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We discuss vacuum structure and vacuum stability in classically scale-invariant renormalizable models
with a scalar dark matter multiplet of global OðNÞ symmetry together with an electroweak singlet scalar
mediator. Our conformally invariant scalar potential generates the electroweak symmetry breaking via the
Coleman-Weinberg mechanism, and the new scalar singlet mediator acquires its mass through radiative
corrections of the scalar dark matters as well as of the standard model particles. Taking into account the
present collider bounds, we find the region of parameter space where the scalar potential is stable and all
the massless couplings are perturbative up to the Planck scale. With the obtained parameter sets satisfying
the vacuum stability condition, we present the allowed region of new physics parameters satisfying the
recent measurement of relic abundance and predict the elastic scattering cross section of the new scalar
multiplet into target nuclei for a direct detection of the dark matter. We also discuss the collider signatures
and future discovery potentials of the new scalars.
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I. INTRODUCTION

Discovery of the Higgs boson at the CERN LHC has
closed the particle contents of the standard model (SM).
However, there is no room for the nonbaryonic cold dark
matter (DM) of the Universe in the SM Lagrangian. The
existence of the DM is strongly supported by a variety of
astrophysical observations and cosmological implications
in the early Universe. Still, no evidence of the DM was
obtained in the direct detection and high-energy collider
experiments. Thus, it is well motivated to consider theo-
retical models in which the DM candidates are included in
the separate hidden sector connected to the SM with small
couplings through some mediators.
Recently, the precise measurement of the Higgs boson

mass, mH ¼ 125.25� 0.17 [1], allows us to study the SM

vacuum structure in more detail. The present values of mH,
mt, and αsðMZÞ imply the metastability of the electroweak
vacuum in the SM, which is brought by the Higgs quartic
coupling turning negative at some high-energy scale. The
vacuum stability issue has been investigated by many
authors [2–14]. Additional scalars are often introduced
to rescue the vacuum from metastability, and those can be
mediator fields and/or the DM candidates as hidden sector
particles.
In this work, we adopt the renormalizable DMmodel with

the scale invariance at classical level proposed in our
previous work [15] in order to preserve the naturalness of
the model up to the Planck scale MP. Softly broken scale
invariance could be a solution to the hierarchy problem
[16,17]. Being assigned the scale invariance at classical
level, dimensionful terms do not exist in the model
Lagrangian but are generated by the quantum corrections
to achieve the electroweak symmetry breaking (EWSB) as
done by Coleman andWeinberg [18]. In this model, the DM
candidate is a scalar multiplet of globalOðNÞ symmetry, and
the mediator field is a singlet scalar. For a systematic
minimization of the effective potential, we find the flat
direction of the scalar potential and obtain the one-loop
radiative corrections to lift up the flat direction potential
following the Gildener and Weinberg (GW) formalism [19].
Then, we get the local minimum of the potential to generate
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the scalar mass terms, which give rise to the EWSB. As a
result of conformal symmetry breaking, a light pseudo-
Nambu-Goldstone boson appears and is mixed with the SM-
like Higgs boson emerging from two light scalar particles in
this model. We assign OðNÞ global symmetry to the DM
scalars for the stability of the hidden sector. A similar model
was studied for N ¼ 2 case in Refs. [20,21], but they simply
assumed that the SM-DM coupling(λhϕ) is zero in order to
decouple the DM sector from the SM Higgs. In general,
however, such an interaction term is not forbidden by a
discrete symmetry such as Z2 symmetry theoretically and
also is very important to explain the current astronomical
observables phenomenologically, as discussed in our ear-
lier work.
In addition to the phenomenological study, we investigate

the vacuum stability in this model and show that the nonzero
λhϕ plays an important role in stabilizing the scalar potential
as well. The Higgs quartic coupling evolves with additional
positive contributions from the new scalar quartic couplings
in the dark sector, and thus the metastability of the
electroweak vacuum can be cured. Besides λhϕ, the DM
self-coupling λϕ is also important in stabilizing the scalar
potential. Although its direct contributions to the DM
phenomenology were discarded in our previous study, its
contribution can alter other parameters at one-loop level.
Therefore, we newly consider the nonzero contributions of
λϕ in this work. Taking into account all of the theoretical
consideration and new parameters mentioned, we demand
the vacuum stability as a new theoretical constraint to study
the DM and collider phenomenology. We find the parameter
sets with the stable vacua which satisfy the relic abundance
as well as the direct detection bounds. Based on the obtained
vacuum stability condition, we get the conservative bounds
on the mixing angle between neutral scalar bosons together
with the DM mass. The future prospect of the allowed
parameter set to test in the collider phenomenology is also
discussed.
The outline of this paper is as follows. In Sec. II, we

