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Tree-level unitarity, causality, and higher-order Lorentz and CPT violation
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Higher-order effects of CPT and Lorentz violation within the Standard-Model Extension effective
framework including Myers-Pospelov dimension-five operator terms are studied. The model is canonically
quantized by giving special attention to the arising of indefinite-metric states or ghosts in an indefinite Fock
space. As is well-known, without a perturbative treatment that avoids the propagation of ghost modes or
any other approximation, one has to face the question of whether unitarity and microcausality are
preserved. In this work, we study both possible issues. We found that microcausality is preserved due to the
cancellation of residues occurring in pairs or conjugate pairs when they become complex. Also, by using
the Lee-Wick prescription, we prove that the S matrix can be defined as perturbatively unitary for tree-level

2 — 2 processes with an internal fermion line.
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I. INTRODUCTION

Quantum field theory (QFT) is conceptually based on
locality and Lorentz invariance. Any departure from these
two basic concepts will introduce serious alterations to the
traditional construction of field theory and will necessarily
imply new physics. Alternative theories containing Lorentz
invariance violation have been widely studied to test the
limits of conventional QFT. The triad of theoretical,
phenomenological, and experimental work has made sig-
nificant progress in the past two decades. In particular, the
search for potential Lorentz violations has received special
attention producing stringent limits on Lorentz violations
with ultrahigh sensitive experiments [1,2].

The fundamental interplay between matter and geometry
continues to be a source of conceptual issues. At the Planck
mass mp, =~ 10'° GeV, various candidate theories of quan-
tum gravity suggest the disruption of the continuum
property of spacetime. If Minkowski spacetime is not
the exact geometry at these energies, then it is justified
to consider the standard model of particles to be an effective
theory. One should expect experiments taking place at
scales A to describe gravitational effects suppressed by
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A/mp. Nevertheless, residual gravitational effects could be
detected at currently attainable energies. A possible mani-
festation of such disruption has been realized in the form of
CPT and Lorentz violations [3-5]. In this way, the search
for possible effects of Lorentz violation using effective field
theory has been amply adopted. Effective field theory has
become a natural language in high-energy phenomenology
to describe possible Lorentz violations. This work focuses
on the possible effects of CPT and Lorentz violation
described within an effective framework.

The effective framework of the Standard-Model
Extension (SME) describes effects of CPT and Lorentz
violation in field theory by introducing gauge-invariant
objects constructed from Standard-Model fields coupled to
vectors and tensors that parametrize the Lorentz violation.
It also covers the gravity sector where local Lorentz and
diffeomorphism violation give rise to modified-gravity
theories. The SME can be divided into a minimal sector
and a nonminimal sector. The minimal sector includes
renormalizable operators of mass dimensions equal to or
lower than four, and it was the first sector to be proposed
[6]. The natural next step was to focus on higher-order
operators with mass dimensions five or higher, which has
been carried out extensively in the past years, giving several
bounds on the parameters that modify QFT [7,8] and
linearized gravity [9]. The Myers-Pospelov model was
formulated independently and focused on dimension-five
operators containing Lorentz violation in the scalar, fer-
mion, and photon sectors [10,11]. Consistency properties
such as causality, stability [12-15], and unitarity in the
minimal [16,17] and nonminimal sectors of the SME
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[18-21] have been studied intensively in the past years.
Also, theories of fermions and photons with broken spin
degeneracy have been studied in [22]. This class of theories
provides the possibility to open a window to effects relying
on a nonzero phase space, such as Cherenkov radiation in
vacuo and decay of photons into electron-positron pairs
[23,24]. Radiative corrections have also been extensively
studied within the SME [25]. Recently a sector of modified
gravity has been cast in canonical form [26], and Lorentz-
violating cosmology has been proposed [27].

The effects introduced by higher-order operators become
stronger at higher energies since they scale with higher
powers of momenta. However, a notable nonperturbative
effect is that they generically introduce extra degrees of
freedom associated with negative-norm states in an indefi-
nite Hilbert space. Contrary to the Gupta-Bleuler formalism
in covariant QED [28] the negative-norm states associated
with higher-order operators cannot be a priori excluded
from the asymptotic state space. A treatment introduced
by Lee and Wick in which a specific asymptotic space is
adopted successfully proved that theories with indefinite
metric can preserve unitarity, thereby respecting the prob-
ability interpretation of quantum mechanics [29,30].
Indefinite Hilbert spaces may lead to the loss of unitarity.
The negative-metric part associated with ghost states can
modify the amplitudes, disrupting the optical theorem,
being a direct consequence of unitarity. In this work, we
investigate the preservation of unitarity in a process of QED
involving 2 — 2 particles at tree level. We have focused on
the extension of the Myers and Pospelov fermion sector
that is even under charge conjugation (C). In particular, the
C-odd part has been studied in [21].

The organization of this work is as follows. In Sec. II
we compute the dispersion relations and find the spinor
solutions. In Sec. III we quantize the fermion sector, find
the Hamiltonian, and compute the propagator using its
definition in terms of expectation values of the fields.
Furthermore, in Sec. IV we compute the Pauli-Wigner
function for two separated spacetime points and verify
microcausality. In Sec. V we compute unitarity at tree level
in 2 — 2 particle processes by using the optical theorem.
Section VI contains our final remarks.

II. HIGHER-ORDER LORENTZ
VIOLATING MODEL

We start with the higher-order Lorentz and CPT-violating
Lagrangian proposed in [10]

cF:ww—mW+§%mﬂ+ww9mwww (1)

where n# is a constant four-vector, 7, and 7, are constant
couplings being charge conjugation odd and even, respec-
tively. The Lorentz-violating term is suppressed by the
Planck mass myp,.

The generalized effective Lagrangian describing fer-
mions in the presence of Lorentz and CPT violations
can be written as

Lsye = (i1%9, — M)y (2)

The above SME Lagrangian contains all possible minimal
and nonminimal Lorentz-violating effective terms coded
within the operators [* and M [8]. To make contact with the
effective Lagrangian (1) we set I[* = y# and identify the
CPT odd operators of mass dimension one,

A5 — Mo 9)2n# 3
a n nt, a
o (n-0) (3a)
JAS) - '7_2(,, -0)2n#, (3b)
nip

for the decomposition of M in terms of the basis of 16 Dirac
matrices

A

M =m—+d®ky, + bA(S)”yy/M. (4)

The Lorentz violating terms in (3a) and (3b) have been
tested with astrophysical observations and laboratory
experiments imposing strong limits on their Lorentz
violation [2,8,31-34].

The free equation of motion is

(1= 42 i+ 1) 0,0) o) = 0. (5)

The gauge-invariant QED Lagrangian can be obtained via
minimal coupling substitution in (1), producing

. n'n*
Loep = w(ip —m)y +
npy

(it + moitys)D, D,y

1
— 2 Fu P, (6)

where D, =9, + ieA, and F,, = d,A, —0,A,,.
Consider the gauge transformations on the fields

Ay (x) = A, (x) +0,4(x), (7a)
w(x) = ey (x), (7b)

and one can prove they lead to
D,y — e™“*D,y, (7c)

Thus, the gauge invariance of the Lagrangian (6) follows
from the transformation
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D, (e7*D,y) = 0,(e7*Dyr) +ie(A, + 0,A) X e™*D s
=e DD,y (8)

Here we work with the Dirac matrices in the chiral
representation, i.e.,

0 o 1, 0

H = ) = ) 9

’ (5,, 0) " < 0 112) ®

where ¢ = (1,,6), ¢ = (1,,—6), and 1, is the 2 x 2

identity matrix. The fields are defined in Minkowski
spacetime with metric signature (+,—, —, —).

