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This paper investigates the importance of radiative corrections for first-order phase transitions. While it is
known how to incorporate higher-order corrections to the rate, a detailed convergence analysis has not been
performed. This paper performs such an analysis, and the results indicate that radiative corrections can be
large while retaining perturbativity. To illustrate the calculations, three representative models are considered.
Relevant observables are calculated for each model, and the reliability of perturbation theory is discussed.
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I. INTRODUCTION

A cosmological first-order phase transition is a water-
shed moment. If such a transition occurred, not only would
it leave a trail of gravitational waves [1–4], but it could
also explain the observed baryon asymmetry through
electroweak baryogenesis [5]. Therefore, with the advent
of gravitational-wave cosmology, the community—
theoretical and experimental—prepare for upcoming
experiments [6–10]. The success of which promises an
unique window into the early Universe, and the chance to
not only confirm a first-order transition, but to probe the
Higgs potential itself [11,12].
Unfortunately, there are significant theoretical uncertain-

ties for nonequilibrium processes like bubble nucleation
[13–15]. These uncertainties, in turn, prevent reliable
predictions of the gravitational-wave spectrum, which
limits any attempt to constrain the underlying physics if
a signal is detected.
Therefore, it is crucial to improve computational meth-

ods. Although lattice computations [16,17] are preferable,
they are slow even for equilibrium observables. This leaves
perturbation theory [13,18–21] as the only viable option for
studying models with many free parameters.
Methods for including perturbative corrections for bubble-

nucleation have been developed in [20–24], yet the size of
these corrections has not been appreciated nor has the
convergence of the perturbative expansion been investigated.

This paper shows that the expansion can converge
despite the first perturbative correction being large. This
has important consequences for gravitational-wave predic-
tions, and might significantly alter existing results.

II. HIGH-TEMPERATURE CALCULATIONS

Physical quantities are renormalization-scale invariant
[13], gauge invariant [18,25], and free from infrared diver-
gences [26,27] in a consistent perturbative expansion.
However, a naive loop expansion does not work at high

temperatures. This is because loop corrections are enhanced,
which for example leads to thermal mass corrections [28].
In addition, calculations typically contain large logarithms
if the relevant energy-scale is much smaller than the
temperature.
These issues can be solved by integrating out high-energy

fluctuations and working with an effective field theory
(EFT). Such a theory describes energy scales relevant to
the phase transition, and all temperature dependence is
contained in effective couplings [21,28,29].
In particular, the nucleation rate can be calculated within

this EFT. Due to the universality of effective field theories,
this makes it possible to study an entire class of zero-
temperatures theories with a single EFT.

III. THE NUCLEATION RATE

Because quantum fields behave classically at high
temperatures, it is possible to use classical nucleation
theory to calculate the rate of nucleating bubbles [30,31].
In nucleation theory the system overcomes a potential

barrier through thermal fluctuations, and the probability to
jump over the barrier is controlled by a Boltzmann factor.
To be explicit, consider a particle situated at a minima, with
a deeper minima located at the other side of a potential
barrier. The rate of escape is then controlled by the barrier
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height: Γ ∼ e−V=T . However, in field theory, spatial gra-
dients also contribute to the energy. So instead of the barrier
height, the relevant quantity is an action. This action is
evaluated on a classical solution to the equations of motion,
the bounce [31,32]. In short, this bounce solution describes
the nucleation of a true-vacuum bubble.
Take for example a scalar field—the nucleation rate is

proportional to

Γ ∝ e−SB : ð1Þ

If we assume that the scalar potential VðϕÞ has one minima
at ϕ ¼ ϕFV, and a deeper minima at ϕ ¼ ϕTV, the bounce is
given by [32]

∇2ϕBðjx⃗jÞ ¼ V 0½ϕBðjx⃗jÞ�; lim
jx⃗j→∞

ϕBðjx⃗jÞ ¼ ϕFV;

