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In this paper,we point out a novel signature of physics beyond the StandardModelwhich could potentially
be observed both at the Large Hadron Collider (LHC) and at future colliders. This signature, which emerges
naturally within many proposed extensions of the Standard Model, results from the multiple displaced
vertices associated with the successive decays of unstable, long-lived particles along the same decay chain.
We call such a sequence of displaced vertices a “tumbler.”We examine the prospects for observing tumblers
at the LHC and assess the extent to which tumbler signatures can be distinguished from other signatures of
new physics which also involve multiple displaced vertices within the same collider event. As part of this
analysis, we also develop a procedure for reconstructing the masses and lifetimes of the particles involved in
the corresponding decay chains. We find that the prospects for discovering and distinguishing tumblers can
be greatly enhanced by exploiting precision timing information such as would be provided by the CMS
timing layer at the high-luminosity LHC. Our analysis therefore provides strong additional motivation for
continued efforts to improve the timing capabilities of collider detectors at the LHC and beyond.
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I. INTRODUCTION

Ever since the seminal work of Glashow, Weinberg, and
Salam in the 1970s that gave birth to modern particle
physics, the Standard Model (SM) has reigned supreme.
Although the discovery of neutrino oscillations and the
preponderance of observational evidence for dark matter
and dark energy have indicated the need to extend the SM
into new domains, the core of the SM has remained intact
and continues to accurately describe all existing collider
data despite decades of intense experimental research.
Indeed, unambiguous evidence for possible SM extensions
such as weak-scale supersymmetry or large extra dimen-
sions has not yet been found.
There are, in principle, two possible reasons for this

state of affairs. On the one hand, the energy scale

associated with the new physics may be sufficiently high
that this physics lies beyond the reach of current experi-
ments. However, on the other hand, it is possible that the
new physics resides at energy scales which are potentially
accessible at current or imminent collider experiments, but
that this physics is manifested through collider signatures
that have not yet received much attention within the
community (for reviews, see, e.g., Refs. [1–3]).
In this paper we point out a novel collider signature

which arises in a variety of scenarios for new physics. This
signature rests on the possible existence of long-lived
particles (LLPs). As discussed in Ref. [4], LLPs can arise
in many proposed extensions of the Standard Model. These
include models which attempt to address the gauge
hierarchy problem, models which provide new approaches
to dark-matter physics, models which describe different
scenarios for baryogenesis and leptogenesis, and even
nonminimal models of neutrino physics. Because of their
relative long lifetimes, LLPs, once produced, can propagate
across macroscopic distances before they decay. For LLPs
with proper decay lengths cτ ranging from millimeters to
hundreds of meters, these decays can give rise to a number
of distinctive signatures at colliders, including emerging
jets [5], disappearing tracks, and macroscopically displaced
vertices (DVs). While searches for DVs are part of the
standard experimental program at colliders, the signature
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on which we shall focus our attention involves the presence
of multiple displaced vertices which result from the
successive decays of multiple unstable LLPs within the
same decay chain. In such cases, the event unfolds by
“tumbling” down the steps of the decay chain, terminating
only once a collider-stable particle is reached.
Given this decay topology, we shall refer to such a

sequence of DVs as a “tumbler.” In this work, we shall
consider the special case of tumblers in which each such
LLP decay yields a single, lighter LLP as well as one or
more SM particles which can be detected directly by a
collider detector. The signatures of such tumblers are
quite striking as they have very low SM backgrounds.
We shall examine the prospects for observing such
tumblers at the LHC, and we shall assess the extent to
which such tumbler signatures can be distinguished from
other signatures of new physics which also involve
multiple DVs within the same collider event. We shall
also develop a procedure for reconstructing the masses
and lifetimes of the particles involved in the correspond-
ing decay chains.
One important theme running through this work will be

the observation that the prospects for discovering and
distinguishing tumblers can be greatly enhanced by exploit-
ing precision timing information. Fortunately, this sort of
information can be provided by a precision timing layer of
the sort that will be installed within the CMS detector
during the forthcoming high-luminosity upgrade of the
Large Hadron Collider (LHC) [6,7]. As we shall see, this
timing information can significantly improve the precision
with which the masses and lifetimes of the particles within
a tumbler can be measured.
This paper is organized as follows. In Sec. II, we

describe the basic properties of tumblers and discuss the
role that timing information can play in characterizing
them. In Sec. III, we introduce a concrete example model
which can give rise to tumblers. In Sec. IV, we survey the
parameter space of this model and identify regions of this
parameter space wherein the prospects for identifying
tumblers are particularly auspicious. In Sec. V, we inves-
tigate the extent to which current LHC data constrains this
parameter space and assess the prospects for observing a
significant number of tumbler events both before and after
the high-luminosity LHC (HL-LHC) upgrade. In Sec. VI,
we develop an event-selection procedure which provides
an efficient way of distinguishing between events which
involve tumblers and events which involve multiple DVs
which were not in fact produced by the successive decays
of unstable particles within the same decay chain. We
also investigate the degree to which the masses and
lifetimes of the dark-sector states can be measured from
tumbler events. In Sec. VII, we conclude with a summary
of our results and a discussion of the ways in which
improvements in energy and timing resolution could
enhance our ability to distinguish tumbler signatures at
the HL-LHC or at future colliders.

II. TUMBLERS AT THE LHC

Macroscopically displaced vertices can result from the
decays of long-lived particles (LLPs) that decay on distance
scales Oð1 mmÞ≲ cτ ≲Oð100 mÞ inside a collider detec-
tor. Such vertices represent a striking potential signal of
new physics [1,4]. While the DV signatures associated with
the decays of even a single LLP species can yield a wealth
of information about physics beyond the SM, the phenom-
enology associated with DVs can be far richer in extensions
of the SM which involve multiple of LLP species. One
intriguing possibility arises in scenarios in which one
species of LLP can decay into a final state which includes
both SM particles and a lighter LLP of a different species. If
this lighter LLP also decays within the detector, the result is
a sequence of two or more DVs which result from the
successive decays of unstable particles within the same
decay chain. Like DVs themselves, such sequences of
DVs—i.e., such “tumblers”—can arise naturally in many
extensions of the SM. These include models involving
compressed supersymmetry [8]; hidden-valley models [9]
and other, similar theories which give rise to phenomena
referred to as emerging jets [5], semivisible jets [10], dark
jets [11], and/or soft bombs [12]; theories involving large
numbers of additional degrees of freedom with a significant
degree of disorder in their mass matrix [13]; and scenarios
involving nonminimal dark sectors [14]. Indeed, tumbler-
like events of this sort, under the name “microcascades,”
were explicitly invoked more than a decade ago to explain
possible anomalies in CDF data involving muons produced
with large impact parameters [15,16]. The possibility of
tumbler-like events arising in a variety of hidden-valley
models was also discussed in Refs. [17–20].
An example of a tumbler is illustrated in Fig. 1. In this

example, an LLP χ2 is produced within a collider detector
at the primary interaction vertex VP, along with one or
more additional SM particles. This χ2 particle travels a
measurable distance away from VP before it decays into a
pair of SM particles (which for concreteness we take to be a
quark q and an antiquark q̄), along with another, lighter
LLP χ1 at the secondary vertex VS. This χ1 particle, in turn,
travels a measurable distance away from VS before it
likewise decays at a tertiary vertex VT into a quark q0,
an antiquark q̄0, and another, even lighter LLP χ0, which
escapes the detector and manifests itself as missing trans-
verse energy =ET.
Figure 1 illustrates the topology of a tumbler involving

only two DVs, as appropriate for a decay chain involving
three LLPs (χ2, χ1, and χ0). In some sense, this is the
minimal possible tumbler, and this case will be the focus of
this paper. However, there is nothing that requires tumblers
to be limited to only two DVs or three LLPs, and indeed
longer decay chains leading to more DVs are possible.
Indeed, in many SM extensions, entire ensembles of LLPs
χn can arise. Such ensembles can then give rise to
potentially long decay chains with many sequential DVs.
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However, all such tumbler events share the same basic
event topology, with sequential decays proceeding in linear
fashion down the decay chain.
How might such a tumbler be detected and distin-

guished? Since the SM backgrounds for processes involv-
ing DVs are quite low, signals involving DVs provide
particularly striking indications of new physics. A variety
of LLP searches involving DVs have already been per-
formed by the ATLAS and CMS Collaborations. Moreover,
the sensitivity of the ATLAS and CMS detectors to DV
signatures will be significantly enhanced during the forth-
coming HL-LHC upgrade, in part as a result of the
installation of additional apparatus within both of these
detectors which provides precision timing information
about the particles produced in a collider event. In
particular, the upgraded ATLAS detector will include a
high-granularity timing detector in front of each of the
endcap calorimeters in order to provide timing information
for particles emitted in the forward direction [21]. The
upgraded CMS detector, by contrast, will include not only a
pair of timing detectors located in front of the endcaps, but
also a thin cylindrical timing layer situated between the
tracker and the electromagnetic calorimeter (ECAL) which
provides coverage within the barrel region of the detector
[6,7]. This timing layer, which is included in the illustration
in Fig. 1, will provide a timing resolution of σt ≈ 30 ps—a
vast improvement over the timing resolution σt ≈ 150 ps
currently afforded by the ECAL itself [22]. Such a

significant enhancement in timing precision will signifi-
cantly improve the sensitivity of LLP searches at the HL-
LHC. Indeed, not only can information from the timing
layer be used to reduce SM backgrounds for such searches
[23,24], but it can also aid in the reconstruction of the LLP
masses [25], strategies for which have been developed for a
number of LLP-decay scenarios [26,27]. In particular, the
momenta p⃗q and p⃗q̄ of the hadronic jets associated with q
and q̄, in conjunction with timing the information for
these jets provided by either the timing layer or the ECAL,
can be used to identify both the time tS and spatial location
x⃗S of VS. Similarly, the momenta p⃗q0 and p⃗q̄0 of the jets
associated with q0 and q̄0, in conjunction with the corre-
sponding timing information, can be used to identify the
time tT and spatial location x⃗T of VT . Information about the
momenta of the additional SM particles produced at VP, in
conjunction with the corresponding timing information,
can be used to identify the time tP and spatial position x⃗P of
this vertex.

III. A CONCRETE EXAMPLE MODEL

In order to perform a more quantitative assessment of the
prospects for detecting tumbler signatures at the LHC and
beyond, it is necessary to work within the context of a
concrete model. Such a model can therefore also serve as an
existence proof that tumblers may indeed arise at colliders
such as the LHC, and yet be consistent with current

FIG. 1. Schematic of a tumbler event within a collider detector modeled after the CMS detector at the HL-LHC. In this event, a heavy
LLP χ2 is initially produced at the primary vertex VP, along with some additional particles. The χ2 particle then travels a measurable
distance before decaying into a lighter LLP χ1, a quark q, and an antiquark q̄ at the secondary vertex VS. This χ1 particle then travels a
measurable distance away from VS and subsequently decays into an even lighter LLP χ0, another quark q0, and another antiquark q̄0 at
the tertiary vertex VT . The χ0 particle manifests itself as missing energy =ET, while the quarks and antiquarks manifest themselves as
hadronic jets. Information about when each jet interacts with the timing layer, in conjunction with additional information about the
momentum of the jet from the tracker and calorimeters, can be used to reconstruct the locations and times at which VS and VT occurred.
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experimental results. The model that we adopt for this
purpose is drawn from a general class of nonminimal dark-
sector scenarios in which there exist multiple dark-sector
states χn with similar quantum numbers, all of which can
interact with the fields of the visible sector via a common
mediator particle ϕ. Not only do these interactions provide
a portal through which the χn can be produced, but they
also render the heavier χn unstable. Since the final states
into which these χn decay in such scenarios generically
involve both SM particles and other, lighter dark-sector
states χm, extended decay chains can develop.
In Ref. [14] we constructed such a model within this

class and focused on a region of parameter space in which
the χn particles involved in these decay chains had lifetimes
leading to prompt decays rather than macroscopically
displaced vertices. We then discovered that such decay
chains can lead to striking signatures involving large
multiplicities of produced SM states.
In this paper, by contrast, we shall focus on a different

region within the parameter space of this model, one in
which the χn have lifetimes within the range Oð1 mmÞ≲
cτn ≲Oð100 mÞ. As we shall explain further below, we
thus obtain decay chains involving DVs—i.e., tumblers.
Moreover, although our analysis in Ref. [14] considered
arbitrary numbers of χn states within the associated decay
chains, we shall here restrict our attention to cases with
only three χn particles, with n ¼ 0, 1, 2 labeling these states
in order of increasing mass.
More specifically, this model is defined as follows.