describe the model and discuss the physical degrees of
freedom and model parameters together with the one-loop
effective potential. We show the beta functions of the
couplings and discuss the vacuum stability conditions in
Sec. III. In Sec. IV, the relic density and the direct detection
limits for the DM are shown. The implication of the collider
phenomenology is also discussed. Section V summaries the
results and concludes.

II. MODELS

Our model was discussed in the earlier study in detail
[15], so we can be brief. We consider a scalar multiplet
ϕ ¼ ðϕ1;…;ϕNÞT , which is the fundamental representa-
tion of a global OðNÞ group as a DM candidate. We also
introduce a real scalar singlet S as the mediator which
participates in the EWSB together with the SM Higgs

doublet H. We demand the scale invariance at the classical
level and the scalar potential consists of quartic interactions
only as given by

VðH; S;ϕÞ ¼ λhðH†HÞ2 þ 1

2
λhsH†HS2 þ 1

2
λhϕH†HϕTϕ

þ 1

4
λsϕS2ϕTϕþ 1

4
λsS4 þ

1

4
λϕðϕTϕÞ2: ð1Þ

Note that there exists an interaction term between the DM
scalar ϕ and the SM Higgs H with the nonzero coupling
λhϕ, while this coupling was discarded in similar models in
Refs. [20,21] as discussed earlier. We should mention that
there is no reason to forbid this term and have shown that
λhϕ plays an important role for the current astronomical
phenomenology in our previous study. Moreover, we will
show that nonzero λhϕ is essential for stabilizing the scalar
potential in this paper. Also, the DM self-coupling λϕ
affects the beta functions of other couplings and does
eventually alter the bounds of other parameters in one-loop
level. This was not discussed in the previous study but will
be shown in the next sections more clearly. Alternatively to
the above choice of the scalar structure, one may combine S
with ϕ to obtain a fundamental of a global OðN þ 1Þ as
studied in Refs. [22,23]. However, generating a proper
Higgs mass requires a large enough mass of the scalar DM
so that the Higgs-scalar couplings become too large. As a
result, this kind of a simple setup makes the theory
nonperturbative at a few TeV scale, which undesirably
ruins our original motivation to make our model valid up to
the Planck scale. That is why we resolved such an issue by
separating the new scalar responsible for the EWSB from
the DM sector.
To achieve the physical vacuum, we will minimize the

scalar potential of Eq. (1) up to one-loop level. Following
Gildener and Weinberg [19], first we minimize the tree-
level potential with the conditions

∂V
∂H

����
hH0i¼vh=

ffiffi
2

p ¼ ∂V
∂S

����
hSi¼vs

¼ 0; ð2Þ

which gives the relations at some scale Λ,

λhðΛÞ
λsðΛÞ

¼
�
vs
vh

�
4

; −
2λhðΛÞ
λhsðΛÞ

¼
�
vs
vh

�
2

; ð3Þ

where the nonzero vacuum expectation values (VEVs) can
be developed as hH0i ¼ vh=

ffiffiffi
2

p
and hSi ¼ vs after EWSB.

We let tan βð≡tβÞ ¼ vs=vh hereafter. The minimization of
the tree-level potential performed at a particular scale Λ
gives a flat direction among the scalar VEVs. Because of
theH − Smixing term, the quadratic terms of neutral scalar
degrees of freedom h and s, defined byH0 ¼ ðvh þ hÞ= ffiffiffi

2
p

and S ¼ vs þ s, arise even at the tree level, and the mass
matrix is written as
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M2 ¼ 2λhv2h

�
1 −1=tβ

−1=tβ 1=t2β

�
: ð4Þ

The corresponding scalar mass eigenstates h1 and h2 are
obtained as admixtures of h and s,

