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In this paper, we calculate the QCD nonperturbative contributions of the neutrino-quark tensor operators
to the neutrino magnetic moments by matching onto the chiral perturbation theory at low energies. These
nonperturbative contributions can be compared to the perturbative ones, which are induced from one-loop
mixing when performing the renormalization group evolutions from μ ¼ mW down to μ ¼ 2 GeV. We then
constrain the dipole and tensor Wilson coefficients of the low-energy neutrino effective field theory
(LNEFT) separately from the neutrino-electron scattering with Borexino data and coherent elastic neutrino-
nucleus scattering (CEνNS) with COHERENT data to show the competition between these two
contributions, at the renormalization scales μ ¼ 2 GeV and μ ¼ mW in the MS scheme. In the
neutrino-electron scattering, it is found that the nonperturbative contributions dominate for the coefficients
involving up and down quarks, while they are expected to be of the same order of magnitude as the
perturbative contributions for the coefficients involving strange quarks. As for constraints in the CEνNS,
the tensor operators can contribute to the process through either direct or indirect ways. As a result, the
indirect contributions including nonperturbative and perturbative parts for all couplings become negligible
in comparison to the direct ones. As the nonperturbative contributions crucially depend on the value of cT ,
its inputs will affect the extraction of limits on the tensor LNEFT Wilson coefficients. We compute the
upper bounds on these coefficients with cT quoting from the model and lattice estimates.
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I. INTRODUCTION

The neutrino magnetic moment (NMM) plays an impor-
tant role in the exploration of new physics (NP) beyond the
Standard Model (SM). In the minimal extension of the SM
with three right-handed neutrinos, the NMM can occur at
loop level with external photon attaching to the charged
leptons in the loops, and its magnitude depends on the input
of the neutrino mass mν. Given mν ≤ 1 eV, the NMM is
predicted to be less than a few × 10−19μB [1–5], with μB ¼
e=2me standing for the Bohr magneton. This is far below
the best upper bounds from the terrestrial experiments
GEMMA (based on reactor neutrinos sources) [6] and
Borexino (based on solar neutrinos sources) [7], which are
of order Oð10−11ÞμB. Nevertheless, the NMMs are not
necessary to be proportional to the neutrino mass in the

presence of NP, so their magnitudes may be much larger
that they can reach the detection sensitivity of current or
future experiments. For a comprehensive review on this
regard, one is referred to Ref. [8].
As the processes relevant to the NMMs usually occur at

the energies that are far below the electroweak scale ΛEW, a
general model-independent treatment is to employ the low
energy effective field theory (LEFT) [9,10], with respect to
SUð3ÞC ×Uð1Þem gauge symmetries, to describe the NP
impacts from higher scales. However, since the LEFT only
contains left-handed neutrinos νL, one can merely construct
lepton number violating (LNV) operators, which are
chirality flipping, for left-handed Majorana neutrinos
transition magnetic moments. To include also lepton
number conserving (LNC) operators for Dirac NMMs,
one has to extend the LEFT with right-handed neutrinos
NR, the resulting effective field theory of which is now well
known as low-energy neutrino effective field theory
(LNEFT) (see e.g., Refs. [11,12]). If we further assume
that the NP is from the scale well above ΛEW, then the SM
effective field theory (SMEFT) [13–16] augmented with
right-handed neutrinos (SMNEFT) [17–22], with respect to
the SM gauge symmetries SUð3ÞC × SUð2ÞL × Uð1ÞY , will
provide an adequate description to these interactions at the
domain from ΛEW up to NP scale ΛNP. After matching the
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LNEFT operators onto the SMNEFT operators at ΛEW and
taking into account the renormalization group (RG) run-
ning effects, one can then translate the bounds obtained
from low-energy processes into the constraints at ΛNP.
In the LNEFT, the leading operators that contribute to the

NMMs are the dimension-5 dipole operators. In addition to
the dipole operators, there are a subset of dimension-6
tensor operators, which describe the neutrino-lepton and
neutrino-quark interactions, that can also contribute to the
NMMs. When working at the renormalization scale μ ¼
2 GeV at which perturbation theory is still valid, the heavy
quarks can be integrated out, leaving the leptons together
with three light quarks q ¼ u, d, s as the active degrees of
freedom. In the perturbative scales (μ ≥ 2 GeV), the tensor
operators can contribute to the NMMs via one-loop
Feynman diagram, see Fig. 1. Such a diagram can stem
from, e.g., the minimal left-right symmetric model [23–25]
or the R̃2 scalar leptoquark model [26], see Appendix B for
more details. As for energies below 2 GeV, the non-
perturbative effects induced from the neutrino-quark inter-
actions will be of importance, and are needed to be taken
into account carefully.
In this work, we shall follow a similar procedure which

computes the nonperturbative effects in the charged lepton
flavor violating (CLFV) process μ → eγ in Ref. [27]; the
nonperturbative effects in the NMMs can be obtained by
matching the dimension-6 LNEFT tensor operators onto
the operators of chiral perturbation theory (χPT) with
tensor external sources [28–31]. We find that the non-
perturbative contributions from the tensor operators to the
dipole operators are of order Liγ ∼ eðF2

π=ΛχÞLT;AA
iq , where

i ∈ ðνN; ν; NÞ and A ∈ ðL;RÞ. These results can be com-
pared to the perturbative contributions, which are of order
Liγ ∼ emq=ð16π2ÞLT;AA

iq , and are obtained from one-loop
mixing when taking into account the RG running from μ ¼
ΛEW down to μ ¼ 2 GeV. To show the competition

between these two effects, we will constrain the relevant
LNEFT Wilson coefficients separately from the neutrino-
electron scattering with the Borexino data [7] and coherent
elastic neutrino-nucleus scattering (CEνNS) with the
COHERENT data [32]. For more details, readers are
referred to Secs. II and III.
This paper is outlined as follows. In Sec. II, we will

introduce the relevant operators which have contributions
to the NMMs in LNEFTas well as χPT, and then match the
corresponding Wilson coefficients of the two theories at
μ ¼ 2 GeV. The numerical bounds on the Wilson coef-
ficients of LNEFT dipole and tensor operators at renorm-
alization scales μ ¼ 2 GeV and μ ¼ mW will be given in
Sec. III. Our conclusions are drawn in Sec. IV.

II. MATCHING LNEFT TO χPT

In this section we will briefly introduce the building
blocks that are required for this work. We will first list the
relevant LNEFT operators; the RG equations for the
respective Wilson coefficients are also given. The LNEFT
operators should be matched onto the SMNEFT operators if
NP is from the scale well above the electroweak. Then the
nonperturbative effects can be computed by matching the
LNEFT operators onto the low-energy operators of χPT.

A. LNEFT and RG evolutions

The LNEFT Lagrangian, with respect to SUð3ÞC ×
Uð1Þem gauge symmetries, can be written schematically
as [9–12]

LLNEFT ¼ Ld≤4 þ
X
d≥5

X
i

LðdÞ
i OðdÞ

i ; ð2:1Þ

where the first term in the right side consists of the normal
QED and QCD terms of the SM light particles (the heavy
particles h,W, Z, and t have been integrated out) as well as
the Majorana kinetic and mass terms of left- and right-
handed neutrinos, whereas the second term includes the

dimension-d (d ≥ 5) operator OðdÞ
i with the corresponding

Wilson coefficient LðdÞ
i . When encoding the right-handed

neutrinos in LNEFT, we have assumed that they are light
particles with masses well below ΛEW. In principle, the
flavors of the right-handed neutrinos can be arbitrary, albeit
many experiments implicitly suppose that there are three,
with one flavor for each generation. As we are interested in
the nonperturbative effects in the NMMs, this would
involve the dimension-5 dipole operators as well as the
dimension-6 neutrino-quark interacting operators. The rel-
evant effective operators can be classified into two subsets,
i.e., the LNC and LNV operators [11,12]. Adopting the
notations used in Ref. [9], we collect the relevant LNC
(jΔLj ¼ 0) LNEFT operators in Table I and list the LNV
(jΔLj ¼ 2) operators in Table II. For the notations of the
Wilson coefficients, we use the same subscripts and super-
scripts as the operators, for instance LV;LL

νu
prwt

together with

FIG. 1. Feynman diagram describing the neutrino-lepton or
neutrino-quark tensor interacting operators (crossed circle) con-
tribute to the Dirac NMMs via one-loop mixing. Similar diagram
describing the Majorana transition NMMs can be obtained by
replacing νLðNRÞ with Nc

RðνcLÞ, meanwhile the off-diagonal
flavor condition p ≠ r should be understood due to the
charge-conjugation, parity-transformation, and time-reversal
(CPT) conservation.
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OV;LL
νu

prwt
, where p, r, w, t are quark or neutrino flavor indices.

The charge conjugation of a left-handed neutrino νcL ¼ Cν̄TL
(C ¼ iγ2γ0) is a right-handed field, while the charge con-
jugation of a right-handed neutrino Nc

R ¼ CN̄T
R is a left-

handed field. The operators grouped in each table are
classified according to the chirality L and R of the fermion
bilinears. The complete set of the operators in other
notations can also be found in Refs. [11,12].
As the perturbative property of QCD is valid in the

domain from μ ¼ 2 GeV up to ΛEW, to compute the
perturbative contributions to NMMs via Fig. 1, one has
to take into account the running and mixing effects of the
relevant Wilson coefficients, which are governed by the RG
equations. Working in the MS renormalization scheme, the
RG equation for the Wilson coefficients can be written
schematically as

_LðμÞ≡ 16π2μ
dLðμÞ
dμ

¼ γ̂ðμÞLðμÞ; ð2:2Þ

with

LðμÞ ¼ ðL1ðμÞ; L2ðμÞ; � � �ÞT: ð2:3Þ

Here, μ is the renormalization scale, and γ̂ðμÞ is the
anomalous dimension matrix which is function of QCD
and QED gauge couplings. When running the Wilson
coefficients from a high scale μh down to a low scale μl,
the approximate analytic solution of the RG equation in
Eq. (2.2) reads [33,34]

LIðμlÞ ¼ LJðμhÞλaJ
�
δJI −

α

4π
γ̃eJI log

μh
μl

�
; ð2:4Þ

TABLE I. The LNC (jΔLj ¼ 0) LNEFT operators including
dimension-5 neutrino dipole operators and dimension-6 neutrino-
quark interacting operators.