We shall take the χn to be Dirac fermions and to be
singlets under the SM gauge group. We take the masses mn
of the χn to be free parameters, subject to the condition
m2 > m1 > m0. The particle ϕ which mediates the inter-
actions between the χn and the fields of the SM in our
model is taken to be a complex scalar which transforms
as a triplet both under the SM SUð3Þc gauge group and
under the approximate Uð3Þu flavor symmetry of the
right-handed up-type quarks. In order to alleviate issues
involving flavor-changing effects, we shall assume that the
up-type quarks q ∈ fu; c; tg and the component fields ϕq

within ϕ share a common mass eigenbasis. Expressed in
this eigenbasis, the interaction Lagrangian which couples
the dark and visible sectors then takes the form

Lint ¼
X
q

X2
n¼0

½cnqϕ†
qχ̄nPRqþ H:c:�; ð3:1Þ

where PR ≡ 1
2
ð1þ γ5Þ is the usual right-handed projection

operator and where cnq is a dimensionless coupling
constant which in principle depends both on the value of
the index n for the dark-sector field and on the flavor of the
quark. Such a coupling structure implies that each of the ϕq

couples only to a single quark flavor q.

For simplicity, we shall focus on the case in which the
masses of the mediators ϕc and ϕt which couple to the
charm and top quarks are sufficiently large that that they
greatly exceed the mass of the mediator ϕu (i.e.,
mϕc

; mϕt
≫ mϕu

) and also have no appreciable impact
on the collider phenomenology of the model. From a
low-energy perspective, this is equivalent to adopting a
coupling structure in which cnc ≈ 0 and cnt ≈ 0 for all n,
while the cn ≡ cnu are in general nonvanishing. Moreover,
for concreteness, we shall assume that the cn scale
according to the power-law relation

cn ¼ c0

�
mn

m0

�
γ

; ð3:2Þ

where c0 is the coupling associated with the lightest
ensemble constituent χ0 and where γ is a dimensionless
scaling exponent.
In summary, our model is characterized by six free

parameters. These are the masses mn of the three χn, the
parameters c0 and γ which specify the couplings between
these fields and the mediator ϕu, and the mass mϕu

of the
mediator itself. For ease of notation, since we are assuming
that ϕc and ϕt are sufficiently heavy that they play no role
in the collider phenomenology of the model, we shall
henceforth simply refer to ϕu and mϕu

as ϕ and mϕ,
respectively.
Our interest in this model is primarily due to the tumbler

signatures which result from successive decays of the dark-
sector states. Indeed, the interaction Lagrangian in Eq. (3.1)
renders χ1 and χ2 unstable. We shall primarily be interested
in the regime within which the mediator is heavy, with
mϕ > mn for all n. Within this regime, the leading con-
tribution to the decay width Γϕ of the mediator arises from
to two-body decay processes of the form ϕ → qχ̄n. By
contrast, the leading contribution to the decay widths of
each χ1 and χ2 arise from three-body decay processes of the
form χn → qq̄χm with m < n, each of which involves an
off-shell mediator. Thus, when a χ2 particle is produced at
the primary interaction vertex VP, there is a nonvanishing
probability that it will decay via the process χ2 → qq̄χ1,
with χ1 in turn decaying via the process χ1 → qq̄χ0. The
resulting decay chain is illustrated in Fig. 2, where each
black dot represents an interaction vertex associated with

FIG. 2. Realization of the tumbler event topology shown in
Fig. 1 within the context of our model. In particular, within our
model, the secondary and tertiary vertices VS and VT in Fig. 1 are
each now effectively realized as a pair of three-point vertices
mediated by ϕ.
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one of the Lagrangian terms in Eq. (3.1). Since the ϕ
particles involved in the decay processes are both off shell,
the red circles indicated in the diagram, each of which
encompasses two such interaction vertices, represent local-
ized spacetime events. If the χ1 and χ2 particles are both
long-lived and each travel a macroscopic distance before
they decay, the result is a tumbler, with these spacetime
events corresponding to the secondary and tertiary decay
vertices VS and VT indicated in Fig. 1.
Although χ1 and χ2 are unstable, the lightest dark-sector

state χ0 in our model is stabilized by an accidental Z2

symmetry of the model under which ϕ and the χn are odd,
whereas the fields of the SM are even. This symmetry, if
unbroken, would render this particle absolutely stable—
and a potential dark-matter candidate [14]. Alternatively,
this symmetry could be broken by additional, highly
suppressed interactions which permit χ0 to decay into final
states involving SM particles alone. However, as long as χ0
is collider-stable—i.e., sufficiently long-lived that virtually
every χ0 particle produced within a collider detector
escapes the detector well before it decays—we shall not
need to specify whether this Z2 symmetry is exact or
approximate for the purposes of understanding the collider
phenomenology of the model. In what follows, we shall
therefore simply assume that χ0 is indeed collider-stable
and consequently manifests itself as =ET .

IV. SURVEYING THE PARAMETER SPACE

Our first step is to identify regions of the parameter space
of our model within which the prospects for observing a
tumbler signature, either at the LHC or at a future hadron
collider, are particularly auspicious. The event rate for
collider processes involving tumblers depends on several
factors. These include the cross sections for the relevant
production processes; the lifetimes of χ1, χ2, and ϕ; and the
probability that an on-shell ϕ or χ2 particle initially
produced via one of these production processes will decay
via an appropriate decay chain.
We begin by evaluating the total decay widths Γϕ and Γn

and the branching fractions BRϕn and BRnl for decay
processes of the form ϕ† → q̄χn and χn → q̄qχl, respec-
tively. In order to calculate these branching fractions, we
must first evaluate the partial widths for all kinematically
accessible decays of ϕ, χ2, and χ1. The partial width Γϕn ≡
Γðϕ† → q̄χnÞ for the decay process in which an on-shell
mediator decays into a quark and an ensemble constituent
χn is [14]

Γϕn ¼
c2n
16π

ðm2
ϕ −m2

nÞ2
m3

ϕ

: ð4:1Þ

Likewise, the partial width Γnl ≡ Γðχn → q̄qχlÞ takes the
form [14]

Γnl ¼ 3c2nc2l
256π2

mϕ

r3ϕn

�
fð1Þϕnl − fð2Þϕnl lnðrnlÞ

þ fð3Þϕnl ln

�
1 − r2ϕn

1 − r2ϕnr
2
nl

��
; ð4:2Þ

where rnl ≡ml=mn, where rϕn ≡mn=mϕ, and where

fð1Þϕnl≡6r2ϕnð1− r2nlÞ−5r4ϕnð1− r4nlÞþ2r6ϕnr
2
nlð1− r2nlÞ;

fð2Þϕnl≡4r8ϕnr
4
nl;

fð3Þϕnl≡6−8r2ϕnð1þ r2nlÞ−2r8ϕnr
4
nlþ2r4ϕnð1þ4r2nlþ r4nlÞ:

ð4:3Þ

The branching fractions of interest are then given by

BRϕn ¼
Γϕn

Γϕ
; BRnl ¼ Γnl

Γn
; ð4:4Þ

where the total widths of ϕ and χn are respectively given by

Γϕ ¼
X2
n¼0

Γnϕ; Γn ¼
Xn−1
l¼0

Γnl: ð4:5Þ

We observe from the partial-width expressions in
Eqs. (4.1) and (4.2) that Γϕ ∝ c20, while Γn ∝ c40. For mn ∼
Oð100 GeVÞ and mϕ ∼OðTeVÞ, these expressions also
imply that we must take c0 ≪ 1 in order for χ1 and χ2
to be sufficiently long-lived that their decays give rise
to DVs. Together, these two considerations imply that
Γϕ ≫ Γn within regions of parameter space which give rise
to tumblers. As a result, within these regions of interest, any
on-shell ϕ particle produced at the primary interaction
vertex typically decays promptly into a quark and one of
the χn.
From the branching fractions in Eq. (4.4), we may in turn

determine the probability that a particular decay chain will
arise from the decay of a ϕ or χn particle. We shall let
Pa1a2…af denote the probability of a given decay chain,
where the sequence of ai ∈ fϕ; 2; 1; 0g in the subscript
indicates the set of ϕ and χn particles produced along the
decay chain. For example, Pϕ20 represents the probability
that an on-shell ϕ particle, once produced, decays directly
to χ2, which subsequently decays directly to χ0. These
decay-chain probabilities are simply the products of the
relevant branching fractions. Since χ1 decays via the
process χ1 → q̄qχ0 with branching fraction BR10 ¼ 1,
we have P10 ¼ 1. There are two possible decay chains
which can arise from the decay of a χ2 particle, given that
χ2 can decay either to χ0 directly, or to χ1 which then
subsequently decays to χ0. The respective decay-chain
probabilities are therefore P20 ¼ BR20 and P210 ¼ BR21.
The probabilities associated with decay chains initiated by
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the decays of ϕ and χ2 can be evaluated in a similar manner.
We emphasize that each of these decay-chain probabilities
represents the total probability associated with the corre-
sponding sequence of decays regardless of the likelihood
that these decays would occur within a collider detector.
We now consider the production processes through

which ϕ and χn particles can be produced at a hadron
collider. The accidental Z2 symmetry of our model ensures
that particles which are odd under this symmetry will
always be produced in pairs. The dominant scattering
processes which give rise to a signal in our toy model
are therefore pp → ϕ†ϕ, pp → ϕχn (and its Hermitian-
conjugate process), and pp → χ̄mχn. The Feynman dia-
grams which provide the leading contributions to the cross
sections for these processes are shown in Ref. [14].
Since ϕ carries color charge, the dominant contribution

to the cross-section σϕϕ for the process pp → ϕ†ϕ comes
from diagrams which involve strong interactions alone. By
contrast, the diagrams which provide the dominant con-
tribution to the cross-section σϕn for any process of the
form pp → ϕχn each include one vertex which follows
from the interaction Lagrangian in Eq. (3.1). Likewise, the
diagrams which provide the dominant contribution to the
cross-section σmn for any process of the form pp → χ̄mχn
each include two such vertices. These considerations imply
that σϕϕ is independent of c0, while σϕn ∝ c20 and σmn ∝ c40.
Thus, since c0 ≪ 1 within regions of parameter space
which give rise to tumblers, pp → ϕ†ϕ typically dominates
the production rate for tumbler events by several orders of
magnitude within those regions.1 As a result, while the
branching fractions BRϕn and BRnl depend on the values
of γ, c0, m0, m1, and m2, the cross-section σϕϕ for the sole
scattering process relevant for tumbler production at hadron
colliders depends essentially on mϕ alone.
Since pp → ϕ†ϕ typically provides the dominant con-

tribution to the tumbler event rate within our parameter-
space region of interest, it is the decays of on-shell mediator
particles which typically provide the dominant contribution
to the tumbler-event rate. The sole decay chain through
which an on-shell ϕ particle, once produced by this
process, can give rise to a tumbler is the chain in which
this ϕ particle decays promptly to a χ2 particle, which then
decays to a χ1 particle (which itself subsequently decays to
a χ0 particle with BR10 ¼ 1). Thus, the decay-chain
probability Pϕ210 ¼ BRϕ2BR21 for this sequence of decays
is a crucial figure of merit in assessing whether or not a
given choice of our model parameters is likely to lead to a
significant number of tumbler events at a hadron collider.

In order to assess which regions of the parameter space
of our model are the most promising for tumbler detection,
we search for points at which the following criteria are
satisfied. First, the proper decay distances cτ1 and cτ2 of
the unstable LLPs must each lie within the range
1 mm < cτn < 10 m. These conditions ensure not only
that a χ1 or χ2 particle has a significant probability of
traveling an appreciable distance away from the location at
which it was produced before it decays, but also that it has a
significant probability of decaying before it leaves the
detector tracker. Second, we require that m2 < mϕ in order
to ensure that the decay ϕ† → q̄χ2 is kinematically allowed.
Third, we require that Pϕ210 exceed a certain threshold. In
general, P can be as high as Pϕ210 ∼Oð0.1Þ; indeed, this
occurs despite the fact that Pϕ210 is often suppressed by
phase-space considerations which favor the decay of ϕ, χ2,
and χ1 directly to χ0. That said, we shall nevertheless adopt
the far more modest requirement Pϕ210 ≳ 10−6 in our
survey in order that we may better explore how this
decay-chain probability varies across the parameter space
as a whole.
In Fig. 3, we plot contours of Pϕ210 in ðΔm10;Δm21Þ

space, where Δm10 ≡m1 −m0 and Δm21 ≡m2 −m1.
Results are only shown for regions wherein all of the
three criteria discussed above are satisfied; other regions
appear in white. The results shown in the left panel
correspond to the parameter assignments mϕ¼1750GeV,
m0 ¼ 600 GeV, c0 ¼ 0.001, and γ ¼ 0. The results shown
in the right panel correspond to the same assignments for
mϕ, m0, and c0, but with γ ¼ 1.
Broadly speaking, within these regions, the largest

values of Pϕ210 are obtained when Δm10 is small and
Δm21 is large. Moreover, we see that tumbler decay-chain
probabilities as large as Pϕ210 ∼Oð0.1Þ can arise within
this region for γ ¼ 1, whereas probabilities as large as
Pϕ210 ∼Oð0.01Þ can arise even for γ ¼ 0. Within the white
region on the left side of each panel, the available phase
space for the decay χ1 → q̄qχ0 is extremely small, and
consequently cτ1 > 10 m. By contrast, within the white
region in the upper right corner of each panel, m2 is quite
large. As a result, either the partial width for the decay
χ2 → q̄qχ0 becomes so large that cτ2 < 1 mm, or else
m2 > mϕ and the three-step decay chain which gives rise to
tumblers is kinematically forbidden. While the results
shown in Fig. 3 by no means represent an exhaustive
survey of the parameter space of our model, they serve to
highlight those regions which could potentially yield a
significant number of tumbler events at the LHC or at future
colliders.
Guided by these results, then, we shall identify a set of

four benchmark points within these regions for further
study. The parameter assignments which define these
benchmark points are provided in Table I. Each point is
also labeled with a star in Fig. 3. These benchmark points

1In unusual circumstances wherein BRϕ2 is suppressed by
phase-space considerations and ϕ decays do not tend to produce
tumblers, it is also possible that pp → ϕχ2 dominates this event
rate. However, since this possibility requires that the masses m2

and mϕ be tuned such that they are nearly equal, we do not
consider it further.
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represent different combinations of the parameters γ, m1,
andm2. The mass splittings Δm10 and Δm21, the branching
fractions for the different possible decay channels for ϕ and
χ2, and the proper decay lengths of χ1 and χ2 for each of
these benchmarks are provided in Table II.

