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Flavor-changing neutral current (FCNC) top-quark decays are highly suppressed due to the Glashow-
Iliopoulos-Maiani mechanism in the standard model (SM). If t → qh; qV with V ¼ g, γ, Z are all induced
via quantum loop levels, then we investigate the effect that can enhance the top-FCNC up to the sensitivity
designed at the high-luminosity (HL) LHC. Inspired by the mechanism of the scotogenic neutrino mass, we
extend the SM by including Z2-odd colored fermions when a Z2 discrete is imposed. The results show that
by taking BRðt → ugÞ≲ 0.61 × 10−4 recently measured by ATLAS as an input, t → qγ can be indirectly
bounded to be BRðt → qγÞ≲ 3.2 × 10−6, which is below the expected sensitivity at the HL LHC. After
taking potential constraints from various experiments into account, the obtained branching ratios for the
loop-induced t → qh and t → qZ decays can beOð10−4Þ, which falls within the sensitivity at the HL LHC.

DOI: 10.1103/PhysRevD.106.095005

I. INTRODUCTION

Flavor-changing neutral currents (FCNCs) are sup-
pressed at the tree level and can be induced via quantum
corrections in the standard model (SM). However, loop-
induced top-quark FCNCs are highly suppressed in the
SM due to the Glashow-Iliopoulos-Maiani (GIM) mecha-
nism [1]. As a result, the branching ratios (BRs) for the
t → qðg; γ; Z; hÞ decays with q ¼ u, c in the SM are of the
order of 10−12 − 10−17 [2–4], and the results are far below
the LHC sensitivities.
The expected sensitivities in the high-luminosity (HL)

LHC with an integrated luminosity of 3 ab−1 at
ffiffiffi
s

p ¼
14 TeV are expected to be 2.4–5.8 × 10−5 for t → qZ [5],
1.5×10−4 for t → qh [6], and 0.9−7×10−5 for t → qγ [7].
The event that the top-FCNC is found at the 10−5 level
definitely indicates a new physics effect. Thus, the top-
quark flavor-changing processes can serve as good candi-
dates for investigating new physics effects. To explore the
new physics effects in the rare top-quark decays, various
extensions of the SM, which can reach the HL LHC
sensitivity, were proposed in [8–26].
The top-FCNC effects not only can be detected via the

new top-quark decay channels, but also can be used to

produce more top-quark events, such as gq → t. Using the
single-top production, the upper limits on the BR using
139 fb−1 at

ffiffiffi
s

p ¼ 13 TeV in ATLAS are shown as BRðt →
ugÞ < 0.61 × 10−4 and BRðt → cgÞ < 3.7 × 10−4 [27].
If all mentioned top-FCNC processes are enhanced via

quantum loop effects, the intermediate states in the loops
may carry the quantum number that the SM particles do not
possess. A known example is the radiative neutrino mass in
a scotogenic model [28], where the mediated particles in
the loop are Z2-parity odd, whereas the SM particles are
Z2-parity even. Interestingly, in addition to the explanation
of the neutrino mass, the predicting dark matter (DM)
candidate can fit the DM relic density that was observed by
the Planck Collaboration [29].
If we have Z2-odd colorless fermions, it is reasonable

that there also exist Z2-odd colored fermions, which are
similar to the quarks in the SM. Hereafter, we call these
particles as Z2-odd quarks. Based on this assumption, when
we make a minimal extension of the Ma-model proposed
in [28], we investigate if the top-FCNC processes can be
enhanced up to the sensitivities of the HL LHC. As the
minimal requirement, no new local gauge symmetry is
considered, and the number of including Z2-odd quarks is
as less as possible. Since a new local gauge symmetry
introduces a new gauge coupling and gauge boson(s),
which are not directly related to the top-FCNC processes,
thus, we only focus on the SM gauge symmetry.
Because the t → qγðhÞ decay involves the structure of a

dipole (scalar) current, the chirality in the initial and final
quarks has to be different. In addition, the left-handed and
right-handed top quarks are SUð2Þ doublet and singlet
in the SM, respectively. Therefore, to avoid the chirality
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suppression of m2
t =Λ2, where Λ is the mass scale of the

new heavy particle, the candidate of new colored fermions
should be chosen in such a way that the chirality sup-
pression can be overcome. Without introducing extra
new Z2-odd scalar field with the exception of the inert
Higgs doublet, we find that the possibly minimal repre-
sentations for the colored fermions in SUð2ÞL ×Uð1ÞY
gauge symmetry are the vectorlike doublet and singlet.
Vectorlike particles are used because their gauge anomaly
can be evaded.
Three scalar bosons exist in an inert Higgs doublet,

namely, inert charged Higgs, scalar, and pesudoscalar,
where the lightest neutral inert scalar can be the DM
candidate. Due to the suppression factor of m2

t =Λ2, which
arises from the chirality flip of top-quark, the contributions
from the neutral inert scalars to t → qh are small; therefore,
the t → qh processes are dominated by the inert charged
Higgs. Although t → qγ can avoid the chirality suppres-
sion, since the loop-induced effect is associated with the
mixing between Z2-odd doublet and singlet quark, which is
of order of v=Λ with v being the vacuum expectation value
of Higgs field, t → qγ dominated by the inert charged
Higgs in the model cannot be enhanced up to the sensitivity
of HL LHC. For the t → qZ processes, both neutral and
charged scalars can have significant contributions.
The remainder of this paper is organized as follows:

We introduce the model and derive the relevant Yukawa
and gauge couplings in Sec. II. Based on the obtained
couplings, we formulate the decay amplitudes and BRs for
the studied top decays in Sec. III. Then, we discuss various
possible constraints, which include radiative B-meson
decay, oblique parameters, Higgs production, and DM
detections, in Sec. IV. We analyze and discuss the numeri-
cal results in detail in Sec. V. Finally, we summarize the
study in Sec. VI.

II. MODEL AND THE NEW COUPLINGS

To enhance the top-quark FCNC processes through
radiative corrections without introducing a new gauge
symmetry in a scotogenic mechanism, we impose a Z2

discrete symmetry in the model and extend the SM,
including a new Higgs doublet ðΦIÞ, three singlet
Majorana fermions NRi (i ¼ 1–3) and vectorlike quark
doublet (Q4) and singlet (B0), where the introduced particles
are Z2-odd and the SM particles are Z2-even under the Z2

transformation. The representations and charge assignments
of new particles in SUð2ÞL × Uð1ÞY × Z2 are shown in
Table I. The Z2 oddMajorana fermionsNRs are necessary to
generate neutrino mass by scotogenic mechanism. In this
work we do not discuss neutrino mass generation since it is
exactly the same as original Ma-model [28]. Due to the
unbroken Z2 symmetry, the neutral component of the inert
Higgs doublet and the lightest Majorana fermion can be the
DM candidate [30]. Since the inert Higgs doublet is directly
related to the top-FCNC process, in this study, we take the

lightest neutral component of ΦI as the DM candidate.
We derive the relevant couplings for top-quark FCNC in the
following discussions.