∇⃗ϕBðjx⃗jÞjjx⃗j¼0 ¼ 0; ð2Þ

and the bounce action is

SB ¼
Z

d3x

�
1

2
ð∇⃗ϕBÞ2 þ V½ϕB�

�
: ð3Þ

Note that SB is three dimensional. Furthermore, as men-
tioned, we here consider an effective high-temperature
theory. This means that all masses and couplings implicitly
depend on the temperature, and that we work with an
effective three-dimensional theory [20].
Higher-order corrections to the rate come from including

fluctuations around the bounce solution. In general these
corrections arise from vacuum diagrams in the bounce
background. For example, the one-loop result is [30,31]

Γ ∝
Y
i

det ½−∇2 þM2
i ½ϕB��−1=2e−SB: ð4Þ

This functional determinant depends on the leading-order
bounce through field-dependent masses.1

Though the determinant is formally subleading, it can be
comparable to the exponent. To see when this happens it is
useful to rewrite the rate as

Γ ∝ e−Seff ½ϕB�; Seff ¼ SB þ S1-loop; ð5Þ

where we have defined the one-loop effective action [33]

S1-loop½ϕB� ¼
1

2

X
i

Tr log ½−∇2 þM2
i ½ϕB��: ð6Þ

If we consider large bubbles with radius R, the leading-
order bounce action scales as SB ∼ R2 [32], while the one-
loop action scales as

S1−loop ∼ −R3
X
i

½ðM2
i ½ϕTV�Þ3=2 − ðM2

i ½ϕFV�Þ3=2�: ð7Þ

We see that the perturbative expansion breaks down for
large R. In addition, Eq. (7) indicates that higher-order
corrections are enhanced even for medium-sized bubbles.
Moreover, S1−loop can be sizeable if the field-dependent

mass of a fluctuating particle is parametrically larger than
the scalar mass M2

i ½ϕB� ≫ V 00½ϕB�. In this case, however, it
is often possible to resum large terms by integrating out the
heavy particle [20,22,33,34].
So in general our perturbative expansion differs from a

strict loop expansion.
To systematically study higher-order corrections, it is

then necessary to introduce a power counting. As an
example, consider the potential

VðϕÞ ¼ 1

2
m2

3dϕ
2 −

1

16π
g33dϕ

3 þ 1

4
λ3dϕ

4: ð8Þ

In a gauge theory the cubic term in Eq. (8) arises from
vector-boson loops [35]. As such, this potential is said to
describe a radiative barrier. While this potential is not
applicable to the Standard model, as the Higgs is too
heavy, the same potential also appears in scenarios
with heavy scalars [36], and it can also describe a real-
scalar theory.
At leading order, the effective couplings in Eq. (8)

depend on the original zero-temperature couplings sche-
matically as [28]

λ3d ¼ Tλ; g23d ¼ Tg2; m2
3d ¼ m2 þ aT2; ð9Þ

where a is a function of zero-temperature couplings.
To show how higher-order corrections to the rate can be

included, we first consider the radiative-barrier case in an
SU(2) model with a doublet scalar. The cubic term in
Eq. (8) then comes from integrating out vector bosons. As

such, the vector-boson mass must satisfy m2
H

m2
A
∼ λ3d

g2
3d
∼ λ

g2 ≪ 1.

This encourages us to define the dimensionless couplings

x≡ λ3d
g23d

; y≡m2
3d

g43d
: ð10Þ

Where in addition to x, we also use the dimensionless
variable y [37]. With these variables, and a field/coordinate
rescaling, the potential is

VðϕÞ ¼ 1

2
yϕ2 −

1

16π
ϕ3 þ 1

4
xϕ4: ð11Þ

1The rate should be normalized by a corresponding determi-
nant evaluated at ϕ ¼ ϕFV, and zero modes should be omitted
[22,24,32].
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Now, different minima of VðϕÞ correspond to different
phases. In Eq. (11) one minimum is at ϕ ¼ 0, and another
at ϕ ¼ ϕmin ≠ 0. Note that a phase transition can first occur
when ΔV ≡ VðϕminÞ − Vð0Þ ¼ 0. This motivates us to
define the critical mass as the solution of ΔVðyc; xÞ ¼ 0
[21,34]. For a specific zero-temperature model it is then
possible to find the critical temperature given yc. But we
refrain from doing so to keep the setup general.
Although the two minima overlap at y ¼ yc, the prob-

ability for a bubble to nucleate remains insignificant until2

Γ ∼ e−126. So we define the nucleation mass as the solution
of SeffðyN; xÞ ¼ 126. Close to this nucleation mass, the
perturbative expansion is organized as

Seff ¼ SLO þ xSNLO þ x3=2SNNLO þ… ð12Þ
where powers of x denote how the NLO (next-to-leading
order) and NNLO (next-to-next-to-leading order) actions
scale compared to the LO (leading-order) action.
The above procedure is the same for general potentials.

