 cos2 θ23Þðgντ−
gνμÞ=2 [70] and θij the mixing angles in the neutrino sector,
has a significant impact on the observed (electron-)neutrino
flux, and provides the stringent constraint as follows:

gν < Max

�
1.6 × 10−29Δg−1ν

�
mγ0

10−20 eV

��
V⊙
MSW

10−12 eV

�
;

6.6 × 10−28
�

mγ0

10−20 eV

�
3=2

�
mν

1 eV

�
1=2

�

×

�
0.3 GeV=cm3

ρ⊕DM

�
1=2

; ð38Þ

where mν denotes the neutrino mass scale in the vacuum,
and Max½x; y� is the function to find the maximum value
between the arguments of x and y. The first condition in the
Max function is derived from the comparison of the
effective neutrino potentials from the DM (¼ ffiffiffiffiffiffiffiffi

1=3
p

δmψ )
and from the matter (¼ ffiffiffi

2
p

GFn⊙e ∼ 10−12 eV [71,72] with
GF the Fermi constant and n⊙e the electron number density
inside the Sun). At the same time, the condition δm2

ψ >
mψmγ0 has to be satisfied, and thus the second constraint is
imposed with mν ¼ 1 eV as a fiducial value.
As can be seen from Eqs. (27)–(30), the wave-function

normalization factor for the fermions coupling to VDM is
1=2 ðδm2

ψ > mψmγ0 Þ or 3m2
γ0=δm

2
ψ ðδm2

ψ < mψmγ0 Þ in the

relativistic limit unless δm2
ψ ≪ m2

γ0 . This implies that lepton
flavor universality can be broken badly in the gauged

Le − Lμ model, etc. On the other hand, the lepton univer-
sality, e.g., in the Z boson decay is maintained at the
precision of ∼0.3% [56]. In case of B − L, only SM
fermions interact with the VDM and thus their couplings
to the SM gauge bosons V − ψ − ψ 0 are reduced by the
normalization factor while the triboson couplings
V − V − V are unaltered. Thus any deviation of these
gauge couplings from the SM prediction is also tightly
constrained. The triboson couplings are measured at the
level of ∼1% [73,74]. Finally, the dark photon with kinetic
mixing has a highly suppressed coupling to neutrinos
compared with the accompanying charged leptons, which
spoils the SUð2Þ doublet structure of SM. That is, the
SM prediction of the ratio ΓðZ → ννÞ=ΓðZ → llÞ for
instance could be modified significantly. Note that this
ratio measures the number of neutrino species which is
well determined at the precision below 1% [75]. As the
deviation of the normalization factor from unity is measure
by 1 − Z ≈ δm2

ψ=3m2
γ0 for m

2
γ0 ≫ δm2

ψ , one can put a quite
generic bound of δmψ < 0.1mγ0 in the VDMmodels, which
reads as follows:

gψ < 6.6 × 10−39
�

mγ0

10−20 eV

�
2
�
0.3 GeV=cm3

ρ⊕DM

�
1=2

: ð39Þ

This rules out a huge region of the VDM parameter space.
Figure 3 shows the excluded parameter region of the

gauged Lμ − Lτ model. No constraint comes from the

FIG. 3. The constraints plot for the gauged Lμ − Lτ model. The
dashed red (δmeq

ν ), blue (δm⊙
ν ), and black (Z) lines indicate the

upper bounds from Eqs. (37), (38), and (39), respectively. In
the cyan region (Γγ0 > H0), dark matters are unstable. The brown
region (DMε) is excluded in the presence of the natural amount
of the kinetic mixing induced by the muon and tau loops [76].
The current best bounds come from cooling of supernovae
(SN1987A) [82], from orbital period decay of compact binary
systems (Binary systems), from neutrino tridents (CCFR) [77,78],
and from blackhole superradiance (BHSR) [84–86]. The green
region denoted by ðg − 2Þμ can address the deviation in the
anomalous muon magnetic moment [87–89].
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experiments to determine the electron mass, but we have
the upper bounds associated with the neutrino dispersion
and lepton universality; the dashed red (δmeq