A. The dispersion relation

For the rest of the work we turn off the charge
conjugation odd sector setting #; = 0 in the Lagrangian (1).

Consider the ansatz y/(X) = [ d*pu(p)e~"’** substituted
in Eq. (5). We arrive at

(# —m = gathys(n- p)*)u(p) = 0. (10)

with the redefined coupling g, = 1,/mp;.
Let us define the operators

M =y —m— gofys(n- p)°, (11a)
M = p+m—gys(n-p)?, (11b)
and
N = p+m+ gtys(n- p), (11c)
N = p=m+ gtys(n- p)*. (11d)
In addition we define
o--17, (12

where D(n, p) := (n- p)? — p?n? is the Gramian of the two
four-vectors n and p. The operator Q commutes with the
equation of motion, i.e.,

[Q. M] =0, (13)
and with any of the operators M, N, N , S0 we expect the

spinor solutions to be eigenstates of Q.
Some useful relations follow by considering
MM =p?—m? = gzn*(n-p)* +2g,(n- p)’VDQ  (14a)

and

NN =p*—m?—gn*(n-p)*=2g,(n-p)>VDQ.  (14b)

We have
(NN MM)u(p) = [(p* — m* = ggn*(n- p)*)?
—4g3(n - p)*D]u(p) = 0. (15)
where the identities have been used,
[#. hlys[p. hlys = 4D (16a)
and
0= 1. (16b)

We arrive at the dispersion relation by requiring a nontrivial
solution for u(p), that is to say,

(p*=m* = gn*(n-p)*)> —4g3(n-p)*D =0. (17)

Let us define the two quantities

A2 (p)=p*—m?>=gn*(n-p)*—=2¢,(n-p)>VD  (18a)
and
A2 (p)=p>—m? - gn*(n-p)*+2g,(n-p)>VD. (18b)

Their product produces the dispersion relation

AL (p)AZ(p) = (p* —m? = g3n*(n- p)*)* —4gi(n- p)*D.
(19)

B. Purely timelike model

Here we consider the background to be purely timelike
with n = (1,0,0,0). Hence, the Lagrangian (1) takes the
form

L =y(ig — m)y + giryorsy, (20)
with equation of motion in momentum space

(¥ —m— g2 pgrors)w(p) = 0. (21)

The previous operators with the special choice of n turn
to be

M = g —m— g:pgrovs, (22a)
M = g+ m—gp5rors, (22b)
N = p+m+ gpgrovs, (22¢)
N = g —m+ gp5rors. (22d)
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Furthermore, we have

QA
ST

o SR
S
N———

—~

[\

W

~—

P ;
Q=—""rrors = -
1P|

T

and
A (p) = py = |BI> = m* = 3G — 20:p5|P].  (24a)
A(p) = p§ — PP = m* = g3pg + 2921515, (24b)
which can be rewritten as
A +m? = (po+ 05 + [PD(Po = 9205 = |P]).  (252)
A2 +m? = (po+ 9205 — |P)(po — 9205 + 1B]).  (25D)

The dispersion relation for a pure timelike n is from
Eq. (19),

(p§ —|BI> —m? — 3p§)* — 4g5pg|pI> = 0. (26)

The eight solutions to the dispersion relations come from
two sectors. We have four solutions of the dispersion
relation A2 =0,

1 =20:/p| = /(1 = 200l|? — 43

= .7
w 295 ( a)
a')l = —wi, (27b)

1=20alB| + /(1 = 20u1PI)? - 4633
W, = 22 , (27¢)
W, = W, (27d)

and four solutions of the dispersion relation Az = 0,

1+ 20:15] = /(1 + 200l BI)? — 43 E3

= . (28
Wy 29% ( a)
PR (28b)
L+20,[] + /(1 +20115])? - 43E5
W, = . . (28¢)
295
W2 — —Wz, (28(1)

where E, = \/|p|* + m*.

Alternatively, we can rewrite the total dispersion
relation as

AL(p)AZ(p) = g3 (p§ — &) (P} — W3)(p} — 3)
x (p5—W3) =0. (29)

The solutions can be analyzed individually; let us expand
for small coupling, and obtain up to linear order in g,

o1 R E,+ |PlE,g,. (30a)

Wy = Ep - |I_5|Epg2ﬂ (3Ob)
1 e

Wi~ ——|p| =5 (E; + |PI") g, (30c)
92 2
1 N =0

Wy~ —+|p| =5 (E;. + |P*) g (30d)
92 2

The low-energy modes @; and w, are perturbatively
connected to particle propagation; however, the additional
degrees of freedom corresponding to the higher-energy
modes W; and W, correspond to the propagation of
negative-norm states or ghosts as we will show in the next
sections.

The frequencies w,, W, and @;, W, can become
complex for higher momenta. The condition for this to
occur is

(1-202[p|)* - 4g3E} <0, (31)

from where we find a region where energies become
1-4g2m?

. Note that the condition

complex || > |Pumax| = —;

for energies w,, W, and @,, W,,
(1+29:[p|)* - 493E} <0, (32)

cannot be satisfied for small values of g3m?, and hence the
energy remains real for any momenta. We find

/1
-+ 4m?, (33)
9

and lim‘m_)ooa)z = hmw_)ooWZ — oco0. At this level, the
theory establishes a maximum value for the momentum
and a priori an energy scale for the effective region of the
theory.

wl(lﬁmax') = Wl(ll_)'mde =

N =

C. Spinor solutions

Now we focus on finding the eigenspinors of the
modified Dirac equation using the energy solutions (27)
and (28). Consider the field y(x) = [ d°pu(p)e~"P* in the
equation of motion (21) which produces

095006-4



TREE-LEVEL UNITARITY, CAUSALITY, AND HIGHER-ORDER ...

PHYS. REV. D 106, 095006 (2022)

Mu(p) =0, (34)

where M defined in Eq. (22a) has the matrix form

—-m -gppi—(p-c
M:( " 9205~ (7 v)_ 55)
Po+92p5+(P+0) —m
We define the spinor in terms of bi-spinors
x1(p)
)= (000, (36)
x2(p)
and replacing the above we arrive at the equations
(Po = 9205 — (P - 6))x2 = my1, (37a)
(Po+ 9205 + (P - 8))x1 = mys. (37b)

The spinor solutions of the dispersion relation A2 =
are

uD(p) = < V' Po— 9205 — | PIET
V' Po+ 9205 + |plET)

’i) . (3%a)

p Po=w,

UO(p) = (\/Po 9205 — [Pl li ) . (38b)
Vo + 9205 + 1PIEF (P)

and the solutions of the dispersion relation A2 = 0,

V=R T -P)
u®(p) = ( Po = o1 +1PIE ’j ) ., (39a)
VPo+ 9205 = 1PIEV(=D) ) p—a,

UO(p) = ( VPo = 9205 + Iflﬁ(‘)(—lf) ) . (39b)
Vo + 005 = PIET(=P) ) poew,

For the negative energy solutions, we consider the field

to be y(x) = [d®pv(p)e’?™ and the eigenvalue equation
Nv(p) =0, (40)
with
m +gp5—(p-0
N " po+9:05—(P-0) Rt
Po—9:P5+(P-0) m
given in Eq. (22¢) and
¢1<P)>
o) = (50, 2)
$>(p)

We have the equations

G))r = —mg,. (43a)

(po+ 9205 — (P~

3))4’1 = —map,. (43b)

