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In this work, we consider the simple Z2 symmetric extension to the Standard Model (SM) and proceed to
study the nature of electroweak phase transition (EWPT) in the early Universe. We show that the nature of
the phase transition changes from a smooth crossover in the SM to a strong first order with this addition of
the real scalar. Furthermore, we show that the entropy release in this scenario is higher than that of the SM.
This can lead to a strong dilution of the energy density of gravitational waves, as we show in the latter part
of the paper.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is suc-
cessful in describing three of the four known fundamental
forces (electromagnetic, weak, and strong) in the Universe
and classifying all known elementary particles. Although
the SM is one of the most popular theories at the current
moment, it leaves some phenomena unexplained. It falls
short of being a complete theory of fundamental inter-
actions. For example, it does not fully explain baryon
asymmetry, incorporate the full theory of gravitation [1]
as described by general relativity, or account for the
Universe’s accelerating expansion as possibly described
by dark energy, and further does not contain any viable
candidate for dark matter.
The predominance of matter over antimatter—i.e., the

mechanism of baryogenesis—follows Sakharov’s principle
[2], and is due to (i) the nonconservation of baryon numbers,
(ii) the breaking of C and CP invariance, and (iii) deviation
from thermal equilibrium. For a successful explanation of the
baryon asymmetry [3,4] in the Universe through baryo-
genesis, a strong first-order electroweak phase transition
(EWPT) in the early Universe is necessary. Cosmic EWPT
happened when the hot Universe cooled down enough in the
primeval time so that the potential of theHiggs field settled at

a nonzero minimum, and in consequence, the symmetry of
the theory SUð3ÞC × SUð2ÞL ×Uð1ÞY broke to Uð1Þem. At
the time of first-order EWPT, bubbles of the broken phase
originate, and baryon-antibaryon asymmetry generates out-
side the wall of the bubbles of the broken phase. However,
after the discovery of the SM Higgs boson [5], it became
more obvious that EWPTwithin the framework of theSM is a
smooth crossover phase transition—see Refs. [6,7]. Hence,
for a successful electroweak baryogenesis (EWBG), the
theory of EWPT should be of first order, and hence a theory
beyond the SM is necessary. Strong first-order phase
transition in the Z2 and Z3 extensions of the SM are studied
in Refs. [8–11].
On the other hand, ∼26.5% of the total energy density of

the Universe is contributed by dark matter (DM), whose
origin is still a mystery. Even though primordial black holes
(PBHs) and MACHOs are considered to be viable baryonic
DM candidates, it is now clear that they are unable to
contribute sufficiently to completely account for the DM
energy density of the Universe. There are theories about
multicharged extensions of the Standard Model like dark
atoms, which may be viable dark matter candidates [12],
but there is presently no experimental evidence of such. Not
only can the SM not explain the phenomenon of successful
baryogenesis, but there are no irrefutable theories in the SM
about nonbaryonic DM particles which can successfully
explain all the observations.
Due to these shortcomings of the SM, the search for

beyond Standard Model (BSM) physics has become a hot
topic among physicists nowadays. For them, the recent
result from Fermilab about gμ − 2 for muons may be a ray
of hope. gμ is the gyromagnetic ratio of the muon, which is
defined as the ratio of the magnetic moment to the angular
moment of the muon, and whose value is 2 from tree-level
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calculation. If we define aμ ¼ ðgμ − 2Þ=2, then higher-
order loop corrections from SM give aμ ¼ 116; 591;
810ð43Þ × 10−11, where the value measured from
Fermilab is 16; 592; 061ð41Þ × 10−11, which differs from
the SM at the 3.3σ level [13]. This contradiction is actually
buttressed by the previously claimed result from the E821
experiment at Brookhaven National Lab (BNL). There are
numerous explanations for this anomalous result, including
the existence of BSM physics.
The early Universe is often associated with thermal

equilibrium and negligible chemical potential. During the
course of the Universe’s expansion, the entropy density per
comoving volume was conserved, and the conservation
law follows

s ¼ ρþ P
T

a3 ¼ const:; ð1Þ

where ρ and P are the energy and the pressure density of
the plasma, respectively; T is the temperature of the
plasma; and a is the cosmological scale factor. In thermal
equilibrium, the distribution function of any particle species
is determined by the chemical potential μi of each particle
type and the temperature of the plasma. But in the case
of thermal inequilibrium, the entropy conservation law
breaks down. Several instances of entropy nonconservation
include QCD phase transition at T ∼ 150 MeV—for
review, see Ref. [14]. If PBHs of sufficiently small mass
dominated the Universe at a certain point during the course
of its evolution, the evaporation of such PBHs could lead to
the influx of sufficient entropy into the plasma. For details
and review, see Refs. [15,16].
Another source of entropy production, which is the