�
h1
h2

�
¼

�
cos θ − sin θ

sin θ cos θ

��
h

s

�
; ð5Þ

with the mixing angle θ. After diagonalizing the mass
matrix, we obtain tan θ ¼ −tβ or 1=tβ. The mixing angle θ
should be very small due to the Large Electron-Positron
(LEP) collider constraints [24]. Then, experimental con-
straints disfavor the case of tan θ ¼ −tβ as similarly
discussed in Refs. [25,26]. Thus, we only choose
tan θð≡tθÞ ¼ 1=tβ in this work. As a result, λhs and λs
are suppressed by t2θ and t4θ, respectively.
At tree level, the physical masses of the two scalars

(h1, h2) and the DM scalar ϕ are obtained as

M2
1 ¼ 2λhv2t2θ; M2

2¼ 0; M2
ϕ ¼

v2

2
ðλhϕs2θþλsϕc2θÞ; ð6Þ

where sθ ≡ sin θ, cθ ≡ cos θ, and v2 ¼ v2h þ v2s is consid-
ered to be the VEVof the radial component of a scalar field
composed of h and s. The value of v is determined from the
radiative corrections and is set to be the scale about Λ
according to GW. From the above equation, one can find
the massless mode exists. We take h1 to be the SM-like
Higgs boson which has the tree-level masses and the other
scalar h2 to be the massless mode.

At one-loop level, the radiative corrections lift up the flat
direction and generate the mass of the massless mode.
Including the radiative corrections, we write the scalar
effective potential as

Veffðh1c; h2cÞ ¼ Vð0Þðh1c; h2cÞ þ Vð1Þðh1c; h2cÞ; ð7Þ

where

Vð0Þðh1c;h2cÞ¼
λh
4
ðcθh1c−sθh2cÞ4þ

λs
4
ðsθh1cþcθh2cÞ4

þλhs
4
ðcθh1c−sθh2cÞ2ðsθh1cþcθh2cÞ2

Vð1Þðh1c;h2cÞ¼
X
P

nP
m̄4

Pðh1c;h2cÞ
64π2

�
ln
m̄2

Pðhic;h2cÞ
μ2

−cP

�
;

ð8Þ

hic is the background value of the physical scalar hi, and
cP ¼ 3=2ð5=6Þ for scalars and fermions (gauge bosons) in
the MS scheme. The effective potential is computed at the
renormalization scale μ, and m̄P represent a field-dependent
mass of fluctuating fields, P ¼ h1;2; Z;W�; t;ϕi. Their
degrees of freedom, nP, are given by

nh1 ¼nh2 ¼nϕi
¼ 1; nZ ¼3; nW� ¼ 6; nt¼−12: ð9Þ

The field-dependent masses m̄P are obtained in terms of
tθ ≡ tan θ as

m̄2
h1
ðh1c; h2cÞ ¼ ðλh þ λst4θ þ λhst2θÞ

3h21c
ð1þ t2θÞ2

þ
�
3ðλh þ λsÞt2θ þ

λhs
2

ð1 − 4t2θ þ t4θÞ
�

h22c
ð1þ t2θÞ2

;

m̄2
h2
ðh1c; h2cÞ ¼

�
3ðλh þ λsÞt2θ þ

λhs
2

ð1 − 4t2θ þ t4θÞ
�

h21c
ð1þ t2θÞ2

þ ðλht4θ þ λs þ λhst2θÞ
3h22c

ð1þ t2θÞ2
;

m̄2
ϕi
ðh1c; h2cÞ ¼ ðλhϕ þ λsϕt2θÞ

h21c
2ð1þ t2θÞ

þ ðλhϕt2θ þ λsϕÞ
h22c

2ð1þ t2θÞ
;

m̄2
Zðh1c; h2cÞ ¼

M2
Z

v2h

ðh21c þ t2θh
2
2cÞ

1þ t2θ
; m̄2

W�ðh1c; h2cÞ ¼
M2

W

v2h

ðh21c þ t2θh
2
2cÞ

1þ t2θ
;

m̄2
t ðh1c; h2cÞ ¼

M2
t

v2h

ðh21c þ t2θh
2
2cÞ

1þ t2θ
: ð10Þ

Note that we omitted the Goldstone boson contributions
here because those become zero eventually at the GW scale
Λ along the flat direction [27].
Because of the smallness of the mixing angle, running of

the scalar couplings in Eq. (1) is very slow with Λ, and thus
there exists some scale Λ below the Plank scale MP ≃
1019 GeV at which Eq. (3) is satisfied at one-loop level.
Similar discussions can be found also in Refs. [19,28].

