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In the paper, we propose a scheme to constrain the axion-to-nucleon interaction and non-Newtonian
gravity. Here, we consider a levitated optomechanical system consisting of a silica nanosphere and an
optical cavity. The total force gradient exerted on this nanosphere modifies its resonance frequency. Based
on this, we have developed a quantum optical method to detect and constrain the two exotic forces. Also,
we have established prospective constraints on axion-neucleon coupling constants and the Yukawa
interaction constant. In addition, these constraints significantly improve the existing bounds.
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I. INTRODUCTION

An axion as a new light pseudoscalar particle was
predicted in 1978 [1,2]. Since then, it remains the most
compelling solution to the strong-CP problem inQCD and a
well-motivated darkmatter candidate [3–6]. Because of this,
a host of ultrasensitive experiments have been conducted
to search for axions and axionlike particles [3,7–11].
Since one main property of the axion is that it can interact
with nucleons [7,12], the axion-to-nucleon interaction has
been studied by amounts of work (see reviews [13,14]).
Consequently, lots of effective constraints [14,15] on the
coupling constant gan over a wide axion mass range
have been established. Vasilakis et al. set constraints at
10−4 eV < ma < 1 μeV via magnetometer measurements
[16]. An upper bound most stringent at 1 μeV < ma <
1.7 meVwas derived inRef. [17] by utilizing the data from a
torsion-balance search for Yukawa violations of the gravi-
tational inverse-square law [18]. The strongest constraints at
about 1 meV < ma < 0.5 eV were derived in Ref. [19]
from the measurement results of a Casimir-less experiment
[20]. Several upper bounds [15,21–25] are derived from
measuring some Casimir-effect-based objects including
effective Casimir pressure [26,27], the lateral Casimir force
between corrugated surfaces [28,29], the difference in
Casimir forces [30], the gradient of the Casimir force
[31], the Casimir-Polder force [32], and the Casimir force
in nanometer separation range [33]. The most stringent
constraints atma > 0.5 eVwere obtained from experiments
on measuring the forces between protons in the beam of
molecular hydrogen [34,35]. The strongest laboratory limits
at ma > 200 eV were obtained from the experiment on

nuclear magnetic resonance [35]. Though these effective
constraints have been established, it is still desirable for us to
search for the axion-to-nucleon interaction and set stronger
constraints on it.
In this paper, we propose an optomechanical system

consisting of a silica nanosphere and an optical cavity
which is composed of a mirror and source mass to detect
the axion-to-nucleon interaction. In our proposed scheme,
the nanosphere is trapped near the surface of the source
mass with two separations. Consequently, a difference in
the actual resonance frequency of the nanosphere occurs
due to the total force gradient exerted on it. Further, this
difference can be converted into the distance between two
peaks existing in the relevant transmission spectrums. The
distance can be both calculated and measured. The dis-
agreement between the computational result and the obser-
vation can imply the existence of the exotic interaction.
In addition, effective constraints are established for
the coupling constants gan and gap via noise analysis. In
the case of g2an ¼ g2ap, our constraints on gan improve the
existing bounds by several orders of magnitude at about
10−4 μeV < ma < 1 eV.
The “fifth force” hypothesis proposed in 1986 [36] can

be considered as a natural outgrowth of many earlier
experimental and theoretical studies of non-Newtonian
gravity [37]. It also spawned many experiments searching
for non-Newtonian gravity. So far, for the purposes of
constraining non-Newtonian gravity and testing the gravi-
tational inverse square law at short ranges, many exper-
imental methods have been developed, and various kinds of
devices have been used [14,38–42]. However, the non-
Newtonian gravity also called the Yukawa interaction can
be well constrained only down to the submillimeter range
[43], and this gravity at the ultrashort ranges still needs to*zhukadi@sjtu.edu.cn
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be investigated. In this paper, the non-Newtonain gravity is
also constrained by the proposed scheme. As a conse-
quence, an upper bound on the interaction constant α is
established. This bound improves the most stringent limits
by about 2 orders at λ ¼ 10−6 m.
The remainder of the paper is organized as follows. In

Sec. II, we describe the theoretical model. In Sec. III, we
demonstrate our detection method. In Sec. IV, we perform
the noise analysis and set the prospective constraints. In
Sec. V, we summarize the paper.

