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If dark matter interacts with the Standard Model (SM) via the Uð1ÞD kinetic mixing portal at low
energies, it necessitates not only the existence of portal matter particles which carry both dark and SM
quantum numbers, but also a possible UV completion into which this Uð1ÞD and the SM are both
embedded. In earlier work, following a bottom-up approach, we attempted to construct a more unified
framework of these SM and dark sector interactions. In this paper, we will instead begin to explore, from
the top down, the possibility of the unification of these forces via the decomposition of a grand-unified-
theory-like group, G → GSM × GDark, where Uð1ÞD is now a low-energy diagonal subgroup of GDark and
where the familiar GSM ¼ SUð5Þ will play the role of a proxy for the conventional SUð3Þc × SUð2ÞL ×
Uð1ÞY SM gauge group. In particular, for this study it will be assumed that G ¼ SUðNÞ with N ¼ 6–10.
Although not our main goal, models that also unify the three SM generational structure within this same
general framework will also be examined. The possibilities are found to be quite highly constrained by our
chosen set of model-building requirements, which are likely too strong when they are employed
simultaneously to obtain a successful model framework.

DOI: 10.1103/PhysRevD.106.095024

I. INTRODUCTION AND BACKGROUND
DISCUSSION

The nature of dark matter (DM) and its possible non-
gravitational interactions with the Standard Model (SM)
remain leading questions in particle physics. Given the
measurements of the DM relic density from Planck [1], it is
more than likely that interactions of some kind must exist
coupling the SM to DM and possibly DM to itself. How
would these “fit in” with the known forces of the SM in a
unified framework, and how are they generated? Although
these are not new questions and we may be surprised by the
eventual answers, the well-studied DM candidates, such as
the QCD axion [2–4] and weakly interacting massive
particles [5,6], continue to be hunted for without success
over a wide range of fronts and their allowed parameter
spaces continue to be eaten into as a result of the null
searches by direct or indirect detection experiments as well
as those at the LHC [7–10]. The lack of any traditional
signatures has inspired a vast effort in examining an ever-
growing set of DM candidates spanning wide ranges in
both DM particle masses and the strength of their couplings

to the SM [11–14]. It has been found that DM may couple
to the SM in many various ways, and one very useful tool to
classify these possible interactions is via both renormaliz-
able (i.e., dimension ≤ 4) or nonrenormalizable (i.e.,
dimension > 4) “portals.” These portals posit not only
the existence of DM itself but also a new set of fields which
act as mediators between the SM and the (potentially
complex) dark sector of which the DM itself is likely the
lightest member. Of the many examples, one that has gotten
much attention in the recent literature due to its flexibility is
the renormalizable kinetic mixing (KM) or vector portal
[15,16] based upon a new gauge interaction. This scenario
can allow for the DM to reach its abundance via the familiar
thermal mechanism [17,18] albeit for sub-GeV DMmasses
and employing new non-SM interactions that so far could
have evaded detection.
Such a scenario can be realized in many ways enjoying

various levels of complexity. The simplest manifestation
assumes only the existence of a new Uð1ÞD gauge group,
with a coupling gD, under which the SM fields are singlets,
carrying no dark charges, i.e., QD ¼ 0 and with the
associated new gauge boson termed the “dark photon”
(DP) [19,20]. Uð1ÞD is usually assumed to be broken at or
below the ∼ few GeV scale so that both the DM and DP
have comparable masses. The symmetry breaking in this
model usually occurs via the vacuum expectation value(s)
[VEV(s)] of at least one dark Higgs field in analogy with
the spontaneous symmetry breaking in the SM.Within such
a setup, the interaction between the SM and the dark sector
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is generated via KM at the one-loop level between Uð1ÞD
and the SM Uð1ÞY gauge fields. Specifically, these gauge
bosons experience KM through the action of a set of fields,
usually being vectorlike fermions (or complex scalars),
here called portal matter (PM) [21–29], that carry both SM
and Uð1ÞD dark charges. After redefinition back to canoni-
cally normalized fields removes the effect of the KM and
both the SM and Uð1ÞD symmetries are broken, this KM
leads to a coupling of the DP to SM fields of the form
≃eϵQem, the origin of the DP nomenclature. The strength
of the KM generated by these one-loop vacuum polar-
izationlike graphs is then described by a single dimension-
less parameter, ϵ, usually constrained by phenomenology to
lie very roughly in the ∼10−ð3–4Þ range given the DM and
DP sub-GeV mass region that we are assuming. In the
conventional normalization [15,16], with cw ¼ cos θw, ϵ is
given by the sum

ϵ ¼ cw
gDgY
24π2

X

i

ηi
Yi

2
NciQDi

ln
m2

i

μ2
; ð1Þ

with gY;D being the Uð1ÞY;D gauge couplings and
miðYi; QDi

; NciÞ are the mass (hypercharge, dark charge,
number of colors) of the ith PM field. Here, ηi ¼ 1ð1=2Þ if
the PM is a chiral fermion (complex scalar) and the
hypercharge is normalized so that the electric charge is
given by Qem ¼ T3L þ Y=2. In a more UV-complete
theory, such as we are interested in here, this same group
theory requires that the sum (for fermions and scalars
separately)

X

i

ηi
Yi

2
NciQDi

¼ 0; ð2Þ

so that ϵ is both finite and, if the PMmasses are known, also
calculable.
It is important to address the question of how DM, this

new Uð1ÞD gauge interaction, and the various PM fields
might fit together with the known SM particles and gauge
forces into a more unified structure and, as a result, to also
consider the possibility that some further more complex
gauge structure(s) might be kinematically accessible to
existing and planned colliders in the future [30]. This is a
natural extension to the program of grand unification begun
long ago [31,32], now augmented by a dark sector with its
own matter content and gauge forces. In principle, in
addressing these questions, one may want to follow either
a bottom-up or a top-down approach, both of which have
been previously discussed, with the former method fol-
lowed in our previous studies [22,25]; in the discussion
below, we will make a first attempt at a top-down analysis
from our perspective. Of course, one might ask the obvious
question if there is any reason to believe that this simple
Uð1ÞD scenario may itself already provide some indirect
evidence as to it being part of a larger gauge structure,

perhaps even one that is not too far away in energy scale.
The following short exercise may be somewhat indicative.
At least for that part of the parameter space when the

DM gauge coupling is somewhat large at low energies,
it is useful consider the running of the coupling, i.e.,
αD ¼ g2D=4π, into the UV. As is very well known, a Uð1Þ
gauge theory is not asymptotically free and eventually will
become strongly coupled or possibly experience a Landau
pole at some point as the energy scale increases. In a (more)
UV-complete theory, one would expect new physics of
some form to enter before either of these things can happen,
so it is possible to roughly estimate by what energy scale
this new dynamics must occur. To be specific for demon-
stration purposes, consider the case of light fermionic DM,
having QD ¼ 1, together with the DP and dark Higgs all
lying in a roughly similar mass range ML ∼ 100 MeV.
More specifically, to escape the direct detection bounds due
to elastic DM scattering as well as the rather strong
constraints on s-wave annihilation from the cosmic micro-
wave background (CMB) [1,33–35] for fermionic DM in
this mass range, we consider the scenario where the DM is
pseudo-Dirac with the relevant mass splitting between the
two states generated by the same dark Higgs VEV that is
responsible for the mass of the DP. Assuming that these
fields are the only light degrees of freedom, one can run the
value of αD in a known manner fromML up to some higher
scale, MU [or until some new physics with QD ≠ 0 enters
the renormalization group equations (RGEs)] where one
reaches a region of strong coupling and/or encounters a
Landau pole.1 The SM fields do not enter into this
calculation, as they all have QD ¼ 0 and so will not couple
to the DP to LO in the ϵ → 0 limit. The result of this simple
calculation can be found in Fig. 1. Here, we can see that if
αDðMLÞ ≥ 0.175ð0.20Þ, a not infrequent assumption made
in many phenomenological analyses [11–14], its value will
become nonperturbative (or even encounter a Landau pole
[36]) before MU≃ a few TeV when run up from
the ML ¼ 100 MeV scale. Even for αDðMLÞ ≃ 0.12
(or 0.07), new physics must enter before the ≃1000 TeV
(or the traditional grand unification) scale is reached.
Semiquantitatively, one finds that this conclusion is not
very dependent as to whether these calculations are
performed at the one-, two-, or three-loop level as can
be gleaned from the figure. Although this simple toy
example is only indicative, it gives support to the likelihood
that a more complex, probably non-Abelian, broken dark
sector gauge structure [22,25,37] is likely to be encountered
at higher energies and, perhaps in some cases, may not lie
too far above the weak scale, perhaps even being accessible
at, e.g., the HL-LHC and at other possible future colliders.
Of course, in a top-down analysis, one may speculate that

1The existence of other light fields with QD ≠ 0 will only
strengthen these arguments, since then αD will run even more
quickly.
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this transition is allowed to occur anywhere below the
“unification” scale ∼1016 GeV yet still above several TeV
or so.
In what follows, we will attempt a preliminary top-down

construction wherein the SM gauge interactions and those
of an enlarged dark sector are combined into single
unification group G, which is broken at some very large
scale to the product GSM ×GDark with the Uð1ÞD totally
contained withinGDark.GSM certainly contains (at least) the

usual SM SUð3Þc × SUð2ÞL ×Uð1ÞY (also known as
3c2L1Y) subgroup. Perhaps the most minimal choice of a
simple group is the identification GSM ¼ SUð5Þ so that,
e.g., G itself might naturally be further identified with
SUðNÞ, N ≥ 6. We note that this choice of GSM is far from
a unique one, even if we assume it to be simple; i.e.,
SOð10Þ and E6 [38] both certainly come to mind as does
the Pati-Salam product group SUð2ÞL × SUð2ÞR × SUð4Þc
[39] or even ½SUð3Þ�3 [40] in the case of nonsimple
groups.2 In the setups considered here, we expect that
the heavy (≳ a few TeV) fermionic PM fields (which
should be vectorlike with respect to the SM) will transform
nontrivially under both groups, while dark matter and other
purely dark sector fields will transform nontrivially only
under GDark. No matter how GDark itself gets broken, it will
be required thatUð1ÞD survives intact down to the ∼1 GeV
scale, and some special “protection” along the way will
usually be required to ensure this remains the case.
Numerous additional constraints will also need to be
imposed in such a setup following from a set of (perhaps
too strict) model-building assumptions. Our goal will not be
to consider in any detail the phenomenological implications
of such models that are judged to be “successful” (if any) in
this regard, but wewill instead concentrate our efforts on the
difficult task of attempting to satisfy all of these basicmodel-
building constraints. As will be fully discussed in the
following section, we will examine the corresponding uni-
fication group and gauge structures in some detail as well as
the various steps of the symmetry-breaking chain leading to
the SM and allowing for the possibility of an unbroken
Uð1ÞD down to the ≲1 GeV scale.
The outline of this paper is as follows: In Sec. II, we

provide the details of the basic model framework and the
list of assumptions that we will be making in the analysis
that follows. Many of these assumptions are fairly “tradi-
tional” ones and will be quite familiar from the extensive
literature on the subject of grand unification including the
SM family structure, some of it dating back well over
40 years. Others, will however, be guided by the additional
requirements we need to impose on the dark sector to
generate the appropriate PM masses while simultaneously
maintaining an unbroken Uð1ÞD down to the low energies
below the electroweak scale. In Sec. III, we will system-
atically analyze in detail some representative examples of
the set of G ¼ SUðNÞ models, for the N ¼ 6–10 series of
scenarios with increasing N, from which, as N grows, we
will learn valuable lessons that can be employed for even
larger values ofN. At the end of this section, we also briefly
consider values of N > 10 as well as some simple alter-
ations in our set of model-building assumptions in light of
the previous obtained results. A discussion of our final

FIG. 1. The running of αD in the pseudo-Dirac DM example
discussed in the text. The top panel shows the location of the
Landau pole, MU, at the one-loop (red curve), two-loop (blue
curve), and three-loop (green curve) level in RGE running,
employing the MS scheme, as a function of αDðMLÞ where ML
is the low-energy scale associatedwith theDM,DP, and darkHiggs
fields, ≃100 MeV. The dashed line corresponds to MU ¼ 3 TeV
when ML ¼ 100 MeV as a guide for the eye. The lower panel
shows the three-loop running of αD (on the x axis) in this same
scenario as a function ofMU=ML. The curves, from top to bottom,
are for αDðMLÞ ¼ 0.15, 0.175, 0.20, 0.225, and 0.25, respectively.
Here, we observe that, e.g., if αDðML ¼ 100 MeVÞ ≥ 0.175, then
αD ≥ 1 for MU ≥ 3 TeV, again indicated by the dashed line.