Figure 1 depicts the scaling behavior of the coupling
relation (4λhλs − λ2hs) by varying the Higgs-DM coupling
λhϕðvhÞ and the mixing angle tan θ. The running of the
scalar couplings is obtained from the β functions given in
the next section. One can see clearly from the figures that
there are several scale points at which the following
equation holds as in Eq. (3): 4λhλs − λ2hs ¼ 0. Among
those scale points, we choose the lowest one (black dot)
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because it fits our purpose on the DM phenomenology. The
GW scale Λ can be obtained by applying the minimization
condition of the effective potential, and we have Λ ≃
0.85Mϕ for N ¼ 2. We will exploit the numerical values
of the physical observables at this scale.

Adopting the GW approach, we minimize the effective
potential at h1c ¼ 0 and h2c ¼ v keeping h1 and h2 to be
the physical modes. Then, the field-dependent masses in
Eq. (10) can be further simplified at the GW scale by
imposing the flat direction conditions in Eq. (3) as

m̄2
h1
ðh2cÞ ¼

3

4

�
λhs22θ þ λss22θ þ

λhs
2

�
1

3
þ c4θ

��
h22c ¼ 2λht2θh

2
2c; m̄2

h2
ðh2cÞ ¼ 3

�
λhs4θ þ λsc4θ þ

1

4
λhss22θ

�
h22c ¼ 0;

m̄2
Zðh2cÞ ¼

1

4
ðg22 þ g21Þs2θh22c ¼ M2

Z
h22c
v2

; m̄2
W�ðh2cÞ ¼

1

4
g22s

2
θh

2
2c ¼ M2

W
h22c
v2

;

m̄2
t ðh2cÞ ¼

y2t
2
s2θh

2
2c ¼ M2

t
h22c
v2

; m̄2
ϕi
ðh2cÞ ¼

1

2
ðλhϕs2θ þ λsϕc2θÞh22c ¼ M2

ϕ

h22c
v2

: ð11Þ

The one-loop masses of h1 and h2 are obtained from the
effective potential

M2
1 ¼

∂
2Veff

∂h21c

����h1c¼0
h2c¼v

¼ 2λhv2t2θ;

M2
2 ¼

∂
2Veff

∂h22c

����h1c¼0
h2c¼v

¼ 1

8π2v2

× ðM4
1 þ 6M4

W þ 3M4
Z − 12M4

t þ NM4
ϕÞ: ð12Þ

We have to demand NM4
ϕ ≥ 12M4

t −M4
1 − 6M4

W − 3M4
Z

for M2
2 ≥ 0 and obtain that Mϕ ≳ 265 GeV for N ¼ 2.

In this study, we present the phenomenology of this
model in terms of the following new physics (NP)
parameters: Mϕ, θ, λhϕ, and λϕ. The DM self-coupling
λϕ is irrelevant on the SM-DM interactions, so it was
neglected in our previous study on the DM phenomenology
[15]. However, it affects the Renormalization group equa-
tion (RGE) of the other couplings considerably as we will

see in the next section. Therefore, we probe the contribu-
tion of λϕ to the vacuum stability and the corresponding
DM phenomenology as well in this paper. The dependency
of the model parameters at the GW scale Λ are

v ¼ vh
sθ

; vs ¼
vh
tθ
; λh ¼

M2
1c

2
θ

2v2h
; λhs ¼ −

M2
1s

2
θ

v2h
;

λs ¼
M2

1s
2
θt

2
θ

2v2h
; λsϕ ¼

�
2M2

ϕ

v2h
− λhϕ

�
t2θ: ð13Þ

Given the fixed Higgs mass M1 and vh ≃ 246 GeV, we
constrain the above four independent NP parameters by
taking into account various theoretical considerations and
experimental measurements in the following sections.

III. VACUUM STABILITY

The metastability of the electroweak vacuum can be
overcome by the extended Higgs sector with portal

FIG. 1. Behavior of the scalar coupling relation (4λhλs − λ2hs) for three different values of λhϕðvhÞ and tan θ. The black dots represent
the GW scale Λ at which the relation given in Eq. (3) holds at one-loop level.
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couplings to the Higgs. The new scalar couplings can change the β function and the infrared boundary condition of the
Higgs quartic. The β function of a coupling λi at a scale μ in the RGE is defined as βλi ¼ ∂λi=∂ log μ. For dimensionless
couplings in the scalar potential (including the SM Yukawa coupling), the one-loop β functions are given by