(po—gp3 + (P~

We find for the negative-energy solutions associated with

A2 =0,
Vot 9203 +pIEC) (—p

v<1>(p):< TR I21é (pj> L ()
V' Po=9205=1PIET(=P) ) py—a,
Vot g3+ |pIED (-p

V(l)(p):< Po+92P5 |Pl§ PZ)  (44b)
—V/Po=9205=PIED(=P) ) p—w,

and with A2 =0,

U(z)(p):< Vo t 9205~ [PIE(F) )  sa)
—V/Po= 005 + 1PIEV(B) ) e,

V(z)(p):< \/ 0+92P(2)_|[_5€< ) )
vV Po = 9205 + [PIET(P)

We can write some relations satisfied by the spinors,
which do not part too much from the usual expressions.
They are

(45b)

W (p)u'(p) = 20,6, (462)
v (p)v'(p) = 2w,6™, (46b)
and
U (p)U'(p) = 2W, 5™, (47a)
Vi (p)Vi(p) = 2W,5™, (47b)
and for the fields i = u'y, we have
@ (p)u’(p) = 2ms"™, (48a)
#(p)v'(p) = —2md"™, (48b)
and
U*(p)U"(p) = 2mé™, (49a)
Vi(p)V'(p) = —2mé™, (49b)

where the indices run over r,s = 1,2. The detailed deri-
vation of the spinors, together with their complete inner and
outer product relations are given in Appendix.
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III. QUANTIZATION

In this section, we focus on the quantization of the
Lorentz-violating fermion model. We derive the
Hamiltonian and the four-dimensional representation of
the Feynman propagator. In the last section, we study
microcausality preservation.

A. Equal-time anticommutation relations of the fields

The Lagrangian (20) can be integrated by parts to
produce

L= %(wﬁif —y'y) +(iy'o; — m)y — gyr'ysyr. (50)
The above Lagrangian is equivalent to the original one, but
it is simpler in the sense of being standard-derivative order
and symmetrical with respect to time derivatives. We work
with this Lagrangian in the next sections.

It is convenient to decompose the field w (X, x;) in terms
of two fields y; and v, as

(X, x0) = w1 (X, x0) + w2 (¥, o). (51)

We take the field y; to describe standard particle states,
which eventually includes perturbative corrections in the
parameter g,. On the other hand, the field y, is defined to
be associated with negative-metric particles or ghosts.

We expand each field considering their plane wave and
spinor solutions found earlier. The particle field is

- d*p .
yll(x,xo) = Z /#\/LN—,, (a;ur(p)e—lp‘x

r=12
o (p)ert) (52)
Po=w,
and the ghost field
. dPp 1 .
ll/ ()C,X ) = /—— (ar Ur(p)e—lp-x
’ ’ }‘:21,2 <2”)3 V Nr !
LBV (p)erT) (52b)
Po=W,

We have introduced the creation operators a;’, b;’ and the
annihilation operators aj,, b), for particle states and the set
of operators a},’, ﬁ;r,’ and a),, ), representing creation and
annihilation operators, respectively, for ghost states.

The fields (X, xy) and y,(X, xy) are normalized with
the constants

Ny =2w0,5(Wi - a3), (53a)

N = 20 (W3 - ). (53b)

and

N =2W,3(W? — w?), (54a)

Ny = 2Woi3(W5 — @), (54b)
In Appendix, we explain how they appear associated
with a modified internal product between spinor states of
positive and negative energy.
From the Lagrangian (50), we compute the momenta
associated with the independent fields y and v,

oL i .

Ty = W = EWT - 92r'ys, (55a)
oL’ i .

Tyt = 6—1//T = —El// — GYsy. (55b)

We impose the equal-time anticommutation relations for
the fields and their conjugate momenta fields

{w(¥ x0). 7, (. x0)} = 6P (X =5).  (56a)

{w' (3. x0), 11 (. x0)} = 69 (¥ ~F),  (56b)
with the rest of commutators being zero. In order to achieve
Egs. (56a) and (56b) we take the creation and annihilation
operators to obey the rules

{a5,a'} = (27)367 80 (k - p), (57a)
{b3. b} = (27)°86% (k - B), (57b)
and
{a, af'} = —(22)6"8D (k= p),  (58)
(BB} = —(27)2878%) (k - p). (58b)
with the vacuum defined by
as|0) = b3]0) = a3 |0) = A5]0) = 0. (59)

Notice that the second set of rules are defined with a
nonstandard negative sign in (58) which is the first
indication of having an indefinite metric in Hilbert space.
In fact, we can write down the metric for each sector in
the indefinite Hilbert space. We define the n-particle states
of polarization s to appear by applying repeatedly creation
operators on the vacuum state. For particle states

(aym

1) = 0), (60a)

(nl,s)!

and for ghost states
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1

(ap)™+10), (60b)

|n2,s> =
l’lz’s) '

where n;, and n, are the eigenvalues of the number
operators N = af;"af, and N, = a) a},, respectively.
Hence, for particles we have the positive metric

nl,s = <n1,s|n1.s> = 17 (613)
and for ghost states the indefinite metric
Moy = (Maslny ) = (=1)". (61b)
From (52a) and (52b) we have
y' (%, x0) = w1 (%, x0) + yh (3, %), (62)
where
N dp 1 +
l//'(x,x): / (ar ur’r(p)elpx
1o ;2 (27)* /N,
+ b (p)e~ P , (63a)
170:wr
. &p 1 ‘
WA (% x0) = —— (@ Ui (p)eir
’ ) (227N,
rrt —ip-x
+ VT (pe )ponr. (63b)

We introduce momenta with respect to the decomposed
fields in the form

oL’

T = M 5‘//1 9211'475’ (64a)
oL i .
7y = @ = E‘l/; - 92‘!1275, (64b)
and
. oL i .
= W = —51//1 — 92Vs5¥1, (65a)
. oL i
== — =Yy — /5. 65b
) EY S V2~ D5V (65b)
Therefore, we can write
T, =1 + 1y, (66a)
Ty =7, + 7). (66b)

With these simplifications, we start computing the
commutator (56a). We can write the first commutator as
the sum

{w (¥, x0), m, (¥, x0) } = {w1 (X, x0), 71 (¥, x0) }
+{va2 (X, x0). 1 (Y. x0) }.  (67)

and momenta (64a) and (64b) as

(X, x 12 d3_’ ay ut(p) l—g ®
() ) WY 5

. o 1 .
X e'P* 4 b3v'T(p) <§ + gzwﬂ’s) e_lp‘x}
Po

(68a)

and

&P 1
2(¥.x0) Z/ [ 5 U (p) <§—92Ws}’5>

) 1 )
o en)er]
Po=W

(68Db)
The first commutator in (67) can be shown to be
{1 (%, x0), 71 (¥, x0) }
&Pp i [ 1
o [ 0) (5 o)
r=1,2 / N 2
1 P
=) (54 o ) [P0 (69)

We can proceed analogously, and by considering the minus
sign due to the minus in the anticommutation relations (58)
we obtain

{wa (X, x0), 72(¥, x0) }

2 12/@[3& [ (P)U"(p ><%‘92‘””5>
+V'(=p)V"(=p) (% + gzwrn)] e P (70)

For the first commutator involving particles we use
Eqgs. (A58)-(A61) and for the second ghost commutator
Eqgs. (A62)-(A65) given in the third subsection of
Appendix, and we arrive at
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- - [ dp 1 .
{w1 (X, x0), 71 (¥, %0) } = 1/ (2ﬂ1;3 (ﬂ [5(“4 - 0) — g (r'pi +m— g0tyors)ro(1s — Q)}’s}

N,

N, |2

and to

w, |1 . e
+2 {— (1,4 Q) = 2 (v’ pi + m — ga03yoys)ro(1s + Q)}’s] ) eiP (9, (71)

- - [ dp (W1 )
{wa (X, x0). 72 (Y. x0) } = —l/ P <J\71 {— (14,=0) =g (y'pi +m — 92W%7’07’5)}’0(“4 - Q))’s]