2One can even imagine that G is itself a product group, e.g.,
SUð8ÞL × SUð8ÞR or even just SUð5ÞA × SUð5ÞB [41,42] with
GDark embedded differently.
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results, some possible future avenues of further investiga-
tion, and our conclusions are then presented in Sec. IV.

II. BASIC FRAMEWORK AND ANALYSIS
ASSUMPTIONS

To begin our search for viable candidate models, we need
to set out the underlying assumptions that we will be
making in the analysis that follows. Many of these, in one
form or another, are very familiar and well known, having
been the pillars for many studies in the literature related to
extended grand unified theories (GUTS) and the family or
generation problem for over four decades. We will make
use of these studies here but for a different purpose, i.e., the
incorporation of a dark sector with, e.g., PM fields and new
interactions. In particular, to see how far we can get this
way, we generally will follow the rather conventional,
strictly renormalizable, 4-d,3 nonsupersymmetric approach
to these constructions as described quite early on by Georgi
[44], but with some additions and modifications introduced
almost immediately following this in the work of others
authors, e.g., [45–50]. The further model-building require-
ments and modifications discussed below are specifically
inspired to account for the existence of (with respect to SM
interactions) vectorlike fermionic PM, which are charged
under both the visible and dark sectors and that have masses
above the electroweak scale, as well as the survival of an
unbroken Uð1ÞD down to very low energies ≲1 GeV.4 We
note, however, the common presence of additional scalar
PM with both SM and dark quantum numbers throughout
these analyses, as such fields are an integral part of the
representations necessary for the breaking of the various
symmetries that we will encounter.
It is to be noted that some of our assumptions, certainly

in combination, may be somewhat overly restrictive, thus
making it quite difficult for any model to pass through all
the necessary hoops to be successful. The relative impor-
tance of the different constraints does change somewhat as
N increases as we will see. Be that as it may, our approach
can allow us to identify where certain assumptions might be
too strictly applied and so point us in future directions for
model building.
For our study below, the specific model-building require-

ments will be taken to be as follows.
(1) Wewill assume that the unifying groupG decomposes

as GSM ×GDark with, for simplicity here, SUð5Þ
acting as a proxy for the SM and playing that role
in place ofGSM ¼ 3c2L1Y . Thus,Uð1ÞD is, trivially, a
diagonal subgroup of GDark that remains unbroken
down to the ∼1 GeV scale so that the dark photon’s

coupling to the SM results fromAbelian KMwith the
SMUð1ÞY . As noted above, the assignment of SUð5Þ
as the SMproxy is certainly far fromunique, and other
choices, e.g., SOð10Þ, E6, etc., are clearly possible. It
is also possible that GSM, though larger than 3c2L1Y ,
may not be a compact group; this is a strong model-
building assumption, i.e., that the “pure SM” physics
sector is itself not also extended by, e.g., additional
Uð1Þ and/or SUð2Þ factors. We further note that it is
easily possible that 3c2L1Y may be embedded into G
in quite a different manner and not in this simple
productlike fashion as is assumed here.

(2) Since the rank of G ≥ 5 and must have complex
irreducible representations, ½Ri�, but which are
simultaneously required to be real with respect to
SUð3Þc, it will be assumed that G ¼ SUðNÞ. For
simplicity and to obtain representations with (rela-
tively) small dimensionality, it will be further as-
sumed that the various irreducible representations
that appear, ½Ri�, are solely obtained by taking
antisymmetric products of the SUðNÞ fundamental
representation,N.5 As is well known, this assumption
prevents the various resulting fermions from having
non-SM-like SUð3Þc and/or weak isospin transfor-
mation properties.Note that itwillnot be assumed that
the fermion fields must all lie within a single irre-
ducible representation. It is to be noted that this
requirement restricts not only the set of SM SUð5Þ
representations that may appear, but simultaneously
also those ofGDark in a similar fashion and, thus, may
be too strong of an assumption.

(3) The combined set of all relevant irreducible fer-
mionic representations ½Ri� of G ¼ SUðNÞ under
consideration for any of the models discussed here,
taken together, are assumed to lead to G being
anomaly free.

(4) The SUðNÞ gauge group above the unification scale
will be assumed to have the property of asymptoti-
cally freedom (AF) at the one-loop level; here, we
will include in the relevant β function the gauge and
fermion contributions as well as the contributions
from the minimal set of Higgs scalars required to
break all of the various gauge symmetries and to
generate the required particle masses. Specifically,
we will demand that

βN ¼ −
11

3
N þ 2

3
Σfη

fTðRfÞ þ
1

3
Σsη

sTðRsÞ < 0;

ð3Þ
3For example, we do not consider the possibility of using

orbifolds or boundary conditions to break gauge symmetries [43]
in higher-dimensional setups.

4As is usual, all fermions will be are taken to be left-handed in
the analysis below.

5This need not be the case, but other options have been shown
to lead to both representations and sets of such representations of
significantly greater dimensionality and, hence, more degrees of
freedom; see, for example, Ref. [51].
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where the sums extend over the full set of complex
(real) chiral fermion representations with ηf ¼ 1
(1=2) and, correspondingly, complex (real) scalar
representations with ηs ¼ 1 (1=2). As is perhaps
obvious, we will see, as N increases, that the overall
dimensionality and corresponding β-function con-
tributions of the various fermion and scalar ½Ri� do
as well (as does the overall number of degrees of
freedom), making this condition ever more difficult
to satisfy for large N. Note that we will notmake the
additional, potentially strong, assumption of requir-
ing asymptotic freedom for the usual QCD β
function itself near or between the PM and uni-
fication scales. In some sense, one may wonder if
this AF assumption is really justifiable [52,53]. We
can also imagine many different effects, e.g., gravi-
tational influences [54], that may become quite
important significantly above the unification scale,
especially, as wewill see that the role of AF becomes
quite important in the discussion below. Note that
the introduction of supersymmetry would result only
in a strengthening of the AF condition. The runnings
of the individual gauge and Yukawa couplings
below the unification scale for the models passing
all of our requirements (if any) will not be examined
here and are left for future work.

(5) We will specifically assume the SUðNÞ → SUð5Þ ×
SUðN − 5Þ0 ×Uð1ÞN breaking decomposition via
the SUðNÞ adjoint representation so that we can
identify GDark ¼ SUðN − 5Þ0 × Uð1ÞN.6 In such a
case, the fundamental representation N decomposes
as N → ð5; 1ÞN−5 þ ð1;N − 5Þ−5. Since the group
algebra for the antisymmetric products of the 5 of
SUð5Þ closes rapidly, one finds that only fields
transforming under the SM SUð5Þ as 1; 5; 10, and/
or their complex conjugates will appear in the set
½Ri�; i.e., this set of representations can be sym-
bolically decomposed under SUð5Þ as [44]

½Ri�→n1ð1Þþn5ð5Þþn10ð10Þþn10ð10Þþn5̄ð5̄Þ;
ð4Þ

under which the number of SM generations, ng,
which consists of a single 5̄þ 10 of SUð5Þ, is given
by the difference [44]

ng ¼ n5̄ − n5 ¼ n10 − n10: ð5Þ

Additional SUð5Þ nonsinglet fields beyond the three
sets of ð5̄þ 10Þ, which are to be identified with the
usual SM fermions, might be identifiable as PM if

they also satisfy other necessary requirements; e.g.,
in the case of fermions, they must be vectorlike with
respect to the SM and carryQD ≠ 0. Additional pure
SM singlet fields are, of course, also allowed and
will appear as potentially dark sector fields. Note
that, in all generality in this decomposition,QD must
be given by the sum of generators

QD ¼
X

i

aiλ
Diag
i þ bQN; ð6Þ

where the ai; b are constant coefficients, λDiagi are the
well-known set of N − 6 diagonal generators of
SUðN − 5Þ0, i.e., λ3;8;15;24;…, etc., and QN is the
Uð1ÞN charge.

(6) While the SM fields must have QD ¼ 0 by con-
struction, they need not be singlets under the full
GDark if the Uð1ÞD is “properly” embedded within it.
Similarly, PM fields must carry QD ≠ 0 and must
also transform nontrivially under GSM ¼ SUð5Þ,
since they are required to carry SM quantum
numbers, in particular, have nonzero hypercharges
Y, to induceUð1ÞY −Uð1ÞD Abelian KM. As noted,
the fermionic PM fields must also be vectorlike with
respect to the SM to avoid numerous well-known
constraints from, e.g., precision electroweak mea-
surements, direct searches, unitarity bounds, and
Higgs coupling determinations. The masses of these
fermionic PM states must lie above the electroweak
scale and also likely ≳1–2 TeV [21–29] depending
upon their electroweak and color transformation
properties. Note that only the QD ¼ 0 components
of the various scalar representations acting as Higgs
fields can obtain VEVs that are larger than ∼1 GeV
to enable the survival of the low-energy KM
scenario. Since the fermionic PM fields generally
lie in various representations of GDark and obtain
their masses via the Higgs mechanism, they will be
chiral with respect to at least some of the GDark
subgroups.

(7) We will assume that the set of representations, ½Ri�,
can lead to the three SM generations in various ways,
the most simple being three copies of a smaller set of
representations as is the case in ordinary SUð5Þ; we
will refer to models in this class as having ng ¼ 1,
and true “family unification” is absent in such
scenarios. A more complex and interesting possibil-
ity, which we refer to as ng ¼ 3, constructs the three
SM generations in a manner that allows any given
representation or representations, ½R�, to appear
more than once but the full set of all representations
is not a triplification of a smaller subset of fields; this
is a clearly a much stronger demand than the
previous one and, as we will see, will require
representations of larger rank to make remotely

6Note that we are not allowing for the possibility that GDark
could just be a smaller subgroup of SUðN − 5Þ0 × Uð1ÞN .
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workable. We remind the reader that in Georgi’s
original work [44], the even stronger requirement
was made that no representation could appear more
that once in the set ½Ri�, but this requirement was
subsequently relaxed rather soon by other authors,
e.g., [45–48,50] with an eye toward reducing the
total number of degrees of fermionic freedom and
also easing the AF requirement. Here, we will follow
these later authors and place some emphasis on
models which have a smaller overall number of
additional degrees of freedom beyond the usual ones
of the SM, although “simple”models of both classes
will be investigated. Obviously, fermionic PM will
also come in three generations in the ng ¼ 1models,
but this need not be, and will likely not be, the case
when ng ¼ 3. Note that family unification itself, as
traditionally discussed, is not a goal of the cur-
rent study.

(8) Higgs fields must be present to break SUð5Þ and also
give the SM fermions their masses as usual as well as
to break GDark, possibly in stages, down to Uð1ÞD.
The Higgs fields at the penultimate stage of GDark
symmetry breaking, which will also generally lead
to the masses of a set of vectorlike (with respect to
the SM) fermions which we might directly identify
with PM, with masses above the electroweak scale
and must allow for the existence of an unbroken
Uð1Þ that we can identify with the low-energy
Uð1ÞD under which the SM fields are, by
assumption, neutral. As we will see, our assumptions
then lead unambiguously to the symmetry-breaking
chain

G → GSM ×GDark;

GDark → � � � → SUð2ÞD → Uð1ÞD; ð7Þ

which will be discussed in much detail below where
we will consider the algebraically simpler scenario
where the breaking of GDark → SUð2ÞD ¼ SUð2Þ0
happens in a single step; the possibility of multistep
breaking will not alter the results obtained here in any
essential manner, although there will undoubtedly be
numerical impacts on the RGEs of the various gauge
couplings. Note that the SUð2ÞD → Uð1ÞD breaking
cannot occur via the fundamental doublet representa-
tion but via, e.g., the adjoint triplet. The usual Uð1ÞD
can then eventually broken at the ∼1 GeV scale or
below by the VEVs of the many possible QD ≠ 0
neutral Higgs scalars that we encounter which may
also be (but need not be) SM singlets. It is also
possible that this Uð1ÞD may be broken by the
Stueckelberg mechanism [55], but that will not be
helpful in, e.g., generating anyneededDMmass terms
nor will be it helpful in solving some of the other

model-building issues with the symmetry-breaking
chains that we will subsequently face, as they involve
non-Abelian symmetry breakings.

(9) As noted, we will limit our set of possible particle
interactions to thosewhich are renormalizable at each
level of symmetry breaking; i.e., we will not consider
the contributions of potential higher-dimensional
interactions or operators arising from integrating
out possible heavy fields appearing in loops.