It is also interesting to consider how our results for Pϕ210

vary as a function of the choice of the scaling exponent γ. In
Fig. 4, we plot contours of Pϕ210 within the ðΔm10; γÞ-plane
for Δm21 ¼ 200 GeV (left panel) and Δm21 ¼ 400 GeV
(right panel). The values we have adopted for mϕ, m0,
and c0 in both panels of the figure are the same as those
adopted in Fig. 3. The locations of our parameter-space
benchmarks are once again indicated by the stars. We see
that increasing γ with all other parameters held fixed
generally increases Pϕ210. Indeed, increasing this scaling
exponent increases the ratios c2=c1 and c2=c0, and thereby
increases the branching fraction BRϕ2 for the decay ϕ →
qχ̄2 that initiates the three-step decay chain which gives
rise to tumblers. By the same token, however, increasing γ
also increases the total decay width of χ2. For sufficiently
large γ, the lifetime of this particle becomes such that
cτ2 < 1 mm. This is what occurs in the white region in the

FIG. 3. Contours within the ðΔm10;Δm21Þ-plane of the overall probability Pϕ210 ¼ BRϕ2BR21 that an on-shell mediator ϕ will decay
via the three-step decay chain which yields a tumbler. The results shown in the left panel correspond to the parameter assignments
mϕ ¼ 1750 GeV, m0 ¼ 600 GeV, c0 ¼ 0.001, and γ ¼ 0. The results shown in the right panel correspond to the same assignments for
mϕ,m0, and c0, but with γ ¼ 1. Regions of parameter space shown in white are not of interest from a tumbler perspective, either because
one of the relevant decay processes is kinematically forbidden, because one or both of the proper decay lengths cτ1 and cτ2 of the
unstable LLPs lies below 1 mm or above 10 m, or because Pϕ210 < 10−6. The four stars which appear in the panels of this figure indicate
the parameter-space benchmarks defined in Table I.

TABLE I. Definitions of our parameter-space benchmarks
BM1–BM4.

Benchmark

Input parameters

c0 γ
m0

(GeV)
m1

(GeV)
m2

(GeV)
mϕ

(GeV)

BM1 0.001 0 600 800 1000 1750
BM2 0.001 1 600 800 1000 1750
BM3 0.001 1 600 800 1200 1750
BM4 0.001 1 600 1000 1200 1750

TABLE II. Values for the mass splittings Δm10 ≡m1 −m0 and Δm21 ≡m2 −m1, the branching fractions for all of the processes via
which ϕ and χ2 can decay, and the proper decay lengths cτ1 and cτ2 of the unstable LLPs for each of the parameter-space benchmarks
defined in Table I.

Benchmark

Mass splittings Branching fractions Proper decay lengths

Δm10

(GeV)
Δm21

(GeV) BRϕ2 BRϕ1 BRϕ0 BR21 BR20

cτ2
(m)

cτ1
(m)

BM1 200 200 0.24 0.34 0.42 0.05 0.95 8.33 × 10−2 2.42
BM2 200 200 0.40 0.35 0.25 0.08 0.92 2.89 × 10−2 1.36
BM3 200 400 0.37 0.37 0.26 0.28 0.72 2.14 × 10−3 1.36
BM4 400 200 0.36 0.40 0.25 0.03 0.97 2.89 × 10−3 3.15 × 10−2
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upper right corner of each panel. On the other hand,
when γ < 0, the decay ϕ → qχ̄0 dominates the width
of ϕ. As a result, Pϕ210 decreases rapidly with γ until it
drops below the threshold Pϕ210 > 10−6, leading to the
white region in the lower right of the plot. As in Fig. 3, the
white region on the left side of each panel corresponds to
the region in which the available phase space for the decay
χ1 → q̄qχ0 is small and cτ1 > 10 m.

V. CONSTRAINTS AND EVENT RATES

In the previous section, we identified the parameter-space
regions of our model which are particularly auspicious for
producing tumblers. In this section, we focus on these
parameter-space regions of interest and assess whether a
substantial population of tumbler events could yet await us at
the LHC, given that no significant excess in discovery
channels involving multiple DVs has been observed to date.
One important consideration is that our model not only

gives rise to tumblers, but also yields contributions to the
event rates in several additional detection channels for new
physics. These channels include the monojetþ =ET channel,
the multijetþ =ET channel, and various channels involving
displaced hadronic jets. The results of new-physics
searches which have been performed in these channels
by the ATLAS and CMS Collaborations place additional
constraints on the parameter space of our model. Thus, we
begin our analysis with a summary of the relevant con-
straints from these searches.

A. Displaced-vertex search constraints

A variety of searches for signatures of new physics
involving displaced hadronic jets have been performed by
both the CMS and ATLAS Collaborations. The CMS
Collaboration, for example, has recently performed one
search for displaced jets with 137 fb−1 of integrated

luminosity which incorporates timing information from
the ECAL [28], as well as another, similar search with
132 fb−1 of integrated luminosity in which dedicated dis-
placed-jet triggers and background-reduction techniques
were applied [29]. A CMS search for displaced jets
emanating from a pair of DVs resulting from the decays
of pair-produced of LLPs was also recently performed with
140 fb−1 of integrated luminosity [30]. The results of these
searches collectively supersede those from similar CMS
searches for displaced jets performed at 36 fb−1 [31] and
38.5 fb−1 [32] of integrated luminosity. The extent to which
machine-learning techniques could be used in order to
further improve the reach of searches involving displaced
jets was investigated in Ref. [33].
The ATLAS Collaboration has likewise performed a

number of different searches for LLPs decaying into dis-
placed jets. These include searches for events in which the
decaywhich produces the jets occurs within the tracker [34],
within the calorimeter [35], or in themuon chamber [36]. An
ATLAS search has also been performed for multiple LLPs
decaying to jets in the same event, where one LLP decays
within the tracker and the other decays within the muon
chamber [37]. All of these searches are performed with
roughly 35 fb−1 of integrated luminosity, though the precise
value of the integrated luminosity varies slightly among
these searches. Owing primarily to the substantially lower
integrated luminosity, these ATLAS searches are not as
constraining as the CMS searches. For this reason, we focus
on the results of the CMS searches in what follows.
The results in Refs. [28–30] collectively constrain new-

physics scenarios involving LLPs with lifetimes τχ in the
range 10−4 m≲ cτχ ≲ 10 m which decay into final states
involving hadronic jets. In particular, they impose an upper
bound on the product σχχBR2

χj of the LLP pair-production
cross section and the square of the branching fraction
of the LLP into such final states.While the precise numerical

FIG. 4. Same as in Fig. 3, except that the contours of Pϕ210 are shown within the ðΔm10; γÞ-plane for Δm21 ¼ 200 GeV (left panel)
and Δm21 ¼ 400 GeV (right panel).
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value of this upper bound depends on the production and
decay kinematics of the LLP and on τχ , the bound falls within
the range 0.05–0.5 fb across almost this entire range of τχ .

B. Multijet search constraints

Searches performed by both the CMS and ATLAS
Collaborations also place constraints on beyond-the-
Standard-Model (BSM) contributions to the event rate for
processes involving multiple hadronic jets and =ET . The
searches most relevant for constraining the parameter space
of our model are those designed to uncover evidence of
heavy decaying particles—e.g., squarks and gluinos in
supersymmetry. The leading CMS constraints from
multijetþ =ET searches are those derived from searches
[38,39] performed with 137 fb−1 of integrated luminosity.
These include searches involving standard techniques
developed in order to search for squarks and gluinos more
generally, as well as searches which focus on specific
scenarios for which the use of the MT2 variable is particu-
larly advantageous in terms of discovery potential. The
results of these analyses supersede those of a prior CMS
study [40] performed with 36 fb−1 of integrated luminosity.
The leading ATLAS constraints on excesses in the

multijetþ =ET channel of the sort obtained in our model
are those derived from a search for squarks and gluinos
performed with 139 fb−1 of integrated luminosity [41].
These results supersede those obtained from a prior ATLAS
study [42] performed with 36 fb−1 of integrated luminosity.
In each of these ATLAS or CMS analyses, 95%-C.L.

exclusion limits on the product of the production cross-
section σ, the signal acceptance A, and the detection
efficiency ϵ are obtained for a variety of signal regions,
which are defined differently in the different studies. These
limits are also interpreted in each case as constraints on the
parameter space of a simplified supersymmetric model
involving a single flavor of squark q̃which is pair-produced
via the process pp → q̃†q̃ and subsequently decays
directly to a light quark and the lightest neutralino χ̃1.
All other sparticles are assumed to be extremely heavy in
this scenario, and therefore to play no role in the pair-
production process. Since q̃ and χ̃1 in this supersymmetric
model have the same quantum numbers as ϕ and χ0 in
our model, respectively, these bounds may be applied to
our model directly. The constraint contours within the
ðmq̃;mχ̃1Þ-plane obtained in Refs. [38,39,41] are all roughly
commensurate and, roughly speaking, exclude the region of
this plane wherein mq̃ ≲ 1250 GeV and mχ̃1 ≲ 500 GeV.
Given that the values of the parametersmϕ andm0 for all

of our parameter-space benchmarks lie well outside the
corresponding region in the ðmϕ; m0Þ-plane, we may safely
assume that our benchmarks are consistent with these
constraints. Moreover, in many of these searches, events
are vetoed in which a significant fraction of the jets are
produced at locations other than the primary vertex.

C. Monojet search constraints

The most stringent bound on excesses of events in the
monojetþ =ET channel is that from an ATLAS study [43]
performed with 139 fb−1 of integrated luminosity. The
results of this study supersede those from a similar ATLAS
study [44] performed with 36 fb−1 of integrated luminosity.
Similar searches have been performed by the CMS
Collaboration, but with far lower integrated luminosity.
The results in Ref. [43] are quoted in a model-

independent way for several different signal regions cor-
responding with different threshold values taken for the
magnitude jp⃗ðrecÞ

T j of the transverse momentum which
recoils against the jet. For each of these signal regions, a
95%-C.L. exclusion limit on the product of the production
cross-section σ, signal acceptance A, and detection effi-
ciency ϵ is obtained. These limits range from σ × A × ϵ <

736 fb for a threshold of jp⃗ðrecÞ
T j>200GeV to σ × A × ϵ <

0.3 fb for jp⃗ðrecÞ
T j > 1200 GeV. Moreover, these limits are

also interpreted as constraints on the parameter space of the
same simplified supersymmetric model that was considered
in the multijet analysis discussed above. Once again, these
constraints may be applied to our model directly.
The monojet constraints on this simplified supersym-

metric model turn out to be relevant within the same rough
region of the ðmq̃;mχ̃1Þ-plane as the multijet constraints
discussed above, but also are slightly less restrictive. We
therefore expect that the same is true of the monojet
constraints on our example model within the ðmϕ; m0Þ-
plane. Thus, we may safely assume that our benchmarks are
consistent with these constraints. In summary, then, it is
clear that the dominant constraints on our model within our
parameter-space region of interest are those from displaced-
jet searches. We shall therefore focus primarily on these
constraints in what follows.

D. Effective cross sections and event rates

In order to assess the impact of these experimental
constraints on our model, we must evaluate the net
contributions to the event rates for a number of different
detection channels. In particular, we can identify four
relevant channels, each of which is associated with a
particular set of collider processes:
• Tumbler class: processes which involve at least one
tumbler. Processes in this class are the primary focus of
this paper.

• DV class: processes which involve at least one DV,
regardless of whether this DV is part of a tumbler. The
event rates associated with processes in this class are
constrained by the results of displaced-jet searches.

• Multijet class: processes which do not give rise to any
DVs, but instead yield a pair of prompt hadronic jets and
missing transverse energy. Processes in this class con-
tribute to the event rate in the multijetþ =ET channel.

• Monojet class: processes which do not give rise to any
DVs, but instead yield a single prompt hadronic jet and
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missing transverse energy. Processes in this class con-
tribute to the event rate in the monojetþ =ET channel.