(2z)° 12
W |1 i 2 ip-(3-5)
+J\72 5(“4 + Q) = a(r'pi + m = aWarors)ro(ls + Q)ys | e, (72)
|
We use the relations Considering momenta in Eqs. (55a) and (55b) the
Hamiltonian can be cast into the form
(O] Wl 1

—_——_—— = 73
Ny N, 29%(“’%‘”%) (73)

and by adding (71) and (72) produce

{w (%, x0), 2(¥, x0) }

— d313[ V07570
(27)° [2¢5(W] — @)

(g3(wf = W1)(14 = Q)rs)

YoYs5Y0 Y 5 i5-(3-5)
+ 550 oy (B (@3 = W3)(Tg + Q)ys) |77
25(W3 —w3) 722 72
(74)
and
{w (¥, x0). 7(¥. x0) }
[ d&p (1 1
= _’/(27>3 (5707570(]]4 - Q)ys + 5 70YsY0
x (T4 + Q)J/s) P ), (75)
Finally,
. , [ &P o
(w020} = =i [ 3 B Gorsrors)e
(27)
= i6B)(X - ). (76)

In a similar way the commutator (56b) is also satisfied.

B. The Hamiltonian

The Legendre transformation of the Lagrangian (50)
produces the Hamiltonian

ie [os(niin-c). )

H = /d%?(—gzli/*yyi/JrW(—iy"ai +m)l//>- (78)

With the decomposition of fields (51) let us write

H= 3 Ho= Y [da@. (09)

ab=12 ab=12

where

Hap(X) = —gatirk (%) 75007, (x)
+ 4 (x0)(=iy* o, + m)y,(x).  (80)

We write the contributions coming from both fields
separately.
The contributions coming from y; are

. d3l_5/ 1 s 1S (ol A4S ,—ip'x
—9Vs¥1 = —92752 3= | i’ (p )a,,/e
s

Cx) /N,

+ iwv* (p')b)] eip’-X) (81)

VR
Py=ws

and

(=iy'0; + m)y (x)
B &Py 1
Y ke

(e ) (2)

()
Py=ws

(vt -+ me e

And the ones coming from y, are
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— Ysi

& 1 . -
Y

We can rewrite the terms involving space derivatives (82)
and (84) using the equations of motion (34) and (40), i.e.,

s (=r'pi + m)u(p') = ro(@ = gys0?)u(p'),  (85a)
+ WOV (p))Ber ) - (83) .
o= (r'pi +m)v*(p') = —ro(@y + gays@?)v’(p'),  (85b)
and
and
(=iy'0; + m)w(x) 4 , .
/ f5 1 (=/'pi +m)U* (p') = vo(Wy = qarsWE)US(P').  (86a)
=2 P+ m)U (p)ay e P
2 3 7 ! 1’ i s S
N heiad (1P} + m)VS () = =1o(W} + garsW2)VS(p').  (86D)
V() T) - (84
r Po=W, This yields
|
i d3 p' N8 ,—iwixy\ ,ip'-x
(=iy'0; + m)y (x Z (ro(@ — gr02ys)u*(p Jay e~ 0 )e!P
~ (rofeh + gzwg?ys)vs(p’)b;fel‘m’vxo>e-l‘ﬁ’ﬂ (87)
and
=ir0 () = 3 [ G (W= WU (e e
14 Jwo(x W 70 —9Wsls p
= (ro(Wi + 2 Wers)V(p') ;Teiw’/"x")e_iﬁ/';} : (88)
Now, it is convenient to decompose further by considerin 3
p y g va _ _Z/ d p3 1 b;bsp"'e—i(a),—ws)xo
Hll = H" 4 H"  HV —|—H"“, (898.) s (27[) \/N,,NS
rf 1 s
le — HuU +HuV +HUU —f—H”V, (89b) X sV (p)( +927/5(ws —+ a),))v (p)’ (93)
the mixed
Hy, = HV 4 HUY 1 HVe 4 BV, (89¢) e mixed ones
&p 1 .
H22 — HUU +HUV +HVU + HVV. (89(1) HLtU Z/( aga;el({or—wx)xo
After some algebra we find the particle contributions x Wu't( p)(l — 9275(Ws +,))U(p). (94)
d*p 3=
H" = Z/ ;Tapel( —@:)% _Z/ d’p 1 rTﬁ el(@+Wo)x
X o, '<p><1 —gm(w.; +w,)u(p). (90) X< W (p ><1 +9275(Ws —0)Vi(=p).  (95)
d3* 1 . 35
Z/ ﬁbs_}pe’(wﬁ‘ws)xo Z/ &’p 1 br s_pe—i(a)r—O—Wx)xo
x wsu”(p>(1 + 9275 (ws —w,))v*(=p). (91) X st’*(p)(l - 92}’5(Ws -w,))U(-p),  (96)
r s —i(w,+w;)x _ ST —i(w,—Wy)x,
=t R
X wxvrk(l?)(l - 9275(0)3 - ,))u’(=p), (92) x W't (p)(1 + 92}’5(Ws +®,))V(p), (97)
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’%—v
Z/ d 1 a;’]Ta;ei(W,—wJ)xo
r,s

x o, U (p)(l - 92}’5(% + W) (p), (98)

3—)
Z/(d LAV W AT

X wsU”(p>(l + 927/5(0)3 - Wr)>1)s<—p), (99)

d3_’ .
X wsV”(p)(l — s (ws -W.)u'(=p),  (100)
&p 1
_ _Z/ ﬂ;; ;}Te—t —wg)Xo
X wsV”(p)(l + gzys(ws + W,)v*(p), (101)
and the ghost contributions
a*p
HUU — Z/ aga el (W =W)xo
x WUt (p)(l - gzys(Wx +W)U(p),  (102)
_Z/ r’rﬂ i(W, W, )x
X WSU’T(p)(l + 9275(Ws = W,)Vi(=p). (103)
3—)
Z/ d ;av_pe i(W,4+W)xo
x WSV”(p)(l - 9275(Ws - W)U (-p), (104)
4% &’p F o—i(W,=W,)xo
H = _Z/ 277'_)3 ﬂpﬂ
x WV (p)(1 + ngs(Ws +W.)Vi(p).  (105)

After considering the 16 terms and using Eqs. (A45)—(A47)
of Appendix the only nonzero contributions are

uu d3l_5 ST s
H Z 2n) w,a) aj, (106a)
3p’ .
H" = Z / &) b b} (106b)
and
HYY Py 106
__Z (2 )2 W, p %p> ( C)

&p
Vv _ s st
= Z / stﬂpﬂp (106d)
Finally, adding all the parts we arrive at
(a)sap aj, — o, bsber
s= 12 (
- Wa) s + W5 Ajj), (107)
and the normal ordering gives
st 43 ‘T s
— Wy(a) ay, + fp ,BS)) (108)

The Hamiltonian is stable, and in the presence of inter-
action we can always redefine the vacuum in order to
produce a well bounded Hamiltonian. For fermions this is
always possible due to the invariance of the algebra (58)
under a vacuum redefinition [29]. However, it is noted

55, /1 +4m?g5 at which the

solutions +@; and =W become complex, the Hamiltonian
is no longer Hermitian.

that for energies higher than

C. The Feynman propagator

We compute the modified propagator starting from its
definition

Sp(x=y) = OIT{y (x), v (v)}0),

and in terms of theta functions and vacuum expectation
values of fields we have

(109)

Sp(x = y) = 0(xo = yo) (Olw (x)y7(y)[0)
= 0(yo = x0) (Ol (y)w (x)[0).  (110)
To simplify the calculation and without loss of generality
we set y = 0.
We start with the case x; > 0 and define

= Oy () (0)[0).  (111)

Using the decomposition of fields in Eq. (51) we can write
S5 (x) = (112)

{Olw1 (x)71(0)[0) + (Oly2 (x)372(0)]0).