(10) Although we will not employ it directly as a model-
building constraint per se, the nature of the DM in
this class of models is of some relevance. As noted in
the introduction, for thermal DM in the mass range
≲1 GeV anticipated here, CMB constraints tell us
that its annihilation must be substantially suppressed
at later times to avoid too much of an injection of
electromagnetic energy into the evolving plasma
[1,33–35]. One way to do this is to require that this
process be p wave so that it is becomes velocity-
squared suppressed later on after freeze-out, and
such a situation is most easily realized when the
DM is a SM singlet, QD ≠ 0, complex scalar that
does not obtain a VEV. Although we will not make
any specific identification of such a field and some
fine-tunings of the scalar potential may be required,
as we will see below, the opportunities for the
existence of such fields will be quite numerous as
they will always occur (at the very least) in both the
fundamental and the second-rank antisymmetric
Higgs representations of SUðNÞ of which we will
make frequent use. Note that for N > 6 such
fields will generally transform nontrivially under
GDark. The interplay of this type of DM with the
similarly light dark Higgs field(s) may itself be
rather complex [27].

These combined requirements, though individually quite
reasonable, are together very highly (perhaps overly)
constraining, as we will now discover by looking at a
broad set of examples. As we will see, in particular, the
combined requirements of asymptotic freedom and suc-
cessful mass generation for all of the fermionic PM fields at
or above the TeV scale while simultaneously also requiring
electroweak scale masses for the three families of SM
fermions and a Uð1ÞD that survives unbroken down to the
∼1 GeV mass range are extremely difficult to satisfy.
Clearly, careful but intentional violations of any one or
more of these model-building assumptions will lead to
broad avenues for possible future investigations.

III. MODEL SURVEY

We now turn to our search for candidate gauge groups
with specific fermion representations that satisfy all of the
criteria above with ever-increasing values of N—beginning,
briefly, with the educational case of N ¼ 6.
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A. SUð6Þ
We start our analysis by quickly considering the SUð6Þ

unification scenario, as it provides a very simple toy
example of where things go badly wrong almost from
the start. We begin by employing the familiar SUð6Þ →
SUð5Þ × Uð1Þ6 breaking pattern wherein a single SM
generation is embedded in the anomaly free set of repre-
sentations 2ð6̄Þ þ 15 (which is just the 27 of E6 [56]),
which under SUð5Þ ×Uð1Þ6 is simply 2½5̄−1 þ 15� þ
½102 þ 5−4� in obvious notation. This example is educa-
tional, because it contains both an additional set of vector-
like (with respect to the SM) 5þ 5̄ fermion fields which
could play the role of PM as well as an additional Abelian
gauge group, Uð1Þ6, which could be just Uð1ÞD, two of the
necessary ingredients we require for a successful model.
However, we see immediately that this is not the case, as
this possibility fails in the most trivial way: All of the
fermions representations are seen to carry a nonzero Uð1Þ6
charge, while we have demanded that all of the ordinary
SM chiral fields have QD ¼ 0 so that we cannot identify
Uð1ÞD with Uð1Þ6. Since Uð1Þ6 is the only new gauge
group factor beyond SUð5Þ, this simple possibility is
clearly excluded. Furthermore, in parallel with this, we
note that requiring the SM fermions to haveQD ¼ 0would
also force the potential candidate PM fields to also have
QD ¼ 0 in this framework. Specifically, in ng ¼ 1ð3Þ type
scenarios, we require that we can identify one (three)
5̄þ 10 representations with the SM fermions and neces-
sarily having QD ¼ 0.
This SUð6Þ discussion teaches us a valuable, if perhaps

obvious, lesson when considering the more general
SUðNÞ → SUð5Þ × SUðN − 5Þ0 ×Uð1ÞN decomposition
as we will see below. The set of relevant SUðNÞ chiral
fermions will very commonly include at least one N (or its
conjugate), which subsequently decomposes as noted
above as N → ð5; 1ÞN−5 þ ð1;N − 5Þ−5 whose first con-
tributor we will commonly want to identify as “the SM 5”
of SUð5Þ. Since this field necessarily has a nonzero Uð1ÞN
charge and is also a singlet of SUðN − 5Þ0 so that no other
diagonal generators are relevant, we must conclude that
Uð1ÞD has no contribution from Uð1ÞN in this type of
construction. Similarly, except for accidental cases, this
also implies that all of the representations obtained via
antisymmetric products of N with itself will also carry
nonzero values of Uð1ÞN . Together, this directly implies
that in such setup we must have

QD ¼
X

i

aiλ
Diag
i ; ð8Þ

where the λDiagi are defined above and any potential QN
contribution to QD must now be absent, i.e., b ¼ 0. The
same argument applies in the presence of any of the Higgs
representations that produce SM fermion masses. If these
are singlets of SUðN − 5Þ0, then either their values of QN

must all be zero or QN cannot be allowed to contribute to
QD in such a setup; otherwise, Uð1ÞD would be broken at
the electroweak scale. This simple result has nontrivial
implications, and we will see how it will play out more
clearly in the subsequent examples we analyze more fully
below. An important exemption to this conclusion may
occur in scenarios where the spectrum of states is suffi-
ciently rich that we can try to identify all of the SM 5̄’s and
10’s with fields which are not also SUðN − 5Þ0 singlets and,
simultaneously, all carry nonzero values of QN . Such very
rare cases, however, will encounter other problems such as,
e.g., running afoul of the SUðNÞ β-function constraint
above or having Higgs fields which are SUðN − 5Þ0 singlets
carrying a nonzero QN charge.
Note that, since almost all the Higgs fields that we will

encounter below will carry a nonzero value for the Uð1ÞN
charge, this symmetry will generally be broken at the same
mass scale where the SUðN − 5Þ0 group itself first breaks.

B. SUð7Þ
SUð7Þ offers another opportunity to see where our

requirements will cause models to fail and the general
setup again simply “goes wrong” although in ways which
are a bit more subtle than in the SUð6Þ example above.
Note that in this case, since GDark ¼ SUð2Þ0 ×Uð1Þ7 [and
some of the SM fields are always in SUð2Þ0 singlets], QD
must be proportional to the diagonal λ3 generator of SUð2Þ0
by the arguments made above.
SUð7Þ has been considered as a potential GUT or family

group since the earliest days, and we can take advantage of
that huge body of work here. There are many sets of SUð7Þ
representations which satisfy (most of) our basic require-
ments that have been previously examined in other contexts,
e.g., [44,45,48,57–60]. These models differ mainly in how
they address the family or generation problem; i.e., in the
notation introduced above, are they of the ng ¼ 1 or ng ¼ 3

variety?Certainly, the former are somewhat simpler, but both
types of setups will lead to similar problems in the present
context. The following are a nonexhaustive but fairly
representative set of asymptotically free scenarios of both
model classes appearing in the literature [44,45,48,57–60]:

ðaÞ 3½3ð7̄Þ þ 21�;
ðbÞ 3½2ð7̄Þ þ 35�;
ðcÞ 8ð7̄Þ þ 2ð21Þ þ 35;

ðdÞ 7ð7̄Þ þ 2ð35Þ þ 21; ð9Þ

with the first two of these being examples of scenarios with
ng ¼ 1while the last two are examples of ng ¼ 3.7 Note that

7Note that a pair of singlet fields should also appear to remove
Witten anomalies [59] but are not directly relevant to our present
discussion, so they are omitted for simplicity.
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other scenarios can be easily constructed [48] by “adding or
subtracting” multiples of the combination of representations
7̄þ 21þ 35 [61,62] which forms an anomaly free set with
ng ¼ 0. Under the assumed breaking SUð7Þ → SUð5Þ×
SUð2Þ0 ×Uð1Þ7, we find that these representations, as well
as the SUð7Þ adjoint 48, will decompose as [63,64]

7̄→ ð5̄;1Þ−2þð1;2Þ5;
21→ ð5;2Þ−3þð10;1Þ4þð1;1Þ−10;
35→ ð5;1Þ−8þð10;2Þ−1þð10;1Þ6;
48→ ð24;1Þ0þð1;3Þ0þð1;1Þ0þð5;2Þ7þð5̄;2Þ−7: ð10Þ

We observe that, as usual, the adjoint of Higgs in the 48 is
responsible for both the initial SUð7Þ breaking as well as that
of the standard SUð5Þ via the ð24; 1Þ0 component which we
can imagine takes place at a comparable scale.We also find as
expected that thepotential fermionic PMfields arenecessarily
chiral with respect to both SUð2Þ0 and Uð1Þ7 gauge groups.
Here, we see that it is easy to identify one linear

combination of the ð5̄; 1Þ−2 fields appearing in the 7̄’s
with the usual 5̄ of SUð5Þ that is an SUð2Þ0 singlet and,
thus, automatically will have QD ¼ 0, since Q7 does not
contribute to this quantity as discussed above. In case (b),
we need to identify the usual 10 containing SM fields with
ð10; 2Þ−1 in the 35, but this representation is an SUð2Þ0
doublet, both of whose members must carry a value of
QD ∼ λ3 ≠ 0; this excludes case (b) as a realistic possibility.
In case (a), the corresponding identification of the ð10; 1Þ4
in the 21 with the 10 of the usual SUð5Þ avoids this
particular issue, since it automatically has QD ¼ 0 and
these same types of choices would need to also be made
elsewhere. We will return to this issue below.
The next, somewhat correlated, pair of obstacles we face

are the generation of the various fermion masses as well as
the breaking of GDark (hopefully) down to Uð1ÞD. The
required Higgs fields to do these two jobs can be found
from among the same set of representations given above for
the fermions but with the particular choices dependent upon
which scenario (a), (c), or (d) is being considered.
Symbolically, in all three of these cases, such Higgs-
Yukawa terms take the generic form (or some subset
thereof) of the products of couplings

∼ 7̄ · 35 · 21H þ 7̄ · 21 · 7̄H þ 21 · 35 · 21H

þ 21 · 21 · 35H þ 35 · 35 · 7H þ H:c:; ð11Þ

where the subscript H labels a Higgs representation. As
promised, here we see the first representative examples of
scalar PM fields, carrying both dark and SM charges, as
necessary ingredients to the overall gauge symmetry
breaking and mass generation process. For all of these
cases, however, one will generally be attempting to pair up
(at least some of), e.g., the additional ð5̄; 1Þ−2’s in the 7̄’s

with the ð5; 2Þ−3’s in the 21 via a ð1; 2Þ5 from a Higgs in a
7H to generate vectorlike mass terms for all of the PM
fermions. Since these representations contain fields which
are SM color triplets, we know from previous analyses [21–
29] recasting LHC searches that such states must have
masses which are in excess of ∼1–2 TeV so that the single
SUð2Þ0-breaking VEVof 7H’s must be at least several TeV.
Now this SUð2Þ0 doublet VEV will also break both SUð2Þ0
as well as Uð1Þ7 but, as is well known [65], will not leave
any remaining unbroken subgroup of GDark that can be
identifiable as Uð1ÞD, since Uð1ÞD must be a subgroup
of SUð2ÞD by the discussion above.8 However, if two
different SUð2Þ0 doublets obtain VEVs which are not
“aligned” (i.e., both T 0

3 ¼ �1=2 members obtaining
VEVs even if this is in different doublets) in SUð2Þ0 space,
then even this remaining Uð1Þ will also be broken. Since
both members of the ð1; 2Þ5 SUð2Þ0 doublet necessarily
carry QD ≠ 0, even this single VEV will break Uð1ÞD at a
high scale, violating our requirements above.
These initial considerations will then exclude case

(a) immediately without any further analysis, but some
more straightforward checking is required to see what
happens in cases (c) and (d). It does not take long, however,
to convince oneself that in both of these cases a ð1; 2Þ5 from
a Higgs in a 7H will still be required to give masses to some
set of non-SM, vectorlike fermions at or above the TeV
mass scale. For example, the ð10; 2Þ−1 þ ð10; 1Þ6 repre-
sentations in the 35 will pair up to form such vectorlike
states via the VEVof the ð1; 2Þ−5, SUð2Þ0 isodoublet in the
7H in both scenarios (c) and (d). Since these fields also
contain VL-color-triplet fermions that need large masses,
by our previous discussion this excludes these cases as well
since this VEV necessarily breaks Uð1ÞD. Extending these
arguments to their logical conclusion, we find that the
identification of G ¼ SUð7Þ is a failure, since SUð2Þ0
doublet VEVs are always required, leaving Uð1ÞD broken
at a large scale. It is interesting (and unfortunate) to note
that if we had not needed these SUð2Þ0 doublets to generate
the PM vectorlike fermion masses, we could have simply
employed the ð1; 3Þ0 in the 48 to break the SUð2Þ0 gauge
symmetry and this would have left us with an unbroken
Uð1ÞD having the desired charge assignments.