primary focus of this paper, is due to EWPT. Possibly the
largest entropy release in the Standard Model took place in
the process of the EWPT from the symmetric to the
asymmetric electroweak phase in the course of the cos-
mological cooling down. In principle, the transition could
be either first order or second order, or even a very smooth
crossover. Within the framework of the SM with a single
Higgs, the phase transition is crossover in nature. But in
extended theories of the SM, it can be of first order [17–22].
In this work, we consider a Z2 symmetric singlet scalar

extension to the SM. We show that this simple inclusion
changes the nature of the EWPT from a smooth crossover
to a first-order phase transition. We further proceed to
calculate the entropy release during the first-order phase
transition and show that it is considerably higher than the
SM scenario, even with a single singlet scalar extension.
The paper is arranged as follows: In Sec. II, the details
about the potential along with the correction terms are
shown. The next section gives details about the nature of
the phase transition and the calculation of entropy pro-
duction. Section V shows the connection of the entropy
release to observations—namely, the dilution of the energy

density of gravitational waves. This is followed by a
generic conclusion and discussion.

II. TREE-LEVEL POTENTIAL

In our framework, we extend the SM by a real scalar
which transforms as a singlet under the SM gauge group.
We call this extra singlet the bosonic degree of freedom S.
In addition to the SM gauge symmetry, we impose an extra
Z2 symmetry (i.e., S → −S) on the scalar potential, so that
we can exclude all odd-powered terms of S in the
Lagrangian. So, the tree-level potential consists of the pure
Higgs potential of the SM along with the quadratic and
quartic terms of S and a portal term, which is essentially an
interaction term between the singlet scalar and the SM
Higgs field. So, the renormalizable tree-level potential with
a real singlet scalar extension to the Standard Model
consists of the scalar field S and the Higgs doublet ϕ,
given by

Vðϕ; SÞ ¼ −μ2hϕ†ϕþ λhðϕ†ϕÞ2 − 1

2
μ2SS

2 þ 1

4
λSS4

þ 1

2
λmS2ðϕ†ϕÞ: ð2Þ

In the above Eq. (2), μ2h and μ
2
S are the bare parameters with

mass dimension 2, while λh and λS are the dimensionless
quartic coupling constants for the Higgs doublet ϕ and
singlet scalar field S, respectively. There is another dimen-
sionless coupling constant λm, called the Higgs portal
coupling, related to the SM Higgs and the singlet scalar
interaction term in the tree-level potential. Because of the
extra Z2 symmetry, we do not include the terms which are
linear and cubic in S in the potential.
The SM Higgs doublet ϕ can be written as

ϕ ¼ 1ffiffiffi
2

p
�
χ1 þ iχ2
hþ iχ3

�
; ð3Þ

where χ1, χ2, and χ3 are three Goldstone bosons, and h is
the Higgs boson. The tree-level potential in terms of the
classical background fields h and S reads as

V0ðh; SÞ ¼ −
1

2
μ2hh

2 þ 1

4
λhh4 −

1

2
μ2SS

2 þ 1

4
λSS4

þ 1

4
λmS2h2: ð4Þ

It needs to be mentioned here that the classical background
fields h and S in Eq. (4) are not the same as those of Eqs. (2)
and (3). After expanding the potential around the classical
background fields, we obtain the above Eq. (4).
We are interested in studying the strong first-order

electroweak phase transition in that scenario where at
higher temperatures electroweak symmetry is present,
but discrete Z2 symmetry is spontaneously broken by
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the vacuum expectation value (VEV) of the singlet scalar.
When temperature gradually decreases, the SM Higgs
field gets a VEV, but the singlet scalar has no VEV.
In other words, at lower temperatures, Z2 symmetry is
present, but SM gauge symmetry is spontaneously broken
by the VEV of the Higgs field. Therefore, at zero tem-
perature, the SM Higgs has a VEV of vEW ¼ 246 GeV,
but the singlet scalar has no VEV. Reference [9] dis-
cussed all the electroweak phase transition patterns in the
real singlet scalar extension to the SM. In this work, we
discuss the above-mentioned scenario because we do not
want to mix the Higgs field and the singlet scalar field
at zero temperature. One reason for this choice is that
the real singlet scalar S can be a good dark matter
candidate because S need not have interacted with any of
the SM particles except the Higgs boson. Even though
we have not performed any analysis on dark matter
physics in this paper, this model can be used as the
starting point of our future works. On the other hand,
at zero temperature, if there is no mixing between the
Higgs field and the singlet scalar field, the Higgs portal
coupling λm is completely a free parameter. Therefore, we
can tune λm as much as possible to get enough strong
first-order phase transitions, unlike the case where it
depends on the Higgs singlet mixing angle sin θ, which
is constrained by the LHC electroweak precision data
when they mix. So, all bare parameters can be written
in terms of physical, measurable quantities at zero
temperature:

μ2h ¼
m2

h

2
; λh ¼

μ2h
v2EW

; μ2s ¼ −m2
S þ

1

2
λmv2EW: ð5Þ

Therefore, the input parameters for this scenario are the
mass of the Higgs boson, mh ¼ 125 GeV; the VEV of
the Higgs field, vEW ¼ 246 GeV; the mass and quartic
coupling of the singlet scalar, mS and λS, respectively;
and the Higgs portal coupling, λm. Here, we consider
the zero-temperature one-loop Coleman-Weinberg (CW)
potential in the dimensional regularization schemes to
avoid the infrared divergences which appear from the
massless Goldstone modes at zero temperature in the on-
shell renormalization schemes. For detailed calculations
on infrared divergence, see Ref. [23]. We will talk about
zero-temperature CW potential in both on-shell and as
dimensional regularization schemes in a later section.

A. Field-dependent masses

In a general way, the 2 × 2 symmetric mass-squared
matrix for the Higgs and singlet scalar in terms of a
classical background field can be written as

M2ðh; SÞ ¼
 

∂
2V
∂h2

∂
2V

∂h∂S

∂
2V

∂h∂S
∂
2V
∂S2

!
≡
�
M2

hhðh; SÞ M2
hSðh; SÞ

M2
hSðh; SÞ M2

SSðh; SÞ

�
;

ð6Þ
where

M2
hhðh; SÞ ¼ 3λhh2 − μ2h þ

1

2
λmS2; M2

SSðh; SÞ ¼
1

2
λmh2 − μ2S þ 3λSS2; M2

hSðh; SÞ ¼ λmhS: ð7Þ

After diagonalization of the above mass-squared matrix, M2ðh; SÞ, the eigenvalues of the mass matrix give the field-
dependent masses of the Higgs and singlet scalar:

m2
h1
ðh; SÞ ¼ 1

2

n
m2

hhðh; SÞ þm2
SSðh; SÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

hhðh; SÞ −m2
SSðh; SÞÞ2 − 4m4

hSðh; SÞ
q o

;

m2
h2
ðh; SÞ ¼ 1

2

n
m2

hhðh; SÞ þm2
SSðh; SÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

hhðh; SÞ −m2
SSðh; SÞÞ2 − 4m4

hSðh; SÞ
q o

: ð8Þ

The field-dependent masses of other degrees of freedom are given by

m2
Wðh; SÞ ¼

g2

4
h2; m2

Zðh; SÞ ¼
g02 þ g2

4
h2; m2

t ðh; SÞ ¼
1

2
y2t h2;

m2
χ1;2;3ðh; SÞ ¼ −μ2h þ λhh2 þ

1

2
λmS2; ð9Þ

where yt is the Yukawa coupling for the top quark, and χ1;2;3 are the Goldstone bosons, as mentioned above.
mWðh; SÞ, mZðh; SÞ, and mtðh; SÞ are the field-dependent masses of the W boson, Z boson, and top quark,
respectively.
From the perturbative unitarity condition, the coupling constants are constrained in the following ways:

λh < 4π; λS < 4π; jλmj < 8π; 3λh þ 2λS þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3λh − 2λSÞ2 þ 2λ2m

q
< 8π: ð10Þ
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For the potential to be bounded from below, the vacuum
stability conditions should follow

λh > 0; λS > 0; λm > −2
ffiffiffiffiffiffiffiffiffi
λhλS

p
: ð11Þ

Detailed calculations for perturbative unitarity can be found
in Refs. [24,25], and for vacuum stability in Ref. [26].

III. ONE-LOOP EFFECTIVE POTENTIAL
AT FINITE TEMPERATURE

The one-loop effective potential at nonzero temperature
is given by [27]

VT
1−loopðh; S; TÞ ¼

T4

2π2

�X
B

nBJB

�
m2

Bðh; SÞ
T2

�

þ
X
F

nFJF

�
m2

Fðh; SÞ
T2

��
: ð12Þ

Here, B stands for all bosonic degrees of freedom that
couple directly to the Higgs boson, therefore,
B ¼ fW;Z; h1; h2; χ1;2;3g, and F stands for only the top
quark fermion. JB and JF are the thermal bosonic and
fermionic functions which are given as follows:

JB

�
m2

Bðh; SÞ
T2

�
¼
Z

∞

0

dxx2 log

�
1 − e

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þm2

B
ðh;SÞ
T2

q �
;

ð13Þ

JF

�
m2

Fðh; SÞ
T2

�
¼
Z

∞

0

dxx2 log

�
1þ e

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þm2

F
ðh;SÞ
T2

q �
:

ð14Þ
We consider only the top quark contribution here since
other fermionic contributions of the SM are less dominant
because of small Yukawa coupling. If field-dependent
masses at a given temperature are much less than the

temperature of the plasma (i.e., m2
i

T2 ≪ 1), the thermal
function admits a high-temperature expansion that will
be very useful for practical applications. It is given by [27]

JB

�
m2

B

T2

�
¼ −

π4

45
þ π2

12T2
m2

B −
π

6T3
ðm2

BÞ3=2

−
1

32T4
m4

B ln
m2

B

abT2
þ � � � ; ð15Þ

JF

�
m2

F

T2

�
¼ 7π4

360
−

π2

24T2
m2

F −
1

32T4
m4

F ln
m2

F

afT2
þ� � � ; ð16Þ

whereaf¼π2expð3=2−2γEÞ and ab¼16π2expð3=2−2γEÞ,
and the Euler constant, γE ¼ 0.577. In Eq. (12), nB and nF
represent the degrees of freedom of bosons and fermions:

nW ¼ 6; nZ ¼ 3; nh1 ¼ 1; nh2 ¼ 1;

nχ1;2;3 ¼ 1; nt ¼ −12: ð17Þ

For another limiting case, at a given temperature of plasma, if
the field-dependentmass of a particle ismuch higher than the

temperature (i.e., miðh;SÞ2
T2 ≫ 1), then the thermal functions,

both bosonic and fermionic, behave like an exponentially
decreasing function [28]. Therefore, in thermal effective
potential, the contribution of a particlewith a field-dependent
mass greater than that of the temperature is almost negligible.
The first terms on the right-hand sides of Eqs. (15) and (16)
are independent of classical background fields; therefore,
these terms are irrelevant in calculating the critical temper-
ature, Tc.
In the dimensional regularization scheme, the temperature-

independent Coleman-Weinberg (CW) potential term of the
effective potential at one-loop order is given by [27]

VCW
1-loopðh; SÞ

¼ 1

64π2

�X
B

nBm4
Bðh; SÞ

�
log

�
m2

Bðh; SÞ
Q2

�
− cB

�

þ
X
F

nFm4
Fðh; SÞ

�
log

�
m2

Fðh; SÞ
Q2

�
−
3

2

��
; ð18Þ

where B and F have been defined above, and cB ¼ 3=2 and
5=6 for scalar and vector bosons, respectively. Q is the
renormalization scale of the theory, which is taken to be
vEW ¼ 246 GeV, the VEV of the Higgs field at zero tem-
perature. Field-dependent masses of particles, miðh; SÞ ¼
fmBðh; SÞ; mFðh; SÞg, are given in Eqs. (8) and (9), and all
degrees of freedom, ni ¼ fnB; nFg, are given in Eq. (17).
A very useful scheme, called the cutoff regularization

scheme, is obtained by regularizing the theory with a cutoff.
Here, we add counterterms in the potential in such a way that
theminima of theHiggs potential at vEW ¼ 246 GeV remain
unchanged, and the Higgs and singlet scalar masses remain
unchanged with respect to tree-level potential. So, the CW
potential in the cutoff regularization scheme reads [27]

VCW
1-loopðh; SÞ ¼

1

64π2
X

i¼fBg;fFg
ni

�
m4

i ðh; SÞ
�
log

m2
i ðh; SÞ

m2
i ðvEW; 0Þ

−
3

2

�
þ 2m2

i ðh; SÞm2
i ðvEW; 0Þ

�
; ð19Þ
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wherem2
i ðvEW; 0Þ is the square of the masses of particles in

an electroweak vacuum (i.e., at vEW ¼ 246 GeV) with ni
degrees of freedom, and field-dependent mass-squared
m2

i ðh; SÞ formulas are given in Eq. (17) and in Eqs. (8), (9),
respectively.

A. Thermal resummation

In order to reassure ourselves of the validity of the
one-loop perturbative expansion, the corrections from the
daisy resummation should be included in the one-loop
potential. The leading-order resummation results give
thermal corrections of Πi ¼ diT2 to effective masses,
where di values for different degrees of freedom in the
plasma are given in Eq. (20). So, in our later numerical
analysis, we have replaced bosonic masses: m2

i ðh; SÞ →
m2

i ðh; S; TÞ ¼ m2
i ðh; SÞ þ diT2, where diT2 is the finite-

temperature contribution to the self-energies [29]:

dχi ¼
3

16
g2 þ 1

16
g02 þ 1

2
λh þ

1

4
y2t þ

1

24
λm;

dhh ¼
3

16
g2 þ 1

16
g02 þ 1

2
λh þ

1

4
y2t þ

1

24
λm;