ν ), blue (δm⊙
ν ),

and black (Z) lines from Eqs. (37), (38), and (39),
respectively. Furthermore, due to decay into neutrinos,
the DM stability condition excludes the cyan region
(Γγ0 > H0). The kinetic mixing of the Lμ − Lτ gauge boson
with the SM photon can be radiatively induced by the muon
and tau loops, which lead to ε ¼ egLμ−Lτ

log½m2
τ=m2

μ�=12π2
[76]. The brown region (DMε) accounts for the additional
constraints from this natural amount of the kinetic mixing,
which are rescaled from the dark photon model as we will
discuss at the end of this section, although those bounds
possess theoretical uncertainties that an explicit ε value can
be modified or even cancelled out in the UV completion.
From now on, the dashed boundaries and lines indicate a
model dependence of the constraint in the assumption that
the DM is fully constituted by the classically oscillating
vector field. For comparison, we also report the other
constraints, which are not related to the DM. The con-
straints from the gravity experiments are absent since there
is no additional long-range force among baryons and
electrons in nuclei; even though there is a radiatively
induced kinetic mixing with the photon as discussed above,
all the nuclei are electrically neutral, so still no bound from
the gravity experiments is expected. The terrestrial searches
for the neutrino trident production that the Lμ − Lτ gauge
boson can mediate the interaction of muon neutrinos to
heavy nuclei, which leads to μ−μþ pair creation, provide
the constraint (CCFR) [77,78]. The astrophysical searches
also give rise to the stringent constraints. The stellar
cooling argument [79] on the core-collapse supernova that
non-negligible muon abundance [80,81] emits energetic
Lμ − Lτ gauge bosons, then such an extra energy leakage
can modify the neutrino observations (SN1987A) [82].
Furthermore, such a large muon charge of neutron stars
induces a dipole Lμ − Lτ gauge boson radiation in compact
binary systems, the energy loss of which contributes to the
decay of orbital period (binary systems) [83]. There are also
the blackhole superradiance bounds [84–86] (BHSR) on
a light mass of the gauge boson that would spin down
stellar mass black holes. The green bar denoted by ðg − 2Þμ
[87–89] indicates the region to address the deviation in the
anomalous muon magnetic moment [18], which gives a
strong motivation to the gauged Lμ − Lτ model.
In the gauged Le − Lμ or Le − Lτ model, we can access

the constraints from the electron dispersion in the experi-
ments as well as implications of the neutrino mass scale. In
Fig. 4, the dashed red (δmeq

ν ), green (δm⊕
e ), blue (δm⊙

ν ’, and
black (Z) lines illustrate the corresponding upper bounds
of Eqs. (37), (35), (38), and (39), respectively. The cyan
region accounts for the DM stability bound (Γγ0 > H0) as
in the gauged Lμ − Lτ model. The gravity experiments for
tests of the equivalence principle [90–92] and fifth forces

[93–95] come up with the most stringent bound for masses
below an order of eV (fifth forceþ EP). Likewise, a long-
range mediator induces a nonstandard matter potential in
neutrino propagation, which would modify the oscillation
data (MSW) [70]. For the astrophysical bounds, we can
exploit the known results in the other dark gauge boson
models. In less dense stars such as the Sun, horizontal
branch stars, and red giants, the main emission process is
the resonant conversion of longitudinal plasmons [96,97],
which is supported by the in-medium mixing [98,99], thus
the constraints are rescaled from the result in the dark photon
model (Sunþ HBþ RG). The other significant astrophysi-
cal constraints emerge from the cooling observations of
neutron stars (NSþ SN1987A) [100] where the nucleon
bremsstrahlung is typically the dominant production chan-
nel; the leading order emissivity is controlled by the coupling
difference between the nucleon fields (as the isospin breaking
factor [100]), which is given equivalently in both the gauged
Uð1Þ extensions of Le − Lμ;τ and B − L number on account
of the in-medium effect [98,99]. We include the blackhole
superradiance bounds (BHSR) [84–86].
As shown in Fig. 5, most of the constraints on the gauged

B − L model resemble the gauged Le − Lμ;τ models, but
those from neutrino oscillations (i.e., the constraints
denoted by δm⊙

ν and MSW in Fig. 4) are absent due to
the flavor-universal aspect of the gauge charge assignment.
Furthermore, we report a difference in the astrophysical
constraints from low density stellar objects (Sunþ HB)
that becomes flat for masses below 10−2 eV [98] due to the
contribution from neutrons, the coupling of which expe-
rience no in-medium effect.