Consider
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(Olyr1 (x)y71(0)[0)
b’k

r.s= 12/ 2”)% (2ﬂ

% <0| (ar ur(p)e—ipx 4 brT/Ur(p)eip-x>
Vv Nr b g Po=w,
1
X Y@ (k) + by S(k)) 0). (113)
Vv Ns ( “ ko=,

The action of the annihilation operators on the vacuum
produces

35 BL
OO = 3 [ SR
rs=12 r S

x u"(p)a' (k) <O|a§,a‘,§T|0>e_"p'x,
(114)

where p, = (w,, p) and from the anticommutation rela-

tions (57) one has
&p 1
u'(p)it
r=1 2/ 3 N

(Ofyr1 (x)yr1 (0) r(p)e~irx,

(115)
Now we use the expression (A50) and (AS51) to arrive at

{Olyr1 (x)yr1(0)[0) (116)

&p i )
= | ey (yow1 +7'pi +m — g07yo7s)

e—iwlxo

(1,-0) + (yowy + v'p; + m — g203y07s)

(117)

l\)IP—‘ l\-)\'—‘

: e~ iw2xo 53
1+ Q) e

and we factorize the global operator

{Oly1 (x)y71(0)[0)

= (ig + m + gry0r593) /
e—iwlxo

N,

P [l (1.-0)

(2x)* |2

1 : e~ lmxo .
_ ip-x

X

(118)

Analogously, for the ghost field we find

(Oly (x)y72(0)[0) =

—(ig + m + g2y07595)

d3p’ 1 e—iW1x0
X / (2”)3 |:§(]]4 - Q) Nl

e—lW7x0

1,4+ 0) N, ] eir, (119)

2(
where a minus sign has appeared due to the ghost

oscillators anticommutation relations.
Adding both contributions produces

(>) . 5 d3ﬁ 1
Sp ' (x) = (id + m + g2r0r59;) @B§§U4—Q
|:e—iw1x0 e—iW]xO
X

1
W tar )

e—iwzxo e—inxU .
X — e'rx,
N, N,

Now we proceed with xo < 0 and compute

(120)

Sp(x) = 8§ (x) = —(0pF (O (x)[0).  (121)

After some work similar to the one above, we find

(<) - o [P 1
Sr (x) = (igd + m + gy0750;) W 5 (1,-0)
l:eimlxo eiW|x0
x

1
N N1]+§<“4+Q)

|:eiw2x0 eiW2x0:|:| .
X |[—————| | e'P™.
N, N,

We are interested in making contact with the four-
dimensional representation of the propagator with the pole
prescription. Recall the inverse of the operator in the
equation of motion (21)

(122)

iMNN

M= (123)
G (p§—w1)(p5—W1)(pg—w3)(p§—W3)’
with
MNN = (§+ m = g:p3ror5)
x (p* =m? — Gpd + 2005 pir'vors).  (124)

In order to find the four-dimensional representation of the
propagator we need the ie prescription in the denominator
of (123) or the definition of the Feynman contour Cp.
We select a prescription for the propagator based on the
contour Cr; see Fig. 1.
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Im(po)
A
————— d‘——“\\
o
e \\CF
/// \\
/// \\\

/ N’ \
[=Wo—W1li—w1 —ws \\
| <o o >ieo <o \
v > Re(po)
\J
FIG. 1. The contour Cr encloses the poles @, w,, Wi, W, in the
lower half plane while it encloses the poles —@, —w,, =W, —W,
A2 52
in the upper half plane. At momentum |p|,,,, = - izzm , the two

poles @w; and W have the same value and from then both move
downwards parallel to the imaginary axis as momentum increases.
The two poles @, and W, go to infinity as the momentum
increases, and all the opposite sign poles have a similar behavior.

Hence, let us write the Feynman propagator as

Sp(x) —/ dp (p)e~ir™ (125)
F - c, (2]7,')4 F p ’
with
iMNN
Sr(p) = —— —, (126)
L(p +ie)A(p + ie)
where from the expressions (24), we are defining
A (p +ie) = —g3(po + w; — i€)(po — w + i€)
X (po + Wy —ig)(py — Wy + ie),
AZ(p + i€) = —g5(po + @y — ig)(py — Wy + ie)
X (po + Wy —ig)(po — W, +ie).  (127)

To compare with the previous calculation, let us consider
xo > 0 and close the contour from below with the curve
7; see Fig. 1 to obtain

Sp(x) = /c;

Integrating in p, produces

dpo

&Pp N
@ 3 SF(p)e—lp0x0+tpx.

G (128)

Sp(x) =~

i=1

2 7
o / 27) 32 (Res(Sp(p)e™'Po%,q;)) x e,

(129)

where the sum runs over the residues at the poles

q1 = W1, 4y = W, g3
The evaluation of the

Res(Sp(p)ePo%, ) =

Res(Sp(p)e™. w,) = —

=Wiqs=

residues are

i(MNN)

Po=w

W,,and i =1, ...,4.

gt —3) (W3 -

e—iwlxo

X b
N,

i(MINN)

Po=w>

)
(130)

e—iwzxo
X

bl

(@] = 3) (Wi — o))

(131)

N,

i(MNN),
g (Wi = @3)(W3 = Wi)
—iWixg

Ny

Res(Sp(p)erovo, W) = —

e
X

(132)

and

i(MNN), _y
B(W3 = o)(W3 - W})

e—inxo

N,

Res(Sp(p)eo*o, W)) =

X

(133)

Considering the identities

(MNN),, _,,, = (4920} |B|) (@170 + pir’ + m — gawiyoys)
1
x5 (1= 0Q), (134)
(MNN), _,,, = (=4g:03| p|) (@210 + piv' +m — g037075)
1
x5 (1a+0), (135)

(MNN),.—w, = (4 WP (Wiro+ pir' +m—g:Wirors)

1

x5 (1= 0). (136)

(MNN),, _w, = (=49:W3|p)(Waro+pir' +m—gWayors)
1

x5(14-0). (137)

and using the identities
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9 (0] — a3)(W3 - af) = 4g 2601
g (@7 = a3) (Wi — w3) = 4g
B(Wi —3)(W3 - Wi) = 4g
(W3 —ap) (W3 = W7) = 492W2|P| (138)

we can verify

a&p 4
Sp(x)= /W {(6017’0 +pir' +m—gw}yors)

1 e—imlxo )
XE(M—Q) N, + (w270 + piy' +m—gr03707s)
1 e—imzxo ; 5
XE(“4+Q> ~(Wiro+pir' +m—g,Wiyers)
1 e—iWIxO ; 5
x> (14=0)—7——Waro+pir' + m=g:Wiyoys)
2 N,
L, 0) 139
X_
10 ] (139)
Factorizing a global operator we arrive at
Sp(x) = (ig + m + gry07505)
d3l')’ 1 e~ioxo  p=iWixg
X [ —=|=(1, - _
/(2;:)3 {2(4 Q)[ N, N, }
1 ’ e—i(uzxo —iW;,xg 53 140
+§(4+Q)[ N, _TzHe . (140)

By comparing we arrive at the same result as the one
obtained from the definition Eq. (120).

Now we consider x; < 0, and we close the contour in the
upper half plane

dpo & p —i ip3
S = et U Nl Y ipoxo+ip-x
F('x) /C; (271_) / (27[>3 F<p>e

= O [ 55 Res(sr(p)e e

i=5

(141)
where now ¢s = =y, qe = —w;,q7 = =Wy, g5 = =W,
and i =5,...,8.