A. Yukawa couplings and scalar potential

Based on the charge assignments shown in Table I, the
new Yukawa interactions can be written as

−LY ¼ yB0Q4LHB0
R þ ỹB0Q4RHB0

L þQ4LYd
IΦIdR

þQ4LYu
I
fΦIuR þQLYB0

I ΦIB0
R þm4QQ4LQ4R

þmB0B0
LB

0
R þ H:c:; ð1Þ

where the flavor indices are suppressed; Φ̃I ¼ iτ2Φ�
I and τ2

is the Pauli matrix, and H is the SM Higgs doublet. In this
work, we considered that the new Yukawa couplings are
real. Since Eq. (1) does not involve the SM quark mass
diagonalization, the up- and down-type quarks can be taken
as the physical states, and the flavor mixing effects are
absorbed into the Yukawa couplings. The doublet compo-
nents of Q4, ΦI , and H are taken as

Q4 ¼
�
T

B

�
; ΦI ¼

 
Hþ

I
1ffiffi
2

p ðHI þ iAIÞ

!
;

H ¼
 

Gþ

1ffiffi
2

p ðvþ hþ iG0Þ

!
: ð2Þ

Thus, the first two terms in Eq. (1) lead to the mixture
between B and B0, and the associated mass matrix is
expressed as

ðB0; B̄ÞL
 
mB0

ỹB0vffiffi
2

p
yB0vffiffi

2
p m4Q

!�
B0

B

�
R

: ð3Þ

In general, we need biunitary transformation to diagonalize
the mass matrix in Eq. (3). In order to simplify the analysis,
we take ỹB0 ¼ yB0 and the 2 × 2 real symmetric matrix can
be diagonalized by an SOð2Þ transformation, where the
eigenvalues and eigenstates can be obtained as

TABLE I. Representations and charge assignments for new
particles.

SUð3ÞC SUð2ÞL Uð1ÞY Z2

Q4 3 2 1=3 −1
B0 3 1 −2=3 −1
ΦI 1 2 1=2 −1
NRi 1 1 0 −1
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mB1ð2Þ ¼
m4Q þmB0

2
∓ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm4Q −mB0 Þ2 þ 2y2B0v2

q
;�

B1

B2

�
¼
�
cos θ − sin θ

sin θ cos θ

��
B0

B

�
;

tan 2θ ¼
ffiffiffi
2

p
yB0v

m4Q −mB0
; ð4Þ

where θ is the mixing angle of B and B0. We have taken B1 as the lightest Z2-odd quark. The resulting Yukawa couplings are
then written as

LY ⊃ B̄1ð−sθYu
I PR − cθYB0

I PLÞuH−
I þ B̄2ðcθYu

I PR − sθYB0
I PLÞuH−

I −
1ffiffiffi
2

p T̄Yu
I PRuðHI − iAIÞ

−
1ffiffiffi
2

p ðcθB̄1 þ sθB̄2ÞYB0
I PLdðHI − iAIÞ − T̄

Yd
Iffiffiffi
2

p PRdH
þ
I − ð−sθB̄1 þ cθB̄2Þ

Yd
Iffiffiffi
2

p PRdðHI þ iAIÞ þ H:c:; ð5Þ

with cθðsθÞ ¼ cos θðsin θÞ. Using the parametrization, the
Higgs couplings to B1 and B2 can be written as

LhBB ¼ −
1ffiffiffi
2

p hðB̄1; B̄2Þyh
�
B1

B2

�
¼ −

yB0ffiffiffi
2

p hðB̄1; B̄2Þ
�−s2θ c2θ

c2θ s2θ

��
B1

B2

�
; ð6Þ

with c2θðs2θÞ ¼ cos 2θðsin 2θÞ. The hBiBi coupling, which
will lead to the t → qh decay at the loop level, can be
induced from the mixing terms of B1 and B2. We note that
there is no hTT coupling at the tree level in the model.
The masses of the inert scalars and their couplings to the

Higgs are determined by the scalar potential, which can be
written as [28,30]

VðH;ΦIÞ ¼ μ21H
†H þ μ22Φ

†
IΦI þ λ1ðH†HÞ2 þ λ2ðΦ†

IΦIÞ2
þ λ3ðHþHÞðΦ†

IΦIÞ þ λ4ðHþΦIÞðΦ†
IHÞ

þ
�
1

2
λ5ðH†ΦIÞ2 þ H:c:

�
: ð7Þ

We can obtain the mass squares of H�
I , HI , and AI as

m2
HI

¼ μ22 þ
λLv2

2
; m2

AI
¼ μ22 þ

λAv2

2
; m2

H�
I
¼ μ22 þ

λ3v2

2
;

ð8Þ

with λLðAÞ ¼ λ3 þ λ4 � λ5. The mass difference betweenHI

and AI depends on the λ5 parameter. The Higgs couplings
to ðH�

I ; HI; AIÞ can be determined as

hHþ
I H

−
I ∶λ3v; hHIHI∶λLv; hAIAI∶λAv: ð9Þ

In addition to theminimal conditions, i.e., ∂V=∂hðHIÞ¼0,
the vacuum stability is controlled by the copositivity criteria

in the dimension-4 terms of scalar potential, and the stable
conditions are yielded as [30–32]

λ1;2 ≥ 0; λ3 þ 2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
≥ 0;

λ3 þ λ4 − jλ5j þ 2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
≥ 0: ð10Þ

If we take the mass ordering to be mH�
I
> mAI

> mHI
, then

λ4;5 < 0, which can be expressed as

jλ4j¼
1

v2
ð2m2

H�
I
−m2

HI
−m2

AI
Þ; jλ5j¼

m2
AI
−m2

HI

v2
: ð11Þ

To obtain the potential bounded from below, where the
conditions in Eq. (10) are satisfied, we require λ3 > 0.
Thus, some cancellation occurs in the hSISI (SI ¼ HI; AI)
coupling. In addition, in Eq. (5), SITu couplings are only
associated with the right-handed up-type SM quarks. As a
result, the loop-induced t → qðh; γÞ processes through the
SITu couplings are suppressed by m2

t =m2
T, and they are

negligible ifmT ∼Oð1Þ TeV. Hence, when the heavy quark
and inert Higgs masses are fixed, the main parameters that
affect the rare top decays in the model are the Yukawa
couplings YB0

I and Yu
I , the mixing angle θ, and the λ3

parameter that is directly related to the hH−
I H

þ
I coupling.

B. Gauge couplings to new fermions and scalars

To study the t → qV (V ¼ γ, Z) processes, we also need
the gauge couplings of the photon and Z-boson to the inert
Higgses and to the Z2-odd quarks, where the gauge
couplings from the kinetic terms of HI , Q4, and B0 are
written as

Lgauge ⊃ ðDμΦIÞ†DμΦI þQ4i=DQ4 þ B0i=D0B0: ð12Þ

The covariant derivatives for the doublet and singlet fields
are taken as
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Dμ ¼ ∂
μ þ igT⃗ · W⃗μ þ ig0

Y
2
Bμ;

D0μ ¼ ∂
μ þ ig0

Y
2
Bμ; ð13Þ

where Wiμ and Bμ are the gauge fields of SUð2ÞL and
Uð1ÞY , respectively. Using the standard notations for the
photon and Z-boson, which are defined as

Aμ ¼ cWBμ þ sWW3
μ;

Zμ ¼ −sWBμ þ cWW3
μ: ð14Þ

The neutral gauge couplings to the inert Higgses are
obtained as

LVSISI ⊃ i

�
eAμ þ gc2W

2cW
Zμ

�
ðHþ

I ∂μH
−
I −H−

I ∂μH
þ
I Þ

þ g
2cW

ZμðAI∂HI −HI∂μAIÞ; ð15Þ

where cWðsWÞ ¼ cos θWðsin θWÞ, and θW is the Weinberg’s
angle. Since the quark T doesn’t mix with the SM up-type
quarks, its gauge couplings to the photon and the Z boson
can be simply written as