ðL̄RÞX þ H:c:

OνNγ ðν̄LpσμνNRrÞFμν

ðL̄LÞðL̄LÞ
OV;LL

νu ðν̄LpγμνLrÞðūLwγμuLtÞ
OV;LL

νd ðν̄LpγμνLrÞðd̄LwγμdLtÞ

ðR̄RÞðR̄RÞ
OV;RR

Nu ðN̄Rpγ
μNRrÞðūRwγμuRtÞ

OV;RR
Nd ðN̄Rpγ

μNRrÞðd̄RwγμdRtÞ

ðL̄LÞðR̄RÞ
OV;LR

νu ðν̄LpγμνLrÞðūRwγμuRtÞ
OV;LR

νd ðν̄LpγμνLrÞðd̄RwγμdRtÞ
OV;LR

uN ðūLpγμuLrÞðN̄RwγμNRtÞ
OV;LR

dN ðd̄LpγμdLrÞðN̄RwγμNRtÞ

ðL̄RÞðL̄RÞ þ H:c:

OS;RR
νNu

ðν̄LpNRrÞðūLwuRtÞ
OS;RR

νNd ðν̄LpNRrÞðd̄LwdRtÞ
OT;RR

νNu
ðν̄LpσμνNRrÞðūLwσμνuRtÞ

OT;RR
νNd ðν̄LpσμνNRrÞðd̄LwσμνdRtÞ

ðL̄RÞðR̄LÞ þ H:c:

OS;RL
νNu

ðν̄LpNRrÞðūRwuLtÞ
OS;RL

νNd ðν̄LpNRrÞðd̄RwdLtÞ

TABLE II. The LNV (jΔLj ¼ 2) LNEFT operators including
dimension-5 neutrino dipole operators and dimension-6 neutrino-
quark interacting operators.

ðR̄LÞX þ H:c:

Oνγ ðν̄cLpσμννLrÞFμν

ðL̄RÞX þ H:c:

ONγ ðN̄c
Rpσ

μνNRrÞFμν

ðR̄RÞðL̄LÞ þ H:c:

OV;RL
νNu

ðν̄cLpγμNRrÞðūLwγμuLtÞ
OV;RL

νNd ðν̄cLpγμNRrÞðd̄LwγμdLtÞ

ðR̄RÞðR̄RÞ þ H:c:

OV;RR
νNu

ðν̄cLpγμNRrÞðūRwγμuRtÞ
OV;RR

νNd ðν̄cLpγμNRrÞðd̄RwγμdRtÞ

ðR̄LÞðR̄LÞ þ H:c:

OS;LL
νu ðν̄cLpνLrÞðūRwuLtÞ

OS;LL
νd ðν̄cLpνLrÞðd̄RwdLtÞ

OT;LL
νu ðν̄cLpσμννLrÞðūRwσμνuLtÞ

OT;LL
νd ðν̄cLpσμννLrÞðd̄RwσμνdLtÞ

ðR̄LÞðL̄RÞ þ H:c:

OS;LR
νu ðν̄cLpνLrÞðūLwuRtÞ

OS;LR
νd ðν̄cLpνLrÞðd̄LwdRtÞ

OS;LR
uN ðūRpuLrÞðN̄c

RwNRtÞ
OS;LR

dN ðd̄RpdLrÞðN̄c
RwNRtÞ

ðL̄RÞðL̄RÞ þ H:c:

OS;RR
Nu ðN̄c

RpNRrÞðūLwuRtÞ
OS;RR

Nd ðN̄c
RpNRrÞðd̄LwdRtÞ

OT;RR
Nu ðN̄c

Rpσ
μνNRrÞðūLwσμνuRtÞ

OT;RR
Nd ðN̄c

Rpσ
μνNRrÞðd̄LwσμνdRtÞ
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where α ¼ e2=4π is the fine structure constant, and

λ ¼ αsðμhÞ
αsðμlÞ

; aJ ¼
γsJ
2β0

; γ̃eJI ¼ γeJIfJI; ð2:5Þ

with β0 ¼ ð11NC − 2nfÞ=3 (NC ¼ 3 is the color number
and nf is the active quark number), γsJ and γeJI denote,
respectively, the QCD and QED anomalous dimensions,
and the definition of function fJI in the reduced QED
anomalous dimension γ̃eJI is

fJI ¼
1

1þ aJ − aI

λaI−aJ − λ

1 − λ
: ð2:6Þ

Explicitly, in Appendix A we list the RG equations for
Wilson coefficients of both LNC and LNV dimension-5
dipole operators as well as dimension-6 neutrino-quark
interacting operators that we will use in Eqs. (A1) and (A2).
Note that the vector operators are not renormalized at one-
loop level due to the QED and QCD Ward identities. It is
clear from Eqs. (A1) and (A2) that the tensor operators can
mix into the dipole operators when performing the RG
evolutions. Besides, at one-loop level there is no mixing
that occurs between scalar and tensor operators for neu-
trino-quark interactions, which is contrary to the large
mixing effects of the same type of operators for charged
lepton-quark interactions [27,34].
If we further assume that the NP is from the scale well

above ΛEW, then the physics at the domain from ΛEW up to
ΛNP can be described by the SMNEFT Lagrangian [17–22]

LSMNEFT ¼ LSMþN þ
X
d≥5

X
i

CðdÞ
i QðdÞ

i ; ð2:7Þ

where LSMþN is the SM Lagrangian extended with right-

handed neutrinos NR, whereas QðdÞ
i and CðdÞ

i are the
dimension-d (d ≥ 5) operators and their respective
Wilson coefficients. The SMNEFT Lagrangian in
Eq. (2.7) respects the SUð3ÞC × SUð2ÞL × Uð1ÞY gauge
symmetries. In order to translate the bounds from the low-
energy physical processes into the constraints at ΛNP, we
need four steps: matching at experimental scale ΛExp,
running up to ΛEW, matching at ΛEW, then running up to
ΛNP. The RG equations of the SMNEFTWilson coefficients
with the one-loop anomalous dimensions from electroweak
gauge as well as Yukawa corrections have been calculated in
Refs. [35–39]. As for operator matching of LNEFT and
SMNEFTatΛEW, readers are referred to Refs. [9,11,12,37].

B. χPT and operator matching

The χPT is valid below the chiral symmetries breaking
scale Λχ ∼ 4πFπ [40], with the physical pion decay con-
stant Fπ ¼ 92.3ð1Þ MeV. For energies well below Λχ, the
light quark bilinears can be matched onto the χPT

operators. Such a matching has already been carried out
in the charged lepton sector [27], as well as the neutrino
sector [41], with the external fields derived from the LEFT.
In this work, we will follow a similar procedure done in
Ref. [27] for the computation of nonperturbative effects in
the CLFV process μ → eγ, and calculate the nonperturba-
tive effects in the NMMs with the external sources induced
from the LNEFT as follows.
We start with the massless QCD Lagrangian extended

with quarkbilinears coupling to external sources [27,29–31]1

L ¼ L0
QCD þ Lext

¼ L0
QCD þ q̄LγμlμqL þ q̄RγμrμqR þ q̄LSqR

þ q̄RS†qL þ q̄LσμνtμνqR þ q̄Rσμνt
†
μνqL; ð2:8Þ

where q ¼ ðu; d; sÞT , and lμ, rμ, S, and tμν are 3 × 3
Hermitianmatrices in flavor space, denoting the left-handed,
right-handed, scalar, and tensor external sources, respec-
tively. The corresponding χPT Lagrangian, which describes
the strong interactions of the dynamical meson fields
ðπ; K; ηÞ and their couplings to the external sources, have
been worked out in Refs. [29–31]. The χPT is based on the
global SUð3ÞL × SUð3ÞR flavor symmetries spontaneously
broken down to SUð3ÞV , so their interactions can be
completely described by the Goldstone dynamics. The
nonlinear realization of the theory is embedding the
Goldstone octet into the matrix representation U, with

U ¼ exp

�
i
Φ
F0

�
;

Φ ¼ λaϕa ¼

0
BBBB@

π0 þ 1ffiffi
3

p η
ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþ

ffiffiffi
2

p
π− −π0 þ 1ffiffi

3
p η

ffiffiffi
2

p
K0

ffiffiffi
2

p
K−

ffiffiffi
2

p
K̄0 − 2ffiffi

3
p η

1
CCCCA;

ð2:9Þ

whereF0 is the pion decay constant in the chiral limit,ϕa are
the Goldstone bosons, and λa (a ¼ 1;…; 8) are the Gell-
Mannmatrices satisfying the trace relation TrðλaλbÞ ¼ 2δab.
The U matrix transforms as U → RUL† under the chiral
symmetries, with LðRÞ ∈ SUð3ÞLðRÞ. By making use of the
external field method [29], the neutrino bilinears together
with the accompaniedWilson coefficients inEq. (2.1), can be
treated as external sources (which behave as spurion fields
[27]) that follow the chiral symmetries and are endowedwith
the following chiral power counting:

lμ∼OðpÞ; rμ∼OðpÞ; S∼Oðp2Þ; tμν∼Oðp2Þ;
ð2:10Þ

1We adopt the notations used in Ref. [27].