We have
RCS(SF(p)e—iPoxU —Cl)]) - _ i(MN]\_J)po:w]
B} = 3)(W3 - o)
eiwlxo
x ’ (142)
N,y

i(MNN), _
gz(a’% - wz)(W2 )
ezwzxo

N,

Res(Sp(p)e™0, —w,) =

X

, (143)

i(MNN), _y.
(Wi = w3)(W3 = W})
einxo

Ny’

Res(Sp(p)eoro, —W,) =

X

(144)

i(VMINN), _y,
5(W3 — o) (W3 = W})

ei Woxg

Ny o

Res(Sp(p)e™oro, —W,) = —

X

(145)

Consider
(MNN)poz_w]
- ) 1
= (49207 P|) (=o1v0+ piy' +m=g2077075)5 (14— Q)

(146)

(MINN), __,.
- . 1

= (—49203|p1) (=oar0+ pir' +m = 203y075) 5 (14 + ),

(147)

(MINN), __y.
- . 1

=(“4uWip)(=Wiro+piy'+m —92W%70Y5)5(“4 -0).

(148)

(MNN) Po=—W>

N . 1
=(—49:W3|p])(=Waro+piv' +m—92W%Y075)§(1]4 +0).
(149)

We finally verify that
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a&p .
Sp(x)= /W |:(_w170 +pir'+m—gotyoys)

1 eia},xo )
XE(M—Q) N, + (w10 + piv' +m—gr03y075)
1 eia)zxo ; 5
XE(M‘FQ) N —(=Wiro+pir' +m—gWiyors)
1 eiW1x0 ) )
x~(14-0) —(=Wayro+pir' +m—g:Wiyors)
2 N,
L4082 150
X = .
1405 (150)
Again factorizing global operators, we arrive at
. ) &p [1
Sp(x) = (ig + m + g2v0759) (2n) 5(“4 -0)
etu)]xu iW]x{] 1
X T4+
S 30+ 0)
eiw2x0 elW2x0 .
X — px 151
[ N, N, He 1s1)

which is the same as obtained in (122) with the definition.

regions. In relativistic field theory this assumption called
microcausality is translated into the condition

[0(x),0(x)] =0, for (x—x)2<0. (152)

For a fermion theory, since observables are constructed
from bilinear forms, it is enough to impose

iS(x—x) = {w(x),@g(x)}, for (x—x)><0. (153)

In the model we are studying we can identify two sources of
possible microcausality violations. The first one is related
to the breaking of Lorentz symmetry where the notion of
light cone loses some of its properties due to superluminal
propagation. The second one involves an indefinite metric
leading to acausal propagation that has been extensively
discussed in the literature by Lee and Wick and also in
posterior works.

We begin the study of microcausality by considering the
decomposition (51), and we obtain

IV. MICROCAUSALITY {w (). (x) } =Ly (x),971 ()} + {wa (x) 2 (x) }. (154)
In quantum mechanics the property of causality means
that local observables commute at causally disconnected  We compute first
|
{V/I (x) Vi (x/)} _ Z / d3k 1 { u (p)e—imrxo—i-iﬁ-)? + brTvr(p)eiw,xo—iﬁ} aﬂ-uﬁ(k)
r.s=1.2 Zﬂ)?, 2” N N p : o
% },Oeia')xxo—ik'x + bzvsT (k)yoe—iwsx6+i;-}r}‘ (155)
We use the algebra (57) and the outer relations in (A50) and (A51) to arrive at
P d’;ﬁ 1 i 1 —iw; (xg—x)
{w1(x), 91 (x)} = /(271)3 [N] <(700)1 +y'pit+m-— gzw%Yo%)Voi (T4 — Q)yge™"1 (o)
. 1 . ,
+ (rowy —v'pi —m+ 9260%7075)705 (14— Q)}’oe'm‘(x"_xo)>
1 iy (xo—x))
+ N, (vowr +v'pi +m— 92002707/5)70 (14 + Q)ype =¥
+ (yow2 —7y'pi —m + 92‘027075)702 (14 + Q)yoe™>0™0 )ﬂ P, (156)

Taking x' = 0 we get
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1

d3-’ 1 .
{wi(x 0)} = / [ <70601 +y'pi+m— 92(017075)5(1] 4= Qe

+ (ro@1 =y'pi—m+ 920}%}’075) 5 (14— Q)eimlm>

1

2

. 1 . .
+ (yow2 — 7' pi — m + g,0370¥s) 3 (T4 + Q)el“’mﬂ e’

and hence

1

&p . ,
{y1(x).97,(0)} = (id+ m + 9:05y075) /ﬁ {N_l (emirxo — gioi%)

Similar calculations lead to

W%W%®H=wa+m+m%wﬁ/

1
+./\72

(e—iWZXO _ eiwzxo)

We have the four-dimensional representation of the anti-
commutator {y(x),(x')} by using the curve C which

encloses the eight poles. From 1, where C = C; — C7, we
can write
s =i [ L (160
X) = )
c (2m)* A2 (p + ie) A% (p + ie)

/ dpg
c (p§—o1)(p§ — ®3)(p§ — W1)(p5 — W3)

+40 <(70w2 +7'pi + m— g03y0rs)

N =

(14 + Qemiosn

N[ —

(157)
1(1]4_Q)+L(e—iw2xo_eiwzxo>l(]]4+Q) ip-X .
2 N, 2
(158)
d3ﬁ 1 ( —iW i xo iW1x0> 1 (]] Q)
2n) [N, R
14+ 9)] e, (159)
|
M = i+ m + 92057075,
N = ig+m - g:3yors.
N = iﬁ—m—gza(z)}’oﬁ- (161)

We can always perform an observer transformation when
both points are spacelike separated, leaving us with
x = (0,X). In this way we can integrate and obtain an
integral proportional to

_2601<

ot — w3)(f -

Wi)(wt = W3)  2m;(03 — o)(03 = Wi) (w3 — W3)
1 1

2W (W] — o) (W} — @3)(WE — W3)

2W (W - 0}) (W} - 03) (W} — W3)
1

2w, (W3-

o) (W3 — w3)(W3 - W3)

(162)

The combination is always zero even when the poles @; and W, become complex as can be seen in Fig. 1. and therefore

microcausality is preserved.
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V. TREE-LEVEL UNITARITY

Recapitulating, we have found 7, ; the metric associated
with the indefinite Fock space which is not positive defined
and will produce negative-norm states for an odd occupa-
tion number of particles. Generally, an indefinite metric #
can lead to a pseudo-unitary relation for the S-matrix

ShS =n, (163)
which is not satisfactory to describe probability amplitudes.
However, as was shown by Lee and Wick an indefinite-
metric theory can have a chance to develop a fully unitary
S-matrix. In particular, they showed that by restricting the
asymptotic space to contain only particles with positive
metric, it is possible to have a unitary condition for the
S-matrix [29,30].

To study unitarity at tree level we will use the tool of the
optical theorem and adopt the Lee-Wick prescription. The
optical theorem provides an important constraint equation
to test perturbative unitarity based on individual diagrams,
which is well suited for our analysis. Moreover, adopting
the Lee-Wick prescription in our model means that ghost
states are unstable, and so they will not appear in external
legs in any Feynman diagram. However, internal fermion
lines propagating ghost modes are perfectly acceptable,
leading to possible violations of unitarity. Therefore to test
these possible sources of unitarity violation, we focus our
analysis on the class of diagrams describing 2 — 2 proc-
esses at tree level with an internal fermion line.