−eQtT̄γμTAμ −
g
cW

�
1

2
−Qts2W

�
T̄γμTZμ: ð16Þ

Although the photon couplings to B1 and B2 are flavor
conserved, since the B and B0 quarks belong to different
SUð2ÞL representations and are mixed via the Yukawa
couplings, their Z gauge couplings allow flavor-changing
and are expressed as

LVBB ¼ −eQb

X
i

B̄iγμBiAμ −
g
cW

ðB̄1; B̄2ÞγμCZ

�
B1

B2

�
Zμ;

ð17Þ

with

CZ ¼
�−s2θ=2 −Qbs2W sθcθ

sθcθ −c2θ=2 −Qbs2W

�
: ð18Þ

Because the charged gauge boson W� only couples to the
doublet quarks, the W� coupling can be found as

LWTB ¼ −
gffiffiffi
2

p T̄γμð−sθB1 þ cθB2ÞWþμ þ H:c: ð19Þ

III. LOOP-INDUCED DECAY AMPLITUDES
FOR t → qðh;VÞ

In this section we derive the decay amplitudes for the
t → qðh; VÞ decays. Because the calculations for t → qg

are similar to those for t → qγ, and their BRs can be
approximately related by BRðt → qgÞ ∼ CFðαs=αÞBRðt →
qγÞ with CF ¼ 4=3 in the model, where α ¼ e2=4π and
αs ¼ g2s=4π. In this study, we only focus on the t → qγ
analysis.

A. t → qðh;γÞ decays
In the model, the t → qðh; γÞ processes can be induced

from the loops with the mediation of H�
I and SI. The

Feynman diagrams are sketched in Fig. 1, where the
emitted dashed lines can be the Higgs or the photon.
Since there is no hTT coupling, the t → qh decay cannot
be produced from Fig. 1(d). In Fig. 1(b), the flavor-
changing between B1 and B2 only occurs in the Higgs
coupling.
The effective interactions for t → qðh; γÞ can be

written as

Lt→qðh;γÞ ¼ −Ch
Lq̄PLth − Ch

Rq̄PRthþ eBγ
L

mt
q̄iσμνϵ

μ�
γ kνPLt

þ eBγ
R

mt
q̄iσμνϵ

μ�
γ kνPRt: ð20Þ

Following the Feynman diagrams shown in Fig. 1 and the
couplings obtained in Eqs. (5) and (15)–(17), the effective
Wilson coefficients with χ ¼ L, R can be written as

Ch
χ ¼

X
i

�
Cha
iχ þ

X
j

Chb
ijχ

�
þ Chc

χ ;

Bγ
χ ¼

X
i

ðBγa
iχ þ Bγb

iχ Þ þ Bγd
χ : ð21Þ

The contributions to t → qh from each diagram can be
formulated as

FIG. 1. Feynman diagrams used to induce the t → qðh; γÞ
processes, where the emitted dashed lines can be the Higgs or
photon.

CHUAN-HUNG CHEN and TAKAAKI NOMURA PHYS. REV. D 106, 095005 (2022)

095005-4



Cha
iL ¼ λ3v

ð4πÞ2mt
Cq
iR

Z
1

0

dx1

Z
x1

0

dx2
Ct
iRritx2 þ

ffiffiffiffiffi
rit

p
Ct
iL

Da
hðriH�

I
; rit; rihÞ

;

Cha
iR ¼ λ3v

ð4πÞ2mt
Cq
iL

Z
1

0

dx1

Z
x1

0

dx2
Ct
iLritx2 þ Ct

iR
ffiffiffiffiffi
rit

p
Da

hðriH�
I
; rit; rihÞ

;

Chb
ijL ¼ −

yhij
ð4πÞ2

Z
1

0

dx1

Z
x1

0

dx2
Cq
jR

Db
hðrjH�

I
; rjt; rji; rjhÞ

½Ct
iRðrjtx2ð1 − x1Þ

þ rjhðx1 − x2Þ − rjiÞ þ Ct
iL
ffiffiffiffiffi
rjt

p ð ffiffiffiffiffi
rjt

p
x2 − ð1 − x2ÞÞ�;

Chb
ijR ¼ −

yhij
ð4πÞ2

Z
1

0

dx1

Z
x1

0

dx2
Cq
jL

Db
hðrjH�

I
; rjt; rji; rjhÞ

½Ct
iLðrjtx2ð1 − x1Þ

þ rjhðx1 − x2Þ − rjiÞ þ Ct
iR
ffiffiffiffiffi
rjt

p ð ffiffiffiffiffi
rjt

p
x2 − ð1 − x2ÞÞ�;

Chc
L ¼ Yu

IqY
u
I3yt

ð4πÞ2
v
mt

Z
1

0

dx1

Z
x1

0

dx2x2

�
λ3 þ λ4 þ 2λ5
Da

hðyHI
; yt; yhÞ

þ λ3 þ λ4 þ −2λ5
Da

hðyAI
; yt; yhÞ

�
; ð22Þ

where rif ¼ m2
f=m

2
Bi
, yf ¼ m2

f=m
2
T ; the Yukawa couplings Cf

iχ are

Cf
1R ¼ −sθYu

If; Cf
1L ¼ −cθYB0

If;

Cf
2R ¼ cθYu

If; Cf
2L ¼ −sθYB0

If; ð23Þ

and the denominators are defined by

Da
hðx; y; zÞ ¼ 1 − ð1 − xÞx1 − yð1 − x1Þx2 − zðx1 − x2Þx2;

Db
hðw; x; y; zÞ ¼ x1 þ wð1 − x1Þ − ðx − yþ 1Þx2 þ zx22 þ ðx − zÞx1x2: ð24Þ

The results for the t → qγ decay from each Feynman diagram are obtained as

Bγa
iL ¼ −

1

ð4πÞ2
Z

1

0

dx1

Z
x1

0

dx2
1 − x1

Da
γ ðriH�

I
; ritÞ

Cq
iR½Ct

iRritx1 þ Ct
iL
ffiffiffiffiffi
rit

p �;

Bγa
iR ¼ −

1

ð4πÞ2
Z

1

0

dx1

Z
x1

0

dx2
1 − x1

Da
γ ðriH�

I
; ritÞ

Cq
iL½Ct

iLritx1 þ Ct
iR
ffiffiffiffiffi
rit

p �;

Bγb
iL ¼ Qb

ð4πÞ2
Z

1

0

dx1

Z
x1

0

dx2
1

Db
γ ðriH�

I
; ritÞ

Cq
iR½Ct

iRritð1 − x1Þx2 þ Ct
iL
ffiffiffiffiffi
rit

p
x1�;

Bγb
iR ¼ Qb

ð4πÞ2
Z

1

0

dx1

Z
x1

0

dx2
1

Db
γ ðriH�

I
; ritÞ

Cq
iL½Ct

iLritð1 − x1Þx2 þ Ct
iR
ffiffiffiffiffi
rit

p
x1�;