CHEN, ZHENG, and ZHANG PHYS. REV. D 106, 095009 (2022)

095009-4



in which they can be organized in order into the χPT
Lagrangian. Then the Green function of quark bilinears
can be obtained by taking the functional derivatives with
respect to the external sources.
The external sources may come from either the SM or

NP, so we can explicitly split them into two parts [27]:

lμ↦ lμþ l̃μ; rμ↦ rμþ r̃μ; S↦Sþ S̃; tμν↦ tμνþ t̃μν;

ð2:11Þ

where S, lμ, rμ, and tμν in the right side of each piece
describes the quark mass matrix and the couplings to
electromagnetic field:

S↦−M†; lμ↦−eQAμ; rμ↦−eQAμ; tμν↦ 0;

ð2:12Þ

with M ¼ diagðmu;md;msÞ and Q ¼ diagð2=3;−1=3;
−1=3Þ, while S̃, l̃μ, r̃μ, and t̃μν encode the contributions
from the higher dimensional operators of LNEFT. Here we
are only concerned with terms that are linear in the LNEFT
sources, since the Wilson coefficients contain a suppressed
factor 1=Λ2

EW or 1=Λ2
NP and that the higher order terms can

be neglected safely [27].
As discussed in Ref. [27], the matrix element via a scalar

operator to a physical photon hγðp; ϵÞjSj0i vanishes due to
Lorentz and gauge invariance, whereas the matrix element
via a vector operator to a physical photon hγðp; ϵÞjVμj0i
also vanishes due to gauge invariance as well as the on-shell
photon condition. Hence only the tensor operator contrib-
utes to μ → eγ. The results can also be obtained from the
observation that, at the leading order ofU matrix expansion
(U ¼ 1), there is no Fμν term in the scalar χPT Lagrangian,
whereas only the term proportional to ∂νFμν is in the vector
χPT Lagrangian [27]. This observation also holds for the
case of the NMMs, since in the χPT the external fields are
model independent and they can be endowed with any
possible physical implication. Given that our aim is to
investigate the nonperturbative effects in the NMMs, that
will only involve the dimension-5 dipole operators and
dimension-6 tensor operators of LNEFT. Therefore, we
only write down the matching from the LNEFT tensor
operators onto the χPT operators with tensor external
sources. For operators matching included the scalar and
vector operators between the two theories, one is referred to
Ref. [27]. The matching up to chiral counting Oðp4Þ is
given by [27]

q̄Lσμνt̃μνqR → Λ1ht̃μνðUFμν
L þ Fμν

R UÞi
þ iΛ2ht̃μνDμUU†DνUi þOðp6Þ; ð2:13Þ

where DμU ¼ ∂μU − irμU þ iUlμ denotes the covariant
derivative for Goldstone bosons, Λ1;2 are the tensor

nonperturbative low-energy constants [27,31], and h� � �i
stands for the trace in flavor space. The matching of
q̄Rσμνt̃

†
μνqL is given by the Hermitian conjugate of

Eq. (2.13). Making use of Eq. (2.12), the electromagnetic
fields are contained in the field strength tensors Fμν

L;R of
Eq. (2.13), with Fμν

L ¼ ∂μlν − ∂νlμ − i½lμ; lν� and
Fμν
R ¼ ∂μrν − ∂νrμ − i½rμ; rν�. Then the matching from

LNEFT tensor operators onto χPT operators with tensor
external sources is straightforward:

ðν̄LpσμνNRrÞðq̄LσμνqRÞ → −2eQqΛ1ðν̄LpσμνNRrÞFμν

þOðp6Þ; ð2:14Þ

ðν̄cLpσμννLrÞðq̄RσμνqLÞ → −2eQqΛ1ðν̄cLpσμννLrÞFμν

þOðp6Þ; ð2:15Þ

ðN̄c
Rpσ

μνNRrÞðq̄LσμνqRÞ → −2eQqΛ1ðN̄c
Rpσ

μνNRrÞFμν

þOðp6Þ; ð2:16Þ

whereFμν ¼ ∂μAν − ∂νAμ denotes the photon field-strength
tensor. Comparing terms in the right side of Eqs. (2.14)–
(2.16) with the dipole operators listed in Tables I and II, one
immediately obtains the following additional nonperturba-
tive contributions to the dipole operators:

δLνNγ
pr

¼ ecT
F2
π

Λχ

�
2

3
LT;RR

νNd
prdd

þ 2

3
LT;RR

νNd
prss

−
4

3
LT;RR

νNu
pruu

�
; ð2:17Þ

δLνγ
pr
¼ ecT

F2
π

Λχ

�
2

3
LT;LL

νd
prdd

þ 2

3
LT;LL

νd
prss

−
4

3
LT;LL

νu
pruu

�
; ð2:18Þ

δLNγ
pr
¼ ecT

F2
π

Λχ

�
2

3
LT;RR

Nd
prdd

þ 2

3
LT;RR

Nd
prss

−
4

3
LT;RR

Nu
pruu

�
; ð2:19Þ

where in the right side of each equality we have used the
formula

Λ1 ∼ cT
F2
π

Λχ
¼ cT

Λχ

16π2
; ð2:20Þ

which is obtained with the naive dimensional analysis
(NDA) [40,42]. For numerical input of the constant cT , the
model estimate of Ref. [43] gives cT ≈ −3.2, while using
the lattice input [44] combined with χPT developed in
Ref. [31] and the resonance chiral theory (RχT) [45,46]
yields cT ≈ −1.0ð2Þ [47–50]. Note that the two published
estimates of cT disagreed with each other by the amount
ð3.2 − 1.0Þ=0.2 ¼ 11σ; this considerable uncertainty will
affect the extractions of limits on the LNEFT coefficients.
We will detail this aspect in next section. As stated in
Sec. I, both the Wilson coefficients LT;AA

iq and cT in
Eqs. (2.17)–(2.19) are evaluated at the renormalization
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scale μ ¼ 2 GeV. Note that, however, the μ dependence
due to gluon corrections cancels in their product [27].

III. CONSTRAINTS AND DISCUSSIONS

In this section, we shall constrain the Wilson coefficients
of LNEFT dipole and tensor operators from two processes
that the NMMs have contributions: the neutrino-electron
scattering and the CEνNS. The right-handed neutrinos mass
mNR

in LNEFT can be arbitrary, so one can always
investigate the bounds for parameters that are of mNR

dependence. Nevertheless, since our aim in this paper is
to study the nonperturbative effects of NMMs, a fixed value
ofmNR

will be sufficient to illustrate our purpose. Therefore,
for simplicity wewill restrict ourselves to the massless limit:
mNR

→ 0. We also assume that the coefficients are real for
simplicity, and work under the “single-coefficient-domi-
nance” assumption for the purpose of obtaining the maxi-
mum upper bounds on the LNEFT coefficients. Note,
however, that we need to stress that in a realistic UV
complete model, there is no reason to believe that only a
single operator is present at the experiment scale. Therefore,
in general, when one uses experimental constraints to put
limits on coefficients of operators in effective Lagrangians,
the constraints are on a multidimensional space, since many
different operators contribute and their coefficients are often
complex. Besides, we will also neglect the contributions
fromotherLNEFToperators,which have beenworked out in
the literatures, see e.g., Refs. [12,37,51–57]. We will first
present the constraints at the renormalization scale
μ ¼ 2 GeV; the results then can be evolved onto the values
at scale μ ¼ ΛEW (which we choose ΛEW ¼ mW) by
performing the RG equations. This procedure allows us
to display the competition between the nonperturbative and
perturbative effects in different processes.
Given that the experiment scales where the Borexino and

COHERENT take place are below the 2 GeV reference RG
scale, to estimate nonperturbative effects at the reference
scale, we need to run the experiment bounds from the lower
energies up to 2 GeV. For CEνNS in the COHERENT
experiment, although the neutrino energies involved are in
the range 20–50 MeV that is far below 2 GeV, the RG scale
for this experiment can be chosen to be about 1 GeV, which
corresponds to the mass of the nucleus in the effective field
theory; below that scale the contributions to the matrix
elements are described by the nucleon form factors, see
Sec. III B for more details. As both QCD and QED running
effects for the relevant coefficients from 1 GeV to 2 GeVare
very small, they can be neglected safely. It is noteworthy
that with the same COHERENT data the bounds on the
Wilson coefficients at the renormalization scales 1 GeV as
well as 2 GeV have also been studied, respectively, in
Refs. [12,37]. As for neutrino-electron scattering in
Borexino, similarly, the RG scale for the experiment can
be taken as the electron mass, 0.5 MeV, which is orders of

magnitude smaller than 2 GeV. With the assumption that
the scattering is triggered by the neutrino magnetic
moments, which are described by the LNEFT dipole
operators, we need to run the corresponding dipole coef-
ficients from 0.5 MeV up to 2 GeV. Fortunately, as shown
in Eqs. (A1) and (A2) the self-renormalization for the
dipole coefficients is governed by the pure QED RG
equations,

_Liγ
pr
¼ −b0;ee2Liγ

pr
; i ¼ ν; N; νN; ð3:1Þ

and their exact solutions are

Liγ
pr
ðμ2Þ ¼

�
αðμ1Þ
αðμ2Þ

�−b0;e
2b0;e Liγ

pr
ðμ1Þ; μ2 < μ1: ð3:2Þ

With μ1 ¼ 2 GeV and μ2 ¼ 0.5 MeV, we obtain

Liγ
pr
ð0.5 MeVÞ ≈ 0.994Liγ

pr
ð2 GeVÞ; ð3:3Þ

which is the corollary of the small value as well as the small
running effect of the QED coupling. This implies that the
dipole coefficients at 2 GeVare extremely close to the ones
at experiment scales. Therefore, it is safe for us to take the
values of the Wilson coefficients at the experiment scales as
the ones at 2 GeV, which ensures that we can reliably
estimate the nonperturbative effects at 2 GeV.