Recall, the optical theorem has a simple expression

2m(vr) = Y [ di i (164

where M ;; is the amplitude for a forward scattering process.
The sum runs over all possible intermediate states, and the
integral over the phase space dIl,, is restricted by momen-
tum conservation.

We study the process of Compton scattering of electrons
and positrons. We consider the incoming fermion or
antifermion of spin r to have momentum p and the photon
to have momentum k. The final states are other photon-
electron or positron-electron pairs, as shown in Fig. 2.

We begin with the process involving the electron and
denote the process by e~ (p)y(k) — e~ (p)y(k). According
to the standard Feynman rules the matrix element
M= M(e"y — e y) can be written as

M = (~ie)? / (Cis; x (2z)*6 (p + k= p')

x U (p. k)Se(p") U™ (p. k), (165)

where

p p

FIG. 2. The Compton scattering diagram in the analysis of tree-
level order unitarity.

0(p.k) = NyNa(p)es” (k)" (166a)

U (p,k) = NoNohu (p)el (k). (166b)

and N, = with o, = |7é| as the usual photon nor-

1
2wy’
malization, N}, = \/;i are the normalization constants of

Egs. (53), and the modified fermion propagator Sy is given
in Eq. (126).

To compute the imaginary part we consider the decom-
position in the propagator

1
(py— Q+ie)(py + Q —ie)
1 1 1

= , 167
@\ ph-ario phra—ie)

and use the identity

1 .

—ind(py—Q), (168)

! . :P !
po— Q+ie po — L

where P is the principal value.
Now, focusing on (165), we obtain

2Im(M)

d3ﬁ/
= (2ﬂ)€2/m6<4)(p +k—pl)
_ *(1) )t
x ' (p)ey” (k)r
M'N'N’
s=12 <2€0/s9§ (a)/sz - a)/22)(w;2 - ‘/V/lz)(a)ls2 - W,22)> Po=wl

x i’ (p)eld) (k) (169)

X

where the prime reminds us that it is evaluated in
Py = (ws(p'), p'). Note that the ghost states do not appear
in the sum since by momentum conservation their con-
tribution vanishes when going on-shell.
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Now, we will relate the amplitude with the total cross
section ¢ of the process e”y — e¢~. We denote the total

cross section by M = M(e"y — e~) and write

/ % (20)69(p + k= p)NLE (170)
s=1,2

with

Mo=ie— L ainpwme®.  am)

The integral in phase space selects only particles which
have the chance to satisfy momentum conservation. We
arrive at

d3]_5l
=2r /
@3 | e,

,;s(,,/)y»ur(mg,@(k))

sV (p+k-p)

+

ﬁf(p’)yﬂuf(p)e?)(m), (172)

and then

=(2ﬂ)€2/ﬁ5( (p+k—=p)a(p)re” (k)

2Nr6l)k
| 3 ) el ) (173)
s=172 s

To connect with the left-hand side, consider the relations

- MNN
u(l)(mu(l)(p) - (2 g 3 ) . (174a)
(p* —m* — g3p;) Po=w,

MNN
() = (
2(p* = m* = g3pg)

) . (174b)

and the identities

92(“)1 - w%)( Wz)
(175a)

2(p* =M = BPY) e, =

2(p? = m* = G3p) pym, = ~G5(@3 — 0}) (@3 = WH).

Hence we can write

u) (pa (p')
N}
M'N'N’
(2‘0192(‘”1 _w/22 ( le)( WQ)) Phy=w),
(176a)
and
u@ (pa® (p')
N,
M'N'N'
(20)292(0’2 _wllz)( W/z)( WQ)) —o), ’
(176b)
Finally, we have
> u* (p')at(p')
s=12 s
M'N'N'

- Wi)(@f - W’f)) ph=cf,

(177)

ey <2wr92( —af)(af

In this way we have proven the identity and thereby the
validity of the optical theorem showing that unitarity is
preserved for these processes at tree level. The Compton
scattering of a positron follows by similar arguments.

VI. FINAL REMARKS

We have studied a modified QED model containing
Lorentz-violating dimension-five operators of Myers-
Pospelov type in the fermion sector. The effective model,
also a subset of the nonminimal SME framework, intro-
duces Lorentz violation through a four-vector n. We have
set n to be purely timelike with a resulting Lagrangian
coupling the effective terms to higher-order time deriva-
tives. We have quantized the nonminimal Lorentz-violating
model and distinguished at each step in the calculations
between the corrected particle fields versus the new degrees
of freedom that enter through the higher-order operators.
We have identified the positive and negative metrics that
characterize the indefinite Fock space and found that ghost
states with odd occupation numbers have a negative norm.

The charge conjugation even sector of higher-order
modified fermions has been less explored than the charge
conjugation odd sector, making it an excellent arena to
explore kinematic modifications. In particular, we have
found that the theory doubles the usual number of spinors
and energy solutions of the dispersion relation concerning
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the standard theory. We have found that the Hamiltonian is
stable and Hermitian in the effective region, although it can
develop complex eigenvalues for higher energies and lose
its Hermitian property.

The new pole structure is essential to construct the
propagator and fix the prescription for the curve C in the
po-complex plane. We have seen that the poles related to
negative energies w,, W, remain in the real axis while the

poles w;, W, can move vertically in the imaginary axis for
1—4g%m2

energies above |pua| = . We have studied micro-

92
causality by focusing on an anticommutator between fields.

We have found that microcausality can be preserved by
considering the pole structure and its evolution properties
in the complex p,-plane. We have considered the forward
scattering process involving fermion (antifermion) and
photon pairs with an internal fermion line to study unitarity.
We have found that unitarity is preserved at tree level by
applying the Lee-Wick prescription and using the optical
theorem to test perturbative unitarity.
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APPENDIX: MODIFIED KINEMATICS

Here we derive the spinor solutions of the equations of
motion (34) and (40). We give various types of orthogon-
ality and outer product relations satisfied by the spinors.

1. Spinor solutions

We start with the set of equations (37b) and multiply the
second equation by py — g,p3 — (P - 6) to obtain

m2)(1 = (Po - 921’% - (l_” : 3))

X (po+ 9205+ (P -0))x1- (A1)

To solve this equation we introduce the two bi-spinors
£ (p), given by

_ 1 |+ p?
) :< ) A2
7) V20pl(pl + pP) \p' +ip? (42)

1 _ 2
£ (F) = —— (”ﬁ P ) A3
?) 2pl(Ipl - p*) \ Bl = P* (A3)

which satisfy the properties

(P-3)EH(p) = |BIEH (p), (A4)
(P -3)EH)(=p) = =[pIE*) (=p), (AS)
and the orthogonality relations
EN(p)EH (p) = EDN(P)ED(P) = 1. (A6)
N F)E =) = & =PE(F) = 0. (AT
In addition, we list the relations
ED(P)EDT(p) = ED(P)ET(p)
(45 @
ED(=p)EHT(=p) = ED(=p)ET)T (-p)
- % (1 - %) . (A9)

Returning to our derivation, we select ;(EH (p) = A EH)(p)
in Eq. (A1), and using the property (A4), it can be shown
that the bi-spinor solves the equation of motion given that
its momentum satisfies the dispersion relation A% (p) = 0.