Bγd
L ¼ QtYu

IqY
u
I3

2ð4πÞ2 yt

Z
1

0

dx1

Z
x1

0

dx2x2ð1 − x1Þ
�

1

Db
γ ðyHI

; ytÞ
þ 1

Db
γ ðyAI

; ytÞ
�
; ð25Þ

with

Da
γ ðx; yÞ ¼ 1 − ð1 − xÞx1 − yð1 − x1Þx2;

Db
γ ðx; yÞ ¼ x1 þ xð1 − x1Þ − yð1 − x1Þx2: ð26Þ

It can be seen that Chc
L and Bγd

L , which arise from Fig. 1(c)
and 1(d), are much smaller than other contributions because

of the suppression factor yt ¼ m2
t =m2

T. To illustrate the
smallness of Chc

L and Bγd
L , we take mHI

¼ 65 GeV,
mAI;H�

I
¼ 100 GeV, mB1;TðBÞ ¼ ð1; 1.5Þ TeV, cθ ¼ 0.78,

and YuðB0Þ
Iq;I3 ¼ 2; as a result, Chb

12R ≈ 3.2 × 10−3, Chc
L ≈

−9.6 × 10−6, Bγa
1L ≈ −1.1 × 10−3, and Bγd

L ≈ 2.1 × 10−5.
Hence, the contributions from Chc

L and Bγd
L can be

neglected.
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Using the obtained effective Wilson coefficients, the BRs
for t → qðh; γÞ can be estimated by the following relations

Brðt → qhÞ ¼ mt

32πΓt

�
1 −

m2
h

m2
t

�
2

ðjCh
Lj2 þ jCh

Rj2Þ;

Brðt → qγÞ ¼ αmt

4Γt
ðjBγ

Lj2 þ jBγ
Rj2Þ; ð27Þ

where Γt is the top-quark width. Since the top-quark decay
is dominated by the t → Wb process, for the numerical
estimation, we take the next-to-leading order SM result
for Γt, which is given as [33,34]

Γt ¼
GFm3

t

8π
ffiffiffi
2

p
�
1−

m2
W

m2
t

�
2
�
1þ 2

m2
W

m2
t

��
1−

2αs
3π

�
2π2

3
−
5

2

��
:

ð28Þ

B. t → qZ decay

The t → qZ decay can arise from Fig. 1(a), 1(b), and 1(d)
using Z instead of h=γ. Moreover, the t → qZ decay can be
produced via the ZHIAI coupling, where the associated
Feynman diagram is shown in Fig. 2.
The decay amplitudes for the t → qZ decay can be

formulated as

Lt→qZ ¼ ūqγμðAZ
LPL þ AZ

RPRÞtZμ

þ 1

mt
ūqiσμνkνðBZ

LPL þ BZ
RPRÞtZμ: ð29Þ

Because of the massive Z boson, the t → qZ decay involves
the vector currents in addition to the tensor currents.
Following the Feynman diagrams and using the couplings
given in Eqs. (5) and (15)–(17), the effective Wilson
coefficients can be summarized as

AZ
χ ¼

X
i

�
AZa
iχ þ

X
j

AZb
ijχ

�
þ AZd

χ þ AZe
χ ;

BZ
χ ¼

X
i

�
BZa
iχ þ

X
j

BZb
ijχ

�
þ BZd

χ þ BZe
χ : ð30Þ

The contributions from each Feynman diagram are
shown as

AZa
iL ¼ −

gðc2W − s2WÞ
2cWð4πÞ2

Z
1

0

dx1

Z
x1

0

dx2
1 − x1

Da
hðriH�

I
; rit; riZÞ

Cq
iLðCt

iLritx2 þ Ct
iR
ffiffiffiffiffi
rit

p Þ;

BZa
iL ¼ −

gðc2W − s2WÞ
2cWð4πÞ2

Z
1

0

dx1

Z
x1

0

dx2
1 − x1

Da
hðriH�

I
; rit; riZÞ

Cq
iRðCt

iRritx2 þ Ct
iL
ffiffiffiffiffi
rit

p Þ;

XZb
ijχ ¼ −

gCZ
ij

cWð4πÞ2
Z

1

0

dx1

Z
x1

0

dx2
X̃Z
ijχ

Db
hðrjH�

I
; rjt; rji; rjZÞ

;

AZd
R ¼ −

gð1 − 2Qts2WÞ
4cWð4πÞ2

Yu
IqY

u
I3

Z
1

0

dx1

Z
x1

0

dx2

�
1þ yZx2ðx1 − x2Þ
Db

hðyHI
; yt; 1; yZÞ

þ 1þ yZx2ðx1 − x2Þ
Db

hðyAI
; yt; 1; yZÞ

�
;

BZd
L ¼ gð1 − 2Qts2WÞ

4cWð4πÞ2
ytYu

IqY
u
I3

Z
1

0

dx1

Z
x1

0

dx2

�
x2ð1 − x1Þ

Db
hðyHI

; yt; 1; yZÞ
þ x2ð1 − x1Þ
Db

hðyAI
; yt; 1; yZÞ

�
;

AZe
R ¼ gyt

4cWð4πÞ2
Yu
IqY

u
I3

Z
1

0

dx1

Z
x1

0

dx2

�
x2ð1 − x1Þ

De
ZðyHI

; yAI
; yt; yZÞ

þ x2ð1 − x1Þ
De

ZðyAI
; yHI

; yt; yZÞ
�
; ð31Þ

AZa
iR ¼ BZa

iL , B
Za
iR ¼ AZa

iL , A
Zd
L ¼ BZd

R ¼ 0, and BZe
L ¼ AZe

R with

ÃZ
ijL ¼ Cq

jL½Ct
iLð

ffiffiffiffiffi
rji

p þ rjZx2ðx1 − x2ÞÞ þ Ct
iR
ffiffiffiffiffi
rjt

p ð1 − x1Þ�;
ÃZ
ijR ¼ Cq

jR½Ct
iRð ffiffiffiffiffi

rji
p þ rjZx2ðx1 − x2ÞÞ þ Ct

iL
ffiffiffiffiffi
rjt

p ð1 − x1Þ�;
B̃Z
ijL ¼ −Cq

jR½Ct
iRrjtx2ð1 − x1Þ þ Ct

iLð ffiffiffiffiffiffiffiffiffiffi
rjtrji

p
x2 þ ffiffiffiffiffi

rjt
p ðx1 − x2ÞÞ�;

B̃Z
ijR ¼ −Cq

jL½Ct
iLrjtx2ð1 − x1Þ þ Ct

iRð ffiffiffiffiffiffiffiffiffiffi
rjtrji

p
x2 þ ffiffiffiffiffi

rjt
p ðx1 − x2ÞÞ�;

De
Zðw; x; y; zÞ ¼ 1þ ð1 − xÞx1 − ðy − w − xÞx2 þ zx22 þ yx1x2; ð32Þ

FIG. 2. Feynman diagram mediated by HI and AI for the
t → qZ process.
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where XZb
ijχ and X̃Z

ijχ , which involve the Z flavor-changing
couplings, are the contributions from Fig. 1(b). From
Eq. (31), it can be seen that AZe

R from Fig. 2 is suppressed
by m2

t =m2
T. According to earlier analysis, the contribution

is small and can be neglected. Moreover, the Z-penguin
induced from Fig. 1(d) is comparable with that induced
from Fig. 1(b). Using the obtained AZ

χ and BZ
χ , the BR for

the t → qZ decay can be written as

Brðt → qZÞ

¼ 1

Γt

GFm3
t

4
ffiffiffi
2

p
π

c2W
g2

�
1 −

m2
Z

m2
t

�
2 X
χ¼L;R

�
jAZ

χ þ BZ
χ0 j2
�
1þ 2m2

Z

m2
t

�

þ ðjBZ
χ0 j2 − 2ReðAZ

χ þ BZ
χ0 ÞBZ�

χ0 ÞÞ
�
1 −

m2
Z

m2
t

��
; ð33Þ

where BZ
χ0 denotes that when AZ

χ ¼ AZ
LðRÞ, B

Z
χ0 ¼ BZ

RðLÞ.