We emphasize that these classes are not mutually exclusive.
For example, all processes in the tumbler class necessarily
include DVs and are therefore also part of the DV class. We
also emphasize that all processes within a particular class are
not completely equivalent. One example of this is that the
contributions from some DV-class processes may not be as
stringently constrained by existing DV searches as the
contributions from other such processes as a consequence
of differences in kinematics and the event-selection criteria

involved. Another example, as we shall discuss further in
Sec. VI, is that tumbler-class processes in which one or more
additional hard jets are produced at the primary vertex are
significantly more useful for reconstructing the masses and
lifetimes of the χn. Nevertheless, as we shall see, this
classification is useful in categorizing the contributions from
our model to the event rates in different detection channels.
Contributions to the total event rate for each of these four

classes of processes can in principle arise from a variety of
different event topologies—i.e., different combinations of
production processes. In Table III, we list all possible such

TABLE III. List of the possible event topologies which can arise within our model from pair-production process of the form pp → ϕϕ,
pp → ϕχn, and pp → χmχn. The entries in each column describe the corresponding properties of these topologies, with notation as
described in the text.

First chain Second chain Tumblers Displaced vertices Prompt jets

from pp → ϕϕ production

ϕ→χ2→χ1→χ0 ϕ→χ2→χ1→χ0 2T 2j
ϕ → χ2 → χ1 → χ0 ϕ → χ2 → χ0 T DV 2j
ϕ → χ2 → χ1 → χ0 ϕ → χ1 → χ0 T DV 2j
ϕ → χ2 → χ1 → χ0 ϕ → χ0 T 2j
ϕ → χ2 → χ0 ϕ → χ2 → χ0 2DV 2j
ϕ → χ2 → χ0 ϕ → χ1 → χ0 2DV 2j
ϕ → χ2 → χ0 ϕ → χ0 DV 2j
ϕ → χ1 → χ0 ϕ → χ2 → χ0 2DV 2j
ϕ → χ1 → χ0 ϕ → χ1 → χ0 2DV 2j
ϕ → χ0 ϕ → χ0 2j

from pp → ϕχn production

ϕ → χ2 → χ1 → χ0 χ2 → χ1 → χ0 2T j
ϕ → χ2 → χ1 → χ0 χ2 → χ0 T DV j
ϕ → χ2 → χ1 → χ0 χ1 → χ0 T DV j
ϕ → χ2 → χ1 → χ0 χ0 T j
ϕ → χ2 → χ0 χ2 → χ1 → χ0 T DV j
ϕ → χ2 → χ0 χ2 → χ0 2DV j
ϕ → χ2 → χ0 χ1 → χ0 2DV j
ϕ → χ2 → χ0 χ0 DV j
ϕ → χ1 → χ0 χ2 → χ1 → χ0 T DV j
ϕ → χ1 → χ0 χ2 → χ0 2DV j
ϕ → χ1 → χ0 χ1 → χ0 2DV j
ϕ → χ1 → χ0 χ0 DV j
ϕ → χ0 χ2 → χ1 → χ0 T j
ϕ → χ0 χ2 → χ0 DV j
ϕ → χ0 χ1 → χ0 DV j
ϕ → χ0 χ0 j

from pp → χmχn production

χ2 → χ1 → χ0 χ2 → χ1 → χ0 2T
χ2 → χ1 → χ0 χ2 → χ0 T DV
χ2 → χ1 → χ0 χ1 → χ0 T DV
χ2 → χ1 → χ0 χ0 T
χ2 → χ0 χ2 → χ0 2DV
χ2 → χ0 χ1 → χ0 2DV
χ2 → χ0 χ0 DV
χ1 → χ0 χ1 → χ0 2DV
χ1 → χ0 χ0 DV
χ0 χ0
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event topologies which can arise from pair-production
processes of the forms pp → ϕϕ, pp → ϕχn, and
pp → χmχn. The first column indicates the structure of
the longer decay chain in the event, while the second
column indicates the structure of the shorter decay chain.
An additional jet is produced by the decay of each
mediator, while an additional pair of jets is produced by
the decay of each LLP. However, for clarity, we have
omitted mention of these particles in these columns of the
table. Moreover, since there is no heuristic difference in
terms of collider phenomenology between the decay chains
precipitated by the decays of ϕ and χn and the decay chains
precipitated by the decays of their antiparticles ϕ† and χ̄n,
we do not distinguish between particle and antiparticle
decay chains. The third column of the table indicates
whether the process gives rise to one or more tumblers
at a collider. An entry of “T” in this column indicates that
the process gives rise to a single tumbler, while an entry of
“2T” indicates that the process gives rise to two tumblers,
one from each decay chain. Likewise, the fourth column
indicates whether or not the process gives rise to an isolated
DV—i.e., a DV which is not part of a tumbler. An entry of
“DV” in this column indicates the presence of a single such
vertex, while an entry of “2DV” indicates the presence of
such vertices. Finally, the fifth column indicates the
presence of one or more prompt jets in the event. An
entry of “j” indicates the presence of one such jet, while an
entry of “2j” indicates the presence of two such jets. We
note that since every decay chain which occurs in our
model terminates with χ0, every event which results from
any of the processes listed in this table also includes =ET .
For each of the four class of processes α itemized above,

we define an effective cross-section σðαÞeff which represents

the sum of the individual contributions from all combina-
tions of production and decay processes listed in Table III
that contribute to the overall event rate for processes in that

class. Each such individual contribution to σðαÞeff is the
product of the cross-section σa1a2 for the pair-production
process pp → a1a2, where ai ∈ fϕ; 2; 1; 0g, and the two
decay-chain probabilities Pa1;c1 and Pa2;c2 associated with
the decay chains on each side of the event. The index ci
appearing in these probabilities represents the sequence of
particles produced from the decay of the corresponding
initial particle ai and includes the null decay chain in the
event that the initial particle is stable, in which case the
corresponding decay-chain probability is unity. In other
words, our effective cross section is

σðαÞeff ≡
X
a1

X
a2

X
c1

X
c2

½σa1a2Pa1;c1Pa2;c2 �α; ð5:1Þ

where the subscript α on the brackets enclosing the
summand indicates that only event topologies associated
with the corresponding class of processes are included in
the sum. Indeed, it is the product of this effective cross
section and the integrated luminosity which yield the
overall event count for the corresponding class of
processes.
In Fig. 5, we show contours of the effective cross-section

σðTÞeff for tumbler-class processes in ðΔm10;Δm21Þ-space.
Cross sections for all of the individual production processes
were computed using the MG5_aMC@NLO code package
[45] for a center-of-mass energy

ffiffiffi
s

p ¼ 14 TeV. The results
displayed in the left and right panels of the figure
correspond to the parameter assignments in the correspond-
ing panels of Fig. 3. As in Fig. 3, results are shown only

FIG. 5. Contours within the ðΔm10;Δ21Þ-plane of the effective cross-section σðTÞeff defined in Eq. (5.1) for processes involving at least
one tumbler at the

ffiffiffi
s

p ¼ 14 TeV HL-LHC. The results displayed in the left and right panels correspond to the parameter assignments in
corresponding panels of Fig. 3. As in Fig. 3, results are shown only within regions wherein all decay processes involved in the
production of a tumbler are kinematically allowed, where cτ1 and cτ2 both satisfy the criterion 1 mm < cτn < 10 m, and where
cτϕ < 0.1 mm. The four stars indicate the locations of the parameter-space benchmarks defined in Table I.
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within regions wherein all decay processes involved
in the production of a tumbler are kinematically allowed,
where the proper decay lengths cτ1 and cτ2 of the unstable
LLPs both satisfy the criterion 1 mm < cτn < 10 m, and
where the proper decay length of the mediator satisfies
cτϕ < 0.1 mm. However, no minimum threshold for Pϕ210

is imposed. The four stars once again indicate the
locations of the parameter-space benchmarks defined in
Table I.
We observe that the contours of σðTÞeff displayed in Fig. 5

have roughly the same shape as the contours of Pϕ210

displayed in Fig. 3. This follows from the fact that pp →
ϕ†ϕ vastly dominates the event rate within our parameter-
space region of interest. As discussed in Sec. IV, the cross
section for this process depends essentially on mϕ alone,
and is therefore roughly uniform across the ðΔm10;Δm21Þ-
plane shown in each panel. More importantly, however, we

also observe that an effective cross section of order σðTÞeff ∼
Oð1–100 abÞ for tumbler-class processes can be achieved
across a substantial region of our parameters space—a
region which includes the locations of all four of our
parameter-space benchmarks. Given the integrated lumi-
nosity Lint ¼ 3000 fb−1 anticipated for the full HL-LHC
run, cross sections of this order are in principle expected to
give rise to a significant number of tumbler events at the
HL-LHC.
In Table IV, we list the values of σðTÞeff obtained for each of

our four benchmarks, along with the respective effective

cross-sections σðDVÞeff and σðNjÞ
eff for DV-class and multijet-

class processes. Also shown in the figure are the corre-
sponding total numbers of tumbler events expected after
Run 2 of the LHC (Lint ¼ 137 fb−1) and after the full HL-
LHC run (Lint ¼ 3000 fb−1). We quote this number of

events as 2σðTÞeff Lint in order to account for the contributions

from both the CMS and ATLAS detectors. While σðTÞeff
varies significantly across the ðΔm10;Δm21Þ-plane shown

in the panels of Fig. 5, we find that σðDVÞeff and σðNjÞ
eff are far

less sensitive to the values of Δm10 and Δm21 within these
same regions. Indeed, we find that both of these effective
cross sections remain roughly within a single order of
magnitude across this same region of ðΔm10;Δm21Þ space.

One of the primary messages of Table IV is that the

effective cross-section σðDVÞeff for each of our parameter-

space benchmarks is σðDVÞeff ≲ 0.06 fb−1. Such cross sec-
tions are consistent with the constraints from displaced-jet
searches quoted above. We have also confirmed, using the
recasting tools associated with the MadAnalysis 5 [46]
package, that each of these benchmarks is consistent with
the LLP-search results [47] currently incorporated into the
MadAnalysis database. We may therefore conclude that
a significant number of both tumbler events and events
involving DVs of any sort could potentially still be awaiting
discovery at the LHC or at future colliders, even though no
significant excess in such events has been observed to date.
Although the above cross sections lie very close to the
exclusion limits from displaced-jet searches, we also note

that there are regions of our parameter space wherein σðDVÞeff
lies even further below the bound from displaced-jet
searches, tumblers still arise, and all additional constraints
are satisfied.
Looking ahead, in order to assess what the results in

Table IV portend in terms of the prospects for identifying a
signal of new physics within the context of our model at the
HL-LHC, we must take into account the relevant SM
backgrounds. Fortunately, one of the advantages of search-
ing for signal processes which lead to DVs is that these
backgrounds are typically extremely low. One such back-
ground arises from SM processes which involve genuine
DVs—for example, those associated with the decays of
long-lived B- and K-mesons. However, the visible particles
produced by these decays tend to be highly collimated
whenever they are highly energetic as a result of the
relatively small masses of the SM hadrons. By contrast,
the particles produced by the decays of heavy LLPs
into final states comprising significantly lighter particles
are typically far less collimated. Indeed, this is the case for
our example model when Δm21 and Δm10 are both
Oð100 GeVÞ, Within this regime, cuts on variables which
reflect the degree to which the visible particles produced at
a DV are collimated—such as the uncertainty in the
distance dBV between the primary vertex and the DV
[30,32] or, in the case of our example tumbler model,
the angle between the three-momenta of the two

TABLE IV. The effective cross-sections σðαÞeff for tumbler-class, DV-class, and multijet-class processes for our parameter-space
benchmarks. Also shown are the total numbers of tumbler events expected after Run 2 of the LHC and after the full HL-LHC run. We

quote this number of events as 2σðTÞeff Lint in order to account for the contributions from both the CMS and ATLAS detectors.