A. Neutrino-electron scattering

Up to date, the most stringent bounds for NMMs on the
terrestrial experiments are from the (anti-) neutrino-electron
scattering. For instance, this can be applied to the short-
baseline GEMMA experiment with reactor antineutrinos
[6], and to the long-baseline Borexino experiment with
solar neutrinos [7]. The XENON1T excess may also be
explained by the neutrino-electron scattering mediated by
NMM [58], with neutrinos emitted from solar; for more
dedicated studies in this regard see e.g., Refs. [55–57].
In the presence of additional NMM, the total differential

cross section for neutrino-electron scattering can be written
as [59]

dσνeS
dEr

¼ dσSM
dEr

þ αμ2ν

�
1

Er
−

1

Eν

�
; ð3:4Þ

where Er denotes the recoil electron kinetic energy, whereas
Eν is the incoming neutrino energy. In Eq. (3.4), μν is an
effective magnetic moment, which accounts for the neutrino
mixing and oscillations information, and is a function of the
propagation distance L from the source to the scattering
point and neutrino energy Eν [7],

μ2νðL; EνÞ ¼
X
j

����
X
k

μjkAkðL;EνÞ
����
2

; ð3:5Þ
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where μjk is an element of the NMMs matrix (in the
neutrino mass eigenstates), and AkðL;EνÞ is the amplitude
of the k-mass state at the point of scattering [7,60]. The
initial neutrino of the scattering can be determined, but the
final state of neutrino can be arbitrary due to its invisible
property. Thus, Eq. (3.4) allows us to constrain coefficients
of different types of neutrino dipole operators. In Eq. (3.4),
the expression for neutrino-electron scattering in the SM is
given by [61,62]:

dσSM
dEr

¼G2
Fme

2πE2
ν
½g2þE2

ν þ g2−ðEν −ErÞ2− gþg−meEr�; ð3:6Þ

whereGF is the Fermi constant,me is the electron mass, and
8><
>:

gþ ¼ 2 sin2 θW þ 1 for ν ¼ νe

gþ ¼ 2 sin2 θW − 1 for ν ¼ νμ;τ

g− ¼ 2 sin2 θW for ν ¼ νe;μ;τ

; ð3:7Þ

with θW being the Weinberg angle and numerically
sin2 θW ¼ 0.23857 [63]. The inputs of gþ for νe and νμ;τ
are different because either charged or neutral weak current
has the contribution to the νe − e scattering, while only
neutral weak current can contribute to the νμ;τ − e scattering.
A similar expression for the antineutrino-electron scattering
can be obtained by simply exchanging the positions of gþ
and g− in Eq. (3.6) [62].
We focus on the upper constraints from the terrestrial

experiments. Using the solar neutrinos as the sources,
the Borexino experiment gives the most stringent upper
bound on the NMM, which at the 90% confidence level (CL)
reads [7]

μν < 2.8 × 10−11μB: ð3:8Þ

Similarly, another terrestrial experiment, GEMMA, which
uses the reactor antineutrinos as sources, obtains a slightly
weaker bound at the 90% CL [6],

μν < 2.9 × 10−11μB: ð3:9Þ
Here, we shall adopt the result of Eq. (3.8) in our

numerical analysis. For the purpose to simplify the numeri-
cal computations, we assume that the Dirac NMMs are
flavor diagonal and universal, then the dependence on the
oscillation parameters cancels out. Similarly, we also
assume that all the Majorana transition magnetic moments
carry the same value. Therefore, the effective magnetic
moment μν measured from Borexino can connect to the
Wilson coefficients of LNEFT dipole operators via the
following relation:

μ2ν ¼
8<
:

j2Liγ
pr
j2 for i ¼ νN

j4Liγ
pr
j2 for i ¼ ν

: ð3:10Þ

The limits for the LNEFT coefficients then can be read off
directly after combining Eqs. (3.8) and (3.10). Using the
one-operator-at-a-time constraint, we collect in Tables III
and IV the upper bounds for the Wilson coefficients of
the LNC and LNV LNEFT dipole and tensor operators at the
renormalization scales μ ¼ 2 GeV as well as μ ¼ mW . The
bounds are given in units of GeV−1 for the dipole coef-
ficients (d ¼ 5), while those for tensor coefficients (d ¼ 6)
are in units of GeV−2. The tensor operators can contribute to
neutrino-electron scattering through two ways: on the one

TABLE III. Upper bounds for Wilson coefficients of the LNC LNEFT dipole and tensor operators (with l ¼ e, μ,
τ) obtained from neutrino-electron scattering in Borexino [7]. The results in the second (fourth) row for the
corresponding coefficients in first (third) row are obtained at the renormalization scale μ ¼ 2 GeV (μ ¼ mW). In the
third row, the parameter cT in the parentheses indicates the nonperturbative contributions, while the remaining
values represent the relative perturbative contributions.

μ ¼ 2 GeV jLνNγ
ll
j jcTLT;RR

νNu
lluu

j jcTLT;RR
νNd
lldd

j jcTLT;RR
νNd
llss

j
½GeV4−d� 4.2 × 10−9 1.4 × 10−6 2.8 × 10−6 2.8 × 10−6

μ ¼ mW jLνNγ
ll
j jðcT − 0.08ÞLT;RR

νNu
lluu

j jðcT − 0.18ÞLT;RR
νNd
lldd

j jðcT − 3.55ÞLT;RR
νNd
llss

j

½GeV4−d� 4.3 × 10−9 1.6 × 10−6 3.3 × 10−6 3.3 × 10−6

TABLE IV. The same for Wilson coefficients of the LNV LNEFT dipole and tensor operators. The dipole and
tensor operators are antisymmetric in the flavor indices, so only those with p ≠ r are nonvanishing.

μ ¼ 2 GeV jLνγ
pr
j jcTLT;LL

νu
pruu

j jcTLT;LL
νd

prdd
j jcTLT;LL

νd
prss

j
½GeV4−d� 2.1 × 10−9 0.7 × 10−6 1.4 × 10−6 1.4 × 10−6

μ ¼ mW jLνγ
pr
j jðcT − 0.08ÞLT;LL

νu
pruu

j jðcT − 0.18ÞLT;LL
νd

prdd
j jðcT − 3.55ÞLT;LL

νd
prss

j

½GeV4−d� 2.2 × 10−9 0.8 × 10−6 1.7 × 10−6 1.7 × 10−6
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hand, the tensor operators can contribute to the dipole
operators through the nonperturbative matching effects
which are proportional to cT , and, on the other hand, the
RG evolutions from μ ¼ mW down to μ ¼ 2 GeV induce
perturbative mixing contributions to the coefficients of
the dipole operators which are independent of cT . Clearly,
as the magnitude of cT is of order Oð1Þ, the numerical
results in the third rows of Tables III and IV imply that the
nonperturbative contributions dominate for the LNEFT
Wilson coefficients involving up and down quarks, while
they are expected to be of the same order of magnitude as the
perturbative contributions for the couplings to strange
quarks. Note that similar conclusions have been obtained
in Ref. [27] for the charged lepton-quark interactions.

B. Coherent elastic neutrino-nucleus scattering

In the CEνNS, the low-energy neutrinos can couple to
protons and neutrons of the nucleus coherently, so its cross
section can be significantly enhanced. This implies that the
CEνNS can not only provide a precision test of neutrino
interactions in the SM, but also put very stringent bounds
on parameters from NP.
In the presence of the additional dipole operators and

tensor operators, the differential cross section for CEνNS
can be written as [12,51,54]

dσCEνNS
dEr

¼ G2
FM
4π

�
ξ2V

�
1 −

Er

Emax
r

�
þ ξ2T

�
1 −

Er

2Emax
r

�

þ e2A2
M

�
1

MEr
−

1

MEν

��
; ð3:11Þ

where M is the mass of nucleus, Eν denotes the incoming
neutrino energy, and Er stands for the recoil nucleus kinetic

energy with maximal value Emax
r ¼ 2E2

ν
Mþ2Eν

≈ 2E2
ν

M . The SM

contribution is contained in parameter ξ2V, with

ξ2V;SM ¼ ½N − ð1 − 4 sin2 θWÞZ�2F2ðq2Þ; ð3:12Þ

where Z and N denote, respectively, the proton and neutron
numbers of a given nucleusN , and Fðq2Þ is the Helm form
factor of the nucleus (with q being the transferred energy)
whose coherent limit ðq2 → 0Þ is 1 [64].2 In comparison,
the dipole and tensor contributions from NP are encoded in
A2
M and ξ2T , respectively. Clearly, there is no interference

between the SM term and other NP contributions. Similar
to the case of neutrino-electron scattering, the incoming
neutrino of CEνNS can be controlled, but the neutrino in
the final state can be either left-handed or right-handed.
Therefore, this allows us to constrain coefficients of either
LNC or LNV operators, concretely,

A2
M ¼

8>><
>>:

P
r

��� 2
GF

Liγ
pr

���2Z2F2ðq2Þ for i ¼ νN

P
r

��� 4
GF

Liγ
pr

���2Z2F2ðq2Þ for i ¼ ν
; ð3:13Þ

ξ2T ¼

8>>><
>>>:

8
P
r;j

��� ffiffi
2

p
GF

P
q¼u;d;s

LT;RR
iu=d
prqq

ðZjδ
p
q þ Njδ

n
qÞ
���2F2ðq2Þ for i ¼ νN

8
P
r;j

��� 2 ffiffi
2

p
GF

P
q¼u;d;s

LT;LL
iu=d
prqq

ðZjδ
p
q þ Njδ

n
qÞ
���2F2ðq2Þ for i ¼ ν

; ð3:14Þ

where the subscript j sums over the nucleus that partici-
pates in the scattering. For example, the COHERENT
experiment uses CsI as the detector which is exposed to the
neutrino emissions (νμ, ν̄μ, and νe) from the Spallation
Neutron Source at Oak Ridge National Laboratory [32],
from which the proton and neutron numbers for Caesium
and Iodine are ZCs ¼ 55, NCs ¼ 77.9, ZI ¼ 53, and
NI ¼ 73.9, respectively. The functions δp=nq in Eq. (3.14)
are the nucleon form factors for the tensor current, with
numerical values [65,66]:

δpu ¼ 0.84; δpd ¼−0.23; δps ¼−0.046;

δnu ¼−0.23; δnd ¼ 0.84; δns ¼−0.046: ð3:15Þ

By using the COHERENT data [32], the 90%CL bounds
for dipole and tensor parameters in the one-operator-at-a-
time constraint are given, respectively, by [52,54]

1

2

A2
M

v2Z2F2ðq2Þ< 7.2×10−8;
ξ2T

N2F2ðq2Þ< 0.5912; ð3:16Þ

where v ¼ 246 GeV is vacuum expectation value of Higgs
field. Combining Eqs. (3.13)–(3.16), one immediately
obtains constraints for the LNEFT Wilson coefficients.
Note that from Eq. (3.11) the tensor operator can contribute
to CEνNS through both direct and indirect ways. The latter

2Here we have assumed that all the proton and neutron form
factors are equal to the Helm form factor, i.e., Fpðq2Þ ¼
Fnðq2Þ ¼ Fðq2Þ.
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is similar to the case in neutrino-electron scattering, i.e., the
tensor operators can contribute to the CEνNS either through
the nonperturbative matching onto the dipole operators,
which are proportional to cT , or through the perturbative
mixing to the dipole operators when taking into account the
RG evolutions from μ ¼ mW down to μ ¼ 2 GeV, which
are independent of cT . However, due to the smallness of the
anomalous dimensions and the nonperturbative matching
parameters, the process will be dominated by the direct
contributions. As shown in Tables V and VI, the indirect
contributions including nonperturbative and perturbative
parts for couplings to up and down quarks become
negligible in comparison to the direct ones. As for the
coupling to strange quarks, the nonperturbative contribution
is the same order of magnitude as the perturbative con-
tribution, and is about 15% (5%) of the direct contribution,
using cT ¼ −3.2 [cT ¼ −1.0ð2Þ]. This can be attributed to
two reasons: on the one hand, the larger anomalous
dimension with strange quark mass can enhance the mixing
effect, and on the other hand, the smaller nucleon form
factors for the strange quark [see Eq. (3.15)] can reduce
the proportion of direct contribution. Note that in Tables V
and VI the numerical results for LNEFT coefficients at
μ ¼ 2 GeV have also been presented in Ref. [12].