FIG. 4. The constraints plot for the gauged Le − Lτ or Le − Lτ

model. The dashed red (δmeq
ν ), green (δm⊕

e ), blue (δm⊙
ν ), and

black (Z) lines indicate the upper bounds from Eqs. (37), (35),
(38), and (39), respectively. In the cyan region (Γγ0 > H0), dark
matters are unstable. The current best bounds come from the
gravity experiments (fifth force þ EP) [90–95], from cooling of
young neutron stars (NSþ SN1987A) [100], from cooling of the
Sun, horizontal branch stars, and red giants (Sunþ HBþ RG)
[96,97], from matter effects on neutrino oscillations (MSW) [70],
and from blackhole superradiance (BHSR) [84–86].
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The last model that we explore is the dark photon
scenario, where the kinetic mixing with the SM photon
induces the leading order couplings to the SM particles.
The constraints for the dark photon model are depicted in
Fig. 6. Since the dark photon couples only to SM particles
containing a nonvanishing electric charge, we can only
demand the upper bound of Eqs. (35) and (39) from the
electron mass measurements and the electroweak precision

tests, which correspond to the dashed green (δm⊕
e ) and

black (Z) lines in Fig. 6, respectively. The kinetic mixing
transfers a fractional energy density of the VDM into
cosmological and astrophysical mediums. Such an energy
deposition could alter the observations as a heating source,
then we can obtain various constraints on the dark photon
DM (see Ref. [14] and references therein [25,101–107] for
details). Taking the most stringent constraint for each dark
photon mass, the brown region with the dashed boundary
(DPDM) is excluded when the coherent dark photon field
constitutes the whole DM abundance; the rescaled bounds
are used in the gauged Lμ − Lτ model as shown in Fig. 3.
Apart from the constraints above in terms of the DM that
are based on the conversion of dark photons into SM
photons, there are also the constraints that rely on tran-
sitions in the opposite way (γ → γ0) and are less model-
dependent; as an example, light-shining-through-walls
experiments [108–113] and CMB spectral distortions
[105]. At masses above 10−3 eV, the stellar cooling argu-
ment on the Sun, horizontal branch stars, red giants
(Sunþ HBþ RG) [96,97], neutron stars, and supernovae
(NSþ SN1987A) [100,114] gives the best current bounds.
We also include the model-independent constraints from
blackhole superradiance (BHSR) [84–86].

IV. CONCLUSIONS AND DISCUSSION

We discussed the medium effect on the particles living in
the classical vector field background which is considered as
a light DM candidate. Even though the DM polarization
within at least a local domain can be aligned with a single
direction or randomly distributed, its impacts on the particle
dispersion would be washed out by integrating out uncer-
tainties associated with a particle momentum in the DM
frame. We computed a degree of the modification of the
particle dispersion in each limited circumstance, which is
quantified by Δ in Eq. (11). In the case of a vector gauge
charge assignment, as long as the gauge coupling is large to
achieve the condition of δm2

ψ ≫ mψmγ0 , such a modifica-
tion becomes significant due to the enhancement from the
intermediate particle mediator. Based on these findings, we
evaluated the constraints on the gauged Uð1Þ models of
interest and the results are depicted in Figs. 3, 4, 5, and 6
for the gauged Lμ − Lτ, Le − Lμ;τ, B − L, and dark photon
models, respectively. Interestingly, the DM implications of
refractive phenomena give the stringent constraints on the
gauged Lμ − Lτ and dark photon models, where there is no
bound from the gravity experiments due to no effective
baryonic coupling to nuclei.
Furthermore, we pointed out that the effective

coupling strengths in the relativistic regime could deviate
from unity, which leads to a conflict with the SM
prediction. The electroweak precision tests indeed impose
a severe constraint on the VDM with ultralight masses
of mγ0 < 10−15 eV.

FIG. 5. The constraints plot for the gauged B − L model. The
dashed red (δmeq

ν ), green (δm⊕
e ), and black (Z) lines indicate the

upper bounds from Eqs. (37), (35), and (39), respectively. In
the cyan region (Γγ0 > H0), dark matters are unstable. The current
best bounds come from the gravity experiments (fifth forceþ EP)
[90–95], from cooling of young neutron stars (NSþ SN1987A)
[100], from cooling of the Sun and horizontal branch stars
(Sunþ HB) [98], and from blackhole superradiance (BHSR)
[84–86].