First one should identify a dimensionless combination of
couplings to act as perturbative parameters. The rate can
then be calculated order-by-order in the effective theory.

IV. SIZE OF HIGHER-ORDER CORRECTIONS

Consider again the radiative barrier. The leading-order
action SLO is defined by Eqs. (2), (3), and (11) while SNLO
comes from integrating out vector bosons [18,19,22],

SNLO ¼
Z

d3x

�
−

11

32π

ð∂μϕBÞ2
ϕB

þ ϕ2
B

ð4πÞ2
�
−
51

32
log

ϕB

μ3
−
63

32
log

3

2
þ 33

64

��
; ð13Þ

where ϕB is the leading-order bounce solution, and we set
the renormalization scale μ3 ¼ 1. The first term is a one-
loop self-energy correction, and the second term comes
from integrating out vector bosons to two loops.
Finally, SNNLO is given by

1

2
fTr log ½−∇2 þM2

H� þ 3Tr log ½−∇2 þM2
G�g: ð14Þ

The first term comes from Higgs bosons, and the second
from Goldstone bosons. Their field-dependent masses are
given by [34,38]

M2
H ¼ V 00½ϕB�; M2

G ¼ ϕ−1
B V 0½ϕB�: ð15Þ

In the real-scalar model we have neither Goldstone nor
vector bosons. So the NLO contribution coincides with the
one-loop result,

SNLO ¼ 1

2
Tr log ½−∇2 þM2

H�: ð16Þ

While SNLO and SNNLO are known for radiative barriers
[22,24], their size and effect on observables have not been
systematically analyzed. To do such an analysis, we first
need to determine when the expansion converges.
To that end we use the result [22,39]

SLO ¼ κ

�
7.24þ 5.68γ þ 10.4

1 − γ
þ 1.25
ð1 − γÞ2

�
; ð17Þ

where κ ¼ 64π2y3=2 and γ ¼ 128π2xy.
For the radiative barrier, direct calculations show that

both SNLO and SNNLO scale as ð1 − γÞ−3 when γ → 1.3

This corresponds to y → yc ¼ 1
128π2x. In addition, for

smaller γ both SNLO and SNNLO are of similar size as
SLO unless κ ≫ 1 [22].
There are then two cases when the expansion breaks

down; κ → 1 and γ → 1.
To estimate when κ ¼ 1, note that the nucleation mass is

always lower than the critical mass, and because κ ∝ y3=2,
we want y to be as large as possible. Putting these
observations together, we expect that the expansion breaks
down when

64π2y3=2c ¼ 1 ⇒ x ¼ 1

8π2=3
≈ 0.058: ð18Þ

This is an upper bound on x that applies to both the
radiative-barrier and the real-scalar model; similar bounds
appear in other models.
For the real-scalar model one finds that SNLO grows

as ð1 − γÞ−2, so there are no γ → 1 problems. In contrast,
for the radiative barrier both SNLO and SNNLO grow as
ð1 − γÞ−3, which means that radiative corrections are larger.

V. OBSERVABLES

The nucleation mass is defined by

½SLO þ xSNLO þ…�y¼yN ¼ 126: ð19Þ

This equation can be solved by expanding yN in powers
of x,

yN ¼ yLO þ xyNLO þ x3=2yNNLO… ð20Þ

The solution to NLO is

SLOjy¼yLO ¼ 126; yNLO ¼ −
SNLO
∂ySLO

����
y¼yLO

: ð21Þ
2There are different definitions of the nucleation temperature/

mass in the literature [14,21]. However, using a different
definition of the nucleation mass does not qualitatively change
the results. 3The bubble radius is R ∝ ð1 − γÞ−1.
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In general yLO needs to be found numerically, but we can
still study some limits analytically. Indeed, from Eq. (17)
we see that yLO grows as x−1 for large x, and yLO ≈ 0.048
for small x. One then finds that κ can not be larger than
κ ≈ 6.6, which means that it is not possible to make higher-
order corrections arbitrarily suppressed.
Given yN , we can calculate observables such as the