C. SUð8Þ
As in the case of SUð7Þ, G ¼ SUð8Þ offers many model-

building opportunities that have been discussed from time to
time over the past few decades but which we can still divide
into ng ¼ 1 and ng ¼ 3 subsets. Note that, in this scenario,
we recall that QD ¼ a1λ3 þ a2λ8, since now GDark ¼
SUð3Þ0 ×Uð1Þ8 with SUð3Þ0 being rank 2, allowing for
the possibility of a singleQD ¼ 0 field within an SUð3Þ0 3=3̄

8Remember that QD does not have a contribution from the
Uð1Þ7 charge as discussed above.
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representation. Here, we will see another example of how
things can gowrongwhichwill also be common for the larger
unification groups we encounter below.
Some of the most common but yet not exhaustive set of

example SUð8Þ models appearing in the literature, e.g.,
[44,45,48,66–70], are given in the following list:

ðaÞ 3½4ð8̄Þ þ 28�;
ðbÞ 3½8̄þ 28þ 56�;
ðcÞ 3½2ð8Þ þ 3ð28Þ þ 2ð56Þ�;
ðdÞ 5ð28Þ þ 4ð56Þ;
ðeÞ 9ð8̄Þ þ 28þ 56; ð12Þ

where the first three obviously have ng ¼ 1 while the last
two have ng ¼ 3. As before, other possibilities can be
obtained by adding or subtracting “multiples” of the
combination of representations 3ð8̄Þ þ 2ð28Þ þ 56 [62],
which itself forms an anomaly free set with ng ¼ 0.
Under the SUð8Þ → SUð5Þ × SUð3Þ0 ×Uð1Þ8 decomposi-
tion one finds for the relevant representations that

8̄→ ð5̄;1Þ−3þð1; 3̄Þ5;
28→ ð5;3Þ−2þð10;1Þ6þð1; 3̄Þ−10;
56→ ð5; 3̄Þ−7þð10;3Þ1þð10;1Þ9þð1;1Þ−15;
70→ ð5;1Þ−12þð10; 3̄Þ−4þð10;3Þ4þð5̄;1Þ12;
63→ ð24;1Þ0þð1;8Þ0þð1;1Þ0þð5; 3̄Þ8þð5̄;3Þ−8: ð13Þ

Note that the 70 is a real representation as, of course, is the
63 adjoint. For N ¼ 8, as noted above, the asymptotic
freedom requirement now starts to be felt in a nontrivial
way, since several of these possibilities might fail immedi-
ately without even considering the potential scalar con-
tributions to the β function which will only make matters
worse: We find, however, that only case (c) fails this
requirement when we take three multiples of a single set of
representations to obtain the three SM generations, and so it
no longer needs to be realistically considered in the
discussions that follow.
The gauge symmetry breaking in the SUð8Þ scenario is

rather familiar with the SUð5Þ 24 performing its usual role.
A single fundamental 3=3̄ will break SUð3Þ0 down to
SUð2Þ0 [65], while the VEV of the T 0

3 ¼ 0 member of the
SUð2Þ0 triplet within the adjoint, ð1; 8Þ0, will then break
SUð2Þ0 down to Uð1ÞD as desired. We note, however, that
multiple fundamental 3; 3̄’s whose VEVs are not aligned,
i.e., not all having QD ¼ 0, will result in SUð3Þ0 breaking
completely without any surviving Uð1Þ’s [65] below the
electroweak and TeV scales that we can identify withUð1ÞD
as is required by our model-building constraints above. Note
that only scalar fields in the 3; 3̄ representations appear that
can break SUð3Þ0 here. Further, since several distinct (yet

VEV-aligned) fundamentals appear with different values of
theUð1Þ8 charge, this symmetry will break at the samemass
scale as doesSUð3Þ0; this will be a common feature for all the
models below with G ¼ SUðNÞ; N ≥ 8. We again note that
the PM fields are chiral under the unbroken SUð2Þ0 group.
Turning to the fermion mass terms, as we might expect,

the required Higgs fields (apart from the usual adjoint) are
essentially also members of this same set of representations
as are the fermions. Similarly to the SUð7Þ case above, we
can again symbolically write the Higgs-Yukawa interaction
terms for the fermion masses in a generic form (or as some
subset thereof depending upon the case) of the products

∼ 8̄ · 28 · 8̄H þ 8̄ · 56 · 28H þ 28 · 56 · 56H þ 56 · 56 · 28H

þ 28 · 28 · 70H þ permutationsþ H:c:; ð14Þ

so that the number of possible PM and SM fermion mass
generation terms are each somewhat restricted in all cases.
Note that, in case (a), we can select one linear combi-

nation the four ð5̄; 1Þ−3 fields contained in the four 8̄’s to be
the “conventional” SM 5̄ of SUð5Þ while also choosing the
ð10; 1Þ6 from the 28 as the usual 10. Since both of these
fields are already SUð3Þ0 singlets, the first issue we had to
deal with in the SUð7Þ model above is trivially bypassed
and the SM fields will have QD ¼ 0 automatically as
required. Simultaneously, the Higgs fields needed to supply
vectorlike masses to the non-SM fermions are now either in
singlets or in 3=3̄’s of SUð3Þ0 as we can tell from the
representation decompositions above.
Case (a) has a somewhat simple symmetry-breaking

sector as, apart from the adjoint 63, it requires only the first
and fifth terms in Eq. (10), i.e., Higgs fields in both the 8̄H
and 70H representations, and, since the three families are a
simple replication of one subset, we can consider for
simplicity fermions in a single combination of 4ð8̄Þ þ 28
fields. Thinking at the SUð5Þ level, we can identify one
linear combination of the four ð5̄; 1Þ−3’s as the “SM field,”
while the other three ð5̄; 1Þ−3’s must then match up with the
ð5; 3Þ−2 to form the vectorlike PM fields. From this, we
learn two things: (i) The SM fermion masses are necessarily
generated by two distinct SM SUð2ÞL Higgs isodoublets,
one from the 8̄H and the other from the 70H with the same
type of coupling structure that occurs in the type-II two
Higgs doublet model [71]. (ii) Even more importantly, the
PM mass term in this model must necessarily be of the
general form (in obvious 53018 language)

yia½ð5̄; 1Þ−3�ið5; 3Þ−2½ð1; 3̄Þ5�aH þ H:c:; ð15Þ

where the y’s are Yukawa couplings, the index i ¼ 1–3
labels the three remaining 5̄’s, and here we will allow for
the possibility of more than one relevant Higgs antitriplet,
labeled by the index a ¼ 1;….

TOWARD A UV MODEL …. II. EXPLORING … PHYS. REV. D 106, 095024 (2022)

095024-9



First, consider the simplest case when only a single
Higgs field (a ¼ 1) is present; since only one element of the
½ð1; 3̄Þ5�H is allowed to have a (QD ¼ 0) VEV, this projects
out a single corresponding element in the ð5; 3Þ−2, implying
only a single fermion bilinear can be constructed in the
SUð3Þ0 subspace so that in the full 53018 space only a single
set of five fermion bilinears can obtain masses; i.e., one of
the 5̄ · 5’s obtains a mass term and only five (degenerate)
fermion masses are the result. If we increase the number of
Higgs fields and allow for arbitrary alignment of their
VEVs, then three Higgs fields will generate all the desired
mass terms. However, as is well known, in such a situation
the SUð3Þ0 group breaks completely [65], leaving us
without a low-energy Uð1ÞD gauge group. If, instead,
we add extra Higgs fields where all the VEVs occur in
the same element of the representation so that they are
aligned, as is required so thatUð1ÞD remains unbroken, this
will not alter the result obtained with only a single Higgs
field with only one 5̄ · 5 mass term resulting. Thus, it is
impossible to generate tree-level masses for these remain-
ing two candidate PM fields at the SUð3Þ0-breaking scale.
This is a disaster for this case, because at the subsequently
SUð2Þ0-breaking scale (which must lie above a few TeV), to
avoid breaking Uð1ÞD while also generating the required
gauge boson masses, i.e., those apart from that of the dark
photon, the T 0

3 ¼ 0 member of the real SUð2Þ0 triplet in the
adjoint is employed. Giving a T 0

3 ≠ 0member of any scalar
representation a VEV will automatically break Uð1ÞD at or
above the few TeV scale, and, thus, at least at tree level, the
remaining 5̄ · 5 terms must be absent. Since not all the
needed masses can be generated at the SUð3Þ0-breaking
scale, case (a) is excluded; this will be a very common
feature of the many scenarios we will encounter below.
In case (e), since ng ¼ 3, three linear combinations of the

nine 8̄’s contain the three 5̄’s which are also SUð3Þ0 singlets
that we must identify as QD ¼ 0 SM fields, while the 28
contains a ð10; 1Þ6 which we can also identify with a SM
QD ¼ 0 field. However, we still need two more SUð5Þ 10’s
with QD ¼ 0 to identify with the remaining SM fields, and
the only possible source for these lies within the ð10; 3Þ1 in
the 56which is an SUð3Þ0 triplet. This requires that when the
operator QD ¼ a1λ3 þ a2λ8 acts on this triplet it produces
two zero eigenvalues by a suitable choice of a1;2. But, of
course as we know, this cannot happen, as at most one zero
eigenvalue can be obtained. This implies that one of the SM
generations necessarily carries QD ≠ 0, which is not phe-
nomenologically acceptable and violates ourmodel-building
assumptions above, thus excluding case (e).
The situation is found to be quite different in case (d),

where we see immediately that none of the usual SUð5Þ 5̄’s
or 10’s are SUð3Þ0 singlets. However, we are able to freely
choose one component of these triplet and antitriplet
representations to have QD ¼ 0; we can, without loss of
generality, further take this to always be, e.g., the lower-
most component in such triplet fields for purposes of this

discussion. Then we see that, while a consistent pair of
mass terms may be obtainable for the choice of SM fields,
we cannot simultaneously generate ∼ few TeV-scale
SUð3Þ0-breaking masses required for all of the potential
vectorlike PM fermions in the remaining set of 5þ 5̄ and
10þ 10 representations without also breaking the Uð1ÞD
gauge symmetry, as was seen in case (a), as the required
Yukawa mass terms will take the symbolic form

∼ ð10; 3Þ1 · ð10; 1Þ9 · ð1; 3̄ÞH−10 þ ð5̄; 3̄Þ2 · ð5; 3̄Þ−7 · ð1; 3̄ÞH5
þ H:c: ð16Þ

Although there are two different species of antitriplet Higgs
fields appearing here, their VEVs must still be aligned
along the QD ¼ 0 in direction, as we recall that only a
single component of any of the triplet or antitriplet Higgs
fields can obtain a VEV if we want to obtain an unbroken
Uð1ÞD. This apparently excludes case (d).
However, maybe we can obtain some additional freedom

in this particular case by recalling the caveat we noted
above about the requirement that QD can be only some
linear combination of the diagonal SUðN − 5Þ0 generators,
omitting any possible contribution for Uð1ÞN, i.e., above
being just QD ¼ a1λ3 þ a2λ8, but now allowing for an
additional Q8 contribution. Perhaps we can apply this to
case (d), as neither of the fields that we identify with the
SM ð5̄þ 10Þ are SUð3Þ0 singlets but are instead triplets or
antitriplets, i.e., by taking the SM fermions to be just the
QD ¼ 0 members of three copies of ð5̄; 3̄Þ2 þ ð10; 3Þ1. But
then we immediately see that the Higgs responsible for
generating the masses of the d, e-type SM fermions must be
the SUð3Þ0 singlet field ð5̄; 1Þ−3 which is required to have
QD ¼ 0 so that Uð1ÞD survives unbroken below the
electroweak scale—yet this Higgs scalar carries a nonzero
value of Q8 ¼ −3. Thus, it remains true that QD cannot
have a contribution from the Uð1Þ8 generator Q8, even in
this case. Furthermore, one finds that, even if we allow for
the possibility that the QD ¼ 0 element is in different
locations within the (anti)fundamental representation
depending upon the value of Q8, this result persists. At
the very least we see that, in general, whenG ¼ SUðNÞ, if a
Higgs representation which is needed to generate SM
particle masses is an SUð5 − NÞ0 singlet, it is not allowed
to carry a nonzero value ofQN ifQN contributes toQD. It is
interesting to note that in the already excluded case (c),
something very similar happens where the ð5̄; 1ÞH−3 must
generate the SM d, e-type mass terms so that QD must
again be independent of QN . Furthermore, we see that a
further necessary, but not sufficient, condition to allow for a
QN contribution toQD is to make sure that the 5̄ and 10 SM
fields do not transform as conjugate representations under
the SUðN − 5Þ0 group so that the Higgs field(s) needed to
generate mass terms are not SUððN − 5Þ0 singlets. Similar
arguments can be applied to the other fields as well.
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Now having ruled out this case, as well as (e) above, we
see that all of the ng ¼ 3 scenarios are excluded. It is also
clear from this discussion that the survival threshold is set
higher for these model varieties than for those with ng ¼ 1;
this will continue to be the case as we increase N as will be
seen below.
In the remaining case (b), the symmetry-breaking require-