C. Discussion

As mentioned above, since the nonperturbative contri-
butions crucially depend on the input of cT , we can exactly
calculate the upper limits of the tensor Wilson coefficients
provided that the experimental bounds as well as the value
of cT are known. Note that, however, the model and lattice
estimates of cT quoted strongly disagree with each other;
this will affect the extraction of limits on the coefficients.
Combining the numerical results in Tables III–VI sepa-
rately with the inputs of cT , i.e., the model estimate cT ¼
−3.2 and the lattice estimate cT ¼ −1.0ð2Þ, we list in
Tables VII and VIII the upper bounds on the Wilson
coefficients of the LNC and LNV LNEFT tensor operators
at 2 GeV, respectively. Comparing the constraints from
Borexino and COHERENT experiments, it is found that
when using cT ¼ −3.2 as input, all bounds for LNEFT
Wilson coefficients obtained from neutrino-electron scat-
tering in Borexino are more stringent than the ones obtained
from CEνNS in COHERENT. Nevertheless, when using
cT ¼ −1.0ð2Þ as input, the above observation only holds
true for the coefficients of the dipole operators as well as the
tensor operators involving up and strange quarks, but it
reverses for the tensor coefficients involving down quarks.
Following the steps discussed above, the constraints are

TABLE V. Upper bounds for Wilson coefficients of the LNC LNEFT dipole and tensor operators (with p ¼ e, μ)
obtained from CEνNS in COHERENT [32]. The results in the second and fourth rows correspond to bounds from
direct contributions. For ease of comparison, the indirect terms (including nonperturbative and perturbative
contributions), which are obtained by normalizing the dipole bounds to the respective tensor bounds, have been
written below the corresponding direct terms in the first and third rows.

μ ¼ 2 GeV jLνNγ
pr
j jLT;RR

νNu
pruu

j jLT;RR
νNd
prdd

j jLT;RR
νNd
prss

j
j0.018cTLT;RR

νNu
pruu

j j0.005cTLT;RR
νNd
prdd

j j0.041cTLT;RR
νNd
prss

j

½GeV4−d� 5.4 × 10−7 3.3 × 10−6 1.8 × 10−6 1.5 × 10−5

μ ¼ mW jLνNγ
pr
j jLT;RR

νNu
pruu

j jLT;RR
νNd
prdd

j jLT;RR
νNd
prss

j

jð0.021cT − 0.0017ÞLT;RR
νNu
pruu

j jð0.006cT − 0.001ÞLT;RR
νNd
prdd

j jð0.048cT − 0.17ÞLT;RR
νNd
prss

j

½GeV4−d� 5.5 × 10−7 3.9 × 10−6 2.1 × 10−6 1.8 × 10−5

TABLE VI. The same for Wilson coefficients of the LNV LNEFT dipole and tensor operators.

μ ¼ 2 GeV jLνγ
pr
j jLT;LL

νu
pruu

j jLT;LL
νd

prdd
j jLT;LL

νd
prss

j
j0.018cTLT;LL

νu
pruu

j j0.005cTLT;LL
νd

prdd
j j0.041cTLT;LL

νd
prss

j

½GeV4−d� 2.7 × 10−7 1.7 × 10−6 0.9 × 10−6 7.7 × 10−6

μ ¼ mW jLνγ
pr
j jLT;LL

νu
pruu

j jLT;LL
νd

prdd
j jLT;LL

νd
prss

j
jð0.021cT − 0.0017ÞLT;LL

νu
pruu

j jð0.006cT − 0.001ÞLT;LL
νd

prdd
j jð0.048cT − 0.17ÞLT;LL

νd
prss

j

½GeV4−d� 2.8 × 10−7 2.0 × 10−6 1.1 × 10−6 9.0 × 10−6
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similar and so the inferences at μ ¼ mW can also be
acquired directly, so we will not discuss them any further.
The bounds on LNV dipole and tensor LNEFT coef-

ficients with right-handed neutrinos can be studied in the
vector meson decays (e.g., ω → inv: and ϕ → inv:), from
which the direct contributions will dominate for all cou-
plings. Nevertheless, since the constraints from the current
experimental data [63] are rather weak [12], we do not
include them in our paper.
Generally speaking, the LNEFT Wilson coefficients can

be complex, albeit throughout this paper we have implicitly
assumed that CP is conserved so that they are real numbers.
This assumption is unnecessary, since our method can also
be applied to the neutrino electric dipole moments (EDMs),
which are proportional to the imaginary part of the LNEFT
coefficients, provided thatCP is violated. For instance, ifCP
is violated in the neutrino radiative decays, an asymmetry
can be observed in the circularly polarized photons [67–69].
The NMMs can also be indirectly estimated from the

cosmological measurements as well as the astrophysical
observations. The plasmon decays into neutrino pairs via
nonzero NMM will lead to increased energy loss in stellar
environments, thus the relevant astrophysical observations
can provide an indirect constraint on the NMM. For
instance, the observation from the red giant branch of
globular clusters in this argument results in an upper limit
on the NMM 4.5 × 10−12μB [70]; also, the observed
neutrino signal from SN1987A (SN refers to supernova)
leads to the upper bound a few ×10−12μB [71–74], both are
one order of magnitude more stringent than the one
obtained from Borexino [7]. As neutrinos are a dominant
ingredient of the early Universe during the Big Bang
Nucleosynthesis (BBN) era, this environment is very
sensitive to the additional interactions triggered by the
NMM. For Dirac NMM, with a right-handed neutrino
decoupling temperature of Tdec ∼ 100 MeV the upper limit
is estimated to be 7 × 10−11μB in Ref. [75], 6.2 × 10−11μB

in Ref. [76], and 2.9 × 10−10μB in Ref. [77], while for
Majorana neutrino transition magnetic moment, the upper
limit is of order 10−10μB [78]; all these results are less
severe than the one obtained from Borexino [7]. In this
work, however, we only focus on the bounds from the direct
measurements of the terrestrial experiments and exclude the
indirect estimates from the cosmological measurements as
well as astrophysical observations; for that, vast regions of
parameter space cannot be accommodated with the terres-
trial experiments. One can account for the bounds from
terrestrial experiments while evading the cosmological and
astrophysical bounds by adding some extra fields, see e.g.,
the recent comprehensive analysis in this regard in
Ref. [57]. However, they have been out of scope for this
work, and we will not discuss them any further.

IV. CONCLUSIONS

In this paper, we have investigated the nonperturbative
contributions of both the LNC and LNV LNEFT neutrino-
quark tensor operators to the NMMs. The nonperturbative
effects can be obtained by matching the LNEFT tensor
operators onto the χPT operators with tensor external
sources. The nonperturbative contributions are of order
Liγ ∼ eðF2

π=ΛχÞLT;AA
iq , which can be compared to the

perturbative contributions that are of order Liγ ∼
emq=ð16π2ÞLT;AA

iq , and are obtained from one-loop mixing
by performing the RG evolutions from μ ¼ mW down to
μ ¼ 2 GeV. In order to show the competition between
these two effects, we have constrained the relevant Wilson
coefficients of LNC and LNV LNEFT dipole and tensor
operators from the neutrino-electron scattering with the
Borexino data [7] and CEνNS with the COHERENT data
[32]; the numerical results are shown in Tables III–VI.
In the neutrino-electron scattering, it is found that the
nonperturbative contributions dominate for the LNEFT
Wilson coefficients involving up and down quarks, while

TABLE VIII. The same for the upper bounds on the Wilson coefficients of the LNV LNEFT tensor operators at
2 GeV.

μ ¼ 2 GeV jLνγ
pr
j jLT;LL

νu
pruu

j jLT;LL
νd

prdd
j jLT;LL

νd
prss

j
Borexino ½GeV4−d� 2.1 × 10−9 2.2 × 10−7ð0.8 × 10−6Þ 4.4 × 10−7ð1.7 × 10−6Þ 4.4 × 10−7ð1.7 × 10−6Þ
COHERENT ½GeV4−d� 2.7 × 10−7 1.7 × 10−6 0.9 × 10−6 7.7 × 10−6

TABLE VII. The upper bounds on the Wilson coefficients of the LNC LNEFT tensor operators at 2 GeV. For
constraints from Borexino, the results outside (inside) the parentheses correspond to the limits with input cT ¼ −3.2
[cT ¼ −1.0ð2Þ]. In COHERENT constraints, we only consider direct contributions since, as discussed in Sec. III B,
the indirect contributions are negligible in comparison to the direct ones.