IV. CONSTRAINTS

In this section we discuss the possible constraints from
the flavor physics, DM data, and oblique parameters.

A. b → q0γ and ΔB= 2

The similar Feynman diagrams for t → qγ can be applied
to the B → Xq0γ (q0 ¼ d, s) decays, where the current
measurements are BRðB → XsγÞ ¼ ð3.49� 0.19Þ × 10−4

and BRðB → XdγÞ ¼ ð9.2� 3.0Þ × 10−6 [34]. If there are
large effects contributing to the radiative B decays, then the
current data may provide a serious bound. From Eq. (5),
it can be seen that the involving Yukawa couplings for
the b → q0γ decay are YB0

I and Yd
I . To understand the

influence from YB0
I and Yd

I , we write the effective inter-
action for b → q0γ from the new physics as

Lb→q0γ ¼
GFVtbV�

tq0ffiffiffi
2

p ðCNP
7RO7R þ CNP

7LO7LÞ;

O7χ ¼
emb

4π2
dq0σμνPχbFμν: ð34Þ

The CNP
7R;7L mediated by SI and H�

I can be expressed as

CNP;q0
7R ¼ −

ffiffiffi
2

p
YB0
Iq0Y

B0
I3

GFVtbV�
tq0

X2
i¼1

Qbζ
2
i

16m2
Bi

ðJðriHI
Þ þ JðriAI

ÞÞ;

CNP;q0
7L ¼ −

ffiffiffi
2

p
Yd
Iq0Y

d
I3

GFVtbV�
tq0

�
1

16m2
T
ðJ0ðyH�

I
ÞQtJðyH�

I
ÞÞ

−
X2
i¼1

Qbξ
2
i

16m2
Bi

ðJðriHI
Þ þ JðriAI

ÞÞ
�
;

JðaÞ ¼ 1 − 5a − 2a2

6ð1 − aÞ3 −
a2 ln a

2ð1 − aÞ4 ;

J0ðaÞ ¼ 2þ 5a − a2

12ð1 − aÞ3 þ a ln a
2ð1 − aÞ4 ; ð35Þ

with ζ1 ¼ cθ, ζ2 ¼ sθ, ξ1 ¼ −sθ, and ξ2 ¼ cθ. Using
jVtsj ¼ 0.04, jVtdj ¼ 0.0088, sθ ¼ 1=

ffiffiffi
2

p
, YB0

I ¼ Yd
I ¼ 2,

and mB1;B2;T ¼ ð1; 1.5; 1.4Þ TeV, we obtain CNP;s
7R;7L ∼

ð−0.051; 0.033Þ and CNP;d
7R;7L ∼ ð0.23;−0.15Þ, where the

SM result is CSM
7R;7L ∼ ð−0.3; 0Þ [35]. It can be seen that

due to jVtdj=jVtsj ∼ 0.22, the values of CNP;d
7χ are much

larger than those of CNP;s
7χ . Although the value of CNP;d

7R is
close to that ofCSM

7R , the contribution fromO7R operator can
be diminished due to the opposite sign in CNP;d

7R and CSM
7R ;

thus, the dominant contribution to B → Xdγ is from O7L.

Since jCNP;d
7L j is less than jCSM

7R j, YB0ðdÞ
I ∼ 2 are still allowed

when the constraint from the B → Xdγ process is taken into
account. Hence, B → Xq0γ do not provide severe con-
straints on the parameters YB0

Iq0 , which are related to the
t → qðh; VÞ decays.
In addition to the radiative b decays, the Yukawa

couplings YB0
I and Yd

I can also contribute to the ΔB ¼ 2

process through box diagrams mediated byHI, AI , andH�
I .

Since the Yukawa couplings to SI involves left-handed
and right-handed couplings, for simplicity, we write the
Yukawa couplings as

LY ⊃ −ηSI B̄iðCi
LfPL þ Ci

RfPRÞfSI þ H:c:; ð36Þ

where ηHI
¼ 1, ηAI

¼ −
ffiffiffiffiffiffi
−1

p
, Ci

Lf ¼ ζiYB0
If=

ffiffiffi
2

p
, and

Ci
Lf ¼ −ξiYd

If=
ffiffiffi
2

p
. In order to simplify the expression

and show the possible destruction between YB0
I and Yd

I ,
we take mF ≡mT ∼mB1

∼mB2
and neglect the small

ratios m2
SI;H�

I
=m2

B1
; as a result, the effective Lagrangian

for ΔB ¼ 2 can be written as

LΔB¼2 ∼ −
1

2ð4πÞ2
X2
i;j¼1

1

m2
Bi

½Ci
Lq0C

i
L3C

j
Lq0C

j
L3ðq̄0γμPLbÞ2 þ Ci

Rq0C
i
R3C

j
Rq0C

j
R3ðq̄0γμPRbÞ2

þ ðCi
Lq0C

i
L3C

j
Rq0C

j
R3 þ R ↔ LÞðq̄0γμPLbÞðq̄0γμPRbÞ� −

Yd
Iq0Y

d
I3

8ð4πÞ2m2
T
ðq̄0γμPRbÞ2: ð37Þ
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Using
P

i ζ
2
i ¼

P
i ξ

2
i ¼ 1 and the hadronic matrix ele-

ments of Bq0 for various effective operators that were
obtained in Ref. [36], the transition matrix element for
Bq0 mixing is obtained as

hBq0 jHeff jB̄q0 i∼
f2Bq0

mBq0

6ð4πÞ2m2
F

�
ððYB0

Iq0Y
B0
I3Þ2þ

5

4
ðYd

Iq0Y
d
I3Þ2ÞPVLL

1

þ2YB0
Iq0Y

B0
I3Y

d
Iq0Y

d
I3P

LR
1

�
; ð38Þ

where PVLL
1 and PLR

1 are the nonperturbative hadronic
effects of ðq̄0γμPRðLÞbÞ2 and ðq̄0γμPLbÞðq̄0γμPRbÞ, respec-
tively, and their values are PVLL

1 ≈ 0.84 and PLR
1 ≈ −1.62

[36]. It can be seen that because PVLL
1 and PLR

1 are opposite
in sign, the contributions from YB0

I to ΔB ¼ 2 can be
diminished by those from Yd

I . To numerically exhibit
the cancellation, we take ŵ ¼ Yd

Iq0Y
d
I3 as a variable,

fix YB0
Iq0 ¼ YB0

I3 ¼ 2, and turn Eq. (38) to be a quadratic
equation as

5

4
PVLL
1 ŵ2 þ 8PRL

1 ŵþ 16PVLL
1 ¼ 0: ð39Þ

By solving the quadratic equation, the values of Yd
Iq0Y

d
I3,

which lead to small Bq0 mixing, can then be found. Indeed,
two solutions to Eq. (39) exist and are obtained as ŵ ≈
1.143 and ŵ ≈ 11.2. Based on the analysis, it is known that
the strict constraint from the ΔB ¼ 2 process can be
avoided when the left-handed and right-handed current
couplings are simultaneously considered.