II. THEORETICAL MODEL

Here, we consider a levitated optomechanical system
composed of an optical cavity and a silica nanosphere with
R ∼ 10 nm (see Fig. 1). The length of the cavity is selected
as L ¼ 11 cm. The right mirror of the cavity, which is made
of fused silica and has a thickness of d ∼ 100 μm, acts as
the source mass. According to Ref. [44], a cavity finesse of
F ¼ 4290 and a reflectivity of 99.86% of the right mirror
can be achieved. The nanosphere is cooled and trapped in
the cavity. The power of the trapping laser is selected as
P ¼ 2mw. In addition, values of several cavity parameters
appear in Table I. Applying a pump laser and a probe laser,
the Hamiltonian of this system can be written as [45,46]

H ¼ ℏωmbþbþ ℏωccþcþ ℏgðbþ þ bÞcþc
þ iℏEpuðcþe−iωput − ceiωputÞ
þ iℏEprðcþe−iωprt − ceiωprtÞ; ð1Þ

where ωm is the resonance frequency of the nanosphere
resonator and bþ (b) is the corresponding creation (anni-
hilation) operator;ωc is the resonant frequency of the cavity
and cþ (c) is the corresponding creation (annihilation)
operator; g characterizes the coupling strength between the
cavity and the nanosphere; ωpu and ωpr are the frequencies
of the pump laser and probe laser, respectively; and Epu

and Epr are related to the laser power P by jEpuj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ppuκ=ℏωpu

p
and jEprj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pprκ=ℏωpr

p
, respectively,

where κ is the decay rate of the cavity amplitude.
In a rotating frame at a driving field frequency ωpu, the

Hamiltonian can be transformed to

H̃ ¼ ℏωmbþbþ ℏΔcþcþ ℏgðbþ þ bÞcþc
þ iℏEpuðcþ − cÞ þ iℏEprðcþe−iδt − ceiδtÞ; ð2Þ

where δ ¼ ωpr − ωpu and Δ ¼ ωc − ωpu. Defining
τ≡ bþbþffiffi

2
p , and applying the Heisenberg equation of motion,

we obtain

dc
dt

¼ −iΔa − igðbþ þ bÞcþ Epu þ Epre−iδt; ð3Þ

and

d2τ
dt2

þ ω2
mτ ¼ −

ffiffiffi
2

p
gωmcþc: ð4Þ

Taking the damping terms into consideration, Eqs. (3) and
(4) can be rewritten as

dc
dt

þ ðiΔþ κÞc ¼ −igðbþ þ bÞcþ Epu þ Epre−iδt ð5Þ

and

d2τ
dt2

þ γm
dτ
dt

þ ω2
mτ ¼ −

ffiffiffi
2

p
gωmcþc; ð6Þ

where γm is the damping rate of the mechanical resonator.
Taking expectation values of Eqs. (5) and (6), we obtain

Ddc
dt

E
þ ðiΔþ κÞhci ¼ −ig

ffiffiffi
2

p
hτci þ Epu þ Epre−iδt ð7Þ

and

d2hτi
dt2

þ γm
dhτi
dt

þ ω2
mhτi ¼ −

ffiffiffi
2

p
gωmhcþci: ð8Þ

We make the ansatz [47] as

hcðtÞi ¼ c0 þ cþe−iδt þ c−eiδt; ð9Þ

hτðtÞi ¼ τ0 þ τþe−iδt þ τ−eiδt; ð10Þ

where cþ; c− ≪ c0, τþ; τ− ≪ τ0. Also, we adopt the semi-
classical approximation [48,49]:

hcþci ¼ hcþihci ð11Þ
and

hτci ¼ hτihci: ð12Þ
Substituting Eqs. (9)–(12) into Eqs. (7) and (8), respec-
tively, and neglecting tiny terms, one can finally attain

jEpuj2 ¼
�
κ2 þ

�
Δ −

2g2σ
ωm

�
2
�
σ; ð13ÞFIG. 1. Schematic setup. A silica nanosphere is trapped in a

cavity, one mirror of which acts as the source mass.
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where σ is defined as σ ≡ jc0j2, and

cþ ¼ EprK1ðK1K2 − iK4Þ
ðK1K3 − iK4ÞðK1K2 − iK4Þ þ K2

4

; ð14Þ

with

K1 ¼ ω2
m − iδγm − δ2;

K2 ¼ −κ þ iδþ iΔ −
2ig2σ
ωm

;

K3 ¼ κ − iδþ iΔ −
2ig2σ
ωm

;

K4 ¼ 2g2σωm: ð15Þ

To investigate the optical property of the output field for
our system, using an input-output relation, which is valid
for a one-sided open cavity, coutðtÞ ¼ cinðtÞ −

ffiffiffiffiffi
2κ

p
cðtÞ,

where cin and cout are the input and output operators,
respectively, we can obtain the expectation value of the
output field as

hcoutðtÞi ¼ ðEpu=
ffiffiffiffiffi
2κ

p
−

ffiffiffiffiffi
2κ

p
c0Þe−iωput

þ ðEpu=
ffiffiffiffiffi
2κ

p
−

ffiffiffiffiffi
2κ

p
cþÞe−iðωpuþδÞt

−
ffiffiffiffiffi
2κ

p
c−e−iðωpu−δÞt: ð16Þ

The transmission of the probe beam, defined as the ratio of
the output and input field amplitudes at the probe fre-
quency, is given by [50]

t ¼ Epr=
ffiffiffiffiffi
2κ

p
−

ffiffiffiffiffi
2κ

p
cþ

Epr=
ffiffiffiffiffi
2κ

p ¼ 1 − 2κcþ=Epr: ð17Þ

In summary, in this section we describe a levitated
optomechanical system and derive the expression of the
transmission. Next, we demonstrate our detection method.

III. DETECTION METHOD

Focus on our system. If the nanosphere is trapped near
the surface of the source mass, its resonance frequency may
be modified by the total force gradient acting on it. Via
measuring this modification, we can detect the axion-
nucleon interaction and constrain it. In our scheme, the
silica nanosphere is trapped with two separations a0 and a,
as shown in Fig. 2. To assure that the resonance frequency
of the sphere is not perturbed in the case of a0, its value is
selected as a0 ∼ 1 mm. On the other hand, the separation a
can be selected as a ∼ 1.6 μm [51]. And in this case, the
resonance frequency may be modified as [31,52,53]

ω0 − ω0

ω0

¼ −
1

2msω
2
0

∂FtotðaÞ
∂a

; ð18Þ

where ω0 is the unperturbed resonance frequency, ω0 is the
modified one in the presence of the total force FtotðaÞ, and
ms is the mass of the nanosphere. Note that generally
FtotðaÞ is an attractive force which may diminish as the
separation increases. From this, we conclude ω0 is slightly
smaller than ω0. In the following, we demonstrate how the
modification is measured.
First, we choose feasible parameters to investigate the

transmission. The unperturbed resonance frequency can be
selected as ω0 ∼ 1 kHz [54]. The mechanical quality factor
of the nanosphere is selected as Q ∼ 108, which has been
achieved in the case of a silica nanoparticle [55]. Thus, the
damping rate is calculated as γm ¼ ω0