dSS ¼
1

4
λS þ

1

6
λm; dSh ≈ 0: ð20Þ

Other than the self-energies correction to masses of
Higgs bosons, singlet scalars, and Goldstone bosons, the
thermal correction to masses of electroweak gauge bosons
has been discussed in Refs. [30,31]. As the temperature
correction to the masses of electrweak gauge bosons is very
small compared to the field-dependent but temperature-
independent mass terms, we do not consider the thermal
correction of the electroweak gauge bosons in our numeri-
cal analysis. On the other hand, fermions cannot receive
thermal correction to the masses because of gauge sym-
metry. A general and more rigorous treatment of the
thermal resummation in calculating Πi in the one-loop
effective potential at finite temperature can be found
in Ref. [32].
Here, we want to discuss the effective potential without

the one-loop CW term and thermal resummation con-
tributions at a very high temperature for analytic cal-
culation purposes. At very high temperatures, where
m2

i ðh; SÞ=T2 ≪ 1, we can take the high-temperature expan-
sion of thermal functions that we have discussed before.
But for better analysis of phase transition, we consider the
full effective potential composing the tree-level term, the
one-loop CW term, and the one-loop temperature-corrected
term without taking any high-temperature approximation.
Therefore, without considering the complicated CW term
and daisy resummation contributions, in terms of the field-
dependent part of the one-loop effective potential at very
high temperature, we have

Vðh; S; TÞ ¼ V0ðh; SÞ þ VT
1-loopðh; S; TÞ

≈ −
1

2
μ2hðTÞh2 þ

1

4
λhh4 − ESMTh3 −

1

2
μ2SðTÞS2

þ 1

4
λSS4 þ

1

4
λmh2S2 − Eðh; SÞT; ð21Þ

where the mass-squared parameters are defined by

μ2hðTÞ ¼ μ2h − chT2; μ2SðTÞ ¼ μ2S − cST2; ð22Þ

with μ2h and μ2S having the squared mass defined at T ¼ 0.
All coefficients in the above Eqs. (21) and (22) are given by

ch ¼
1

48
½9g2 þ 3g02 þ 2ð6y2t þ 12λh þ λmÞ�;

ESM ¼ 1

32π
½2g3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
3�;

cS ¼
1

12
ð2λm þ 3λSÞ;

Eðh; SÞ ¼ 1

12π
½ðm2

h1
ðh; SÞÞ3=2 þ ðm2

h2
ðh; SÞÞ3=2

þ 3ðm2
χ1ðh; SÞÞ3=2�; ð23Þ

where m2
h1;2

ðh; SÞ and m2
χ1ðh; SÞ are given in Eqs. (8)

and (9).

IV. NUMERICAL ANALYSIS

The total effective potential can be written as

V tot
effðh;S;TÞ ¼ V0ðh;SÞþVCW

1-loopðh;S;TÞþVT
1-loopðh;S;TÞ:

ð24Þ
It needs to be mentioned that VCW

1-loopðh; S; TÞ depends on
the temperature explicitly due to the thermal resummation
of masses from the daisy diagrams to maintain the validity
of the perturbative expansion at one-loop level. Effectively,
all three terms on the right-hand side of Eq. (24) also
depend on the temperature implicitly through the VEV of
Higgs, v, and the singlet scalar, w.
Here, we are interested in studying the first-order EWPT

in that scenario where the phase transition occurs through
a three-step process. At very high temperatures, both the
Higgs and the singlet scalar fields have no VEV—i.e., the
Universe was in a fully symmetric phase. When the tem-
perature gradually decreases, the singlet scalar field S gets a
VEV, w, but the Higgs field does not get a VEV—i.e., Z2

symmetry breaks spontaneously, but electroweak sym-
metry is there. When temperature further decreases, the
Higgs field gets a VEV, v, but the singlet scalar has no
VEV—i.e., electroweak symmetry breaks spontaneously,
but Z2 symmetry is restored. For a given parameter space,
the conditions for calculating the critical temperature, Tc,
and the VEV of the Higgs field, vc, at Tc are given by
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V tot
effðvc; 0; TcÞ ¼ V tot

effð0; wc; TcÞ ð25Þ

dV tot
effðh; S; TcÞ

dh

				
h¼vc;S¼0;Tc

¼ 0;

dV tot
effðh; S; TcÞ

ds

				
h¼0;S¼wc;Tc

¼ 0: ð26Þ

Here, vc and wc are the VEVs of the Higgs field and singlet
scalar field, respectively, at the critical temperature.
Analytically, it is impossible to solve the above three
Eqs. (25) and (26) simultaneously. So, we perform a scan
over the parameter space, numerically imposing the follow-
ing condition for first-order EWPT. The necessary con-
dition for first-order EWPT is that

vc
Tc

≥ 1: ð27Þ

In order to calculate Tc and vc from Eqs. (25) and (26), we
cannot get the exact solution of the three above-mentioned
equations. Therefore, for numerical scanning, we solve
Eq. (25) within 1% error.
In Figs. 1 and 2, we have shown the allowed region in λm

and mS parameter space for a fixed λS provided first-order
EWPT. The different colors of the figures represent the
strength, vc