μ ¼ 2 GeV jLνNγ
pr
j jLT;RR

νNu
pruu

j jLT;RR
νNd
prdd

j jLT;RR
νNd
prss

j
Borexino ½GeV4−d� 4.2 × 10−9 4.4 × 10−7 ð1.7 × 10−6Þ 8.8 × 10−7 ð3.4 × 10−6Þ 8.8 × 10−7 ð3.4 × 10−6Þ
COHERENT ½GeV4−d� 5.4 × 10−7 3.3 × 10−6 1.8 × 10−6 1.5 × 10−5
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they are expected to be of the same order of magnitude as
the perturbative contributions for the couplings to strange
quarks. As for constraints in the CEνNS, the tensor
operators can contribute to the process through either
direct or indirect ways. As a result, the indirect contribu-
tions including nonperturbative and perturbative parts for
couplings to up and down quarks become negligible in
comparison to the direct ones. As the nonperturbative
contributions crucially depend on the value of cT , its inputs
affect the extraction of limits on the tensor LNEFT Wilson
coefficients. We have calculated the upper bounds on these
coefficients separately with the model estimate cT ¼ −3.2
and the lattice input cT ¼ −1.0ð2Þ at 2 GeV; the results are
listed in Tables VII and VIII. It is found that all bounds for
LNEFT Wilson coefficients obtained from neutrino-elec-
tron scattering in Borexino are more stringent than the ones
obtained from CEνNS in COHERENT, using cT ¼ −3.2.
Nevertheless, when using cT ¼ −1.0ð2Þ as input, the above
observation only holds true for the coefficients of the dipole
operators as well as the tensor operators involving up and
strange quarks, but it reverses for the tensor coefficients
involving down quarks.
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APPENDIX A: RG EQUATIONS
FOR THE WILSON COEFFICIENTS

OF LNEFT OPERATORS

The RG equations for a subset of Wilson coefficients of
LNEFT operators have been computed in Refs. [10,12,37];
the anomalous dimension matrix of which can be obtained
from one-loop QCD and QED corrections. Here we only
list the RG equations for Wilson coefficients of both LNC
and LNV dimension-5 dipole operators as well as dimen-
sion-6 neutrino-quark interacting operators that we will use
throughout this paper. The RG equations for the LNC
LNEFT Wilson coefficients are

_LνNγ
pr

¼ −b0;ee2LνNγ
pr
− 16e½Mu�wtLT;RR

νNu
prwt

þ 8e½Md�wtLT;RR
νNd
prwt

;

_LT;RR
νNu
prwt

¼
h
2g2sCF þ 8

9
e2
i
LT;RR

νNu
prwt

; _LT;RR
νNd
prwt

¼
h
2g2sCF þ 2

9
e2
i
LT;RR

νNd
prwt

;

_LS;RR
νNu
prwt

¼
h
−6g2sCF −

24

9
e2
i
LS;RR

νNu
prwt

; _LS;RR
νNd
prwt

¼
h
−6g2sCF −

6

9
e2
i
LS;RR

νNd
prwt

;

_LS;RL
νNu
prwt

¼
h
−6g2sCF −

24

9
e2
i
LS;RL

νNu
prwt

; _LS;RL
νNd
prwt

¼
h
−6g2sCF −

6

9
e2
i
LS;RL

νNd
prwt

; ðA1Þ

where CF ¼ 4
3
, and b0;e ¼ − 4

3
ðne þ 1

3
nd þ 4

3
nuÞ is the leading coefficient of the QED beta function with ne, nd, and nu

standing for the numbers of active charged lepton, down-type quarks, and up-type quarks, respectively. Similarly, the RG
equations for the LNV LNEFT Wilson coefficients are

_Lνγ
pr
¼ −b0;ee2Lνγ

pr
− 16e½Mu�wtLT;LL

νu
prwt

þ 8e½Md�wtLT;LL
νd

prwt
;
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pr
¼ −b0;ee2LNγ

pr
− 16e½Mu�wtLT;RR

Nu
prwt

þ 8e½Md�wtLT;RR
Nd
prwt

;

_LT;LL
νu

prwt
¼

h
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9
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i
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h
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9
e2
i
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prwt
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prwt
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24
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e2
i
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prwt
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prwt
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h
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9
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i
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APPENDIX B: THE UV COMPLETIONS GIVING
RISE TO TENSOR FOUR-FERMION OPERATORS

The tensor four-fermion operators can stem from the UV
completions which possess either genuine and/or effective
tensor interactions with both left- and right-handed neu-
trinos. The latter can be induced from the Fierz trans-
formation of scalar, pseudoscalar, and tensor operators, but
not of vector and axial-vector operators. Here we list two
UV complete examples that can induce the tensor four-
fermion operators.
To give rise to the neutrino-lepton tensor operators, we

quote the minimal left-right symmetric model [23–25],
with respect to SUð2ÞL × SUð2ÞR ×Uð1ÞB−L gauge sym-
metries. The Lagrangian for the Yukawa interactions in the
leptonic sector reads,

LΦ ⊃ −L̄LiðylijΦþ ỹlijΦ̃ÞLRj þ H:c:; ðB1Þ

whereylij and ỹlij are theYukawacouplingswithgeneration
indices i, j ¼ 1, 2, 3, LL ∼ ð2; 1;−1Þ and LR ∼ ð1; 2;−1Þ
denoted, respectively, for the left- and right-handed lepton
doublets, and Φ ∼ ð2; 2; 0Þ is the scalar bidoublet:

LL ¼
�
νL

lL

�
; LR ¼

�
NR

lR

�
;

Φ ¼
�
ϕ0
1 ϕþ

1

ϕ−
2 ϕ0

2

�
; Φ̃ ¼ σ2Φ�σ2: ðB2Þ

Rewriting Eq. (B1) in components yields

LΦ ⊃ −ylijν̄LilRjϕ
þ
1 þ ỹlijl̄LiNRjϕ

−
1

− ylijl̄LiNRjϕ
−
2 þ ỹlijν̄LilRjϕ

þ
2 þ H:c: ðB3Þ

With Eq. (B3) we can construct the tree-level leptonic
process via exchange ϕ�

i (i ¼ 1, 2). For small momentum
transfer the heavyϕ�

i can be integrated out, then we arrive at
the effective interactions,

Leff ¼ −
ylptỹlwr
M2

ϕ

ðν̄LplRtÞðl̄LwNRrÞ þ H:c:; ðB4Þ

which after the Fierz transformation becomes

Leff ¼
ylptỹlwr
M2

ϕ

�
1

2
ðν̄LpNRrÞðl̄LwlRtÞ

þ 1

8
ðν̄LpσμνNRrÞðl̄Lwσ

μνlRtÞ
�
þ H:c: ðB5Þ

Consequently, matching the neutrino-lepton tensor operator
in Eq. (B5) onto the corresponding one OT;RR

νNe
prwt

in LNEFT

yields

LT;RR
νNe
prwt

¼ ylptỹlwr
8M2

ϕ

: ðB6Þ

Note that similar discussion on this aspect can also be found
in Ref. [79].
As for neutrino-quark tensor operators, one of the feasible

UV completions is to introduce a scalar leptoquark R̃2 [26],
which transforms as ð3; 2; 1=6Þ under the SM gauge group
SUð3ÞC × SUð2ÞL ×Uð1ÞY . The interactions of R̃2 with
leptons and quarks are described by the Lagrangian

LR̃2
⊃ −ỹRL2ij d̄RiR̃2iσ2LLj þ ỹRL2ijQ̄LiR̃2NRj þ H:c:; ðB7Þ

where QL and dR stand, respectively, for the SUð2Þ quark
doublets and down-type quark singlets, ỹRL2ij and ỹ

RL
2ij are the

Yukawa coupling matrices with i, j ¼ 1, 2, 3 stand for the
generation indices. Switching to the mass basis for quarks
and leptons, Eq. (B7) becomes

LR̃2
⊃ −ỹRL2ij d̄RilLjR̃

2=3
2 þ ðỹRL2 UÞijd̄RiνLjR̃−1=3

2

þ ðVỹRL2 ÞijūLiNRjR̃
2=3
2 þ ỹRL2ij d̄LiNRjR̃

−1=3
2 þ H:c:;

ðB8Þ
where R̃2=3

2 and R̃−1=3
2 are the up- and down-components of

the R̃2 doublet, andV andU denote the Cabibbo-Kobayashi-
Maskawa (CKM) mixing matrix and Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) unitary mixing matrix,
respectively. Following the similar steps as done in the
minimal left-right symmetric model, i.e., constructing the
tree-level neutrino-quark process via exchange R̃�1=3

2 , inte-
grating out the heavy degree, and making a Fierz trans-
formation, one finally obtain the following effective
interactions:

Leff ¼ −
ðỹRL2 UÞwrỹRL�2tp

M2
R̃2

�
1

2
ðν̄LpNRrÞðd̄LwdRtÞ

þ 1

8
ðν̄LpσμνNRrÞðd̄LwσμνdRtÞ

�
þ H:c: ðB9Þ

Matching the neutrino-quark tensor operator in Eq. (B9) onto
the corresponding one OT;RR

νNd
prwt

in LNEFT, one obtains

LT;RR
νNd
prwt

¼ −
ðỹRL2 UÞwrỹRL�2tp

8M2
R̃2

: ðB10Þ

Note that with the similar steps, one can also obtain neutrino-
quark tensor operators from another distinct scalar lepto-
quark S1 ∼ ð3̄; 1; 1=6Þ, which is usually employed to
simultaneously solve the anomalies in B physics and muon
g − 2, see e.g., Ref. [80].

CHEN, ZHENG, and ZHANG PHYS. REV. D 106, 095009 (2022)

095009-12



[1] K. Fujikawa and R. Shrock, The Magnetic Moment of a
Massive Neutrino and Neutrino Spin Rotation, Phys. Rev.
Lett. 45, 963 (1980).

[2] P. B. Pal and L. Wolfenstein, Radiative decays of massive
neutrinos, Phys. Rev. D 25, 766 (1982).

[3] R. E. Shrock, Electromagnetic properties and decays of
Dirac and Majorana neutrinos in a general class of gauge
theories, Nucl. Phys. B206, 359 (1982).

[4] M. Dvornikov and A. Studenikin, Electric charge and
magnetic moment of massive neutrino, Phys. Rev. D 69,
073001 (2004).

[5] M. S. Dvornikov and A. I. Studenikin, Electromagnetic
form-factors of a massive neutrino, J. Exp. Theor. Phys.
99, 254 (2004).

[6] A. G. Beda, V. B. Brudanin, V. G. Egorov, D. V. Medvedev,
V. S. Pogosov, M. V. Shirchenko, and A. S. Starostin, The
results of search for the neutrino magnetic moment in
GEMMA experiment, Adv. High Energy Phys. 2012,
350150 (2012).