Q ∼ 10−5 Hz. The decay
rate of the cavity amplitude is chosen as κ ¼ 1 MHz [56].
For both separations, the parameters used are Δ ¼ 0,
g ¼ 50000 Hz, Epu ¼ 1 kHz, and Epr ¼ 100 Hz.
According to Eqs. (14), (15), and (17), one transmission

spectrum can be obtained by plotting transmission (jtj2) as
the function of δ. Provided that the parameters ðω0; κ;
γm;Δ; g; Epr; EpuÞ take values as the above, and substituting
ωm with 1 kHz; ð103 þ 5Þ Hz, and ð103 − 5Þ Hz, respec-
tively, we can obatin three dierent transmission spectrums
via plotting as shown in Fig. 3(a). Focus on Fig. 3(a). For
the three transmission spectrums plotted with different
colors, three resonance peaks, the line widths (full width
at half maximum) of which are all 10−5 Hz, appear at
ð103 − 5Þ Hz, 1 kHz, ð103 þ 5Þ Hz, while the rest of the
spectrums coincide with each other. In addition, this line
width is designated as Δf in the following. With more
numerical analysis, we conclude that the very transmission
spectrum at ω0 − 10 Hz ≤ δ ≤ ω0 þ 10 Hz, plotted with
ωm satisfying ω0 − 10 Hz ≤ ωm ≤ ω0 þ 10 Hz and other
parameters remaining unchanged, consists of a straight

FIG. 2. In our scheme, the silica nanosphere is trapped near the
source mass with two separations a0 ∼ 1 mm and a ∼ 1.6 μm,
respectively.
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horizontal line with vertical coordinate 0 and a resonance
peak at ωm.
Second, we interpret how the resonance modification is

measured. It is assumed that with the help of appropriate
adjustment our scheme can be realized experimentally.
The corresponding transmission spectrums are shown in
Fig. 3(b). The black peak and the red one correspond to the
separations a and a0, respectively. The distance between
two peaks is

dp ¼ ω0 − ω0: ð19Þ

Then, by measuring dp, the modification can be
determined.
Now, let us draw our attention to the total force FtotðaÞ

mentioned in the beginning of this section. It can be
expressed as [31]

FtotðaÞ ¼ FelðaÞ þ FCðaÞ; ð20Þ

where FelðaÞ is the electrostatic force and FCðaÞ is the
Casimir force. For our detection, this electrostatic force
should be eliminated. It generally arises from residual
potential difference V0 between the interacting nanosphere
and the source mass mirror. This residual potential differ-
ence is related to patches and adsorbates on the surfaces of
the nanosphere and the mirror. First, the nanosphere in our
system has a significant probability to be trapped with a net
charge of 0e [57], assuring that the electrostatic force is
tiny. Second, provided that a voltage of V is applied to the
source mass mirror, the force can be described as [31]

FelðaÞ ¼ XðV − V0Þ2; ð21Þ

where X is a constant. Let V ¼ V0, resulting FelðaÞ ¼ 0.

Then, Eq. (18) can be rewritten as

ω0 − ω0

ω0

¼ −
1

2msω
2
0

∂FCðaÞ
∂a

: ð22Þ

From Eqs. (19) and (22), we derive

dp ¼ 1

2msω0

∂FCðaÞ
∂a

: ð23Þ

The Casimir force here can be considered as the sphere/plate
Casimir force, an accurate expression of which can be obtai-
ned [58,59]. Thus, the formula describing FCðaÞ is attained.
Via calculation, we attain that ms ¼ 1.05 × 10−20 kg.
Then, by Eq. (23), we can obtain the value of dp. Via
performing the relating experiment, we can get experimental
data about dp and the relating experimental error. In sum, for
dp, both the calculational result and the experimental one are
obtained. After comparing the difference of the two results
and the experiment error, whether or not the two results agree
with each other within the experimental error is clear. And the
disagreement can imply the existence of the exotic inter-
actions. Until now, we have developed a detectionmethod for
the exotic interactions. Andwe establish effective prospective
constraints in the following.