B. Oblique parameters

Since the Z2-odd quark B in doublet Q4 mixes with
the singlet B0, the mixing effect leads to the mass difference
between T and B. In Eq. (4), it can be seen that the
mass splitting within the vectorlike quark doublet can
be expressed as δmQ4

¼ jmT −mB2
j and is dictated by

vyB0=
ffiffiffi
2

p
. This mass splitting contributes to the electroweak

oblique parameters, where the current measurements with
U ¼ 0 are given as [34]

S ¼ 0.02� 0.07; T ¼ 0.06� 0.06: ð40Þ

Therefore, the precision measurements of electroweak
oblique parameters [37] may constrain yB0 or the mixing
angle θ. Take the constraints into account, following the
results in [38,39], we write the oblique correction to the T
parameter as

ΔTQ4
¼ Nc

8πs2Wc
2
W
½s2θΘþ−ðzT; zB1

Þ þ c2θΘþ−ðzT; zB2
Þ

− s2θc
2
θΘþ−ðzB1

; zB2
Þ�; ð41Þ

where Nc ¼ 3 is the color number, zf ¼ m2
f=m

2
Z, and

Θþ−ða; bÞ ¼ θþða; bÞ þ θ−ða; bÞ, with

θþða; bÞ ¼ aþ b −
2ab
a − b

ln

�
a
b

�
;

θ−ða; bÞ ¼ 2
ffiffiffiffiffiffi
ab

p �
aþ b
a − b

ln

�
a
b

�
− 2

�
: ð42Þ

When yB0 ¼ 0, it can be seen that sθ ¼ 0 and mT ¼
mB2

¼ m4Q. Due to θ�ða; aÞ ¼ 0, we obtain ΔT ¼ 0.
The correction to the S parameter can be expressed as

ΔSQ4
¼ Nc

π
½s2θΨþ−ðzT; zB1

Þ þ c2θΨþ−ðzT; zB2
Þ

− s2θc
2
θχþ−ðzB1

; zB2
Þ�; ð43Þ

where Ψþ−ða; bÞ ¼ Ψþða; bÞ þ Ψ−ða; bÞ and χþ−ða; bÞ ¼
χþða; bÞ þ χ−ða; bÞ, with

Ψða;bÞ¼1

3
−
1

9
ln

�
a
b

�
; Ψ−ða;bÞ¼−

aþb

6
ffiffiffiffiffiffi
ab

p ;

χþða;bÞ¼
5ða2þb2Þ−22ab

9ða−bÞ2 þ3abðaþbÞ−a3−b3

3ða−bÞ3 ln

�
a
b

�
;

χ−ða;bÞ¼−
ffiffiffiffiffiffi
ab

p �
aþb
6ab

−
aþb

ða−bÞ2þ
2ab

ða−bÞ3 ln
�
a
b

��
:

ð44Þ

Similar to ΔTQ4
, when yB0 ¼ 0, due to Ψþ−ða; aÞ ¼ 0

and χ�ða; aÞ ¼ 0, we obtain ΔSQ4
¼ 0. With cθ ¼ 0.8,

ΔSQ4
∼ 0.01, which is much smaller than ΔTQ4

. Thus, we
only take the T parameter as the potential constraint.
The mass splittings among H�

I , HI , and AI also
contribute to the T parameter. Following the results shown
in [30], the correction of the inert Higgs doublet to the T
parameter is expressed as

ΔTΦI
¼ 1

16πs2Wc
2
W
ðθþðzH�

I
; zHI

Þ þ θþðzH�
I
; zAI

Þ

− θþðzHI
; zAI

ÞÞÞ: ð45Þ

C. Higgs production and h → γγ

From Eqs. (6) and (9), the SM Higgs has extra
couplings to H�

I and Bi, where the former can induce
the hγγ effective coupling, and the latter can generate hγγ
and hgg effective couplings. With the precision measure-
ments for the Higgs production and Higgs decay to
diphoton, the new physics effect could be strictly bounded.
To show the new physics effect, the signal strength for
pp → h → γγ is defined as
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μγγ ¼
σðpp → hÞ

σðpp → hÞSM
BRðh → γγÞ

BRðh → γγÞSM ; ð46Þ

where the measurements from ATLAS and CMS at
ffiffiffi
s

p ¼
13 TeV are given as 1.10� 0.10 using 139 fb−1 [40] and
1.03þ0.11

−0.09 using 137 fb−1 [41], respectively.
The loop-induced effective interactions for hγγ and hgg

can be parameterized as

LhVV ¼ α

4π

aγγ
mh

hFμνFμν þ αs
4π

agg
mh

hGa
μνGaμν; ð47Þ

where the Feynman diagrams mediated by H�
I and Bi are

shown in Fig. 3. The resulting aγγ and agg in the model are
obtained as

aγγ ¼
gmh

2mW

�
aSM2γ þ λ3vmW

gm2
H�

I

F0ðτH�
I
Þ

þ NcQ2
b

X
i

yhiivffiffiffi
2

p
mt

F1=2ðτBi
Þ
�
;

agg ¼
gmh

4mW

�
aSM2g þ

X
i

yhiivffiffiffi
2

p
mt

F1=2ðτBi
Þ
�
; ð48Þ

where aSM2γ ≈ 6.51 − i0.02 and aSM2g ≈ −0.69 are the SM
results; yh11 ¼ −s2θyB0 and yh22 ¼ s2θyB0 , and the functions
F0 and F1=2 are given as

F0ðτÞ ¼ τð1 − τfðτÞÞ;
F1=2ðτÞ ¼ −2τð1þ ð1 − τÞfðτÞÞ; ð49Þ

with τ¼4m2
f=m

2
h and fðτÞ¼ðarcsinð1= ffiffiffi

τ
p ÞÞ2. Considering

that we focus on the case with 2mH�
I
; 2mBi

> mh, the on-
shell condition in the loop propagators is not available.
When mBi

≫mh, F1=2ðτÞ → −4=3. Because yh11 ¼ −yh22,
the contributions to the hgg effective coupling from the B1

and B2 quarks are canceled each other; that is, the Higgs
production through the gluon-gluon fusion is the same as
the SM. Thus, the signal strength for pp → h → γγ can be
simplified as

μγγ ≈
BRðh → γγÞ

BRðh → γγÞSM ≈
����1þ λ3vmW

gm2
HI
aSM2γ

F0ðτH�
I
Þ
����2; ð50Þ

where the new physics on the Higgs width Γh is assumed to
be small and neglected in μγγ . To suppress the invisible
Higgs decay h → SISI and to have Γh ≈ ΓSM

h , we simply
take mh < 2mSI in the model. Using mH�

I
¼ 100 GeV, the

H�
I effect on μγγ can be estimated as −0.197λ3. If we take

the allowed range of μγγ to be 0.8 < μγγ < 1.2, then λ3 is
limited to be λ3 < 0.5. Hence, the λ3 parameter can be
bounded by the h → γγ measurement.