[7] M. Agostini et al. (Borexino Collaboration), Limiting
neutrino magnetic moments with Borexino Phase-II solar
neutrino data, Phys. Rev. D 96, 091103 (2017).

[8] C. Giunti and A. Studenikin, Neutrino electromagnetic
interactions: A window to new physics, Rev. Mod. Phys.
87, 531 (2015).

[9] E. E. Jenkins, A. V. Manohar, and P. Stoffer, Low-energy
effective field theory below the electroweak scale: Operators
and matching, J. High Energy Phys. 03 (2018) 016.

[10] E. E. Jenkins, A. V. Manohar, and P. Stoffer, Low-energy
effective field theory below the electroweak scale: Anoma-
lous dimensions, J. High Energy Phys. 01 (2018) 084.

[11] M. Chala and A. Titov, One-loop matching in the SMEFT
extended with a sterile neutrino, J. High Energy Phys. 05
(2020) 139.

[12] T. Li, X.-D. Ma, and M. A. Schmidt, General neutrino
interactions with sterile neutrinos in light of coherent
neutrino-nucleus scattering and meson invisible decays,
J. High Energy Phys. 07 (2020) 152.

[13] W. Buchmuller and D. Wyler, Effective lagrangian analysis
of new interactions and flavor conservation, Nucl. Phys.
B268, 621 (1986).

[14] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek,
Dimension-six terms in the Standard Model Lagrangian,
J. High Energy Phys. 10 (2010) 085.

[15] L. Lehman, Extending the standard model effective field
theory with the complete set of dimension-7 operators,
Phys. Rev. D 90, 125023 (2014).

[16] I. Brivio and M. Trott, The standard model as an effective
field theory, Phys. Rep. 793, 1 (2019).

[17] F. del Aguila, S. Bar-Shalom, A. Soni, and J. Wudka, Heavy
Majorana neutrinos in the effective Lagrangian description:
Application to hadron colliders, Phys. Lett. B 670, 399
(2009).

[18] A. Aparici, K. Kim, A. Santamaria, and J. Wudka, Right-
handed neutrino magnetic moments, Phys. Rev. D 80,
013010 (2009).

[19] S. Bhattacharya and J. Wudka, Dimension-seven operators
in the standard model with right handed neutrinos, Phys.
Rev. D 94, 055022 (2016); 95, 039904(E) (2017).

[20] Y. Liao and X.-D. Ma, Renormalization group evolution of
dimension-seven baryon- and lepton-number-violating op-
erators, J. High Energy Phys. 11 (2016) 043.

[21] Y. Liao and X.-D. Ma, Operators up to dimension seven in
standard model effective field theory extended with sterile
neutrinos, Phys. Rev. D 96, 015012 (2017).

[22] I. Bischer andW. Rodejohann, General neutrino interactions
from an effective field theory perspective, Nucl. Phys. B947,
114746 (2019).

[23] J. C. Pati and A. Salam, Lepton number as the fourth color,
Phys. Rev. D 10, 275 (1974); 11, 703(E) (1975).

[24] R. N. Mohapatra and J. C. Pati, A natural left-right sym-
metry, Phys. Rev. D 11, 2558 (1975).

[25] G. Senjanovic and R. N. Mohapatra, Exact left-right sym-
metry and spontaneous violation of parity, Phys. Rev. D 12,
1502 (1975).

[26] I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, and N.
Košnik, Physics of leptoquarks in precision experiments and
at particle colliders, Phys. Rep. 641, 1 (2016).

[27] W. Dekens, E. E. Jenkins, A. V. Manohar, and P. Stoffer,
Non-perturbative effects in μ → eγ, J. High Energy Phys. 01
(2019) 088.

[28] S. Weinberg, Nonlinear realizations of chiral symmetry,
Phys. Rev. 166, 1568 (1968).

[29] J. Gasser and H. Leutwyler, Chiral perturbation theory to
one loop, Ann. Phys. (N.Y.) 158, 142 (1984).

[30] J. Gasser and H. Leutwyler, Chiral perturbation theory:
Expansions in the mass of the strange quark, Nucl. Phys.
B250, 465 (1985).

[31] O. Cata and V. Mateu, Chiral perturbation theory with tensor
sources, J. High Energy Phys. 09 (2007) 078.

[32] D. Akimov et al. (COHERENT Collaboration), Observation
of coherent elastic neutrino-nucleus scattering, Science 357,
1123 (2017).

[33] S. Davidson, μ → eγ and matching at mW , Eur. Phys. J. C
76, 370 (2016).

[34] V. Cirigliano, S. Davidson, and Y. Kuno, Spin-dependent
μ → e conversion, Phys. Lett. B 771, 242 (2017).

[35] N. F. Bell, V. Cirigliano, M. J. Ramsey-Musolf, P. Vogel,
and M. B. Wise, How Magnetic is the Dirac Neutrino?,
Phys. Rev. Lett. 95, 151802 (2005).

[36] M. Chala and A. Titov, One-loop running of dimension-six
Higgs-neutrino operators and implications of a large neu-
trino dipole moment, J. High Energy Phys. 09 (2020)
188.

[37] T. Han, J. Liao, H. Liu, and D. Marfatia, Scalar and tensor
neutrino interactions, J. High Energy Phys. 07 (2020)
207.

[38] A. Datta, J. Kumar, H. Liu, and D. Marfatia, Anomalous
dimensions from gauge couplings in SMEFT with right-
handed neutrinos, J. High Energy Phys. 02 (2021) 015.

[39] A. Datta, J. Kumar, H. Liu, and D. Marfatia, Anomalous
dimensions from Yukawa couplings in SMNEFT: Four-
fermion operators, J. High Energy Phys. 05 (2021) 037.

[40] A. Manohar and H. Georgi, Chiral quarks and the non-
relativistic quark model, Nucl. Phys. B234, 189 (1984).

[41] T. Li, X.-D. Ma, and M. A. Schmidt, Implication ofK → πνν̄
for generic neutrino interactions in effective field theories,
Phys. Rev. D 101, 055019 (2020).

NONPERTURBATIVE EFFECTS IN NEUTRINO MAGNETIC … PHYS. REV. D 106, 095009 (2022)

095009-13

https://doi.org/10.1103/PhysRevLett.45.963
https://doi.org/10.1103/PhysRevLett.45.963
https://doi.org/10.1103/PhysRevD.25.766
https://doi.org/10.1016/0550-3213(82)90273-5
https://doi.org/10.1103/PhysRevD.69.073001
https://doi.org/10.1103/PhysRevD.69.073001
https://doi.org/10.1134/1.1800181
https://doi.org/10.1134/1.1800181
https://doi.org/10.1155/2012/350150
https://doi.org/10.1155/2012/350150
https://doi.org/10.1103/PhysRevD.96.091103
https://doi.org/10.1103/RevModPhys.87.531
https://doi.org/10.1103/RevModPhys.87.531
https://doi.org/10.1007/JHEP03(2018)016
https://doi.org/10.1007/JHEP01(2018)084
https://doi.org/10.1007/JHEP05(2020)139
https://doi.org/10.1007/JHEP05(2020)139
https://doi.org/10.1007/JHEP07(2020)152
https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1007/JHEP10(2010)085
https://doi.org/10.1103/PhysRevD.90.125023
https://doi.org/10.1016/j.physrep.2018.11.002
https://doi.org/10.1016/j.physletb.2008.11.031
https://doi.org/10.1016/j.physletb.2008.11.031
https://doi.org/10.1103/PhysRevD.80.013010
https://doi.org/10.1103/PhysRevD.80.013010
https://doi.org/10.1103/PhysRevD.94.055022
https://doi.org/10.1103/PhysRevD.94.055022
https://doi.org/10.1103/PhysRevD.95.039904
https://doi.org/10.1007/JHEP11(2016)043
https://doi.org/10.1103/PhysRevD.96.015012
https://doi.org/10.1016/j.nuclphysb.2019.114746
https://doi.org/10.1016/j.nuclphysb.2019.114746
https://doi.org/10.1103/PhysRevD.10.275
https://doi.org/10.1103/PhysRevD.11.703.2
https://doi.org/10.1103/PhysRevD.11.2558
https://doi.org/10.1103/PhysRevD.12.1502
https://doi.org/10.1103/PhysRevD.12.1502
https://doi.org/10.1016/j.physrep.2016.06.001
https://doi.org/10.1007/JHEP01(2019)088
https://doi.org/10.1007/JHEP01(2019)088
https://doi.org/10.1103/PhysRev.166.1568
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1016/0550-3213(85)90492-4
https://doi.org/10.1016/0550-3213(85)90492-4
https://doi.org/10.1088/1126-6708/2007/09/078
https://doi.org/10.1126/science.aao0990
https://doi.org/10.1126/science.aao0990
https://doi.org/10.1140/epjc/s10052-016-4207-5
https://doi.org/10.1140/epjc/s10052-016-4207-5
https://doi.org/10.1016/j.physletb.2017.05.053
https://doi.org/10.1103/PhysRevLett.95.151802
https://doi.org/10.1007/JHEP09(2020)188
https://doi.org/10.1007/JHEP09(2020)188
https://doi.org/10.1007/JHEP07(2020)207
https://doi.org/10.1007/JHEP07(2020)207
https://doi.org/10.1007/JHEP02(2021)015
https://doi.org/10.1007/JHEP05(2021)037
https://doi.org/10.1016/0550-3213(84)90231-1
https://doi.org/10.1103/PhysRevD.101.055019


[42] B. M. Gavela, E. E. Jenkins, A. V. Manohar, and L. Merlo,
Analysis of general power counting rules in effective field
theory, Eur. Phys. J. C 76, 485 (2016).

[43] V. Mateu and J. Portoles, Form-factors in radiative pion
decay, Eur. Phys. J. C 52, 325 (2007).

[44] I. Baum, V. Lubicz, G. Martinelli, L. Orifici, and S. Simula,
Matrix elements of the electromagnetic operator between
kaon and pion states, Phys. Rev. D 84, 074503 (2011).

[45] G. Ecker, J. Gasser, A. Pich, and E. de Rafael, The role of
resonances in chiral perturbation theory, Nucl. Phys. B321,
311 (1989).