IV. PROSPECTIVE CONSTRAINTS

Now, we describe one procedure often used in con-
straining exotic interactions. First, relevant experiments are
performed. Second, the experimental results and the relat-
ing theoretical results are compared. If the two are con-
sistent within the experimental errors, there will be no solid
evidence for the existence of the hypothetical interactions.
In this case, the difference of the two gives us a window
where some hypothetical forces may fit. As a consequence
of it, effective constraints can be established. In addition,
many examples where this procedure has been used can be
found in Refs. [13,14,41]. With the help of this procedure,

FIG. 3. (a) We plot the transmission (jtj2) as a function of δ when ωm take different values. The black, red, and blue curves refer to the
cases of ωm ¼ 103; ð103 þ 5Þ; ð103 − 5Þ Hz, respectively. The parameters used are ω0 ∼ 1 kHz, κ ¼ 1 MHz, γm ∼ 10−5 Hz, Δ ¼ 0,
g ¼ 50000 Hz, Epu ¼ 1 kHz, and Epr ¼ 100 Hz. The middle window is the enlarged red peak with a line width of 10−5 Hz. (b) The
transmission spectrums corresponding to our scheme. The black peak and the red one correspond to the separations a and a0,
respectively. The distance between two peaks is designated as dp.
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prospective constraints on the two exotic interactions are
set in the following.
We attempt to estimate the experimental error δd

appearing in the relevant experiment at first. In our
proposed scheme, while the trapping position of the
nanosphere changes, the resonance frequency of it changes
simultaneously, and a peak shifts in the transmission
spectrum. However, one tiny shift might not be measured
due to the noise effect. Generally, there exists a minimum
detectable shift δωm. And it is reasonable to assume
δd ∼ δωm. Then, the question is to determine the value
of δωm. Here, we use two approaches to resolve this
question in the following.
One approach is presented in this paragraph. We derive

the fundamental limit imposed by noise. Since nanopar-
ticles levitated in optical fields act as nanoscale oscillators
[54], the methods of noise analysis developed in nano-
mechanical systems [60,61] can be utilized here. In our
proposed system, the thermal noise, which originates from
thermally driven random motion of the mechanical device,
is the dominant noise source. According to Ref. [61], δωm
can be expressed as

δωm ¼
�
KBT
EC

ω0Δf
Q

�
1=2

; ð24Þ

where EC ¼ Meffω
2
0hx2ci, Meff is the effective mass of the

nanosphere, hxci is the constant mean square amplitude of
it which is driven in a measurement, KB is Boltzmann’s
constant, and T is the temperature of the nanosphere.
With the relationship hxci ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KBT=ðMeffω

2
0Þ

p
[62], we

obtain δωm ¼ 10−5 Hz.
Another approach is demonstrated here. We investigate

the minimum detectable shift from an experimental aspect.
In the frequency detection regime, the detection limit is
closely related to the relevant line width [61,63]. Moreover,
Vollmer et al. [64] presented an example where the binding
of molecules on the surface of a resonator shifts
the resonant frequency (see Fig. 8 in Ref. [64]). The
demonstration relating to the example (see the caption of
this figure) implies that the line width can be assumed
as the minimum detectable shift. Thus, we assume
δωm ¼ Δf ¼ 10−5 Hz. Now, it is seen that the values of
δωm obtained from the two approaches are consistent.
Then, we assume that δωm ¼ Δf in the following. With the
assumption δd ∼ δωm in the above, we attain that δd ∼ Δf.
We assume that if a relating experiment is performed, the

measurement of dp and the value of it obtained by calcu-
lation will be consistent within δd. Then, it is attained that

���� ∂FeðaÞ
∂a

1

2msω0

���� < δd; ð25Þ

where FeðaÞ is the exotic force acting on the nanosphere
trapped with the separation a. Since δd ∼ Δf in the above,
we can utilize

���� ∂FeðaÞ
∂a

1

2msω0

���� < Δf ð26Þ

to set prospective limits.