D. DM direct detection

In the inert Higgs doublet model, although there is no
ZHIHI coupling at the tree level, the nonvanishing ZHIAI
coupling will contribute to the DM-nucleon scattering.
To satisfy the DM direct detection experiments, the
Z-mediated HIn → AIn process has to be suppressed,
where n denotes the nucleon. The process can be kine-
matically forbidden by requiring mAI

−mHI
to be larger

than the kinetic energy of the DM, where the typical energy
is tens of keV. In the study, we take mAI

−mHI
> 1 GeV.

The spin-independent (SI) DM-nucleon scattering
can occur via the trilinear coupling hHIHI shown in
Eq. (9). The Higgs-mediated cross section can be
formulated as [30]

σSIh ¼ μ2HIn

4π

���� λL
mHI

m2
h

����2f2nm2
n; ð51Þ

where μHIn ¼ mHI
mn=ðmHI

þmnÞ is the DM-nucleon
reduced mass, and fn ≈ 0.3 is the nucleon matrix element.
With mn ¼ 0.94 GeV and mHI

¼ 70 GeV, we have

σSIh ≈ 2.0 × 10−42ðλ3 − jλ4j − jλ5jÞ2 cm2: ð52Þ

To satisfy the XENON1T upper limit of 7 × 10−47 cm2

[42], λ3 − jλ4j − jλ5j < 5 × 10−3 is required; that is,
λ3 ∼ jλ4j þ jλ5j. As mentioned earlier, λ3 is bounded by
μγγ . Therefore, the magnitude jλ4j can be bounded by
the DM direct detection. With the mass ordering of
mH�

I
> mAI

> mHI
, we obtain jλ5j < jλ4j.

V. NUMERICAL ANALYSIS AND DISCUSSIONS

Many free parameters are involved in the phenomeno-
logical analysis, such as Yukawa couplings Yu

I and YB0
I ,

the inert scalar masses mHI;AI;H�
I
, the Z2-odd quark masses

mB1;B2;T , and the parameter λ3 in the scalar potential.
Before discussing their influence on the rare top decays,
we first determine the allowed ranges for the free
parameters and then use the constrained parameter values
to analyze the implications on the rare top decays. For the

FIG. 3. Feynman diagram for h → ðγγ; ggÞ induced by H�
I

and Bi.
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numerical analysis, the current experimental upper limits
are taken as [34]

BRðt → qγÞ < 1.8 × 10−4;

BRðt → qZÞ < 5 × 10−4;

BRðt → uhÞ < 1.2 × 10−3;

BRðt → chÞ < 1.1 × 10−3: ð53Þ

A. Parameter choices and constraints

As stated earlier, the radiative B decay cannot severely
bound the Yukawa couplings. Thus, we employ the
perturbative unitarity constraint, and the upper limits of

the Yukawa couplings are required to be jYuðB0Þ
I j < 2

ffiffiffiffiffiffi
2π

p
[43]. To obtain the mass upper limit of the Z2-odd quarks,
we apply the similar constraints for the stop and sbottom
with the R-parity conserving supersymmetry, where using
the data with an integrated luminosity of 139 fb−1 atffiffiffi
s

p ¼ 13 TeV [44], the mass below 1 TeV has been
excluded by ATLAS when the neutralino mass is below
100 GeV. Thus, for the parameter scan, we assume
mB1

< mB2
and take the mass regions for mB1;2

and mT

to be

mB1
∈ ð1000;1200ÞGeV; mB2;T ∈ ð1000;2000ÞGeV:

ð54Þ

If HI is the DM candidate in the inert Higgs model, then
mHI

∼mW can fit the observed DM relic abundance [30].
It has been studied that the direct bounds from colliders
on mHI;AI

are not strict, and the bound on mH�
I
, which

converts from the SUSY search at LEP, is mH�
I
>

70–90 GeV [45–48]. Therefore, the mass regions of HI ,
AI , and H�

I are taken as

mHI;AI;H�
I
∈ ð70; 120Þ GeV: ð55Þ

The mass regions in Eqs. (54) and (55) are only used to
set the boundaries of the scanned parameters. Their mass
differences are dictated by the oblique T parameters, as
shown in Eqs. (41) and (45). To understand the T-parameter
constraints, we perform the parameter scan based on the
chosen parameter regions. The correlation ofmB2

−mT and
mB2

−mB1
is shown in Fig. 4(a), where 5 × 106 random

sampling points are used. The allowed region formB2
−mT

is limited within 200 GeVand that for mB2
−mB1

is wider;
that is, the mass splitting in the same representation is
strictly constrained. Therefore, it is appropriate if we
take mB2

−mT ¼ 100 GeV for the top decay analysis.
Similarly, the T-parameter constraint on mAI

−mHI
and

mH�
I −HI

is shown in Fig. 4(b), where the mass ordering
mH� > mAI

> mHI
is applied. Because the chosen ranges

of mHI;AI;H�
I
in Eq. (55) are not broad, the constraint is

not significant. As mB2
−mT is related to the parameter yB0

or sθ, the correlation between yB0 and sθ under the

(a) (b)

(c) (d)

FIG. 4. Plots (a)–(c) show the constraints from the oblique T-parameter, and plot (d) is the constraint from μγγ .
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T-parameter constraint is shown in Fig. 4(c). When
mB2

−mT is limited, the allowed yB0 parameter is bounded
by jy0Bj≲ 1.5, where the maximum sθ can still reach
jsθjmax ∼ 1=

ffiffiffi
2

p
. Using Eq. (50), the strength signal for

the Higgs to diphoton as a function ofmH�
I
and λ3 is shown

in Fig. 4(d). If the uncertainty of the observed strength
signal is 10% of the SM result, then the λ3 value is limited
to be approximately 0.2 when mH� ¼ 90 GeV is used.

B. BRs for t → qðh;γÞ and t → qZ

After analyzing the constraints of the parameters, in
this subsection, we numerically calculate and discuss the
SI- and H�

I -mediated contributions to the t → qðh; γÞ and
t → qZ decays. As stated before, many parameters are
involved in the processes. We can use the parameter scan to
comprehend the influence of various parameters. Before
scanning the parameters, we need to examine whether
the t → qV and t → qh decays can be simultaneously
enhanced to the current experimental upper limits.
For the purpose of illustration, we use the formulas

given in Eqs. (27) and (33) and show the contours for
BRðt → qγÞ (in units of 10−6) and BRðt → qZÞ (in units
of 10−4) in Figs. 5(a) and 5(b), respectively, where the
dashed lines denote BRðt → qhÞ. The parameter values
are taken as mHI;AI;H�

I
¼ ð65; 70; 90Þ GeV, mB1;B2;T ¼

ð1; 1.5; 1.4Þ TeV, λ3¼0.2, yB0 ¼ 1.0, and YB0
Iq;I3 ¼ ð4; 5Þ.