[46] G. Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. de Rafael,
Chiral lagrangians for massive spin 1 fields, Phys. Lett. B
223, 425 (1989).

[47] O. Cata and V. Mateu, Novel patterns for vector mesons
from the large-N(c) limit, Phys. Rev. D 77, 116009 (2008).

[48] J. A. Miranda and P. Roig, Effective-field theory analysis of
the τ− → π−π0ντ decays, J. High Energy Phys. 11 (2018)
038.

[49] F.-Z. Chen, X.-Q. Li, Y.-D. Yang, and X. Zhang, CP
asymmetry in τ → KSπντ decays within the standard model
and beyond, Phys. Rev. D 100, 113006 (2019).

[50] T. Husek, K. Monsalvez-Pozo, and J. Portoles, Lepton-
flavour violation in hadronic tau decays and μ − τ con-
version in nuclei, J. High Energy Phys. 01 (2021) 059.

[51] M. Lindner, W. Rodejohann, and X.-J. Xu, Coherent
neutrino-nucleus scattering and new neutrino interactions,
J. High Energy Phys. 03 (2017) 097.

[52] D. Aristizabal Sierra, V. De Romeri, and N. Rojas, CO-
HERENT analysis of neutrino generalized interactions,
Phys. Rev. D 98, 075018 (2018).

[53] C. Giunti, General COHERENT constraints on neutrino
nonstandard interactions, Phys. Rev. D 101, 035039 (2020).

[54] W.-F. Chang and J. Liao, Constraints on light singlet
fermion interactions from coherent elastic neutrino-nucleus
scattering, Phys. Rev. D 102, 075004 (2020).

[55] K. S. Babu, S. Jana, and M. Lindner, Large neutrino
magnetic moments in the light of recent experiments, J. High
Energy Phys. 10 (2020) 040.

[56] I. M. Shoemaker, Y.-D. Tsai, and J. Wyenberg, Active-to-
sterile neutrino dipole portal and the XENON1T excess,
Phys. Rev. D 104, 115026 (2021).

[57] V. Brdar, A. Greljo, J. Kopp, and T. Opferkuch, The neutrino
magnetic moment portal: Cosmology, astrophysics, and
direct detection, J. Cosmol. Astropart. Phys. 01 (2021) 039.

[58] E. Aprile et al. (XENON Collaboration), Excess electronic
recoil events in XENON1T, Phys. Rev. D 102, 072004
(2020).

[59] P. Vogel and J. Engel, Neutrino electromagnetic form-
factors, Phys. Rev. D 39, 3378 (1989).

[60] J. F. Beacom and P. Vogel, Neutrino Magnetic Moments,
Flavor Mixing, and the Super-Kamiokande Solar Data,
Phys. Rev. Lett. 83, 5222 (1999).

[61] J. N. Bahcall, M. Kamionkowski, and A. Sirlin, Solar
neutrinos: Radiative corrections in neutrino—electron scat-
tering experiments, Phys. Rev. D 51, 6146 (1995).

[62] Z.-Z. Xing, Neutrino physics, in 1st Asia-Europe-Pacific
School of High-Energy Physics (2014), pp. 177–217,
10.5170/CERN-2014-001.177.

[63] P. A. Zyla et al. (Particle Data Group), Review of
particle physics, Prog. Theor. Exp. Phys. 2020, 083C01
(2020).

[64] R. H. Helm, Inelastic and elastic scattering of 187-Mev
electrons from selected even-even nuclei, Phys. Rev. 104,
1466 (1956).

[65] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov,
Dark matter direct detection rate in a generic model with
micrOMEGAs 2.2, Comput. Phys. Commun. 180, 747
(2009).

[66] G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov, and B.
Zaldivar, micrOMEGAs5.0: Freeze-in, Comput. Phys.
Commun. 231, 173 (2018).

[67] C. Bœhm, C. Degrande, O. Mattelaer, and A. C. Vincent,
Circular polarisation: A new probe of dark matter and
neutrinos in the sky, J. Cosmol. Astropart. Phys. 05 (2017)
043.

[68] S. Balaji, M. Ramirez-Quezada, and Y.-L. Zhou, CP
violation and circular polarisation in neutrino radiative
decay, J. High Energy Phys. 04 (2020) 178.

[69] S. Balaji, M. Ramirez-Quezada, and Y.-L. Zhou, CP
violation in neutral lepton transition dipole moment, J. High
Energy Phys. 12 (2020) 090.

[70] N. Viaux, M. Catelan, P. B. Stetson, G. Raffelt, J. Redondo,
A. A. R. Valcarce, and A. Weiss, Neutrino and Axion
Bounds from the Globular Cluster M5 (NGC 5904), Phys.
Rev. Lett. 111, 231301 (2013).

[71] K. Hirata et al. (Kamiokande-II Collaboration), Observation
of a Neutrino Burst from the Supernova SN 1987a, Phys.
Rev. Lett. 58, 1490 (1987).

[72] R. M. Bionta et al., Observation of a Neutrino Burst in
Coincidence with Supernova SN 1987a in the Large
Magellanic Cloud, Phys. Rev. Lett. 58, 1494 (1987).

[73] E. N. Alekseev, L. N. Alekseeva, I. V. Krivosheina, and V. I.
Volchenko, Detection of the neutrino signal from SN1987A
in the LMC using the INR Baksan underground scintillation
telescope, Phys. Lett. B 205, 209 (1988).

[74] G. Magill, R. Plestid, M. Pospelov, and Y.-D. Tsai, Dipole
portal to heavy neutral leptons, Phys. Rev. D 98, 115015
(2018).

[75] M. Fukugita and S. Yazaki, Reexamination of astrophysical
and cosmological constraints on the magnetic moment of
neutrinos, Phys. Rev. D 36, 3817 (1987).

[76] P. Elmfors, K. Enqvist, G. Raffelt, and G. Sigl, Neutrinos
with magnetic moment: Depolarization rate in plasma, Nucl.
Phys. B503, 3 (1997).

[77] A. Ayala, J. C. D’Olivo, and M. Torres, Right-handed
neutrino production in dense and hot plasmas, Nucl. Phys.
B564, 204 (2000).

[78] N. Vassh, E. Grohs, A. B. Balantekin, and G. M. Fuller,
Majorana neutrino magnetic moment and neutrino decou-
pling in big bang nucleosynthesis, Phys. Rev. D 92, 125020
(2015).

[79] X.-J. Xu, Tensor and scalar interactions of neutrinos may
lead to observable neutrino magnetic moments, Phys. Rev.
D 99, 075003 (2019).

[80] M. Bauer andM. Neubert, Minimal Leptoquark Explanation
for the RDð�Þ , RK , and ðg − 2Þμ Anomalies, Phys. Rev. Lett.
116, 141802 (2016).

CHEN, ZHENG, and ZHANG PHYS. REV. D 106, 095009 (2022)

095009-14

https://doi.org/10.1140/epjc/s10052-016-4332-1
https://doi.org/10.1140/epjc/s10052-007-0393-5
https://doi.org/10.1103/PhysRevD.84.074503
https://doi.org/10.1016/0550-3213(89)90346-5
https://doi.org/10.1016/0550-3213(89)90346-5
https://doi.org/10.1016/0370-2693(89)91627-4
https://doi.org/10.1016/0370-2693(89)91627-4
https://doi.org/10.1103/PhysRevD.77.116009
https://doi.org/10.1007/JHEP11(2018)038
https://doi.org/10.1007/JHEP11(2018)038
https://doi.org/10.1103/PhysRevD.100.113006
https://doi.org/10.1007/JHEP01(2021)059
https://doi.org/10.1007/JHEP03(2017)097
https://doi.org/10.1103/PhysRevD.98.075018
https://doi.org/10.1103/PhysRevD.101.035039
https://doi.org/10.1103/PhysRevD.102.075004
https://doi.org/10.1007/JHEP10(2020)040
https://doi.org/10.1007/JHEP10(2020)040
https://doi.org/10.1103/PhysRevD.104.115026
https://doi.org/10.1088/1475-7516/2021/01/039
https://doi.org/10.1103/PhysRevD.102.072004
https://doi.org/10.1103/PhysRevD.102.072004
https://doi.org/10.1103/PhysRevD.39.3378
https://doi.org/10.1103/PhysRevLett.83.5222
https://doi.org/10.1103/PhysRevD.51.6146
https://doi.org/10.5170/CERN-2014-001.177
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRev.104.1466
https://doi.org/10.1103/PhysRev.104.1466
https://doi.org/10.1016/j.cpc.2008.11.019
https://doi.org/10.1016/j.cpc.2008.11.019
https://doi.org/10.1016/j.cpc.2018.04.027
https://doi.org/10.1016/j.cpc.2018.04.027
https://doi.org/10.1088/1475-7516/2017/05/043
https://doi.org/10.1088/1475-7516/2017/05/043
https://doi.org/10.1007/JHEP04(2020)178
https://doi.org/10.1007/JHEP12(2020)090
https://doi.org/10.1007/JHEP12(2020)090
https://doi.org/10.1103/PhysRevLett.111.231301
https://doi.org/10.1103/PhysRevLett.111.231301
https://doi.org/10.1103/PhysRevLett.58.1490
https://doi.org/10.1103/PhysRevLett.58.1490
https://doi.org/10.1103/PhysRevLett.58.1494
https://doi.org/10.1016/0370-2693(88)91651-6
https://doi.org/10.1103/PhysRevD.98.115015
https://doi.org/10.1103/PhysRevD.98.115015
https://doi.org/10.1103/PhysRevD.36.3817
https://doi.org/10.1016/S0550-3213(97)00382-9
https://doi.org/10.1016/S0550-3213(97)00382-9
https://doi.org/10.1016/S0550-3213(99)00642-2
https://doi.org/10.1016/S0550-3213(99)00642-2
https://doi.org/10.1103/PhysRevD.92.125020
https://doi.org/10.1103/PhysRevD.92.125020
https://doi.org/10.1103/PhysRevD.99.075003
https://doi.org/10.1103/PhysRevD.99.075003
https://doi.org/10.1103/PhysRevLett.116.141802
https://doi.org/10.1103/PhysRevLett.116.141802