FIG. 6. The constraints plot for the dark photon model. The
dashed green (δm⊕

e ) and black (Z) lines indicate the upper bounds
from Eqs. (35) and (39), respectively. The brown region (DPDM)
corresponds to the preexisting constraints on the dark photon DM
[14,25,101–107]. The current best bounds come from cooling of
young neutron stars (NSþ SN1987A) [100,114], from cooling of
the Sun, horizontal branch stars, and red giants (Sunþ HBþ
RG) [96,97], from transitions of SM photons to dark photons
(γ → γ0) [105,108–113], and from blackhole superradiance
(BHSR) [84–86].
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Besides the discussion of cosmological neutrino refrac-
tion and its implications, one may wonder the constraints
from the particle dispersion of electrons (as lightest charged
particles) in cosmology. A large correction to the electron
mass in the early universe would be problematic for the
cosmological history. For example, the change of the
recombination epoch might be expected due to the modified
binding energy of hydrogen as a naive inference. In order to
account for the DM effect on the dispersion relation of
electrons, we need to deal with the plasma screening effect
in the ionized medium, then the effective DM coupling to
electrons can be written by (for details, see Refs. [98,99])

geffe ¼ ðεe − geÞ
m2

γ0

m2
γ −m2

γ0
: ð40Þ

Here m2
γ quantifies an effective photon mass with the

imaginary part, which accounts for photon absorption (for
details, see Ref. [25] and references therein [115,116]).
Following Ref. [25], we notice that the constraint from the
electron refraction at the recombination ismuchweaker than
the results above in spite of the resonance in Eq. (40) for
mγ0 ≃ 10−9 eV at the recombination.
We ignore any bounds from the big bang nucleosynthesis

(BBN) era, which are rather large model-dependent. When
the Hubble friction dominates over the DM mass rolling in
the potential, the DM field is stuck at the initial value and its
density scales as constant, not ρ ∝ a−3 of the oscillating
field. Therefore, if mγ0 < HBBN ∼Oð10−16Þ eV, the modi-
fication of the particle dispersion against the vacuum at
the BBN depends on the initial misalignment, and the
derivation discussed in Sec. II is not valid any longer.
Furthermore, we can imagine that the DM is generated
after the BBN, which is not in conflict with the standard
cosmological evolution.
As a final remark, it would be interesting to explore any

phenomenological aspects of the DM polarization. Indeed,
the DM polarization is responsible for distinct features in
direct detection searches compared to axions, and a careful
analysis to point out the validity of the historical reinter-
pretation of axion bounds is carried out in the literature
[14,25]. As discussed in Sec. II A and the Appendix,
particle dispersions can also depend on the polarization,
thus it might leave an imprint on observations in terrestrial
or cosmological experiments.
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APPENDIX: Δ IN THE POLARIZED
BACKGROUND