ments can be somewhat more complex since, while the usual
SM SUð5Þ 10 must be identified with the lower member of
the ð10; 3Þ1 in the SUð8Þ 28, the SM 5̄ can either be the
ð5̄; 1Þ−3 in the 8̄, as in case (a), or the lower member of the
ð5̄; 3̄Þ2 in the 28. Both of these assignments aremadepossible
by assuming, e.g., that the lower members of all triplets and
antitriplets haveQD ¼ 0 as we did in case (d). Both of these
choices allow for the generation of the SM d-quark and
charged leptonmasses via either ð5̄; 1Þ−3 · ð10; 3Þ1 · ð5̄; 3̄ÞH2 -
type or ð5̄; 3̄Þ2 · ð10; 3Þ1 · ð5̄; 1ÞH−3-type Yukawa couplings.
Note that in this latter case the fields in the ð5̄; 3̄Þ2 with
QD ≠ 0 can also pick up an electroweak-scale mass term.
Recall that, in either of these cases, the SM fermion or Higgs
representation assignments will still force us to require that
QD ¼ a1λ3 þ a2λ8 without there being anyQ8 contribution.
For either choice of these assignments, the u-quark mass
is always generated by the coupling ð10; 3Þ1 · ð10; 3Þ1·
ð5; 3ÞH2 , where again both QD ¼ 0 as well as the QD ≠ 0

components can pick up electroweak-scale masses.
The most significant, yet as we have seen apparently

common, problem one faces with case (b) is the lack of a
sufficient number of mass terms for all of the PM fields
which should lie in (at least) the few TeV range. The only
mass terms for pairs of SUð5Þ nonsinglet fermions that are
generated by SUð5Þ-singlet, SUð3Þ0-breaking (i.e., non-
singlet) Higgs scalars with potentially large VEVs are seen
to be of the general coupling structures:

∼ ð10;3Þ1 · ð10;1Þ9 · ð1; 3̄ÞH−10þð5̄;1Þ−3 · ð5; 3̄Þ−7 · ð1;3ÞH10
þð5̄; 3̄Þ2 · ð5; 3̄Þ−7 · ð1; 3̄ÞH5 þH:c: ð17Þ

Employing this expression, it is easily seen that it is
impossible to simultaneously supply all of the desired
PM mass terms while also keeping Uð1ÞD unbroken below
the few TeV scale, since all the 3; 3̄ VEVs must be aligned
in a single direction, so that this case is also excluded.
From the set of analyses above, we can conclude that all

of the SUð8Þ scenarios that we have considered are
excluded, thus disfavoring this unification gauge group.

D. SUð9Þ
Since in the case of G ¼ SUð9Þ one has GDark ¼

SUð4Þ0 ×Uð1Þ9, here we can define the dark charge as
QD ¼ a1λ3 þ a2λ8 þ a3λ15, so that a 4; 4̄ representation
can now have up to two of its members with QD ¼ 0, thus
generalizing the case of SUð3Þ0 seen above. These two

potential QD ¼ 0 elements can be easily achieved by, e.g.,
taking a2 ¼ a3 ¼ 0, although this is not a unique choice.
Thus, to break the SUð4Þ0 gauge symmetry in this case, we
can, in principle, employ two unaligned VEVs in different
4 or 4̄’s to reduce the symmetry to SUð2Þ0 and then follow
the same path as was discussed above for the SUð8Þ
scenario employing the SUð2Þ0 real triplet in the SUð9Þ
adjoint to reduce this gauge symmetry further down to
Uð1ÞD. Note also that, unlike the previously considered
models, the Higgs fields in the (now distinct) second-rank,
antisymmetric tensor representation (or its conjugate) of
SUð4Þ0, i.e., 6; 6̄, can also participate in the symmetry-
breaking process, which can break SUð4Þ0 directly down to
SUð2Þ0 [65]. We see that the chosen number of QD ¼ 0
elements of the fundamental representation will then
determine the corresponding number of such elements in
the 6; 6̄ second-rank antisymmetric representation; i.e., for
a single QD ¼ 0 VEV to occur for such reps, here we need
to have twoQD ¼ 0 elements in the fundamental. As in the
case of SUð8Þ, Uð1Þ9 will break at the same scale as does
SUð4Þ0, since several SM singlet dark Higgs fields will
always be present with different values of Q9.
As in the examples of both SUð7Þ and SUð8Þ above,

there are many representative SUð9Þ unification models
that have been considered in the previous literature
[44,45,48,72–75] having either ng ¼ 1 or 3, e.g.,

ðaÞ 3½5ð9̄Þ þ 36�;
ðbÞ 3½36þ 126�;
ðcÞ 3½9̄þ 84þ 2ð126Þ�;
ðdÞ 4ð9̄Þ þ 2ð36Þ þ 84þ 126;

ðeÞ 9ð9̄Þ þ 84; ð18Þ

which form a nonexhaustive but typical set of these pos-
sibilities. As before, this set is easily expandable by, e.g.,
adding or subtracting multiples of the anomaly free combi-
nations [62] 6ð9̄Þ þ 3ð36Þ þ 84 and/or 5ð9̄Þ þ 2ð36Þ þ 126.
However, when doing so, one must take care that the
asymptotic freedom requirement imposed on SUð9Þ is still
satisfied, since, as noted previously, the strength of this
requirement grows as N increases. Furthermore, under the
SUð9Þ → SUð5Þ × SUð4Þ0 ×Uð1Þ9 decomposition, one
finds for the relevant representations that

9̄→ ð5̄;1Þ−4þð1; 4̄Þ5;
36→ ð5;4Þ−1þð10;1Þ8þð1;6Þ−10;
84→ ð5;6Þ−6þð10;4Þ3þð10;1Þ12þð1; 4̄Þ−15;
126→ ð5; 4̄Þ−11þð10;6Þ−2þð10;4Þ7þð5̄;1Þ16þð1;1Þ−20;
80→ ð24;1Þ0þð1;15Þ0þð1;1Þ0þð5; 4̄Þ9þð5̄;4Þ−9:

ð19Þ
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As was also found with the G ¼ SUð8Þ possibility, we see
that some of these models above will immediately fail the
growingly powerful asymptotic freedom condition for
SUð9Þ—even without any consideration of the scalar sector.
Here, we observe that we no longer need to realistically
consider cases (b) and (c) any further, which is rather
unfortunate, as the set of three copies of the single set of
representations needed to reproduce the three SM gener-
ations has just too many degrees of freedom to maintain AF
above the unification scale—even before the symmetry-
breakingHiggs scalar sector contributions are included in the
SUð9Þ β function. Case (d) may also be excluded by this
constraint depending upon the required complexity of its
scalar Higgs sector as we shall soon find. We do note in
passing that in case (c), even though the SM fields are
embedded in a nontrivial fashion, theHiggs field responsible
for generating the u-type quark masses is an SUð4Þ0 singlet
carrying Q9 ≠ 0, thus disallowing any contribution of Q9

to QD.
To go further, we note that the various mass terms that

may be needed in this SUð9Þ scenario will be generated by
(some subset of) the general Yukawa terms resulting from
the generic combination

∼ 9̄ · 36 · 9̄H þ 9̄ · 126 · 84H þ 9̄ · 84 · 36H þ 36 · 36 · 126H

þ 36 · 84 · 126H þ 84 · 84 · 84H þ � � � þ permsþH:c:

ð20Þ

In case (d), since the fermion fields themselves lie in
representations of four different dimensionalities, the
Yukawa interaction expression above tells us that we will
need at least one Higgs scalar in each of the 9; 36; 84, and
126 (or their conjugates) representations as well as the
adjoint 80 to break all the symmetries. This increases the
SUð9Þ beta function by a positive factor of δβ ¼
ð9þ n9 þ 7n36 þ 21n84 þ 35n126Þ=6, so that even if only
one of each type of Higgs scalar representation were
introduced the additional degrees of freedom would also
render this case nonasymptotically free, and so it too now
becomes excluded.
For case (a), only a few of these possible mass generating

terms above are relevant. From this subset we see that case
(a) for SUð9Þ is indeed quite similar to case (a) for SUð8Þ
where (for a single generation) we identify one linear
combination of the five ð5̄; 1Þ−4 fields from the five 9̄’s with
the usual SM field yet the assignment of the ð10; 1Þ8
from the SUð9Þ 36 is unique. While there are then no issues
with the SM fermion masses, since these fields are
themselves SUð4Þ0 singlets as above, problems do arise
in generating the masses for the PM fields which transform
nontrivially under both SUð5Þ and SUð4Þ0, similar to what
was found in the case of SUð8Þ. One finds that the relevant
mass generating couplings in the present case to be of the
form

yia½ð5̄; 1Þ−4�ið5; 4Þ−1½ð1; 4̄Þ5�aH þ H:c:; ð21Þ

where the y’s are Yukawa couplings as above while the
index i ¼ 1–4 now labels the four remaining combinations
of the 5̄’s and we again allow for the possibility of more
than one Higgs field, labeled by the index a. Since only the
two QD ¼ 0 components of any SUð4Þ 4 or 4̄ fields can
obtain VEVs without also breaking Uð1ÞD, two of the
desired fermionic PM fields will not be able to obtain TeV-
scale masses this way. Thus, case (a) is found to also be
excluded when G ¼ SUð9Þ as was expected from the same
arguments made previously for case (a) of SUð8Þ.
Lastly, we must consider the interesting case (e) which

benefits from having fermion fields in only two distinct
types of representations but whose symmetry-breaking
requirements are rather complex, since it is an ng ¼ 3
scenario with both SM and candidate PM fields lying in the
same representations at the SUð5Þ × SUð4Þ0 ×Uð1Þ9, i.e.,
54019 level. As can be seen from the expression above, this
implies that only the 36H; 84H-type Higgs scalars (and/or
their complex conjugates) are needed to generate all the
fermion mass terms, which helps to satisfy the asymptotic
freedom constraint. However, this also implies that the
fermion fields obtaining their masses in the breaking of
SUð4Þ0 might be “mixed” in a nontrivial manner with those
receiving masses due to the usual SM electroweak sym-
metry breaking. Fortunately, we can remove some of this
complexity by working in the approximate limit where the
SUð4Þ0-breaking scale is taken to be much larger than the
electroweak scale so that these two symmetry-breaking
steps can be effectively decoupled. On the other hand,
making matters more complicated are the two types of
representations of pure dark sector sets of fields, ð1; 4̄Þ5;−15,
which also enter into the fermion mass matrix at the same
SUð4Þ0-breaking mass scale. For example, while three sets
of the ð5̄; 1Þ−4’s from the nine 9̄’s might be identified with
usual QD ¼ 0, SUð5Þ SM 5̄ fields, the remaining six of
these must then pair up with the ð5; 6Þ−6 in the 84 via a
½ð1; 6Þ10�H in the 84H to form massive PM fields. Similarly,
three of the members of the SUð4Þ04 representation in the
ð10; 4Þ3’s must be identified with usual SUð5Þ SM 10 fields
while the remaining multiplet member must pair up with
the corresponding ð10; 1Þ12 via a ½ð1; 4̄Þ−15�H, also in the
84H, to form an additional PM. Once the Higgs scalar in the
coupling ð10; 4Þ3 · ð10; 1Þ12 · ½ð1; 4̄Þ−15�H obtains a (single)
VEV, breaking SUð4Þ0 down to SUð3Þ0, one sees that one of
these 10’s indeed obtains a large mass above the TeV scale
as is needed. While this last step was rather straightforward,
the rest of the required mass generation is found to be
somewhat more difficult to manage given our model-
building constraints.
As we have seen above, the requirement that only the