Tc
, of the phase transition. In other words, the

higher the value of vc
Tc
, the stronger the phase transition. In

the left panel of Fig. 1, we have shown the variation of λm
with respect to mS for λS ¼ 1 for first-order EWPT. From
this figure we can see that first-order EWPT can be
achieved for higher values of mS only when the value of
λm is increased. For mS ≤ 70 GeV, which corresponds
to λS ¼ 1, we cannot observe any signature for strong

first-order EWPT. We can clearly understand from this
figure that after a certain value of mS, the parameter space
gets constrained. The right panel of Fig. 1 shows a zoomed-
in version of the left panel, where a wider range in the
parameter space can be found up to λm ¼ 2; the region
almost corresponds to the electroweak scale. In this
electroweak region, we get a wider parameter space in
the λm −mS plane, because ifmS ≫ electroweak scale, then
the scalar decouples from the SM Higgs. For this mass
region of mS, the contribution of the singlet scalar becomes
negligible in the effective potential.
In the left panel of Fig. 2, we have shown the allowed

parameter space in the λm −mS plane for λS ¼ 0.5. From this
figure, we can see that we cannot get any parameter space for
mS ≤ 65 GeV. The right panel of this figure shows the
variation of λm with respect to mS for λS ¼ 0.1. From this
figure, we see that we cannot get a wider parameter space for
higher values of mS with compare to λS ¼ 1 and λS ¼ 0.5
scenarios. This is because for such low values of λS, the
potential is not bounded from below for higher values ofmS,
andwe cannot get any stableminima (w) forS. By comparing
all the figures, we can see an allowed parameter space in the
λm −mS plane for lower values ofmS and λm when λS is also
lower. Here, we have considered the MS renormalization
scheme where the one-loop potential explicitly depends on
the choice of renormalization scaleQ. In order to reduce the
scale dependence, an RGE improvement should be imple-
mented on the one-loop CW potential [33,34]. We leave this
implementation for future studies.

A. Calculation of entropy release into the plasma

In order to calculate the entropy release due to EWPT,
one needs to take into account the energy and pressure

FIG. 1. Allowed region in the λm −mS (GeV) plane for λS ¼ 1, where different colors represent the phase transition strength. The right
panel shows a zoomed-in version of the left panel up to λm ¼ 2.
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density of the plasma at the instant of the phase transition.
The energy and the pressure density can be calculated using
the energy-momentum tensor (Tμν), which is given as

Tμν ¼ ∂μϕ∂νϕþ ∂μS∂νS − gαβðgαβð∂αϕ∂βϕþ ∂αS∂βSÞ
− V tot

effðh; S; TÞÞ þ SM fermions: ð28Þ

The last part of Eq. (28) can be found in Ref. [6]. The
fermionic sector remains the same as that of the SM, since
the singlet scalar S does not modify the fermonic part.
During that epoch, the Universe can be assumed to be

homogeneous and isotropic, and hence the spatial deriv-
atives of the scalar and the Higgs field can be neglected. We
further assume that the scalar and the Higgs field oscillate
around their minima and that the damping rate of the
oscillation is very high. Under these assumptions, the
energy and the pressure density of the plasma are given by

ρ ¼ _ϕ2
min þ _S2min þ V tot

effðh; S; TÞ þ
g�π2

30
T4; ð29Þ

P ¼ _ϕ2
min þ _S2min − V tot

effðh; S; TÞ þ
1

3

g�π2

30
T4: ð30Þ

The last terms in Eqs. (29) and (30) arise from the Yukawa
interaction between fermions and Higgs bosons, and from
the energy density of the fermions, the gauge bosons,
and the interaction between the Higgs and gauge bosons.
g� depends on the effective number of particles present in
the relativistic soup at or near the EWPT. Its value in our
model is greater than the value in the SM.
As mentioned before in Eq. (1), the entropy density is

conserved for relativistic species with negligible chemical
potential. From Eqs. (29) and (30), we get

ρþ P ¼ 2 _ϕ2
min þ 2_S2min þ

4

3

g�π2

30
T4: ð31Þ

It is evident that g� will change with the decoupling
process, and thus s for relativistic plasma will increase
for our considered scenario. Then, the increase in entropy
can be calculated using conservation law:

_ρ ¼ −3Hðρþ PÞ: ð32Þ

Using the above assumptions, Eq. (32) takes the
approximate form

_T
T

�
g�v2cT2

�
1 −

T2

T2
c

g�ðmÞ
g�

�
þ 4π2g�

30
T4

�
¼ −

4Hπ2g�
30

T4;