As shown in the plots, the BRs for t → qðh; γ; ZÞ with
the chosen parameter values can reach the levels of
ð10−3; 10−6; 10−4Þ, where with the exception of t → qγ,
t → qðh; ZÞ can reach the current upper bounds that are
shown in Eq. (53). Based on the results, although the used
Yukawa couplings are lower than the upper limit from the
perturbative unitarity, BRðt → qγÞ of Oð10−6Þ inevitably
has to reply on the large Yukawa couplings. To illustrate the
situation with small Yukawa couplings, we fix YB0

Iq;I3 ¼
ð2; 3Þ and show the regions for BRðt → qhÞ ≥ 1.5 × 10−4

and BRðt → qZÞ ≥ 1.5 × 10−5 as a function of Yu
Iq;I3 in

Fig. 6. In these chosen regions, BRðt → qγÞ is far
below 10−6.
In the following, we discuss the influence of various

parameters on the rare top decays in detail. To reduce
the number of scanned parameters, the parameters that
are insensitive to the studying phenomena are fixed as
follows:

mHI;AI ;H�
I
¼ ð65; 70; 90Þ GeV; λ3 ¼ 0.2; ð56Þ

where the values are chosen to satisfy the constraints
obtained earlier. Thus, the involving parameters are the
Z2-odd quark masses mB1;B2;T and Yukawa couplings yB0 ,

YB0;u
I1;I3, and their scanning regions are chosen as

mB1
∈ ½1000; 1300� GeV; mT ∈ ½1000; 2000� GeV;

mB2
¼ mT þ 100;

yB0 ∈ ð−1.5; 1.5Þ; YB0
Iq;I3 ∈ ð−3; 3Þ; Yu

Iq;I3 ∈ ð−3; 3Þ:
ð57Þ

(a) (b)

FIG. 5. Contours for (a) BRðt → qγÞ and (b) BRðt → qZÞ as a function of Yu
Iq and Yu

I3, where the dashed lines are BRðt → qhÞ and
YB0
Iq;I3 ¼ ð4; 5Þ are used. The other taken parameter values can be found in the text.

FIG. 6. Regions for BRðt → qhÞ ≥ 1.5 × 10−4 and BRðt →
qZÞ ≥ 1.5 × 10−5 as a function for Yu

Iq and Yu
I3, where YB0

Iq ¼ 2,

and YB0
I3 ¼ 3 are used.
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According to the ATLAS results of BRðt → ugÞ≲ 0.61 ×
10−4 [27], we can indirectly bound the t → qγ to be
BRðt → qγÞ ≲ 3.2 × 10−6 using BRðt → qγÞ ∼ BRðt →
qγÞα=ðCFαsÞ in the model, where the upper limit is smaller
than the current experimental upper limit. Therefore, it is
sufficient to use the small Yukawa couplings for the scan. In
addition, in order to show the resulting BRs that can reach
the sensitivities at the HL LHC, we require the obtained
BRs for the rare top decays to be

10−5 < BRðt → qhÞ < 10−3;

2 × 10−5 < BRðt → qZÞ < 5 × 10−4: ð58Þ

However, the radiative top decay is required to be
BRðt → qγÞ > 0.3 × 10−6. Since we have taken small
Yukawa couplings, BRðt → qγÞ cannot reach the current
upper limit, i.e.,Oð10−4Þ. Thus, it is not necessary to set the
upper value for BRðt → qγÞ.
We show the scatter plots for the Yukawa couplings

of YB0
Iq;I3 and Yu

Iq;I3, which fit the ranges given in Eqs. (57)

and (58), in Figs. 7(a) and 7(b). Hence, jYB0;u
Iq;I3j < 1 are

disfavored. The correlation between yB0 and mB1
is shown

in Fig. 7(c). From the numerical results, jyB0 j≲ 0.5 is
excluded. In addition, the correlation betweenmB1

and mB2

can be found in Fig. 7(d).
After knowing the constrained parameter ranges, in

the following, we discuss the implications on the

t → qðγ; h; ZÞ decays. Because t → qγ and t → qh have
similar chirality structures in decay amplitudes and arise
from the similar Feynman diagrams, we analyze their
numerical results together. When neglecting the small
contributions from Figs. 1(c) and 1(d), as stated earlier,
t → qγ; qh decays can arise from Figs. 1(a) and 1(b).
Compared to the H�γ coupling, the BiBiγ coupling has a
suppression factor from the electric charge of Bi; thus, the
t → qγ decay indeed is dominated by Fig. 1(a). By contrast,
because the H�

I h coupling is λ3 and is limited by the
h → γγ measurement, the dominant contribution to t → qh
is from Fig. 1(b). Hence, the resulting BRðt → qγÞ and
BRðt → qhÞ as a function of mB1

are shown in Figs. 8(a)
and 8(b). In the chosen Yukawa couplings, the BR for
t → qγ can only maximally reach of the Oð10−7Þ, which is
consistent with the indirect bound from the t → qg meas-
urement. The dependence of Bðt → qhÞwith respect tomB2

is shown in Fig. 8(c), where BRðt → qhÞ increases as mB2

increases. The reason for the behavior can be understood as
the relaxed cancellation between B1 and B2 when the mass
of B2 increases; that is, the B1 becomes the dominant effect
if mB2

≫ mB1
. In Fig. 8(d), we show the scatter plot for

the correlation between BRðt → qγÞ and BRðt → qhÞ. The
dashed lines in Fig. 8 denote the sensitivity of the HL LHC.
In addition to the dipole operators, unlike the t → qγ

decay, t → qZ also involves the vectorial types of operators
in the decay amplitude, which are not associated with the
chirality flip in the quark currents, so they are the dominant

(a) (b)

(c) (d)

FIG. 7. Correlations of Yukawa couplings and mB1;2
that fit the taken ranges shown in Eqs. (57) and (58).
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effect. To observe the influence of the new physics effects
on t → qZ, we show the scatter plots for the correlations of
BRðt → qZÞ with BRðt → qγÞ and with BRðt → qhÞ in
Figs. 9(a) and 9(b), respectively, where the dashed lines are
the sensitivity that the HL LHC is planning to reach. With
the exception of the t → qγ decay, the BRs for the t → qh
and t → qZ decays in the model can reach the level
of Oð10−4Þ.

VI. SUMMARY

In this study, we investigated the potential effects that
can enhance the top-FCNC processes, where the processes
are highly suppressed in the SM. If we assume that t → qh
and t → qZ are induced via quantum loop diagrams,

the intermediate states in the loop may have different
properties from the SM particles. Inspired from the mecha-
nism of the scotogenic neutrino mass, we consider that the
new particles carry an extra Z2-odd parity, whereas the SM
particles are Z2-even.
To retain the basic element in the radiative neutrino mass

[28], in addition to the Z2 discrete symmetry, we can extend
the SM by including one inert Higgs doublet, one vector-
like Z2-odd doublet quark, and one vectorlike Z2-odd
singlet quark.
The potential constraints from the experimental obser-

vations are taken into account, such as the oblique
parameters, Higgs to diphoton decay, and DM direct
detection. Although the b → sγ decay and ΔB ¼ 2 process
can be induced in the model, their effects can be small.

(a) (b)

(c) (d)

FIG. 8. (a)–(b) BRðt → qγ; qhÞ as a function of mB1
; (c) BRðt → qhÞ as a function of mB2

, and (d) correlation between BRðt → qγÞ
and BRðt → qhÞ.

(a) (b)

FIG. 9. Correlation of BRðt → qZÞ with (a) BRðt → qγÞ and (b) BRðt → qhÞ.
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According to the recent ATLAS’s measurement that
shows BRðt → qgÞ≲Oð10−4Þ, we found that the indirect
bound on t → qγ in the model is BRðt → qγÞ≲
3.2 × 10−6, which is lower than the expected sensitivity
at the HL LHC. With the exception of t → qγ, the
branching ratios for the loop-induced t→qh and t → qZ
decays in the model can be of the order of 10−4 and can be
tested at the HL LHC.
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