A. Constraints on axion-nucleon coupling constants

We assume that the exotic force originates from the
axion-to-nucleon interaction here. Now, we attempt to
derive the expression of the force gradient in Eq. (26).
In the system of natural units with ℏ ¼ c ¼ 1, the effective
potential due to two-axion exchange between two nucleons
(protons or neutrons) can be described as [25,65]

VðrÞ ¼ −
g2akg

2
al

32π3m2

ma

r2
K1ð2marÞ; ð27Þ

provided that r ≫ 1=m. Here, gak and gal are the constants
of a pseudoscalar axion-proton (k; l ¼ p) or axion-neutron
(k; l ¼ n) interaction,m ¼ ðmn þmpÞ=2 is the mean of the
neutron and proton masses, ma is the mass of the axion,
K1ðxÞ is the modified Bessel function, and r is the distance
between two nucleons. Then, taking into account that the
characteristic size of the nanosphere is several orders
smaller than the silica mirror, and following Ref. [24],
we obtain

∂FeðaÞ
∂a

¼ π

m2m2
H
C2
Sio2

I; ð28Þ

with

I¼
Z

∞

1

du

ffiffiffiffiffiffiffiffiffiffiffiffi
u2−1

p

u2
ð1−e−2maudÞe−2maauΦðR;mauÞ; ð29Þ

where the following notation is introduced:

Φðr; zÞ ¼ r −
1

2z
þ e−2rz

�
rþ 1

2z

�
: ð30Þ

Here, mH is the mass of the atomic hydrogen, and the
coefficient CSio2 is defined as

TABLE I. A summary of cavity parameters.

Cavity length L Cavity finesse F Power of trapping laser Mirror (right) reflectivity Decay rate of cavity amplitude

11cm 4290 2mW 99.86% 1MHz
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CSio2 ¼ ρSio2

�
g2ap
4π

ZSio2

μSio2
þ g2an

4π

NSio2

μSio2

�
; ð31Þ

where ρSio2 is the density of the silica; ZSio2 and NSio2 are
the number of protons and the mean number of neutrons in
the molecule Sio2, respectively; and the quantity μSio2 is
defined as μSio2 ¼ mSio2=mH, where mSio2 is the mean mass
of the molecule SiO2. Note that in Eqs. (27)–(31) the
system of natural units is used. Combining Eq. (26) with
Eq. (28) and substituting ms, ω0, and Δf with the values
mentioned above, we obtain���� π

m2m2
H
C2
Sio2

I

���� < 5.1 × 10−17ðeVÞ3; ð32Þ

where the system of natural units is used. Using Eqs. (31)
and (32), under the conditions of g2ap ≫ g2an, g2an ≫ g2ap,
and g2an ¼ g2ap, respectively, we can derive three inequal-
ities as follows. For g2ap ≫ g2an, it is

g2ap
4π

<
mmHμSio2
ρSio2ZSio2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5.1 × 10−17ðeVÞ3

πjIj

s
: ð33Þ

For g2an ≫ g2ap, it is

g2an
4π

<
mmHμSio2
ρSio2NSio2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5.1 × 10−17ðeVÞ3

πjIj

s
: ð34Þ

For g2an ¼ g2ap, it is

g2an
4π

<
mmHμSio2

ρSio2ðZSio2 þ NSio2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5.1 × 10−17ðeVÞ3

πjIj

s
: ð35Þ

The values of several parameters in these equations can
be found in Ref. [25]:

ZSio2

μSio2
¼ 0.503205;

NSio2

μSio2
¼ 0.505179: ð36Þ

Also, the density of silica in natural units is calculated as

ρSio2 ¼ 8.3 × 10−5 ðMeVÞ4: ð37Þ

And the values of m and mH are obtained:

m ¼ 938.9150 MeV;

mH ¼ 938.771 MeV: ð38Þ

Based on Eqs. (33)–(35), via appropriate substitution
(the values of d, a, and R should be in natural units) and
calculation, we establish three upper bounds corresponding
to each of the three conditions (see Fig. 4). The bound