ð33Þ

where T is the temperature of the plasma, which is
decreasing after the phase transition, vc is the effective
value of the potential at the moment of phase transition,
g� ≈ 107.75 is the effective number of degrees of freedom
of the whole system, g�ðmÞ is the reduced number of
effective degrees of freedom when certain species become
nonrelativistic, and H is the Hubble parameter.
Due to the presence of the new scalar S, an analytical

solution of Eq. (32) is not possible, and we revert to a
numerical solution of the differential equation. We do not
take into account the modification of the evolution due to
the annihilation of nonrelativistic species—for example,
the annihilation of eþe−, which takes place below the mass
of the electron. This is disregarded, because if the anni-
hilating particles are in a thermal equilibrium state with
vanishing chemical potential, the entropy density in this
process is conserved.

FIG. 2. Allowed region in the λm −mS (GeV) plane for λS ¼ 0.5 (left panel) and λS ¼ 0.1 (right panel) provided first-order EWPT.
Here, different colors represent the phase transition strength, vc=Tc.
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For T ≫ Tc, the Universe is in thermal equilibrium, and
relativistic particles dominate the Universe. The contribu-
tion to the overall energy density of the Universe from those
that are already massive (e.g., decoupled DM) is also
insignificant. To this extent, the entropy density per unit
comoving volume follows the conservation law, as men-
tioned in Eq. (1). In this scenario, the sum of the energy and
the pressure density can lead up to

ρr þ Pr ∼ g�T4: ð34Þ
It is to be noted that g� is not constant, but it varies over

time. It depends on the components of the primordial
plasma. And hence,

T ∼ a−1: ð35Þ
It is worthwhile to mention that the conserved quantity is

s ¼ g�ðTÞa3T3. But while estimating the amount of entropy
released, we calculated a3T3. This is because the contribu-
tion to entropy is dominated by the heaviest particle in the
temperature range mðh; S; TÞ < T. So for these temper-
atures, g�ðTÞT ¼ const:, and the relative entropy rise is
given just by a3T3. Since the final temperature
Tf ¼ mðh; S; TfÞ, below which new particle species start
to dominate, is not dependent upon g�, the relative increase of
entropy is determined by T3a3. Thus, the rise in entropy is
dominated by the change in the scale factor (i.e., a3T3),
suggesting the influx of entropy happening over g�a3T3.
And hence, the net entropy release is given by the generic
expression

δs
s
¼ ðacTcÞ3 − ðaTÞ3

ðacTcÞ3
; ð36Þ

where ac and Tc are the cosmological scale factor and
the temperature of the plasma when the phase transition
took place.

Following the above assumptions, for two sets of bench-
mark (BM) points, the relative rise in entropy is shown
in Fig. 3.

V. IMPACT ON STOCHASTIC
GRAVITATIONAL WAVES

First-order phase transition in the early Universe can be a
source of stochastic gravitational waves (GWs). In general,
the phase transition took place around ∼10−11 sec after the
big bang, well before the onset of big bang nucleosynthesis.
As the temperature of the Universe cools down, it starts
undergoing a first-order phase transition which takes place
at T ¼ Tc. Above this temperature, the symmetry of the
Universe is restored. But as the temperature falls below Tc,
a second degenerate minima appears, denoting first-order
phase transition. After the phase transition, the latent heat is
released, and a small portion of it goes to the GW; the rest
goes back to the plasma.
The GW, which is generated due to the FOPT, depends

on two parameters—namely, α and β, which denote the
strength of the phase transition and the inverse time during
the phase transition, respectively. More details on these
parameters can be found in Refs. [35,36], etc. The
parameter α is defined as

α ¼ ϵ

ρrad
; ð37Þ

where ρrad ¼ π2g�
30

T4 is the energy density of radiation, and ϵ
is the potential energy of the scalar field that includes the
latent energy density and is given by

ϵ ¼
�
V − T

∂V
∂T

�				
ðϕhigh;T�Þ

−
�
V − T

∂V
∂T

�				
ðϕlow;T�Þ

; ð38Þ

where the subscript � denotes the time at which the phase
transition took place [37], and high (low) denotes the field
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FIG. 3. The relative increase in entropy for the two BM points. BM1: vc ¼ 150.56 GeV, Tc ¼ 116 GeV, vc=Tc ¼ 1.298,
mS ¼ 120 GeV, λm ¼ 0.77, λS ¼ 1, and δs=s ∼ 20%. BM2: vc ¼ 202.41 GeV, Tc ¼ 82 GeV, vc=Tc ¼ 2.47, mS ¼ 160 GeV,
λm ¼ 1.35, λS ¼ 1, and δs=s ∼ 30%. As can be seen from the graph, the amount of entropy influx into the plasma is dependent
on the strength of the phase transition. Clearly, for the BM with a higher value of vc=Tc, a higher entropy influx into the plasma
is observed.
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value at high (low) vacuum. In this work, we take T� ¼ Tc.
For brevity, β is normalized as β̃ ¼ β=HðT ¼ TcÞ, where
HðT ¼ TcÞ is the value of the Hubble rate at T ¼ Tc. It is
expressed as