QD ¼ 0 elements of the various Higgs representations are
allowed to obtain VEVs (at the electroweak scale or above)
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so that Uð1ÞD remains unbroken leads to the result that
many fields remain massless at the required breaking scale.
As a practical example in the present case, consider the
mass term for the six sets of the ð5̄; 1Þ−4’s mentioned above
that we want to obtain masses at the SUð4Þ0-breaking scale
by pairing with up those in the single ð5; 6Þ−6 via a Yukawa
coupling structure similar to what we have frequently
encountered above, i.e.,

yia½ð5̄; 1Þ−4�ið5; 6Þ−6½ð1; 6Þ10�aH þ H:c:; ð22Þ

where i ¼ 1–6 now runs over these six non-SM 5̄’s as
before. While the matching numbers of degrees of freedom
are correct for generating mass terms for all of these states,
the VEV structure of the single ½ð1; 6Þ10�H (which has only
two QD ¼ 0 elements) is insufficient to accomplish this,
allowing for at most two of these pairings to pick up masses
as the multi-TeV level. Note that adding additional
½ð1; 6Þ10�H’s will not be helpful as long as only the QD¼0
elements are allowed to obtain VEVs, so this structure is
necessarily aligned. Furthermore, we note that, at the level of
themulti-TeVor above SUð4Þ0-breaking scale, the additional
dark sector fields in the two ð1; 4̄Þ do not enter into these
considerations. Similarly, we face essentially the same
difficulties when we want to give SUð2ÞL-breaking masses
to the three remaining 10’s discussed above. Here we are
faced with the Yukawa couplings

∼ð10; 4Þ3ð10; 4Þ3½ð5; 6Þ−6�H þ H:c:; ð23Þ

which is again seen to be insufficient to able to perform the
required role, generating only two (instead of the needed
three) mass terms for the uplike quarks. Thus, apparently,
case (e) is also excluded from our list of candidate scenarios
due to the now common “insufficient number of VEVs”
problem.
We can conclude from this discussion above that the

choice G ¼ SUð9Þ is highly disfavored or more likely
excluded.
Before continuing, we make the following observation:

Interestingly, we find that as N increases one sees that the
number of QD ¼ 0 VEVs that are allowed in the (anti)
fundamental and higher scalar representations also
increases. However, we also see that, apparently, it does
not increase fast enough (at least in the present example) to
generate all the required masses for the SM fields as well as
for the similarly growing number of candidate PM fermions
that we encounter.

E. SUð10Þ
In the scenario with G ¼ SUð10Þ broken by the VEV

of the Higgs in the adjoint representation, one has
GDark ¼ SUð5Þ0 ×Uð1Þ10, and thus we can define the dark
charge asQD ¼ a1λ3 þ a2λ8 þ a3λ15 þ a4λ24. This implies
that a 5=5̄ representation can now have up to three members

with QD ¼ 0 which may (or may not) be fortuitously the
same as the number of SMgenerations. As in previous cases,
since SUð5Þ0 singlet fields carrying nonzero values of the
Uð1Þ10 charge, Q10, are involved in generating the SM
fermion masses, under the assumption that QDðSMÞ ¼ 0,
thenQD cannot have a contribution fromQ10. Similar to the
discussion above, QD ¼ 0 for three members of the funda-
mental can be easily achieved by, e.g., taking a2 ¼ a3 ¼
a4 ¼ 0 although this is far from a unique choice. To break the
SUð5Þ0 gauge symmetry in this case, we can, in principle,
employ three distinct unaligned VEVs in different 5 or 5̄’s
reducing the symmetry to SUð2Þ0 as above and then employ
the SUð2Þ0 triplet in the SUð10Þ adjoint to reduce this even
further to the desired Uð1ÞD. Here, with three QD ¼ 0
members of the fundamental or antifundamental obtaining
VEVs [and, hence, breaking the SUð3Þ0 subgroup of the
SUð5Þ0], the second-rank antisymmetric 10=10 Higgs rep-
resentation will then correspondingly now have four VEVs
with QD ¼ 0, three of which contribute to SUð3Þ0 breaking
while the fourth breaks any additional remaining Uð1Þ0 so
that only an SUð2Þ0 remains. As was the case above,Uð1Þ10
will break at the same scale as does SUð5Þ0, since we always
have several SM singlet dark Higgs fields present with
different values of Q10. The SUð10Þ model is also unique
among those previously considered, as both the visible and
dark sectors are (obviously) described by the same non-
Abelian gauge group. As in the models above, we note that
the PM fields will be chiral with respect to SUð5Þ0 and,
hence, with respect to the SUð2Þ0 group just as the SM fields
are chiral with respect to SUð2ÞL.
As in the cases above, many representative SUð10Þ

unification models that have been considered in the
previous literature [44–50] with either ng ¼ 1 or 3, e.g.,

ðaÞ 3½6ð10Þ þ 45�;
ðbÞ 3½120þ 210�;
ðcÞ 2ð10Þ þ 5ð45Þ þ 2ð120Þ;
ðdÞ 8ð10Þ þ 45þ 120;

ðeÞ 2ð10Þ þ 2ð45Þ þ 210; ð24Þ

which form a nonexhaustive but representative set of these
possibilities. As in the previous scenarios, this set is easily
expandable by, e.g., adding or subtracting multiples of the
combinations [62] 10ð10Þ þ 4ð45Þ þ 120 and/or 16ð10Þþ
5ð45Þ þ 210. However, in using this freedom one again
quickly runs into difficulties with SUð10Þ’s asymptotic
freedom, as the representations are growing quite large—
especially so ifmultiple 120=120’s are needed or ifmore than
a single 210=210 is present as in case (b). Here, one must
seriously take (in this case extra) care to ensure that the
asymptotic freedom requirement imposed on the SUð10Þ
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gauge coupling is still satisfied, especially now with the
noted large dimensionalities of these representations.
We note that, under the SUð10Þ → SUð5Þ × SUð5Þ0 ×

Uð1Þ10 decomposition, one finds for the relevant repre-
sentations that

10→ ð5̄;1Þ−1 þ ð1; 5̄Þ1;
45→ ð5;5Þ0 þ ð10;1Þ2 þ ð1;10Þ−2;
120→ ð5;10Þ−1 þ ð10;5Þ1 þ ð10;1Þ3 þ ð1;10Þ−3;
210→ ð5;10Þ−2 þ ð10;10Þ0 þ ð10;5Þ2 þ ð5̄;1Þ4 þ ð1; 5̄Þ−4;
99→ ð24;1Þ0 þ ð1;24Þ0 þ ð1;1Þ0 þ ð5; 5̄Þ2 þ ð5̄;5Þ−2;

ð25Þ

again showing the obvious symmetry between the visible
and dark sectors. As was found with both the G ¼ SUð8Þ
and G ¼ SUð9Þ possibilities above, one of these model
cases immediately fails the asymptotic freedom condition
for SUð10Þ even without any contribution from the Higgs
sector which would only make things worse; in this regard,
we need not realistically consider case (b) any further. As
above, this is the result of requiring three copies of a single
set of somewhat high-dimensional representations as is
needed to reproduce the three SM fermion generations. We
must also be especially mindful of both cases (c) and
(e) that come rather close in this regard, so some additional
care is necessary when examining the content of their
required Higgs scalar symmetry-breaking sectors, as this
may also lead to their exclusion for similar reasons.
As before, to go any further, we must consider how the

various and numerous fermion mass terms that may be
needed in this SUð10Þ scenario will be obtained from the
general Yukawa coupling terms resulting from multiple
(sub)combination of factors:

∼ 10 · 45 · 10H þ 10 · 120 · 45H þ 45 · 45 · 210H

þ 120 · 120 · 210H þ � � � þ permsþ H:c: ð26Þ

The potential contribution of the various Higgs scalar
representations we find in this expression (together with
the usual adjoint) to the SUð10Þ β function is given by the
sum ð10þ n10 þ 8n45 þ 28n120 þ 56n210Þ=6 from which
we see that, e.g., n10 ¼ n45 ¼ n210 ≥ 1, which is the
common expectation, already yields a contribution of
δβ ≥ 75=6. Given this, we can now also exclude both
cases (c) and (e) immediately from further consideration,
since they will also violate the bound supplied by the
asymptotic freedom constraint due to even this minimal
Higgs scalar breaking sector. Before we turn to the
remaining cases, it is interesting to note that in cases (b)
and (c), where the SM 5̄’s are not embedded simply into
SUð10Þ 10’s, one again finds that the Higgs fields respon-
sible for generating the SM d, e-type masses are in SUð5Þ0

singlets, thus excluding any contribution of Q10 to QD in
these scenarios as usual.
We can easily make short work of case (a), as it falls into

the same familiar pattern that we observed earlier for the
(a) cases of both SUð8Þ and SUð9Þ above; as before, it is
sufficient for our purposes to consider a single SM
generation. Also as before, the realization of the SM
fermions masses goes through without any issues [since
the SM fermions lie in SUð5Þ0 singlet representations] via
the now familiar couplings

∼ ð5̄; 1Þ−1ð10; 1Þ2½ð5̄; 1Þ−1�H
þ ð10; 1Þ2ð10; 1Þ2½ð5; 1Þ−4�H þ H:c:; ð27Þ

after selecting out one linear combination of the six
ð5̄; 1Þ−1’s to play the role of the SM 5̄. As expected,
however, the Yukawa term generating masses for the PM in
this scenario is found to be inadequate to the task, i.e., with
the familiar structure

yia½ð5̄; 1Þ−1�ið5; 5Þ0½ð1; 5̄Þ1�aH þ H:c:; ð28Þ

where the y’s are Yukawa couplings as before, the index i
runs over the five remaining ð5̄; 1Þ−1’s, and where, in
principle, we can also allow for multiple Higgs scalars each
with three QD ¼ 0 VEVs that can all be different. We
correspondingly recall, however, that there are only three
distinct linearly independent sets of elements or directions
in the group or field space for these multiple sets of scalar
VEVs [thus breaking SUð5Þ0 → SUð2Þ0] to maintain an
unbroken Uð1ÞD. This leaves us with two of the five
potential PM SUð5Þ 5 fermion fields remaining massless at
the desired stage of symmetry breaking. As before, adding
further additional Higgs scalars, i.e., beyond three, is
redundant and of no help due to the required limitation
on the number of independent sets of VEVs, since there are
onlyQD ¼ 0 directions allowed in field space.Without this
restriction, of course, it would be straightforward to
generate the masses of all five of these vectorlike fermion
PM representations. This eliminates the set of ng ¼ 1

models from any further consideration, and so we must
turn our attention to the one remaining case (d).
In model (d), which is an ng ¼ 3 scenario, both SM as

well as PM fermions are found to lie in some common
representations of the 550110 subgroup, and many of the
aspects of its symmetry breaking and mass generation
aspects will be familiar from the previously examined cases
above, albeit now with a bit more complexity. We begin by
reconsidering the set of Yukawa couplings that can produce
the masses for the various fermions which is quite rich in
this particular scenario, since all of the possible Higgs
scalars are involved and some of the SM fermion fields now
can lie in a 45 instead of a 45 as they did in case (a):
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∼ 10 · ð10 · 45H þ 45 · 120H þ 120 · 45HÞ þ 45 · ð45 · 210H
þ 120 · 10HÞ þ 120 · 120 · 210H þH:c: ð29Þ

This being the case, we are reminded that the full SUð10Þ
one-loop β function for this model is given by βd ¼
−62=3þ ð10þ n10 þ 8n45 þ 28n120 þ 56n210Þ=6, where
the first term is the sum of the fixed gauge and fermion
contributions. Note that the number of the largerHiggs scalar
representations, 120; 210, is therefore quite restricted here.
We further observe that if we analyze the 245, two-
component fermion degrees of freedom in case (d), we
see that, in addition to the usual 45 SM fields, 60 of them are
purely dark sector fields while the remaining 140 are
(hopefully) to be identified with 70, four-component vector-
like PM fermions, all of which must obtain masses signifi-
cantly in excess of the electroweak scale via suitable Higgs
choices. The mass requirements for the purely dark sector
fields are not as strict except that wewould like to identify the
lightest such field havingQD ≠ 0with DM, and so it should
have a mass roughly of the order of the Uð1ÞD-breaking
scale. Of course, a purely dark scalar is also just as likely, and
may even be favored, to be the light DM when all of this
model’s details and constraints are fully examined.
Because of the complexities of the relevant couplings in

this scenario, we will consider the generation of the fermion
masses in the different sectors in some further detail here.
In this model, we can consider two quite distinct ways of
embedding the SM and PM fermions into the various
SUð10Þ representations. The first, more obvious and more
familiar approach [here called subcase (α)], is where three
linear combinations of the eight 5̄’s among the eight 10’s of
SUð10Þ are identified as the familiar SM fields. In a
somewhat more complex embedding, the SM fields can
instead [termed subcase (β)] correspond to the threeQD ¼ 0

members of the ð5̄; 5̄Þ0 in the 45. In subcase (α), since at least
some of the SM fields are to be identified with SUð5Þ0
singlets, it is imperative that QD cannot receive any con-
tribution from Q10. In either of these subcases, the three
familiar SM SUð5Þ 10’s can be identified only with the three
QD ¼ 0members of the ð10; 5Þ1 that lie in the 120, while the
other two members of this representation must pair up with
the ð10; 1Þ2 in the 45 and the ð10; 1Þ3 in the 120 to obtain
a total of 20 vectorlike masses for the resulting four-
component fermions and then be identified with some of
the PM. Failure at this step would immediately exclude this
model independently of the choice of subcase.
Both of these possible scenarios have some rather

nontrivial mass generation requirements, but, as is immedi-
ately apparent, subcase (α) is somewhat more straightfor-
ward. For either of these possibilities, at the 550110 level,
one finds that there are 22 allowed Yukawa couplings:
four for the purely PM sector involving fields which
transform nontrivially under both SUð5Þ’s, five which
solely concern dark sector fields with only nontrivial