Benchmark

σðαÞeff (fb) Tumbler events

Tumblers DV Multijetþ =ET LHC Run 2 (137 fb−1) HL-LHC (3000 fb−1)

BM1 1.5 × 10−3 5.3 × 10−2 1.1 × 10−2 0.4 9.2
BM2 4.3 × 10−3 6.1 × 10−2 4.0 × 10−3 1.1 25.6
BM3 1.3 × 10−2 6.0 × 10−2 4.3 × 10−3 3.7 76.1
BM4 1.4 × 10−3 6.1 × 10−2 3.9 × 10−3 0.4 8.1
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reconstructed jets—can be quite effective in reducing this
background without a significant loss in the number of
signal events.
After the contribution involving genuine DVs is sup-

pressed in this way, the dominant contribution to the SM
background in searches for displaced jets at the LHC is
generally the one which arises as a consequence of multijet
events in which poorly reconstructed tracks lead to the
identification of spurious DVs [30,32]. Most such events
arise from purely strong-interaction processes. Since both
τ1 and τ2 satisfy cτn > Oð1 mmÞ for all of our benchmarks,
the DVs that result from χ1 and χ2 decay are typically
significantly farther that 0.1 μm away from the primary
vertex. For displacements of this size, events involving
additional primary vertices from pileup do not represent a
significant background [30]. Thus, a rough estimate of the
background event rate at the end of the full HL-LHC run
can be obtained simply by scaling the expected number of
background events obtained from searches using Run 2
data after the application of all relevant cuts by the ratio of
the corresponding integrated luminosities.
The expected number of background events in any given

displaced-jet search depends on the particular set of event-
selection criteria employed, but the leading searches dis-
cussed above yield 0.1–0.7 background events [29,30] at an
integrated luminosity of around 137 fb−1. Thus, one would
expect around 2.2–17.5 background events at the end of the
full HL-LHC run. We also note that this background
estimate is actually a conservative one, given that improve-
ments in machine-learning approaches to LLP tagging
have the potential to further reduce SM backgrounds
without a significant loss in the signal-event rate [33].
By contrast, the signal efficiency obtained for the same cuts
is typically around ϵS ∼ 0.45–0.75. Values within this range
are obtained in both Ref. [29] and Ref. [30] for event
topologies analogous to the one we consider here. Thus,
given the results in Table IV, we see that a significant excess
of DV-class events would be observed at the HL-LHC for
all of our benchmarks. Moreover, for BM2 and BM3, this
excess would include a substantial number of tumbler
events. The observation of such an excess would clearly
prompt significant additional investigation into how we
might better probe the underlying physics responsible for
this excess. It is toward this question that we now turn.

VI. DISTINGUISHING TUMBLERS VIA MASS
RECONSTRUCTION

While we have shown that our model can give rise to a
significant number of tumbler events at the LHC, we have
also shown that it typically simultaneously gives rise to a
far larger number of non-tumbler DV-class events—a
substantial fraction of which likewise involve more than
one DV. Indeed, any of the processes listed in Table III in
which each decay chain involves only a single χ1 or χ2
particle gives rise to a pair of DVs. At this stage of the

analysis, such pairs of DVs are indistinguishable from
tumblers. Thus, in this sense, our model not only gives rise
to tumblers but also simultaneously gives rise to a “back-
ground” of non-tumbler events, each involving a pair of
DVs which arise from decays within different chains. If a
significant number of events involving multiple DVs is
observed at the LHC either before or after the high-
luminosity upgrade, it will therefore become imperative
to develop methods of assessing whether or not a signifi-
cant number of these events in fact involve tumblers.
This concern is not unique to our model alone. Indeed,

there are also a variety of scenarios for physics beyond the
SM in which events involving multiple DVs arise. These
include SUSY models such as those constrained by the
ATLAS and CMS searches in Refs. [38,39,41], as well as
hidden-valley models [9] and other scenarios which give
rise to emerging jets [5]. While tumblers can in fact arise
within certain regimes in some of these models, many other
models give rise to non-tumbler events exclusively. This
then provides further motivation for developing methods of
distinguishing between tumbler and non-tumbler events.
Without doing so, one can not truly claim to have detected a
tumbler signature.
Fortunately the distinctive kinematics associated with

tumbler decay chains provides a basis on which we may
discriminate between tumbler and non-tumbler events at
colliders. In this section, we develop a set of event-selection
criteria which are capable of efficiently discriminating
between tumbler and non-tumbler events. In the process,
we shall also investigate the extent to which the masses and
lifetimes of the χn can be reconstructed from the kinematic
and timing information provided by a collider detector.

A. Mass reconstruction

In order to distinguish between tumbler events and
other events which involve multiple DVs, we employ an
event-selection procedure which makes use of the dis-
tinctive kinematic structure associated with tumbler decay
chains. This procedure follows from the observation that if
two DVs in a given event arise from successive decays
along the same decay chain, it is in principle possible to
reconstruct the masses of the χn involved in that decay
chain. That such an event-by-event mass reconstruction is
possible for tumblers is itself noteworthy. Methods for
reconstructing the masses of unstable particles in multi-
step decay chains which terminate in invisible particles
typically rely on the identification of features such as
cusps [48–51], edges [51–65], or peaks [61,66,67] in the
distributions of kinematic variables—features which
emerge only in the aggregate, from a sizable population
of events. By contrast, when the vertices in the decay
chain are macroscopically displaced from each other and
from VP, as they are for a tumbler, additional information
can be brought to bear in reconstructing the masses of the
unstable particles.
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The information we need in order to reconstruct the mn
for a tumbler includes the three-momenta of the four
displaced jets produced by the decays of χ1 and χ2, the
three-momenta of the additional jets produced at the
primary vertex, and the timing information supplied by
the ECAL or timing layer concerning the time at which
these jets exit the tracker. As discussed in Sec. II, these
three-momenta, in conjunction with timing information, are
sufficient to reconstruct the times tP, tS, and tT and spatial
locations x⃗P, x⃗S, and x⃗T of the primary, secondary, and
tertiary vertices. Taken together, these measurements are

then sufficient to determine the velocities β⃗1≡ ðx⃗T − x⃗SÞ=
ðtT − tSÞ and β⃗2 ≡ ðx⃗S − x⃗PÞ=ðtS − tPÞ of χ1 and χ2,
respectively.
Given these velocities, the mn can then be determined in

a straightforward manner. Approximating the quarks as
massless and noting that the energy En and momentum p⃗n

of each χn are given by En ¼ γnmn and p⃗n ¼ γnmnβ⃗n, we
find that the equations which represent four-momentum
conservation at VS may be written in the form

γ2m2 ¼ γ1m1 þ jp⃗qj þ jp⃗q̄j;
γ2m2β⃗2 ¼ γ1m1β⃗1 þ p⃗q þ p⃗q̄: ð6:1Þ

Likewise, applying four-momentum conservation at VT
yields

γ1m1 ¼ γ0m0 þ jp⃗q0 j þ jp⃗q̄0 j;
γ1m1β⃗1 ¼ p⃗0 þ p⃗q0 þ p⃗q̄0 : ð6:2Þ

Solving this system of equations for the threemn, we obtain

m2 ¼
jp⃗q þ p⃗q̄ − β⃗1ðjp⃗qj þ jp⃗q̄jÞj

γ2jβ⃗1 − β⃗2j
;

m1 ¼
jp⃗q þ p⃗q̄ − β⃗2ðjp⃗qj þ jp⃗q̄jÞj

γ1jβ⃗1 − β⃗2j
;

m2
0 ¼ m2

1 − 2γ1m1½jp⃗q0 j þ jp⃗q̄0 j − β⃗1 · ðp⃗q0 þ p⃗q̄0 Þ�
þ 2ðjp⃗q0 jjp⃗q̄0 j − p⃗q0 · p⃗q̄0 Þ: ð6:3Þ

Were it possible to measure with arbitrary precision both
the magnitude of the momentum of each jet in a tumbler
event and the time at which each jet exits the tracker, it
would be possible to reconstruct the mn exactly from the
relations in Eq. (6.3). In practice, of course, our ability to
reconstruct these masses is limited by the precision with
which the detector is capable of measuring these quantities.
Nevertheless, provided that these uncertainties are suffi-
ciently small, it is highly likely that the mn values obtained
when these reconstruction formulas are applied to the jets
associated with a tumbler will satisfy certain basic self-
consistency criteria. For example, these reconstructed mn

values will be real, positive, and properly ordered in the
sense that m2 > m1 > m0.
By contrast, when the mass-reconstruction formulas in

Eq. (6.3) are applied to the jets associated with a pair of
DVs in the same event which do not arise from successive
decays along the same decay chain, it is far less likely that
they will yield a set of masses for the χn which satisfy these
criteria. This consideration suggests that these mass-
reconstruction formulas can be used in order to distinguish
tumbler events from the far larger “background” of non-
tumbler events involving multiple DVs which also arises in
our model—and indeed arises generically in scenarios
wherein the LLPs involved in the tumbler decay chain
have identical quantum numbers.
In order to assess the extent to which we are able to

distinguish tumbler events from other events involving
multiple DVs in this way, we perform a Monte Carlo
analysis. Our specific procedure is as follows. Using the
MG5_aMC@NLO code package [45], and for each of our
parameter-space benchmarks, we generate 100,000 events
for the initial pair-production process pp → ϕ†ϕ at a
center-of-mass energy

ffiffiffi
s

p ¼ 14 TeV. This process over-
whelmingly dominates the event rate for both tumbler-class
and all relevant DV-class processes. The number of events
in this sample is of course far larger than the expected event
count for this pair-production process at the HL-LHC.
Indeed, our goal at this stage of the analysis is simply to
examine the detailed shapes of these distributions and
thereby develop a nuanced understanding of how different
event-selection criteria impact these shapes. It is therefore
advantageous for us to consider a large population of events
and a relatively narrow bin width for each mn distribution.
Once we have such an understanding, we shall return to
assess the extent to which the mn can be reconstructed with
a population of events appropriate for near-future collider
studies and a coarser set of bin widths.
After our events are generated, we then simulate the

kinematics of the subsequent decay chains using our own
Monte Carlo code. For each jet we record not only the
magnitude and direction of its three-momentum vector,
but also the time at which the jet exits the tracker. We
work at the parton level and do not consider the effects of
initial-state or final-state radiation, parton-showering, or
hadronization. We determine the locations x⃗S and x⃗T
of the secondary and tertiary vertices in each event
from the momenta of the jets produced at these vertices
using the parton-level vertexing algorithm described in
Appendix. We likewise determine the location x⃗P of the
primary vertex from the momenta of the two jets
produced by the prompt decays of ϕ and ϕ† at this
vertex. Thus, while the beam spot at a collider like the
HL-LHC has a characteristic spread of a few cm in the z
direction and a time spread of around 200 ps, our
procedure for reconstructing the primary vertex will
effectively remove these uncertainties.
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Of course, this parton-level vertexing procedure
does not incorporate any of the uncertainties involved in
a full track-based reconstruction of the locations of
the primary or displaced vertices in the event. Moreover,
it does not account for the measurement uncertainties
in the momenta of the jets. Thus, in order to account for
these uncertainties—which can be significant—when esti-
mating the precision with which we might hope to measure
the values of the mn from tumbler data, we proceed as
follows.
We account for the timing uncertainty by smearing the

time at which each jet exits the tracker using a Gaussian
smearing function with standard deviation σt. We likewise
account for the uncertainty in the magnitude of the jet
momenta by smearing the magnitude of each momentum
vector according to a Gaussian smearing function whose
standard deviation σEðEjÞ varies with the energy Ej of the
jet. Since the jet-energy resolution of a collider detector
also depends on the pseudorapidity ηj of the jet, we adopt a
conservative approach and model our σEðEjÞ after the jet-
energy resolution obtained in Ref. [68] for jets with 1.4 <
ηj < 3.0 in the endcap region rather than the barrel region
of the CMS detector.
The uncertainties ση and σϕ in the pseudorapidity and

azimuthal angle that characterize the direction of each jet
within a given event affect the reconstructed values of the
mn in two ways. The first is directly through p⃗q, p⃗q̄, p⃗q0 ,
and p⃗q̄0 themselves in Eq. (6.3). The second is indirectly
through their effect on the reconstructed vertex positions
x⃗P, x⃗S, and x⃗T , which in turn affects the reconstructed LLP

velocities β⃗1 and β⃗2. Since the CMS detector is capable of
measuring the directions of the momentum vectors of
hadronic jets with excellent precision [68], the first effect
turns out to be subleading in terms of its effect on themn in
comparison with the effect of jet-energy smearing. By
contrast, the second effect can have a more significant
impact on the mn. Indeed, ση and σϕ can dominate the

uncertainty in β⃗1 and β⃗2 when σt is small.
Our method for simulating the effect of these uncertain-

ties shall be the following. Since σE dominates the
uncertainty in the mn that arises directly from the jet
momenta, we shall simply take ση ¼ σϕ ¼ 0 in what
follows. However, in order to account for the effect of
these angular uncertainties and other uncertainties which
enter into the track-based reconstruction of DVs at a real
collider detector, we also shift each of the three vertex
positions x⃗P, x⃗S, and x⃗T that we obtain from our fitting
procedure by an independent random offset vector. The
magnitude of this offset vector is distributed according to a
single-sided Gaussian function with standard deviation σr,
while its direction is distributed spherically uniformly.
Since the estimated uncertainty in the vertex displacements
for the CMS detector after the HL-LHC upgrade is roughly
Oð10–30 μmÞ [7], we take σr ¼ 30 μm in what follows.