β̃ ¼
�
T
dSEðTÞ

dt

�				
T¼Tc

; ð39Þ

where SEðTÞ is the three-dimensional Euclidean action and
is given by

SEðTÞ ¼
Z

d3x

�
1

2
ð∂μϕÞ2 þ Veffðϕ; TÞ

�
: ð40Þ

Here, Veffðϕ; TÞ is the effective potential and can be
generalized to take the form of Eq. (24). For more details,
see Ref. [38].
The energy density of the GW has three components,

ΩGWh2 ¼ Ωϕh2 þΩSWh2 þ Ωturbh2: ð41Þ

In the above Eq. (41), h is the dimensionless Hubble rate,
Ωϕ is the scalar field contribution (here the contribution
comes from the singlet scalar S as introduced before), ΩSW
is the sound wave contribution which surrounds the bubble
wall, and Ωturb is the contribution which comes from the
magnetohydrodynamic turbulence in the plasma. Detailed
discussion and numerical simulations regarding these three
parameters can be found in Refs. [39–52].
In what follows, we are interested in the dilution of this

energy density as a result of the entropy release during the
first-order electroweak phase transition. This entropy sup-
pression factor S ¼ δs

s has little to no effect to the second
and third terms in Eq. (41), as they are not related to the
BSM particles and field. They simply appear due to the
phase transition and bubble nucleation. Moreover, ΩSWh2

is suppressed heavily due to the finite lifetime of the sound
waves—see Ref. [53].
For our scenario where the phase transition takes place in

such a way that neither the singlet nor the Higgs has a
nonzero VEVat the same moment, the third term also does
not play much role in contributing to the energy density of
the GW. It is not negligible, but for brevity, we consider that
the primary contribution to the GW comes from the first
term, which in turn gets diluted during the process of strong
first-order electroweak phase transition (SFOEWPT) due to
the release of the entropy. And hence, during this process,
the diluted energy density ΩGWh2jdil is approximated as

ΩGWh2jdil ¼ SΩGWh2: ð42Þ
And from Eq. (42), the dilution factor can be otherwise
written as

δðΩGWh2Þ
ΩGWh2

¼ ΩGWh2jT>Tc
− SΩGWh2jT<Tc

ΩGWh2jT>Tc

: ð43Þ

Evidently, before the onset of the phase transition, when the
net entropy release is δs

s ¼ 0, the second term on the
numerator of the rhs is 0, and the lhs is equal to 1. This
can be clearly seen from Fig. 4. Figure 4 is made while
keeping in mind that the parameter space of the phase
transition follows BM1, where the mass of the scalar is
120 GeV and the transition takes place at 116 GeV.
It is clear from Fig. 4 that during the process of the strong

first-order phase transition, as entropy influx into the
plasma takes place, the energy density of the gravitational
waves is diluted. This dilution depends strongly on the
parameter space of the phase transition. For stronger first-
order phase transition, for example, with multiple Higgs
fields, the dilution can be severe as compared to the
scenario shown here.
There can be other effects of the this dilution—for

example, dilution of the frozen out dark matter species
[22] and baryon asymmetry. This can also lead to electro-
weak baryogenesis and baryo-through-leptogenesis as well.

VI. CONCLUSION

It is shown in this paper that with the inclusion of a real
singlet scalar S to the SM and imposing an extra Z2

symmetry, the EWPT becomes a first-order phase transi-
tion. Possible benchmark points which can lead to this first-
order phase transition are studied and discussed in detail. In
the latter part of the paper, the entropy release due to this
first-order EWPT is studied for two benchmark points
numerically, which are shown in Fig. 3. This is followed by
connecting this release of entropy into the plasma with the
dilution of stochastic GWs. It can be seen from Fig. 4 that
the net dilution factor of the GWs is almost the same as that
of the release of entropy.
The stronger the phase transition is, the higher the

amount of entropy produced. The production can be even

FIG. 4. The red line shows the dilution of the energy density of
the gravitational waves during the SFOEWPT. The dotted line
shows the hypothetical scenario where entropy release did not
take place and the suppression/dilution of the energy density of
the GW did not happen.
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larger when a singlet scalar extension to the two-Higgs-
doublet model is considered. But this is beyond the scope
of this paper and will be studied in subsequent papers.
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