SUð5Þ0 transformation properties (both of which we can
imagine obtaining masses at multi-TeV scales), and 13
which result in, e.g., the breaking of the SM gauge
symmetry and the generation of SM fermion masses.
Interestingly, also among the latter are many “extra” terms
which are responsible for admixtures between the fields in
the various sectors in addition to those producing the SM
fermion masses themselves. This makes the overall fermion
mass generation problem difficult to analyze in this
particular setup partially due to, e.g., the previously dis-
cussed “leftover” 5̄’s after the SM fields have obtain their
masses. However, since the SUð5Þ0 and electroweak break-
ing scales are very different, we may, at least approximately,
treat them independently and roughly decoupled. Note that,
as before, since either fields that will be identified as SM
fermions or as SUð2ÞL-breaking Higgs are to be found in
SUð5Þ0 singlets in either of these subcases, then QD cannot
have a contribution from Q10 as is the norm.
For either of these subcases, however, in the PM sector

we must generate the vectorlike fermion masses for the
remaining two non-SM elements of the 10 representation
(which are not given any electroweak masses and to which
we will return below) by coupling them to the two different
10’s as noted by employing the 550110-level mass terms,
i.e.,

y−2ð10; 1Þ−2ð10; 5Þ1½ð1; 5̄Þ1�H
þ y3ð10; 1Þ3ð10; 5Þ1½ð1; 5̄Þ−4�H þ H:c:; ð30Þ

with the coefficients y−2;3 now being the two relevant
Yukawa couplings corresponding to these distinct 10’s. The
VEVs of the two scalar fields, ½ð1; 5̄Þ1;−4�H, which are
responsible for these mass terms, essentially consist of two
distinct sets of [the SUð5Þ0 subgroup] SUð3Þ0, QD ¼ 0,
antitriplets, each with the three nonzero VEVs, i.e., ∼vi; v0i,
i ¼ 1–3, with i being an SUð3Þ0 index. Thus, working in
the SUð5Þ0 subspace and denoting the fields there as
uppercase and primed versions of their familiar SM
SUð5Þ analogs and with the two corresponding SUð5Þ0
singlets denoted by S0c−2;3, respectively, only one fermion
bilinear arises from each of these two coupling terms, i.e.,
∼S0c−2;ð3ÞD

0
iviðv0iÞ.9 So, now going back to the full 550110

space, we observe that each term in the equation above
leads to a different set of ten degenerate PMmasses, “eating
up” two of the five 10 fields in the ð10; 5Þ1 and leaving us
the three sets of fields that are necessary to form the
corresponding masses for the three generations of the u-
type SM fermions. This Yukawa structure thus accounts for
ð2 × 10 ¼Þ20, out of the total 70 needed PMmass terms; so
far, so good.
To go further, we need to choose between the two

subcases, (α, β), and this can be most easily done by

9Repeated indices are summed over as usual.
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examining the 550110-level mass term directly coupling five
sets of intended SM 5’s to the corresponding 5̄’s, i.e.,

τð5̄; 5̄Þ0ð10; 5Þ1½ð5̄; 1Þ−1�H þ H:c:; ð31Þ

where τ is just another Yukawa coupling parameter.
Analyzing this in the SUð3Þ0 subspace as we did above
and employing the same suggestive notation, we see that
five field bilinears can be formed:

∼ϵijkðDc
i Þ0ðUc

jÞ0vk; ∼N0U0
ivi; ∼E0D0

ivi; ð32Þ

where i, j, k ¼ 1–3 are SUð3Þ0 indices, so that going back
to the full 550110 space we see that ð5 × 5 ¼Þ25 of the
additional PM mass terms (out of the total of 70 required)
can be generated in this way. Note that since, apart from the
VEVs, the only freedom here is the overall Yukawa τ, this
construction directly leads to 25 degenerate PM mass
terms. Now if we were in subcase (β), we would require
only ten mass terms out of this set, as the other fields in the
5̄ would need to be identified with the SM ones and this
does not naturally happen here unless we reduce the
number of nonzero VEVs in the Higgs field—but this is
something we cannot do, as they are already needed to
generate masses elsewhere. Given this, it appears that, in
this setup, the subcase (β) is excluded and this leaves us
only with subcase (α), which we will now assume is
realized in what follows.
At this point, one might be somewhat concerned about

the SM particle masses themselves; we note that, at the SM
SUð2ÞL-breaking level, this scenario will not only (hope-
fully) generate all the required SM fermion mass terms but
will also lead to a rather complex mixing between the SM,
PM, and dark sector fields as well. If we were to consider
the three generations of the SM fermion masses in isolation
from these considerations (which is sufficient for the
present discussion), in subcase (α), the relevant Yukawa
coupling terms are given by

yσa½ð5̄; 1Þ−1�σð10; 5Þ1½ð5̄; 5̄Þ0�aH
þ ρð10; 5Þ1ð10; 5Þ1ð5̄; 10Þ−2 þ H:c:; ð33Þ

with yσa; ρ being Yukawa parameters and, as above, we
have considered the possibility of additional scalar fields,
labeled by the index a as above, for the different SM 5̄
fermions as labeled by σ. For convenience, we can label the
corresponding Higgs VEVs of the ð5̄; 5̄Þ0�aH’s as wai,
i ¼ 1–3, similar to the above [although remember that
here these are now SUð2ÞL-violating VEVs]. Let us
consider the second term first which links two identical
SM 10’s to the corresponding 5̄H. In the SUð5Þ0 subspace,
we can denote the four allowed SUð2ÞL-breaking, QD ¼ 0

VEVs of the ð5̄; 10Þ−2 as ui¼1–3; u4. Because of the
identical nature of the fermions, this leads to only three

nontrivial bilinears: ∼ϵijkðDc
i Þ0ðDc

jÞ0uk with three different
VEVs. Projecting this back into the full 550110 space and
scaling by ρ, we see that this will correspond to the three
nondegenerate SM up-type quark masses that are required
—another success for this model. Turning to the first term
in the above expression, we recall that we wish to identify
three linear combinations of the ð5̄; 1Þ−1’s with those of the
SM, and, further recalling that the ½ð5̄; 5̄Þ0�H Higgs scalar
arises from the 45H, we again find it useful to consider the
coupling structure solely in the SUð5Þ0 subspace, here
denoting the set of SUð5Þ0 singlets in the ½ð5̄; 1Þ−1�a’s
simply as Sca. We then find that the only bilinears we can
construct are of the form ∼ScaðDiÞ0wai, i.e., one for each
value of a; allowing for a ¼ 1–3 then produces the distinct
masses for the three generations of d, e-type SM fermions.
Now this implementation requires that n45 ¼ 3; assuming
that n10 ¼ n120 ¼ n210 ¼ 1 still holds, then this yields βd ¼
−5=6 so our asymptotic freedom constraint still remains
satisfied. The generation of three distinct masses for the
three generations of SM fermions is another success of
this model.
Outside of the purely dark sector fields, there now remains

only the issue of the five unpaired SM SUð5Þ 5̄ fermions that
we have already encountered for which we must generate
vectorlike masses so that they can also be identified as PM;
these are the last of the ð70 − 20 − 25 ¼Þ25mass terms that
we noted above. In general, these couplings will take the
form

zabð5̄; 1Þa−1ð5; 10Þ−1½ð1; 10Þ2�Hb þ H:c:; ð34Þ

with zab being Yukawa couplings and in subcase (α), which
we are considering, the index a ¼ 1–5, just labels these
remaining unaccounted for 5̄’s while b runs over the set of
possible Higgs scalars. Recall that the ð1; 10Þ2�H originates
from a 45H representation that we have already introduced
three of in the previous discussion to generate the three
generations of d, e-like SM fermion masses. As above, we
turn to the SUð5Þ0 subspace to do the accounting of the
number of independent mass terms generated in the present
case; wewill denote for simplicity the four,QD ¼ 0VEVs of
the ½ð1; 10Þ2�H by ui¼1–3;4, but these are not to be confused
with those employed above arising from a different a SUð5Þ0
10 representation. For a single ½ð1; 10Þ2�H and a single
ð5̄; 1Þ−1 in this subspace, one correspondingly finds only a
single bilinear, i.e., the combination Sc½ðUc

i Þ0ui þ ðEcÞ0u4�,
which then would generalize to zabSca½ðUc

i Þ0ubi þ ðEcÞ0ub4�.
Momentarily forgetting the AF and β-function constraint
(which tells us b ≤ 3), this leads to at most four linearly
independent combinations of VEVs and, thus, only 4 × 5 ¼
20 additional vectorlike fermionPMmass termsbeyond those
constructed above.Once theβ-function constraint is imposed,
this is reduced to only 3 × 5 ¼ 15 mass terms based on the
three allowed andpreviously introduced45H’s, implying that,
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in SM SUð5Þ language, two pairs of 5þ 5̄ PM fields will
remain massless at the scale of SUð5Þ0 breaking. It is
important to recall that the absence of the necessary mass
terms can be partly traced to the requirement that we cannot
give VEVs to the SUð2Þ0 doublets within the various SUð5Þ0
Higgs representations, as they necessarilymust carryQD ≠ 0
and would result in the breaking ofUð1ÞD. Such Higgs fields
are mandatory as, although the PM fermion fields are
vectorlike with respect to the SM, they are chiral under
SUð2Þ0 gauge group as was discussed earlier. Thus, at least at
tree level, these fields will remain massless even after
SUð2Þ0 ¼ SUð2ÞD breaks down toUð1ÞD so, nomatter what
happens in the purely dark sector, this model is now also
excluded, thus highly disfavoring SUð10Þ scenarios. It is
important to note that this problem would still persist,
although with a somewhat reduced severity, even if the AF
requirement were to be relaxed, although we were brought
rather quite close to success in this scenario.

F. Possible future directions:
Going beyond SUð10Þ and other options

When N is small, e.g., N ≤ 7, GDark is clearly not large
enough to embed a Uð1ÞD in a successful manner.
However, the previously studied models have shown us
that, as 8 ≤ N ≤ 10 increases, our other constraints can
quickly become more difficult to satisfy due to the tensions
between the ever rapidly growing dimensionality of the
nonfundamental representations for both the fermion and
Higgs scalar fields, the requirement of asymptotic freedom
above the SUðNÞ unification scale, and the need to generate
all of the SM and non-SM fermion masses with a restricted
number of VEVs so that Uð1ÞD remains unbroken. This
latter problem, however, was seen to be somewhat alle-
viated by the presence of new types of Higgs fields in the
second-rank antisymmetric representation of GDark once
N ≥ 9, although not sufficiently so as to provide for a
successful result in the examined cases. A significant
obstacle in the construction of a viable model was observed
to be that a SUð2Þ0 survives after the initial dark gauge
group breaking and that Uð1ÞD must lie (at least in the
examples discussed above) wholly within this SUð2Þ0.
When N > 10, these conflicting requirements will make
finding a potentially successful model even more difficult.
For example, consider two scenarios in SUð11Þ: first, an
ng ¼ 3 model [59] with a relatively low number of fermion
degrees of freedom (i.e., having “only” 341) given by
6ð11Þ þ 2ð55Þ þ 165. This setup requires at least one
Higgs scalar in each of the 11, 55, 165, 330, and 462
representations to at least make at attempt at generating the
necessary masses and so easily fails the test of asymptotic
freedom. Similarly, a second, simpler ng ¼ 1 scenario [48]
in SUð11Þ, with only 351 degrees of freedom, 3½7ð11Þ þ
55� with a correspondingly simpler Higgs scalar sector,
while possibly asymptotically free, now ends up following

the well-known pattern of the case (a)-type models for
N ¼ 8, 9, 10 discussed above and can be easily shown to
not allow for all the required mass terms due to the
remaining SUð2Þ0. Even this class of (a)-type scenarios,
assuming the simplest of Higgs sectors, will also fail the
asymptotic freedom constraint once N > 12. Apparently,
these multiple requirements, taken together, do not allow us
to achieve our desired goal if the other model-building
assumptions above are not altered, and apparently going to
even larger values of N will fail to buy much that is new.
While the asymptotic freedom requirement is clearly of

some significant impact as we have seen, it is the fact that
the Uð1ÞD must lie totally within SUð2Þ0 that inhibits a
larger number of scalar VEVs from appearing, preventing a
successful outcome.10 This requirement, fundamentally,
arose from the assumed gauge symmetry-breaking struc-
ture of SUðNÞ → SUð5Þ × SUðN − 5Þ0 ×Uð1ÞN and that
QD is found to be independent of QN , i.e., without any
contributions arising from an additional Uð1Þ factor and, in
particular, that we can always choose a basis where
QD ∼ T 0