(inverse) phase-transition duration, which is given by [14,21]

β̃≡ βN=HN ≈
d

d logT
Seff

����
y¼yN

: ð22Þ

Because our couplings implicitly depend on the temperature
through matching relations, we can use the chain rule to
express β̃ in terms of x and y derivatives of Seff [36]. In
addition, since

d
d logT

y ≫
d

d logT
x; ð23Þ

we can approximate [36]

β̃ ≈
dy

d logT
∇ySeff

����
y¼yN

: ð24Þ

Expanding everything in powers of x we find to NLO

∇ySeff jy¼yN
¼ ∇ySLO þ x½yNLO∇2

ySLO þ∇ySNLO�;

where all terms are evaluated at y ¼ yLO. Note that ∇ySeff is
calculable purely within the effective theory, while dy

d logT ∼ 4

depends on the original zero-temperature model.
Therefore, when describing the phase transition, all

nontrivial calculations can be performed within the effec-
tive theory—the original zero-temperature model only
comes in via matching relations.

VI. A DIMENSION-6 OPERATOR

Consider now a model with a leading-order potential

VðϕÞ ¼ 1

2
m2

3dϕ
2 −

1

4
λ3dϕ

4 þ 1

32
c6ϕ6: ð25Þ

This model is relevant when effective operators are added
to the Standard Model [21]: we consider this to be the case
here. That is, neglecting the hypercharge coupling, we
consider an SU(2) gauge theory with a doublet scalar.
The three dimensional c6 coupling is related to the zero-
temperature one (at leading order) via c6 ¼ T2c6;4d.
To study this model it is useful to introduce the

dimensionless coupling

y ¼ m2
3d

λ23d
: ð26Þ

At leading order everything depends on y and c6; both
scalars and vector-bosons contribute at NLO according to
Eq. (6). These contributions must be calculated numerically
[22], but we note that the vector-boson contribution grows
as x−3=2 for small x, where x was defined in Eq. (10).
The tree-level action can be approximated by [22]

SLO ¼ ffiffiffi
y

p �
1.76 − 0.142γ þ 12.6

ð1 − γÞ þ
4.19

ð1 − γÞ2
�
; ð27Þ

where γ ¼ c6y. As before, we can determine yN and β̃ in
powers of c6 and x.
Following the same arguments as for the radiatively-

induced potential, we expect that perturbation theory
becomes unreliable when c6 ≳ 1. However, because the
NLO action grows as x−3=2 for small x, this bound is
modified to c6 ≳ x3.
There is also an absolute lower bound on x regardless of

the value of c6. This is because yN can not be arbitrarily
large. Indeed, using Eq. (27) we see that yN is largest when
γ ¼ 0, which corresponds to yLO ≈ 46, and because the
leading-order action scales as

ffiffiffi
y

p
, it is not possible to

consider arbitrarily small values of x. Numerically, one
finds that perturbation theory does not work for x smaller
than x ∼ 10−1.
For smaller x we need to integrate out the vector bosons;

to leading order this will generate a cubic term in the tree-
level potential.

VII. RESULTS

The radiatively-induced potential is defined by Eq. (8),
and the results are shown in Fig. 1. We see that as the
nucleation mass decreases—meaning a weaker transition—
perturbation theory breaks down. This is expected because
weak transitions are generally nonperturbative [16,37,40],
yet this breakdown occurs already at x ≈ 0.02, instead
of the bound derived in Eq. (18). This is because SNLO is
numerically large, and since both SNLO and SNNLO are
enhanced for large bubbles. Note that radiative corrections
are large even for smaller xwhere the expansion is expected
to perform well. Indeed, the NLO result for∇ySeff, and thus
β̃, is roughly a factor of two smaller than the leading-order
result. Still, there is not another large jump once SNNLO is
included. This indicates that higher-order corrections can
be large without invalidating the perturbative expansion.
Radiative corrections are smaller for the real-scalar