In order to extract a set of values for the mn from a
given sample of of events, as well as an estimate of the
uncertainties in these values, we proceed as follows. We
begin by requiring that the decays of all unstable dark-
sector particles in the event occur within the tracker
region of our hypothetical detector. Modeling this
detector after the CMS detector, we take this region to
be a cylinder of radius r ¼ 1.161 m, centered at the
interaction point z ¼ 0 and extending longitudinally within
the range −2.5 m < z < 2.5 m, whose axis of symmetry
runs along the beam. We note that events which satisfy this
requirement necessarily involve a significant number of
energetic jets—including two highly energetic prompt jets
from the decays of ϕ and ϕ†—and typically also significant
=ET . The overwhelming majority of such events therefore
satisfy one or more of several Level-1 triggers appropriate
for a detector in high-luminosity collider environment [69].
In order to assess the impact of this requirement on our

results, we focus on the events which have the event
topology given in the fourth line of Table III—i.e., events
wherein the two decay chains are ϕ → χ2 → χ1 → χ0 and
ϕ → χ0. Events of this sort, which involve a single tumbler
but no additional unstable particles on the other side of the
event, provide a the clearest picture of where these decays
tend to occur. In Table V, for each of our parameter-space
benchmarks, we provide the fraction of events in our
Monte Carlo sample with this event topology in which the
χ1 decays within each layer of the detector. We observe
that while a non-negligible fraction of these particles
decay outside the tracker for all of these benchmarks
except BM4, which has a far smaller value of τ1 than the
other three benchmarks, the χ1 particle decays within the
tracker the majority of the time. By contrast, τ2 is
sufficiently short for all of our benchmarks that the
probability for χ2 to decay outside the tracker is negli-
gible. The results shown in Table V indicate that the
requirement that all unstable LLPs in the event decay
within the tracker, rather than elsewhere within the
detector, will not have a significant impact on our results.
Moreover, they also indicate that the fraction of events in
which χ1 escapes the detector entirely before decaying is
quite small for all of our benchmarks.

TABLE V. The fraction of the events with the topology given in
the fourth line of Table III (i.e., with decay chains ϕ → χ2 →
χ1 → χ0 and ϕ → χ0) in which the last unstable particle decays
within each layer of the detector for each of our benchmarks
BM1–BM4.

Benchmark Tracker ECALþHCAL
Muon

chamber
Outside
detector

BM1 0.56 0.26 0.15 0.03
BM2 0.74 0.19 0.06 0.01
BM3 0.77 0.17 0.06 0.01
BM4 1.00 0.00 0.00 0.00
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We also require that the event contain at least two DVs.
We compute the time ti at which each such vertex Vi
occurred from the momentum and timing information
obtained for the pair of displaced jets produced at that
vertex. For each combination of DVs Vi and Vj in the event
which are appropriately time-ordered, in the sense that
ti < tj, we reconstruct a set of mn values using Eq. (6.3).
We then check whether this set ofmn values, taken together

with the corresponding values of jβ⃗1j, jβ⃗2j, and the
magnitude of the three-momentum vector p⃗0 obtained
from Eq. (6.2), satisfy the following criteria, to which
we shall henceforth refer as our reconstruction criteria:
• m1 and m2 are real and positive;
• m2

0 is real;
• jp⃗0j is real and positive;
• 0 < jβ⃗nj < 1 for n ¼ 1, 2;
• m2

2 > m2
1 > m2

0.
For reasons to be discussed shortly, we shall not require that
m2

0 > 0 at this stage of the analysis. If any appropriately
time-ordered combination of DVs in the event yields a set
of masses which satisfy these criteria, we retain the event; if
not, we reject it. If multiple combinations of DVs within the
same event satisfy all of these criteria, we take the set ofmn
for the combination which yields the largest value of m2 to
be the set of mn for the event.
In order to illustrate the effect of these cuts, we shall

begin by focusing on the reconstruction ofm1. In Fig. 6, we
show the distribution of reconstructed m1 values for the set
of events which survive these cuts for each of our
parameter-space benchmarks. The histogram in each panel
of the figure is obtained by binning these m1 values into
bins of width Δmn ¼ 5 GeV. The blue portion of each
histogram bar represents the contribution to that bin from
non-tumbler processes, whereas the orange portion repre-
sents the contribution from processes which involve tum-
blers. From top to bottom, the rows in the figure correspond
to our parameter-space benchmarks BM1–BM4. The
dashed black vertical line in each panel indicates the actual
value of m1 for the corresponding benchmark. The results
shown in the left, center, and right columns correspond
respectively to the values σt ¼ 30 ps, σt ¼ 5 ps, and σt ¼
0.01 ps for the timing uncertainty of the detector. The first
of these σt values represents the timing uncertainty asso-
ciated with the barrel timing layer to be installed within the
CMS detector as part of the HL-LHC upgrade. The second
is a value chose to reflect a moderate improvement in this
timing uncertainty, while the third is an extremely small
value representative of the regime in which jet-energy and
vertex-position smearing dominates the uncertainty in the
mass reconstruction. Since the efficiency of the cuts
depends on the benchmark and varies with σt, the scale
of the vertical axis has been varied from panel to panel in
order to facilitate comparison between the distributions.
First, we observe from Fig. 6 that the number of residual

non-tumbler events is still quite significant even after the

imposition of these preliminary cuts. Moreover, we
observe that this distribution has a well-defined shape
that peaks at low values of m1 and falls off rapidly as m1

increases. By contrast, the m1 distribution for the tumbler
events exhibits a well-defined peak centered around the
actual value of m1, as well as an additional population of
events with m1 values well below this peak. This addi-
tional population of events arises in part due to smearing
effects and in part due to the combinatorial background
which arises from incorrect identifications of the vertices
VS and VT in events which contain more than two DVs.
The relative size of the peak in the m1 distribution for the
tumbler events at low σt is primarily controlled by Pϕ210.
Indeed, we observe that this peak is more pronounced for
BM3, which has by far the largest value of Pϕ210, than for
our other three benchmarks.
The presence of this peak in the m1 distribution

is a unique and distinctive feature of tumbler events.
As we shall see, similar peaks appear in the distributions
of m0 and m2 for tumbler events as well. An observa-
tion of these peaks, taken together, would constitute
compelling evidence for tumblers. It is in this way, then,
that our mass-reconstruction procedure furnishes a
method through which tumblers can unambiguously be
detected.
We also observe from Fig. 6 that as σt decreases, the

peak in the tumbler distribution becomes both narrower and
more pronounced for all of our benchmarks. Indeed, this is
to be expected, since increasing σt renders the recon-
structed values of tP, tS, and tT less reliable. However, a
greater reduction in timing uncertainty is required to
resolve this peak for some of our benchmarks than for
others. For example, the peak obtained for BM4 remains
effectively washed out even for σt ¼ 5 ps. We can make
sense of these differences in sensitivity to σt by comparing
the lifetimes τ1 and τ2 quoted for each of our benchmarks in
Table II to the value of σt itself. For BM1 and BM2,
τ1 ≫ τ2 ∼Oð100 psÞ, and thus the effect of the timing
uncertainty on the times tS and tT reconstructed for the DVs
in a tumbler event will be negligible for either of these
benchmarks when σt ≪ 100 ps. By contrast, for BM3 and
BM4, τ2 ∼Oð10 psÞ, which implies that the effect of the
timing uncertainty on tS will only be negligible when
σt ≪ 10 ps. Furthermore, for BM4, τ1 ∼Oð100 psÞ is also
quite small, and thus the timing uncertainty has a non-
negligible impact on tT as well unless σt ≪ 100 ps. As a
result, the reconstructed value ofm1 is more sensitive to the
value of σt for BM4 than they are for BM3, and are more
sensitive to this value for BM3 than they are for BM1
and BM2.
In order to further suppress the contribution from non-

tumbler events, we shall impose one additional cut on the
data. In particular, in addition to the criteria described
above, we shall also impose one additional reconstruction
criterion:
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• m2
0 > 0.

We have separated out this particular criterion from the
others because it merits special attention. In particular, as
we shall demonstrate, not only does requiring that m2

0 > 0
induce a dramatic enhancement in the ratio of tumbler to
non-tumbler events, but it also gives rise to an additional
feature in the distribution of reconstructed m1 values—a
feature which reveals additional information about the mass
spectrum of the χn, and in particular about the mass
splitting Δm10.

In order to quantify the effect of the m2
0 > 0

criterion on the ratio of of tumbler to non-tumbler events
for each of our four parameter-space benchmarks, in
Fig. 7 we plot the ratio of the number NT of tumbler
events to the number NNT of non-tumbler events
obtained for each of our parameter-space benchmarks
after cuts as a function of σt. The dash-dotted curves
represent the NT=NNT ratios obtained after the imposition
of all of our event-selection criteria except the m2

0 > 0

criterion. By contrast, the solid curves represent the

FIG. 6. The distribution of values of the mass m1 for the sample of Monte Carlo events described in the text, as reconstructed from
tumbler kinematics. The orange portion of each histogram bar represents the contribution from tumbler events, while the blue portion
represents the contribution from events with multiple DVs which do not involve a tumbler. From top to bottom, the rows in the figure
correspond to the parameter-space benchmarks BM1–BM4 defined in Table I. The dashed black vertical line in each panel indicates the
actual value of m1 for the corresponding benchmark. The results shown in the left, center, and right columns correspond respectively to
the values σt ¼ 30 ps, σt ¼ 5 ps, and σt ¼ 0.01 ps for the timing uncertainty of the detector. Since the efficiency of the cuts depends
on the benchmark and varies with σt, the scale of the vertical axis has been varied from panel to panel in order to facilitate comparison
between the distributions.
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NT=NNT ratios obtained after the m2
0 > 0 criterion is also

imposed.
It is evident from Fig. 7 that the imposition of them2

0 > 0
criterion has a significant impact on NT=NNT. When σt is
relatively large, as on the right side of this figure, this
enhancement factor is already significant for our first
three benchmarks, even up to σt ¼ 30 pb. By contrast,
as σt decreases (towards the left side of this figure), this
ratio is enhanced even further, ultimately reaching a factor
of ∼10 for all of the benchmarks. The only exception to this
behavior arises for BM4. For BM4, the value of σt has a
proportionally greater effect on the times reconstructed
for the DVs and the difference between τ1 and τ2 is far
smaller than for our other benchmarks. As a result of
these differences, the effect of smearing σt is more likely to
result in a set of reconstructed masses which fail our
reconstruction criteria for BM4 than it is for our other three
benchmarks.
We now turn to discuss the impact of the m2

0 > 0
criterion on the shapes of the mn distributions obtained
from our mass-reconstruction procedure, and in particular
on the shape of the m1 distribution—the distribution on
which this criterion has the greatest impact. Indeed, since
the presence of identifiable peaks in each of the three
reconstructed mn distributions is the characteristic feature
that distinguishes a population of tumbler events from a

population of non-tumbler events, the shapes of these
distributions are of crucial importance.
The shapes of these distributions also allow us to

determine the masses of the LLPs involved in the tumbler.
In order to assess the precision with which this can be done,
we need a method of estimating the width of the peak in
the corresponding mass distribution. We shall do this in the
following way. We begin by constructing a template for the
non-tumbler contribution to each mn distribution after
the application of our event-selection criteria. We construct
each such template by performing a smoothing procedure
on the non-tumbler contribution to the mn distribution
obtained from an additional sample of Monte Carlo
events—a smoothing procedure wherein we replace the
number of events in each histogram bin with the mean value
of the event counts in all bins whose central mn values
are within 25 GeVof the central mn value for that bin. We
then subtract this template from the corresponding mn
distribution in order to obtain the contribution to the mn
distribution from the tumbler events alone. We then
perform a fit of this “background-subtracted” mn distribu-
tion to the rescaled Gaussian function

fðmnÞ ¼
Nmnffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2mn

q exp

�
−
ðmn − hmniÞ2

2σ2mn

�
: ð6:4Þ

We take the values of hmni and σmn
as our best estimates for

mn and its uncertainty. While more sophisticated modeling
of the shape of the mass peak would of course improve
upon these results, this procedure provides a reasonably
reliable indicator of the extent to which one might hope to
extract a meaningful measurement of each mn for a given
set of model parameters at the LHC or at future colliders.
In Fig. 8, we display them1 distributions obtained for our

benchmarks after the application of all of our event-
selection criteria, including the m2

0 > 0 criterion. Thus,
all differences between the m1 distribution shown in each
panel of this figure and the distribution shown in the
corresponding panel of Fig. 6 are solely due to the effect of
this criterion. The hm1i and σm1

values we obtain from our
fitting procedure for the distribution shown in each panel
are also indicated.
We observe that the non-tumbler contribution to each of

them1 distributions shown in Fig. 8 is significantly reduced
relative to the corresponding distribution in Fig. 6.
However, somewhat surprisingly, we also see that each
of these distributions now manifests a visible dip or trough
at a particular reconstructed value of m1 well below this
peak. The origin of this dip can be understood as follows.
First, we see from Eq. (6.3) that events which fail to satisfy
the m2

0 > 0 criterion are events for which

m2
1 − 2m1E�

jj þm2
jj ≤ 0; ð6:5Þ

FIG. 7. The ratio of the number NT of tumbler events to the
number NNT of non-tumbler events for each of our parameter-
space benchmarks, shown as a function of the timing uncertainty
σt. The dash-dotted curves in each panel represent the corre-
sponding efficiencies obtained without imposing the m2

0 > 0

criterion, whereas the solid curves represent the corresponding
efficiencies obtained with the m2

0 > 0 criterion included. The
vertical arrows in each case therefore indicate the improvements
induced by imposing the m2

0 > 0 cut.
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where we have used the fact that the center-of-mass energy

reconstructed for the q0q̄0 system is given by E�
jj ≡

γ1½jp⃗q0 j þ jp⃗q̄0 j − β⃗1 · ðp⃗q0 þ p⃗q̄0 Þ� and the fact that the
invariant mass of this system is given by m2

jj ¼
2ðjp⃗q0 jjp⃗q̄0 j − p⃗q0 · p⃗q̄0 Þ in order to write this condition more
compactly. Thus, for any particular values of E�

jj and mjj,
the range of reconstructed m1 values excluded by the
m2

0 > 0 criterion is

E�
jj−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�

jjÞ2−m2
jj

q
≤m1 ≤E�

jjþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�

jjÞ2−m2
jj

q
: ð6:6Þ

We note that this range of excluded m1 values always
contains the point m1 ¼ E�

jj.