According to (37b), we have)(gﬂ(ﬁ) =% (py + g2p3 +

(p - ))EWH)(p) which produces the two energy-dependent
solutions

W= S0P (A10)
: (DR (1) () i
and
wpy=af 5P (A1)
! (DEPEE D) (1) (5 —

In a similar fashion, let us choose a different bi-spinor
)(g_)(ﬁ) = A,¢0)(=p) with its momentum satisfying the
dispersion relation A2 (p) = 0. The bi-spinor produces the
two solutions

EO)(=p)
@) (p) =
u®(p) Az((’%"%*'”)w(—ﬁ))w o
and
£9(-p)
@)(p) =
U®(p) Az((W”T‘W)&ﬂ(—ﬁ))mw; o
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For positive-energy spinors associated with particle and
ghost modes we choose the normalization constants as

Ay = Ay =\/po—9p§— Pl (A14)
Ay =Ay = \/P0—92P3+|l3|- (A15)

In this way we obtain the spinors given in (38) and (39).
Now we search for negative-energy solutions which

satisfy the equation of motion (40). We multiply the first

equation in (43a) by py — g2p3 + (P - 6) and obtain

m* ¢y = (po — 9203 + (B - 5))

X (po + 9205 — (P - 6)) 2. (Al6)

The equation can be satisfied by choosing ¢,(p) =
B£)(—p) with on-shell momentum satisfying A% = 0.
In an analogous form we have

0Ha PPN (=) (=
vD(p) = B, <_(_p —gyi FR)ERN( P)) (A17)
5(_)(_ﬁ) Po=w,
and
V(])(p) _ Bl (_(po+g2nlzo_P'0'>§(_)(_ﬁ)> . (A18)
5(_>(_ﬁ) po=W,

Now, we choose ¢,(p) = B, (p) in (A16), with
momentum solving A2 =0, which produces the two
spinor solutions

v®(p) = B, (—(—P”+g2,i‘2’_—’3'3)§(+) (ﬁ)) (A19)
§(+) (1_5) Po=m;
and
VO (p) = B, ( _(p0+92’5(2)—13~3)§(+)([_5)> . (A20)
5(+) (1_5) po=W,

For this set of negative-energy spinors, we choose the
normalization constants to be

By =B;=—\/po - 905 — |BI. (A21)
B, =B, = —\/ Po —gzl’% + |ﬁ ) (A22)

and we obtain the solutions (A25) and (A26).

2. Inner product relations

For the many expressions it is convenient to introduce
the notation for the positive-energy spinors as

AEH) (B
)= (B0
BE(P) / py—w,
AEH) (B
v - (500) e
B§<+> (p) Po=W,
CEC) (=5
W@ (p) = ( & ’j)) ,
Di(_)(_p) Po=w>
ce=) (=3
A=) e
Dé(_>(_p) Po=W,
and also the negative-energy spinors
BEC) (=5
—Aé(_)<—p) Po=w;
BEG) (=B
v(p) = ( &7Cp) ) . (A25)
_Aé( )(_p) po=W,
DEH(p
_C§ +)(p) Po=0,
DES) (B
v = (200 )
—CENP) ) poew,
with
A= \/po—9:05— 1D, (A27)
B =\/po+ arj + |Pl, (A28)
C=1\/po=9p;+ 0. (A29)
D = \/po+ g5 — |PI. (A30)
In particular, with the property (A6) we find
u(p)u(p) = (A +B%), .  (A31)
resulting in
uV(p)ull (p) = 2. (A32)

The same occurs for U (1)( p) leading to the expressions
in (46a) and (47a).
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Now consider

@V (p)u)(p) = 2(AB),_,, =2m,  (A33)

0=

7 (p)v)(p) = -2(4B), —2m, (A34)

0=w;

and again we get the relations listed in (48a) and (49a).
Let us define the operators

(+)

grs (p) = 14— ga(@, + @y)ys, (A35)

05 (p) = 14 + gao(@, + o,)rs. (A36)
and

O (p) =14 =W, + W)ys,  (A37)

O (p) =Ty +g(W, +W,)ys,  (A38)

where 1, is the unit 4 x 4 matrix and r,s = 1, 2.
To prove the next relations we follow a trick. Consider
the element

u (p)yo(y' pi — m)u(p), (A39)

which can be written using the equations of motion as

ut(p)(=w; + gars(wy)*)u' (p) (A40)
or
w(p)(—o, + gars(@,)*)u’ (p), (A41)
we arrive at
' (p) (@, —w,) = gars((@,)* = (@,)*))u’ (p) =0, (A42)
and in the case o, # w,, we have
u(p)gnw (p) = 0. (A43)
We can write
Wt (p)g'Tw (p) = €87, (Ad4)

where C, is a constant that has to be determined. Doing the
same with all other contributions, and computing directly
for the same energies, i.e., w, = w,, we find for particle
spinors

uV(p)g\ P uV(p) = Ny,
W@ (p)g5y u®(p) = N,
vV (p)gi Vv (p) = Ny,
v (p)gsy v (p) = N, (A45)
and for ghost spinors
UWi(p)o\ YU (p) = —Ny,
U (p) 0l U (p) = =N
Vi (p) 0PV (p) = -,
VO (p)05 VR (p) = —N,. (A46)

We define positive normalization constants (53a) and (54a)
with respect to those inner products, where for negative-
metric states we have taken the absolute value.

In the same way one can prove that for any r, s one has
the expressions

u’ (p)( +92V5(Ws—wr))V" -p
U™ (p)(1 + gays(w, —

U (p)(1 + gors(Wy = W
v (=p) (1 + gays(W, + o,

r)
)

~— ~—
<
“

(A47)

3. Outer product relations

Here we prove outer product relations that are used for
the quantization. We start to consider

() = < m (wl —gzw% - (ﬁ(?)))
(01 + 01 + (- 5)) m
1
®; (1 +%) (A48)

where we have used the property of the bi-spinors (AS).
Noting that

2 > -

o m - 3 = (5-5)
M(a)l’p) - < 2 - - ! >a

w0+ 01 + (P - 0) m
(A49)
and using (22b), we can write
W(p)a(p) = (row +7'pi + m — 0}rers)
1

Xi(h—Q)’ (A50)
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u?(p)i® (p) = (yow, +7v'p;i +m— 903707 s)

1
XE(“4+Q)7 (A51)
U (p)TV(p) = (roWy + 7' pi + m — ;Wirors)
1
XE(M—Q)’ (A52)
U@ (p)TD(p) = (roWa + 7' pi + m — :Wirors)
1
x5 (1 +0), (AS53)
v (=p)aV(=p) = (roo1 — ¥’ pi — m + g07y475)
1
XE(M—Q), (A54)
v (=p)o® (=p) = (rows — 7' pi = m + g03707s)
1
Xi(ﬂ4+Q)7 (AS55)
VW (=p)VW(=p) = (oW, =7 pi = m + :W3rors)
1
XE(M—Q), (A56)
V(z)(—P)V(z)(—P) = (yoW, - J’iPi —m+ 92W%7’075)
1
XE(“4+Q), (AS7)

where the operator Q is defined in (23).

Let us multiply the above identities by the left with y,
and adding conveniently, we obtain

uM(p)ulVi(p) + vV (=p)oVi(=p) = w; (1, - Q),
(AS8)

ul) (p)ul(p) = v(=p)o!V¥(=p)

= (y'pi + m — groiyors)ro(14 — Q). (A59)

u® (p)u®(p) +v@ (=p)v@T(=p) = wy (14 + Q).
(A60)

u@ (p)u®t(p) — v@(=p)v@*(=p)

= (y'pi + m— g3rors)ro(la + Q). (A61)

U (p)UVi(p) + VO (=p)VDi(=p) = (14 - Q),
(A62)

U (p)ui(p) = v (=p)v i (=p)

= (y'pi + m— g Wirgrs)ro(1s — Q). (A63)

U (p) U (p) + VA (=p)V@T(=p) = W,(1,+ Q),
(AG4)

U (p) U (p) = VA (=p)VT(=p)

= (y'pi+ m—g:Wirers)ro(ls+ Q). (A65)
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