The equation of motion in Eq. (34) leads to the quintic
equation of Δ as follows

X5
i¼0

ϒ̃iΔi ¼ 0 ðA1Þ

with

ϒ̃0 ¼ m4
γ0δm

2
ψ

�
ð1 − α2mÞm2

ψδm2
ψ þ

�m2
γ0

4
−m2

ψ − jp⃗j2
�

× 16

�
sin2θjp⃗j2 þ 1þ αm

2
m2

ψ

��
; ðA2Þ

ϒ̃1 ¼ m2
γ0

�
−2δm2

ψðδm2
ψð2jp⃗j2 þ ð1þ α2mÞm2

ψ Þ

− 4ðm2
ψ þ jp⃗j2Þð2cos2θjp⃗j2 þ ð1 − αmÞm2

ψÞÞ

þm2
γ0

�
δm4

ψ þ 16ðm2
ψ þ jp⃗j2Þ2

− 4δm2
ψ

�
ð4 − cos2θÞjp⃗j2 þ 7þ αm

2
m2

ψ

��

þ 2m4
γ0 ðδm2

ψ − 4m2
ψ − 4jp⃗j2Þ þm6

γ0

�
; ðA3Þ

ϒ̃2 ¼ δm4
ψm2

ψð1 − α2mÞ þ 4m4
γ0

�
4ðm2

ψ þ jp⃗j2Þ − 3

2
δm2

ψ

�
− 2δm2

ψm2
γ0 ðδm2

ψ − ð7 − αmÞm2
ψ

− 2ð3þ cos2 θÞjp⃗j2Þ − 4m6
γ0 ; ðA4Þ

ϒ̃3 ¼ δm4
ψ − δm2

ψ ð4 cos2 θjp⃗j2 þ 2ð1 − αmÞm2
ψÞ

þm2
γ0 ð6δm2

ψ − 8ðm2
ψ þ jp⃗j2ÞÞ þ 6m4

γ0 ; ðA5Þ

ϒ̃4 ¼ −2δm2
ψ − 4m2

γ0 ; ϒ̃5 ¼ 1 ðA6Þ

with the definition of cos θ ¼ ẑ · p⃗=jp⃗j.
Let us derive the solution ofΔ in a few limited conditions

that cover most of our interest. The proper Δ values in the
polarized background have dependence of cos θ. We take
the assumption of m2

γ0 ≪ m2
ψ ; δm2

ψ for convenience.

1. Vector coupling

The comparison between δm2
ψ cos2 θ and mγ0 as well as

between δm2
ψ and mψmγ0 characterize the behavior of
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the solutions. In the typical range of cos2 θ for
δm2

ψ cos2 θ ≫ m2
γ0 , we obtain the results for the small

coupling regime of δm2
ψ ≪ mψmγ0

Δ ≈

8<
:

δm2
ψm2

γ0 sin
2θ

δm2
ψ cos2θþm2

γ0
for

ffiffiffiffiffiffiffiffiffiffi
sin2θ

p
jp⃗j ≫ mψ

δm2
ψ for

ffiffiffiffiffiffiffiffiffiffi
sin2θ

p
jp⃗j ≪ mψ

; ðA7Þ

and for the opposite regime of δm2
ψ ≫ mψmγ0

Δ ≈
�
2

ffiffiffiffiffiffiffiffiffiffiffi
cos2θ

p
jp⃗jδmψ for

ffiffiffiffiffiffiffiffiffiffiffi
cos2θ

p
jp⃗j ≫ δmψ

δm2
ψ for

ffiffiffiffiffiffiffiffiffiffiffi
cos2θ

p
jp⃗j ≪ δmψ

: ðA8Þ

In the limit of δm2
ψ cos2 θ ≪ m2

γ0 , the Δ solution for δm2
ψ ≪

mψmγ0 is equivalent to Eq. (A7), whereas the result for
δm2

ψ ≫ mψmγ0 is still similar to Eq. (A7) but with the
difference kinematic condition as following

Δ ≈

8<
:

δm2
ψm2

γ0 sin
2θ

δm2
ψ cos2θþm2

γ0
for jp⃗j ≫ δm2

ψ=mγ0

δm2
ψ for jp⃗j ≪ δm2

ψ=mγ0

: ðA9Þ

2. Axial-vector coupling

The common solutions for δm2
ψ ≪ m2

ψ are given by

Δ ≈

8>><
>>:

δm2
ψm2

γ0 sin
2θ

δm2
ψ cos2θþm2

γ0
for jp⃗j ≫ Fmψ

sin2θ
m2

γ0δm
2
ψ

m2

γ0þδm2
ψ

jp⃗j2
m2

ψ
for jp⃗j ≪ Fmψ

ðA10Þ

with F ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θ

p
Þ−1 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δm2

ψ=m2
γ0

q
in the regime

of δm2
ψ cos2 θ ≫ m2

γ0 and δm2
ψ cos2 θ ≪ m2

γ0 , respectively.
As in Eq. (23), we find the solutions, which are relevant for
the δm2

ψ ≫ m2
γ0 case and also cover the δm

2
ψ ≫ m2

ψ limit, as
follows

Δ ≈

8<
:

2
ffiffiffiffiffiffiffiffiffiffiffi
cos2θ

p
jp⃗jδm for jp⃗j ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ψþδm2
ψ

p ffiffiffiffiffiffiffiffi
cos2θ

p

2δmψmψ þ δm2
ψ for jp⃗j ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ψþδm2
ψ

p ffiffiffiffiffiffiffiffi
cos2θ

p
ðA11Þ

in the regime of δm2
ψ cos2 θ ≫ m2

γ0 and the same result in

Eq. (A10) in the opposite regime of δm2
ψ cos2 θ ≪ m2

γ0 .
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