We also observe that constraints which follow from
standard three-body-decay kinematics restrict the true
values of E�

jj and mjj to lie within the respective ranges
0 ≤ mjj ≤ m1 −m0 and ðm2

1−m2
0Þ=ð2m1Þ≤E≤m1−m0.

Of course, the reconstructed values of E�
jj and mjj will in

general differ from these true values due to timing, jet-
energy, and vertex-position smearing, and can in principle
lie outside these ranges. However, in the regime in which σt
is negligible compared to τ1 and τ2, we find that the vast
majority of reconstructed values for E�

jj and mjj lie within
or only slightly outside these ranges. For all of our
parameter-space benchmarks, we note that the range of
kinematically allowed E�

jj values is fairly narrow. For
BM1–BM3, this range is 175 GeV ≤ E�

jj ≤ 200 GeV;
for BM4, this range is 320 GeV ≤ E�

jj ≤ 400 GeV. As a

FIG. 8. Same as Fig. 6, but after the imposition of the additional m2
0 > 0 reconstruction criterion.
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result, when the reconstructed value of m1 for an event lies
within this narrow range of E�

jj values, Eq. (6.6) implies
that the event will typically be excluded. Indeed, we
observe a dramatic suppression in each of the distributions
shown in Fig. 8 across the corresponding range of m1

values.
It is worth remarking that this dip in the m1 distribution

arises solely as a consequence of the decay kinematics at
the final vertex VT along the tumbler decay chain. Thus, the
kinematic considerations which lead to the dip are insen-
sitive to the full structure of that decay chain. We would
therefore expect the contribution to the m1 distribution
from non-tumbler events in which a χ1 particle appears in
either one or both of the decay chains to exhibit a similar
dip. Indeed, we observe that a dip appears in both tumbler
and non-tumbler contributions to the m1 distributions in

Fig. 8. It is also worth remarking that the location and width
of the dip provide additional information about the mass
spectrum of the χn. Indeed, we have seen that both E�

jj and
mjj are bounded from above by Δm10. Thus, in principle,
correlations between the properties of the dip and the
locations of the tumbler peaks in themn distributions can be
exploited to improve the precision with which the mn can
be measured.
We also observe from Fig. 8 that the width σm1

of the
tumbler peak obtained for each benchmark depends quite
sensitively on σt. When σt is fairly large, as shown in the
left and center columns of this figure, timing uncertainty
tends to dominate the widths of the peaks in the tumbler
distributions. By contrast, when σt is sufficiently small, as
in the right column of this figure, the widths of these peaks
are instead dominated by σE and σr. The value of σt at

FIG. 9. Same as Fig. 8, except that the distributions shown are for m0 rather than m1.
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which this transition occurs for each of our benchmarks
depends once again on τ1 and τ2. Nevertheless, it is clear that
the identification of a tumbler peak in the m1 distribution
will be extremely challengingwith a timing resolution on the
order of the σt ¼ 30 ps that the CMS barrel timing layer will
be able to provide at the beginning of the upcoming HL-
LHC run. However, it is also clear that a reduction in timing
uncertainty by even a factor of a few relative to this value
would significantly enhance the capabilities of the HL-LHC
or future colliders—both in terms of distinguishing tumblers
from other signatures of new physics involving multiple
DVs and in terms of extracting information about the mass
spectrum of the particles involved. Indeed, the results shown
inFig. 8 are an indication thatwe are on the doorstep of being
able to probe the underlying physics which gives rise to DVs
at a much deeper level.

Thus far, we have focused on the reconstruction of the
mass m1. In Figs. 9 and 10, we show the corresponding
distributions of reconstructedm0 andm2 values for our four
benchmarks, respectively, after the application of our
event-selection criteria, including the m2

0 > 0 criterion.
As with the m1 distributions, there are no significant
discernible peaks when σt is larger than Oð1–5 psÞ. This
is true for all benchmarks. However, as σt decreases, a
discernible peak begins to appear in both the m0 and m2

distributions, ultimately becoming higher and narrower as
σt drops. Moreover, for each benchmark, these peaks are
centered around the true values of the corresponding
masses. However, unlike the distributions shown in
Fig. 8, the distributions in Figs. 9 and 10 do not exhibit
a discernible dip at any particular value of the correspond-
ing reconstructed mn.

FIG. 10. Same as Fig. 8, except that the distributions shown are for m2 rather than m1.
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Taken together, the results shown in Figs. 8–10 attest that
our mass-reconstruction procedure is quite effective in
discriminating between tumbler and non-tumbler events,
provided that the timing uncertainty is sufficiently small
that the peaks in the mn distributions can be resolved. On
the one hand, it is clear from these figures that conclusively
identifying tumblers at the HL-LHC with the σt ≈ 30 ps
timing resolution the CMS timing layer is anticipated to
provide would prove challenging indeed. On the other
hand, it is also clear that a moderate reduction in timing
uncertainty from σt ≈ 30 ps to σt ≈ 5 ps would have a
dramatic effect on our ability to probe the underlying
structure of the decay chains that give rise to events
involving multiple DVs. As we demonstrated in Sec. V,
a robust excess in the relevant detection channels could yet
be observed at the LHC. If such an excess is in fact
observed, improvements in timing precision, in conjunction
with event-selection procedures like the one we have
developed here, will play a pivotal role in determining
whether or not this excess arises as a consequence of
successive decays within the same decay chain.

B. Lifetime reconstruction

We now assess the degree to which we can likewise
measure the respective lifetimes τ1 and τ2 of the unstable
LLPs involved in the tumbler decay chain. For any given
tumbler, the proper-time intervals t1 and t2 between
the production and decay of each of these particles are
given by t1 ¼ ðtT − tSÞ=γ1 and t2 ¼ ðtS − tPÞ=γ2, where
γn ≡ ð1 − jβ⃗njÞ−1=2 is the usual relativistic factor. In order
to estimate the proper lifetime τn of each particle from a
given sample of events, we first select events which satisfy
the same criteria we imposed in our mass-reconstruction
analysis. We then define NnðtÞ to represent the number of
events in the sample for which tn > t. We then perform a
least-squares fit of the function fðtÞ ¼ Nnð0Þ expð−t=τnÞ
to the events in the sample and interpret the value of τn as
our estimate for the proper lifetime of χn. Since the
goodness-of-fit statistic for this nonlinear fit is more
sensitive to deviations in which t is small and NnðtÞ is
large, the resulting value of τn is typically insensitive to the
small, residual contribution to NnðtÞ at large t from non-
tumbler events which nevertheless survive our mass-
reconstruction cuts.
In Fig. 11, we show the results of such a fit for the

parameter-space benchmarks defined in Table I. The orange
and blue histograms in each panel respectively represent
the N1ðtÞ and N2ðtÞ distributions obtained for a
Monte Carlo data sample that once again initially consists
of 100,000 events prior the imposition of our event-
selection criteria. However, only the N1ðtÞ and N2ðtÞ for
events which pass all of these cuts are included in the
histograms. The thick orange and blue curves represent the
exponential-decay functions obtained for our best-fit values
of cτ1 and cτ2, respectively. From top to bottom, the rows

in the figure correspond to our parameter-space bench-
marks BM1–BM4. The results shown in the left, center, and
right columns of Fig. 11 once again correspond respec-
tively to the timing uncertainties σt ¼ 30 ps, σt ¼ 5 ps,
and σt ¼ 0.01 ps.
We begin by noting that each NnðtÞ distribution shown

in Fig. 11 clearly includes contributions from two distinct
populations of events. The first of these populations,
which is far larger than the second and dominates
NnðtÞwhen ct is small, comprises genuine tumbler events.
The second population, which includes events with much
higher ct values, consists primarily of residual non-
tumbler events. Since this second population is quite
small, it does not have a dramatic impact on the best-fit
value of the corresponding cτn.
The results shown in Fig. 11 demonstrate that for

relatively large σt values, the accuracy with which these
lifetimes can be measured differs among the different
benchmarks. For example, the extent to which our fitting
procedure overestimates the value of τ2 for BM3 and BM4
is significant, whereas this effect is less severe for BM1 and
BM2. This is once again primarily a reflection of the fact
that τ2 is far shorter for BM3 and BM4 than it is for these
other benchmarks, and hence the effect of timing uncer-
tainty on the results for BM3 and BM4 becomes significant
at a far lower value of σt.
Somewhat counterintuitively, however, we also observe

that our fit systematically underestimates the value of τ1 for
BM1–BM3 by as much as a factor of two when σt is small.
This is a consequence of τ1 being sufficiently large for these
benchmarks that a small but non-negligible fraction of the
χ1 particles produced by χ2 decays themselves decay
outside the timing layer. Since events in which these χ1
particles decay outside the timing layer are of course not
included in any of our event samples, the N1ðtÞ distribution
is slightly skewed toward lower lifetimes. Thus, as σt
decreases, the best-fit value of cτ1 approaches a value
slightly below the actual proper decay length. This effect is
not particularly significant for BM4, however, since τ1 is
far shorter and the fraction of events in which χ1 escapes the
detector before it decays is therefore far smaller. That said,
we emphasize that reasonably reliable measurements of
both τ1 and τ2 can nevertheless be made for all four of our
benchmarks when σt ¼ 0.01 ps, even for the simple,
physically motivated functional fit we have performed
here. An alternative functional fit which accounts for this
finite-volume effect could yield even better estimates of the
LLP lifetimes.

C. Tumbler searches with limited event counts

We now consider the extent to which we are able to
resolve the characteristic tumbler peaks in the distributions
of the reconstructed mn values given a far smaller number
of events—a number which might realistically be obtained
at the HL-LHC or at other, near-future colliders. For this
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purpose, we shall consider a hypothetical collider essen-
tially identical to the HL-LHC. The two general-purpose
detectors at this collider are each assumed to be equipped
with a barrel timing layer with timing uncertainty σt, but to
be otherwise similar in design and performance to the CMS
detector. We assume an integrated luminosity Lint ¼
6000 fb−1 in each detector—an integrated luminosity equal
to twice that anticipated for the HL-LHC over its full run.

Thus, the total event count for tumbler events before cuts is
taken to be 2Lintσ

ðTÞ, and the total number of non-tumbler
events including at least one DV is calculated in an
analogous manner.
In Fig. 12, we show the distribution of reconstructed

m1 values for a Monte Carlo data set consisting of the
expected number of events for each of our parameter-
space benchmarks at such a pair of collider detectors.

FIG. 11. Distributions of the number of events N1ðtÞ (orange histogram) and N2ðtÞ (blue histogram) for which the corresponding LLP
χ1 or χ2 has not yet decayed a proper time t after it was initially produced, displayed as a function of the corresponding proper decay
distance ct. From top to bottom, the rows in the figure correspond to the parameter-space benchmarks BM1–BM4 defined in Table I.
The results shown in the left, center, and right columns correspond respectively to the values σt ¼ 30 ps, σt ¼ 5 ps, and σt ¼ 0.01 ps for
the timing uncertainty of the detector. Exponential-decay curves constructed using the best-fit values of cτ1 (thick orange curve) and cτ2
(thick blue curve) are also shown in each panel. The dotted orange and blue vertical lines correspond to the best-fit values of cτ1 and cτ2,
respectively, while the dashed black vertical lines indicate the actual values of these proper decay lengths. The best-fit values of cτ1 and
cτ2 are also quoted in the box in the lower left corner of each panel.
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Only events which survive all of our cuts—including the
m0 > 0 criterion—are included in each distribution
shown. From top to bottom, the rows in the figure
correspond to the parameter-space benchmarks defined
in Table I. The results shown in the left, center, and right
columns correspond respectively to the timing uncertain-
ties σt ¼ 30 ps, σt ¼ 5 ps, and σt ¼ 1 ps. As in Fig. 8, the
orange and blue portions of each histogram represent the
contributions from tumbler and non-tumbler events,
respectively, while the dashed black vertical line in
each panel indicates the actual value of m1 for the

corresponding benchmark. However, we have adopted
a coarser bin width of 50 GeV than we did when
constructing each histogram in Fig. 8.
Perhaps the most important message of Fig. 12 is that the

characteristic tumbler peak in them1 distribution around the
true value of m1 is evident for many of our benchmarks for
σt ≲ 5 ps. Indeed for BM2 and BM3, this peak is particu-
larly striking. This once again demonstrates that an order-of-
magnitude enhancement in timing resolution could yield
compelling evidence of tumblers—even with an integrated
luminosity that could easily be achieved at future colliders.