model as is shown in Fig. 2. In this model the expansion
gets worse around x ≈ 0.05 as expected from Eq. (18). The
modest size of the NLO correction stems from that the
Higgs mass is equal in the broken and true minima; which
coupled with Eq. (7), shows that there is no (large-bubble)
R3 enhancement.
The results for a Standard Model-like potential with

an effective ϕ6 operator are shown in Fig. 3. The results
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indicate that the expansion breaks down for small x. This is
because SNLO grows as x−3=2 ∼ λ−3=23d , which pushes the
range of validity to small c6 values; c6 ≲ x3.
Interestingly, even when the expansion appears reliable,

radiative corrections can be quite large if x ≪ 1. Although,
it should be stressed that we have only calculated the rate to
NLO for this model, and it is necessary to include two-loop
contributions to ensure that the expansion converges.
Moreover, perturbation theory might still work for

smaller x if vector-bosons are integrated out. This would
give a cubic term in the leading-order potential, akin to
Eq. (8). Higher-order corrections should then be more well-
behaved even if x is small. They can still be large, though,
as indicated by the radiative-barrier case in Fig. 1.
Finally, note that the nucleation mass is more well-

behaved than β̃; this is because large radiative corrections
cancel due to the ratio in Eq. (21).

VIII. CONCLUSION

Higher-order corrections to the rate have been calculated
previously [22–24], yet a convergence analysis has not
been performed. Doing such an analysis, we find that
radiative corrections to the nucleation rate can be large. In
particular, by using a strict perturbative expansion, this

FIG. 2. Results for the real-scalar model described by the
potential in Eq. (8).The lower plot shows the nucleation mass yN
as a function of x. The critical mass (to NLO) is shown for
comparison. The upper plot shows ∇ySeff ∝ β̃ at the nucleation
mass.

FIG. 1. Results for the radiative barrier described by the potential
in Eq. (8); assuming a SU(2) gauge theory with a doublet scalar.
The lower plot shows the nucleation mass yN as a function of x.
The critical mass (to NNLO) is shown for comparison. The upper
plot shows ∇ySeff ∝ β̃ at the nucleation mass.

FIG. 3. Results for the potential in Eq. (25); assuming a SU(2)
gauge theory with a doublet scalar. The lower plot shows the
nucleation mass yN as a function of c6 with x ¼ 4−1. The critical
mass (to NLO) is shown for comparison. The upper plot shows
∇ySeff ∝ β̃ at the nucleation mass.
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paper calculates the size of these corrections for a variety of
models. The calculations indicate that higher-order correc-
tions are important, and should be included when studying
extensions of the Standard Model. Even when perturbation
theory is reliable, observables can change by a factor of 2
once NLO corrections are included.
Our results also indicate that it is not possible to make

higher-order corrections arbitrarily suppressed for themodels
considered. This does not necessarily mean that perturbation
theory is inadequate, but it does encourage caution when
estimating the size of higher-order corrections to the rate.
In addition, this work illustrates the synergy between

classical nucleation theory and effective high-temperature
field theories [20]. Indeed, all nonequilibrium effects can be
calculated within the effective theory, while temperature
dependence is captured by effective couplings.
For the radiative-barrier model, it is found that pertur-

bation theory breaks down when x ≈ λ
g2 ∼ 0.02. This should

be contrasted with x ≈ 0.1, which is the endpoint of the
first-order transition [40,41]. This means that perturbation
theory only works in a narrow parameter-range for the
radiative-barrier model.
Moreover, the results [see Eq. (7)] indicate that pertur-

bation theory converges slowly in the large-bubble limit.

A possible solution is to resum these large R corrections
into an effective theory as suggested by [20].
For future work it would be interesting to confirm

that the calculations converge for radiative barriers.
This would require three-loop calculations, and would
be the final calculable contribution due to the Linde
problem [42].
Furthermore, the methods of this paper can be applied to

models with two-step transitions, like for example singlet/
triplet extensions of the StandardModel [11,43,44]. Similar
to the models studied in this paper, radiative corrections are
expected to be sizeable for such extensions.
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