under g2ap ≫ g2an and the one under g2an ≫ g2ap are almost
the same. Accordingly, both of them are represented by the
black curve. And the bound under the most reasonable
condition g2an ¼ g2ap [65] is represented by the red curve. In
Fig. 5, this bound is compared with existing strongest
laboratory constraints on axionlike particles. The upper
limit at ma < 1 μeV was obtained with a magnetometer
[16] (line labeled “m”). The constraints most stringent at
1 μeV < ma < 1.7 meV were established in Ref. [17] by
utilizing the data from the search for violations of the
gravitational inverse-square law [18] (line labeled “gr”).
The upper limit at about 1 meV < ma < 0.5 eV was
derived in Ref. [19] from the measurement results of the
Casimir-less experiment [20] (line labeled “Ca”). The most
stringent constraints at ma > 0.5 eV were obtained from
experiments on measuring the forces between protons in

FIG. 4. Constraints on the constant of axion-proton (neutron)
interaction as functions of the axion mass ma. The black curve
represents the constraints under the conditions of both g2ap ≫ g2an
and g2an ≫ g2ap, while the red one represents the constraints under
g2an ¼ g2ap.

FIG. 5. Constraints on the constant of axion-neutron interaction
under the condition g2an ¼ g2ap from the measurement of changes
in the precession frequency [16] (line “m”), from the search for
violations of the gravitational inverse-square law [17,18] (line
“gr”), from a Casimir-less experiment [19,20] (line “Ca”), from
measuring the forces between protons [34,35] (line “H2”), and
from our work (dashed red curve). The blue region is excluded.
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the beam of molecular hydrogen [34,35] (line labeled
“H2”). The blue region is the excluded parameter space.
As can be seen, our constraints significantly improve the
upper limit in the wide mass range approximately from
10−4 μeV to 1 eV.

B. Constraints on hypothetical Yukawa interactions

Here, we assume that the exotic force FeðaÞ in Eq. (26)
arises due to the hypothetical interactions. In the short
range, the gravitational potential between two masses m1

and m2 separated by distance r can be modified as Yukawa
potential

VYuðrÞ ¼ −GN
m1m2

r
ð1þ αe−r=λÞ; ð39Þ

where GN is the Newtonian gravitational constant, α is the
strength of any new interaction, λ ¼ ℏ=mbc is the inter-
action range, and mb is the mass of the exchanged boson.
By Ref. [66], we attain

FeðaÞ ¼ −2πGmsρSio2αλe
−a
λ

�
1 − e−

d
λ

	
: ð40Þ

Note that here ρSio2 is not in natural units. Substituting
Eq. (40) into Eq. (26), we obtain

jαj < ω0Δf
πGρSio2e

−a
λð1 − e−

d
λÞ : ð41Þ

Using this equation, we set an upper bound on jαj, shown
as the dashed red curve in Fig. 6. For comparison, several
other upper bounds are plotted in the figure. Line 1 was
established by detecting a microsphere response to the
hypothetical interactions [67]. Line 2 was established by
differential force measurements between a test mass and
rotating source masses [20]. Line 3 was obtained via
torsion-balance experiments [18]. The green region is the
excluded parameter space. It is seen that our bound is most
stringent at about 10−7 m < λ < 10−5 m. In addition, our
work improves the previous bound (line 1) by several
orders. In the work for this bound [67], an optically
levitated mass was also used.

V. CONCLUSION AND DISCUSSION

In sum, an optical method is developed to constrain the
axion-to-neucleon interaction and non-Newtonian gravity.
Via the theory of quantum optics, the formula of trans-
mission is obtained. Further, with the help of numerical
analysis, how the effect of the total force gradient is
reflected on the transmission spectrum is demonstrated.
By noise analysis, effective constraints on these two
hypothetical interactions are established. In addition, our
constraints on the two significantly improve the previous
results. Recently, Moore et al. described a variety of
searches for new physics beyond the standard model of
particle physics, which may be enabled in the coming years
by the use of optically levitated masses in high vacuum in
Ref. [69]. Further, the search of non-Newtonian gravity
using an optically levitated microsphere has been realized
[67]. Finally, we expect our work to be able to contribute to
the search for new physics with levitated masses and be
realized experimentally in the near future.
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