FIG. 12. Same as Fig. 8, but for a smaller sample of Monte Carlo events. In particular, the numbers of both tumbler and non-tumbler
DVevents included in each data sample before any cuts are applied are equal to the expected numbers of events at a collider essentially
identical to the HL-LHC, but with an integrated luminosity twice that anticipated for the full HL-LHC run. The results shown in the left,
center, and right columns correspond respectively to the values σt ¼ 30 ps, σt ¼ 5 ps, and σt ¼ 1 ps for the timing uncertainties of the
two general-purpose detectors at this collider, and we have adopted a bin width of 50 GeV when constructing each histogram.
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VII. CONCLUSIONS

In this paper, we have described a novel potential
signature of new physics at colliders. This signature
involves processes which we call tumblers—processes in
which multiple successive decays of LLPs within the same
decay chain give rise to multiple DVs within the same
event. We have investigated the prospects for observing
tumblers at the LHC both before and after the high-
luminosity upgrade. Despite the stringent constraints that
current LHC data impose on processes involving DVs, we
have shown in the context of a concrete model that a
significant number of tumbler events could yet be observed
at the LHC. However, scenarios which give rise to a
significant number of tumbler events also often give rise
to a significant number of non-tumbler events which also
involve multiple DVs. In order to address this issue, we
have developed an event-selection procedure which permits
us to discriminate efficiently between tumbler and non-
tumbler events on the basis of the distinctive kinematics
associated with tumbler decay chains. This procedure
incorporates the timing information provided by the col-
lider detector regarding the SM particles produced by these
decay chains. As a result, the degree to which this
procedure is capable of distinguishing tumbler from non-
tumbler events depends crucially on the timing resolution
of the detector. Interestingly, we have shown that a modest
enhancement in timing precision beyond the σ ≈ 30 ps
timing resolution that will be provided by the CMS timing
layer at the outset of the forthcoming HL-LHC upgrade
could have a crucial impact on the prospects for discerning
tumblers amongst possible signals of new physics involv-
ing multiple DVs. Moreover, via this same procedure, we
have shown that it is also possible to reconstruct the masses
and lifetimes of these LLPs. Once again, the precision to
which these masses and lifetimes can be measured depends
crucially on the timing uncertainty of the detector.
Several comments are in order. First, we have made a

number of simplifications concerning the manner in which
DVs are identified and reconstructed in our analysis. In so
doing, we have accounted for the relevant uncertainties in a
manner sufficient to provide a reasonable estimate of the
detector capabilities necessary in order to detect a robust
signature of tumblers. That said, a precise, quantitative
estimate of the discovery reach for tumblers at a particular
detector would require a more detailed, track-based analy-
sis which incorporates information about the tracker
geometry. Moreover, advances in detector technology
may enhance the performance of particular regions of a
collider detector with regard to DV reconstruction. For
example, during the forthcoming high-luminosity upgrade,
a High-Granularity Calorimeter (HGCal) with a timing
resolution of ∼40 ps will be installed within the endcap
region of the CMS detector. This HGCal will make it
possible to reconstruct DVs produced by particles whose
decay products are emitted anywhere within the endcap

region of the detector with excellent precision, even at
trigger level [24]. Such detector capabilities would improve
the geometric acceptance for events involving DVs and
therefore enhance the discovery reach for tumblers.
Second, in this paper, we have employed the mass-

reconstruction procedure introduced in Sec. VI as our
primary mechanism for distinguishing between tumbler
and non-tumbler events. However, there may be more
efficient methods of distinguishing between these two types
of events. Various possibilities along these lines are under
investigation [70].
Third, we have focused in this paper on the case in which

the tumbler decay chains involve only three particles: χ0,
χ1, and χ2. Indeed, this is the minimum number of χn
needed in order to give rise to a tumbler. However, tumblers
can also arise in more complicated scenarios in which the
number N of χn particles is larger—perhaps substantially
so. It is therefore interesting to consider how the tumbler
phenomenology of the N ¼ 3 model analyzed in this paper
generalizes for larger values of N. In keeping with our
established notation, we shall assume that these additional
χn, where n ¼ 3;…; N − 1, are all heavier than χ2. We shall
nevertheless continue to assume that mϕ > mN−1. Several
observations can then immediately be made.
One possibility is that the lifetimes τn of the additional χn

are sufficiently short that these particles decay promptly.
In this regime, tumbler events which arise as a consequence
of pp → ϕ†ϕ production will often include additional
prompt jets which can be traced back to the primary vertex.
When the number of such jets is large, both triggering and
the reconstruction of DVs from kinematic information
becomes more challenging. Furthermore, when N becomes
large, the contribution to the total event rate from processes
of the form pp → ϕχn and pp → χmχn increases simply as
a result of the multiplicity of the LLPs. For sufficiently
large N, the contribution from these processes to the

effective cross-section σðTÞeff for tumbler events—and to
the effective cross sections for other classes of processes
as well—can overwhelm the contribution from pp → ϕ†ϕ.
In cases in which the τn for one or more of the additional

states are within the DV regime, further complications
arise. The reconstruction of the mn and τn in this case
becomes more challenging, since the tumblers themselves
can involve different sequences of χn, even for decay chains
involving only two DVs. Moreover, tumblers involving
more than two DVs can also arise. Nevertheless, the
methods we have developed in Sec. VI can be generalized
in a straightforward manner. It is still the case, for example,
that the momentum and timing information for the jets
produced by a tumbler involving more than two individual
decay steps is sufficient to permit the reconstruction of the
mn and τn of the LLPs involved in the corresponding decay
chain. In particular, the reconstructed mn distributions
corresponding to the maximal tumbler decay chain—i.e.,
the chain involving the largest possible number of
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individual displaced decay steps—will each exhibit a peak
around the true value of mn. However, the reconstructed
mass distributions of nonmaximal such decay chains will
manifest a more complicated peak structure as a result of
different decay sequences involving the same number of
steps. For example, a two-step decay sequence from χ3 to
χ0 could proceed via χ3 → χ2 → χ0 or χ3 → χ1 → χ0.
Following the procedures we have outlined in this paper
for such two-step decays, a reconstruction of the mass of
the intermediate state would then result in two peaks: one
centered aroundm1 and one centered aroundm2. Of course,
given the limited spatial extent of the tracker and the fact
that lighter χn are typically longer-lived than the heavier χn,
decay chains involving large numbers of steps may be
difficult to resolve in this manner.
Fourth, one could also consider more complicated event

topologies involving LLPs which are themselves produced
at DVs. Indeed, tumblers are merely the simplest example
of such an event topology. More complicated event
topologies in which multiple LLPs are produced at the
same DV are also possible. Such possibilities would result
in a proliferation of decay chains, ultimately leading to
“showers” of LLPs within the collider environment. Of
course, whether or not these showers are detectable as such
depends on the lifetimes of the particles involved.
Fifth, in addition to considering changes in the topology

of the decay chains, one might also consider changes in the
properties of the individual decays themselves, such as their
decay products. In this paper we have focused on models in
which each decay within the tumbler produces two quarks,
ultimately leading to two jets. However, it is also possible
to consider models in which only a single quark is produced
at each DV. In such cases, the techniques we have
employed in this paper for reconstructing DVs would
not be appropriate. However, as discussed above, DVs
can still be reconstructed via a track-based analysis, even in
such cases. Likewise, it is possible to consider models in
which the SM particles produced by LLP decays include
charged leptons as well as quarks and/or gluons. Methods
for reconstructing DVs likewise exist for such cases.
Sixth, our primary aim in this paper has been to

demonstrate that the observation of a tumbler signature
is a viable possibility at the HL-LHC or other near-future
colliders. Thus, while we have shown that there do exist
regions of the parameter space of our example model which
are consistent with current constraints, we have not
undertaken a detailed analysis of exactly where the exclu-
sion contours lie within that parameter space. Recasting
tools such as MadAnalysis 5 [46,47], SModelS [71],
CheckMATE [72], and the computational resources asso-
ciated with the RECAST framework [73,74] can assist in
establishing the locations of these exclusion contours. That
said, a dedicated study along these lines would be valuable,
in light of the numerous subtleties involved in recasting the
results of searches involving DV signatures in order to

constrain more general classes of new-physics scenarios.
We leave such a study for future work.
Finally, in this paper, we have focused on the case in

which both LLPs involved in our (two-step) tumbler decay
chain decay within the collider tracker. One could also
consider the case in which the decay of one or both of these
LLPs occurs within the calorimeters or the muon chamber.
Indeed, searches have been performed by the ATLAS
Collaboration [37] for events involving multiple displaced
decays in which one such decay occurs within the tracker
and the other occurs within these outer layers of the
detector. Moreover, one could also consider the case in
which the lighter LLP escapes the main detector entirely
and decays within an external detector designed specifi-
cally for the purpose of observing LLP decays, such as
MATHUSLA [75] or FASER [76]. By incorporating
information from such dedicated LLP detectors, one would
potentially be able to extend an analysis of the sort we have
performed in this paper across a broader range of LLP
lifetimes. In fact, MATHUSLA may even be capable of
detecting evidence of a tower of LLPs, as discussed in
Refs. [4,77].

ACKNOWLEDGMENTS

We would like to thank Gabriel Facini and Zhen Liu for
discussions. T. L. wishes to thank the EXCEL Scholars
Program for Undergraduate Research at Lafayette
College, which helped to facilitate this research. The
research activities of K. R. D. are supported in part
by the Department of Energy under Grant No. DE-FG02-
13ER41976 (DE-SC0009913) and by the National Science
Foundation through its employee IR/D program. The
research activities of D. K. are supported in part by the
Department of Energy under Grant No. DE-SC0010813.
The research activities of T. L. andB. T. are supported in part
by the National Science Foundation under Grant No. PHY-
1720430. The research activities of B.T. are also supported
in part by the National Science Foundation under Grant No.
PHY-2014104. The opinions and conclusions expressed
herein are those of the authors, and do not represent any
funding agencies.

APPENDIX: VERTEXING PROCEDURE

We consider a pair of SM particles A and B which we
assume to have been produced at the same vertex within a
collider detector. We refer to the lab-frame three-momenta
of these particles as p⃗A and p⃗B, and we refer to the lab-
frame coordinates at which they exit the tracker as r⃗A and
r⃗B. The trajectories of these particles lie along two lines
which are described parametrically by

R⃗AðaÞ≡ r⃗A þ ap⃗A;

R⃗BðbÞ≡ r⃗B þ bp⃗B: ðA1Þ
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A value of a or b identifies a particular location along the
corresponding line.
Given that A and B are produced at the same vertex, the

lines in Eq. (A1) will intersect at the vertex location,
assuming r⃗A, r⃗B, p⃗A, and p⃗B are all measured with infinite
precision. However, in an actual experiment, measurement
uncertainties in these quantities will typically result in the
lines passing very close to each other, but not actually
intersecting. We can obtain a best estimate for the inter-
section point by identifying the values of a and b for which

the vector D⃗ða; bÞ≡ R⃗AðaÞ − R⃗BðbÞ is perpendicular to
both lines—i.e., for which

D⃗ða; bÞ · p⃗A ¼ 0;

D⃗ða; bÞ · p⃗B ¼ 0: ðA2Þ

Solving the system of equations in Eq. (A2) for a and b,
we find that

a ¼ −p⃗A · ðr⃗A − r⃗BÞjp⃗Bj2 þ p⃗B · ðr⃗A − r⃗BÞðp⃗A · p⃗BÞ
jp⃗Aj2jp⃗Bj2 − ðp⃗A · p⃗BÞ2

;

b ¼ p⃗B · ðr⃗A − r⃗BÞjp⃗Aj2 − p⃗A · ðr⃗A − r⃗BÞðp⃗A · p⃗BÞ
jp⃗Aj2jp⃗Bj2 − ðp⃗A · p⃗BÞ2

: ðA3Þ

Evaluating R⃗AðaÞ and R⃗BðbÞ at these values of a and b and
taking the midpoint between them, we obtain an estimate
for the location of the corresponding vertex.
We emphasize that this vertexing procedure not only

provides a way of pinpointing the location of a vertex from
the measured momenta of a pair of particles produced at
that vertex, but can also be used in order to assess whether
or not two particles in the event were in fact produced at the
same vertex. In cases in which the two particles were in fact
produced at the same vertex, the magnitude of the vector
D⃗ða; bÞ, when evaluated at the values of a and b in
Eq. (A3), will be extremely small. By contrast, if the
particles were not in fact produced at the same vertex,
jD⃗ða; bÞj, when evaluated at the corresponding values of a
and b, typically will be far larger.
The processes that we have considered in this paper yield

up to ten jets emanating from up to five displaced vertices
when both decay chains are included. For the reasons
discussed above, it is very unlikely that identifying unrelated
pairs of jets as coming from the same vertex will result in
small minimum values of jDða; bÞj. Thus by considering
different pairwise combinations of jets and evaluating their
minimumvalues of jDða; bÞj, it should be relatively straight-
forward to correctly identify those that emanate from the
same vertex. We therefore expect the combinatorial back-
ground from misidentifications of jet pairs to be negligible.
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