3. In models where the relevant Higgs scalars are
only in the (anti)fundamental representation of GDark, this
obstacle would require circumventing, or at least substantial
softening, if we are to find an amiable solution. One
possibility that we might imagine is to slightly modify the
dark gauge group breaking pattern to allow for an extraUð1Þ
factor, thus providing additional freedom to embedQD. For
example, one might consider beginning with the group
SUðN þ 1Þ, selecting a model with a fixed representation
contentwhich is both anomaly and asymptotically free. Then
we consider the breaking path SUðNþ1Þ→SUðNÞ×
Uð1ÞNþ1→SUð5Þ×SUðN−5Þ0×Uð1ÞN×Uð1ÞNþ1 which
apparently seems to provide us with an additional Uð1Þ
factor. To see if such an approach can be remotely viable, let
us consider a pair of examples, both based on SUð9Þmodels
previously examined above: (i) case (a) and (ii) case (e).
In example (i), we consider a single generation consist-

ing of the anomaly free set of 5ð9̄Þ þ 36 representations
which now under the breaking SUð8Þ ×Uð1Þ9 is just
½4ð8̄−1Þ þ 282� þ ½8̄−1 þ 8−7� þ 18 where the set of repre-
sentations in the first bracket we recognize as a single
generation of the SUð8Þ case (a) [albeit now with a set of
additional Uð1Þ quantum number attached], while the
second bracket, with respect to SUð8Þ, is a further pair
of PM fields that are not present in the version of this now
SUð8Þmodel previously considered above. Completing the
picture, an additional SUð8Þ singlet field is now also seen to
be present. In comparison to the SUð8Þ model analysis
above, we have gained the additional wanted freedom
associated with the new Uð1Þ factor but, simultaneously,

10As noted, at large values of N this is alleviated to some extent
by there also being distinct Higgs fields in the second-rank,
antisymmetric representation of SUðN − 5Þ0 thus increasing the
number of allowed QD ¼ 0 VEVs.

TOWARD A UV MODEL …. II. EXPLORING … PHYS. REV. D 106, 095024 (2022)

095024-17



we have needed to add some new fermion fields whose
masses we must also unfortunately now generate. This
supplies new constraints that need to be satisfied in addition
to those already encountered for the SM and PM fields
examined previously. Recall that, in general, we now find
that QD ¼ a1λ3 þ a2λ8 þ bQ8 þ cQ9, where Q8;9 are just
the Uð1Þ8;9 quantum number assignments of the various
representations. Some algebra tells us that while the
condition c ¼ −3b will allow for the generation of both
the 5̄ · 10 and 10 · 10 SM particle masses, the correspond-
ing requirements for all of the PM fields (including these
newly introduced fields) cannot be met simultaneously
even though the mass terms for the SM 5̄ and 10 fields yield
identical constraints on both of the Uð1Þ’s individual
contributions to Uð1ÞD. In this example, we have gained
no ground by having this additional Uð1Þ factor due to the
presence of the additional PM.
Perhaps, if we could remove the additional constraints

arising from the new PM states, then greater success would
become possible. To that end, we next, in example (ii), revisit
SUð9Þ case (e)wherein the three generations of SM fermions
are assigned as 9ð9̄Þ þ 84, i.e., an example of an ng ¼ 3

scenario. Again going to SUð8Þ ×Uð1Þ9 level, this corre-
sponds to the representations 9ð8̄−1Þ þ 28−6 þ 563 þ 9ð18Þ,
which appears quite similar to the previously examined
SUð8Þ case (e) apart from the extra singlets and the overall
additionalUð1Þ factor as wewanted. In this case, we see that
there are no additional PM-like states resulting from this
procedure which is just what we desired to achieve, appa-
rently alleviating the additional constraint found in the
previous example. However, in this scenario, unlike in (i),
the generation of both the 5̄ · 10 and 10 · 10 SM particle
masses leads to different requirements on the values of the b
and cparameters so that the totalnumber of constraints in this
setup is found to be the same as in (i). In fact, one finds that
the generation of the SM masses requires b ¼ c ¼ 0 so that
we are led back to the (failing) analysis in the previous
subsection. Again, we find that we have gained nothing by
adding this additional newUð1Þ factor. Indeed, one finds by
further analysis that there is nothing special about these two
examples and that these results are, unfortunately, rather
general. Although several possible scenarios seem to be
opened by this initial idea, the additional constraints are
found to more than outweigh any gains associated with the
additional Uð1Þ degrees of freedom so that this approach is
seen to fail.
Another possible path that one can imagine is to give up on

the identification GSM ¼ SUð5Þ and assume a somewhat
larger SM gauge group such as, e.g., SUð6Þ. In doing so, still
beginning withG ¼ SUðNÞ, one trivially finds that the rank
of GDark is now reduced to GDark ¼ SUðN − 6Þ0 × Uð1Þ0N ,
which one might think could be advantageous. However, in
doing so for fixed G this reduces the number of dark sector
diagonal generators on which QD can depend (i.e., the rank

of GDark is now smaller by unity); hence, the number of
diagonal generators out of which QD can be constructed is
also reduced. This then implies that the number of possible
VEVs of the various Higgs fields havingQD ¼ 0 tomaintain
an unbrokenUð1ÞD is also reduced, making it more difficult
to simultaneously generate masses for the set of SMQD ¼ 0
fermions as well as those for the remaining additional PM
fermion fields. Thus, if anything, for fixedG, onewould like
to increase the rank ofGDark or at least increase the number of
its diagonal generators contributing toQD to allow for more
possible Higgs VEVs to generate the needed fermion mass
terms.
In the current study, we have considered models which

are in either of the ng ¼ 1 or ng ¼ 3 classes; there is also
the possibility, not entertained above, of ng ¼ 2þ 1,
wherein, by construction, one of the generations is
embedded into the SUðNÞ group fermion representation
structure asymmetrically from the other two. Such an
occurrence, at least partially, already happens in some of
the ng ¼ 3 models, e.g., in SUð7Þ model (c), where two of
the SM 10’s lie in a 21 and the other in a 35 or vice versa. In
principle, such an approach could lead to some additional
model-building flexibility, but, based upon what we have
seen above, this would most likely occur in setups wherein
none of the SM fermions of the two “common” generations
lie in the (anti)fundamental representation of SUðNÞ.
Clearly, we would be most interested in scenarios which
are not just simple deconstructions of previously examined
ng ¼ 3 models as we gain nothing by doing this; e.g., the
SUð7Þng ¼ 3 model (c) is seen to be composed of two sets
of representations as are occurring in model (a) plus a
single set from model (b). Similarly, we see that the
corresponding ng ¼ 3 model (d) is observed to combine
one set of representations from model (a) and two from
model (b) [76]. The fact that both of these two models
failed to satisfy all of our constraints gives some indication
that the general ng ¼ 21 set of models will also not meet
with much success. However, a detailed study of this
possibility in more realistic scenarios lies beyond the scope
of the present work.
In the analysis above, we have concentrated on the

generation of the Dirac masses for the charged SM and PM
fields; of course, if we were to find a successful scenario,
we would want to explore how the light neutrino masses
might be generated and the nature of the associated
phenomenology. Clearly, once we go beyond the standard
SUð5Þ, the opportunities are many to generate interesting
neutrino mass and mixing structures due to the existence of
new neutral heavy vectorlike leptons (some of which also
may carry dark charges and can be identified as PM) which
transform as SM singlets or as parts of one or more sets of
5þ 5̄’s under SUð5Þ which are lie in SM isodoublets. For
example, even in the simplest case of SUð6Þ, one sees that a
single family will contain an additional such set of 5þ 5̄’s

THOMAS G. RIZZO PHYS. REV. D 106, 095024 (2022)

095024-18



as well as two additional SM singlet fermions which open
many possibilities for interesting scenarios [77]. Of course,
the present model-building structure will add extra com-
plexities to the usual approaches, as the Uð1ÞD subgroup
needs to remain unbroken down to ≲1 GeV, and this may
have a significant influence on the resulting neutrino mass
spectra. However, to pursue this matter further we would
first need a model that successfully generated all of the SM
and PM masses, and it might be more useful to first explore
some of these possibilities from a bottom-up perspective.
There are, of course, many other potential directions and

modifications to the approach followed above that one
might try to explore to alleviate the problems we encoun-
tered some of which we will reserve for future work.

IV. DISCUSSION AND CONCLUSIONS

The Abelian KM portal model wherein a new gauge
boson, the dark photon, associated with the gauge group
Uð1ÞD, kinetically mixes with the hypercharge gauge boson
of the SM offers a very attractive and well-studied scenario
for thermal DM at the ≲1 GeV mass scale. This KM is
generated by loops of a set of portal matter fields which carry
both dark and SMquantumnumbers and should havemasses
above the electroweak scale. Specifically, fermionic PM
must be vectorlike with respect to the SM if it is to satisfy
constraints arising from electroweak precision measure-
ments, unitarity, and direct collider searches as well as the
values of the Higgs boson loop-induced gg; γγ partial widths.
It is natural to ask how the physics of the SM, dark, and PM
sectors might be combined into a single unified framework.
Bottom-up approaches [22,25] in our class ofmodels seem to
indicate that an important first step in this direction is to
embed the Uð1ÞD group into a non-Abelian structure at a
mass scale similar to or perhaps not too far above that
associatedwith thePMfields themselves.Anobvious issue is
that we unfortunately lack a sufficiently large enough set of
examples of this idea that would help guide us in a top-down
approach.With this limitation inmind, in this paper, we have
attempted to construct, employing such a top-down
approach, a unified scenario that combines the SM, dark,
and PM sectors into an overarching framework based on the
assumption that all of the relevant gauge forces can be unified
within a single G ¼ SUðNÞ gauge group. It was further
assumed that G then decomposes into the product GSM ×
GDark with, for simplicity, the familiar SUð5Þ playing the role
of a stand-in for GSM with Uð1ÞD assumed to be a diagonal
subgroup of GDark.

Given this overall structural assumption, our model
building was subsequently subjected to a rather large set
of requirements, each of which—on its own—seems to be
quite reasonable but which used collectively led to
interesting and powerful constraints on the overall nature
of the resulting model. For example, when these model-
building constraints were combined, it was found to be
impossible to generate all of the necessary electroweak
scale or above mass terms for both the fermionic SM and
PM fields while also simultaneously allowing a Uð1ÞD,
under which the SM fields were singlets, to remain
unbroken far below the electroweak scale as required.
However, we were able to get reasonably close to a
satisfactory solution in the case of one of the
G ¼ SUð10Þ-based setups, especially so if the rather
powerful SUðNÞ asymptotic freedom requirement were
to be dropped. The cases with larger values of N, though
generally more constrained by the AF requirements,
allowed for GDark breaking and PM mass generation
not only via the Higgs fields in the (anti)fundamental
representations of this group but also by second-rank
antisymmetric tensor representations as well which pro-
vided an additional source of the needed scalar VEVs.
Quite generally, this difficulty mostly resulted from the
constraint, which followed directly from the model-
building requirements, that the Uð1ÞD must solely origi-
nate from the unbroken diagonal subgroup of an SUð2Þ0 at
the next to final stage of the symmetry breaking for GDark
and the assumption that GDark itself had the largest rank
possible given that GSM ¼ SUð5Þ was assumed. This
problem is then further accentuated by the inability of
QD to obtain a dependence of the Uð1ÞN charge, QN . It
would appear that more work on the bottom-up approach
would also be useful to help clarify the physics at the
intermediate breaking scale as well as the varieties of
possible group representations of G that can be shared by
both SM and PM fermion fields.
Several possible hopeful directions to overcome these

model-building difficulties were discussed and identified
and will become the subject of future work.
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