βð1Þλt
¼ λt

16π2

�
9

2
λ2t −

�
8g23 þ

9

4
g22 þ

17

12
g21

��
;

βð1Þλh
¼ 1

16π2

�
24λ2h þ 12λhλ

2
t − 6λ4t − 3λhð3g22 þ g21Þ þ

3

8
ð2g42 þ ðg22 þ g21Þ2Þ þ

1

2
λ2hs þ

N
2
λ2hϕ

�
;

βð1Þλhs
¼ 1

16π2

�
λhs

�
12λh −

3

2
ð3g22 þ g21Þ þ 6λ2t þ 4λhs þ 6λs

�
þ Nλhϕλsϕ

�
;

βð1Þλs
¼ 1

16π2

�
2λ2hs þ 18λ2s þ

N
2
λ2sϕ

�
;

βð1Þλhϕ
¼ 1

16π2

�
λhϕ

�
12λh −

3

2
ð3g22 þ g21Þ þ 6λ2t þ 4λhϕ þ 2ðN þ 2Þλϕ

�
þ λhsλsϕ

�
;

βð1Þλsϕ
¼ 1

16π2
½λsϕð4λsϕ þ 6λs þ 2ðN þ 2ÞλϕÞ þ 4λhsλhϕ�;

βð1Þλϕ
¼ 1

16π2

�
2λ2hϕ þ 2ðN þ 8Þλ2ϕ þ

1

2
λ2sϕ

�
; ð14Þ

where g1 and g2 are the SM Uð1ÞY and SUð2ÞL couplings, respectively, and λt is the top Yukawa coupling. While we
consider the NP effects on the effective potential and the β functions at one-loop order, in order to show how much the NP
contribution is needed for stabilizing the scalar potential, we include the following two-loop β functions for the top-
Yukawa and Higgs quartic self-couplings as done in Ref. [8] because those contributions are sizable:

βð2Þλt
≃

λt
ð16π2Þ2

�
−12λ4t − 12λ2t λh þ 6λ2h þ λ2t

�
36g23 þ

225

16
g22 þ

131

16
g21

�

þ g23

�
9g22 þ

19

9
g21

�
− 108g43 −

3

4
g22g

2
1 −

23

4
g42 þ

1187

216
g41

�
;

βð2Þλh
≃

1

ð16π2Þ2
�
λhλ

2
t

�
−144λh − 3λ2t þ 80g23 þ

85

6
g21 þ

45

2
g22

�

þ λh

�
−312λ2h þ λhð36g21 þ 108g22Þ

629

24
g41 −

73

8
g42 þ

39

4
g21 þ g22

�

þ λ2t

�
30λ4t − λ2t

�
8

3
g21 þ 32g23

�
−
19

4
g41 −

9

4
g42 þ

21

2
g21g

2
2

�

þ 1

48
ð915g62 − 379g61 − 289g21g

4
2 − 559g41g

2
2Þ
�
: ð15Þ

The β functions for the SM gauge couplings are not altered
by the NP couplings up to the next-leading order and
can be found in Ref. [29]. For numerical simulation, we
assume the central values for the top and gauge
boson masses and use the following SM values:
g1ðMtÞ¼0.464, g2ðMtÞ¼0.648, g3ðMtÞ¼1.167, λtðMtÞ ¼
0.951, λhðMtÞ ¼ 0.129. As one can see from Eq. (14), the
portal coupling λhs and the SM-DM interaction coupling
λhϕ give positive contributions to the β function of the
Higgs quartic. Especially for largeN, λhϕ contributions are
much enhanced. Also, the contribution of λϕ to the β

function of λhϕ is sizable, so the DM self-coupling is also
important in stabilizing the scalar potential.
In Fig. 2, we plot the running of the Higgs quartic

coupling λh for different values of Mϕ, tan θ, λhϕðΛÞ, and
λϕðΛÞ in the case of N ¼ 2 with which the scalar vacua are
stable and all scalar couplings are perturbative (less than
4π) up to the Planck scale. One can clearly see that the
nonzero coupling λhϕ plays very important role in stabiliz-
ing the Higgs potential. Also in Fig. 3, the running behavior
of the other dimensionless scalar couplings is shown for the
benchmark points of the new parameters: Mϕ ¼ 1 TeV,
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FIG. 2. Running of λh for different values of Mϕ, tan θ, λhϕðΛÞ, and λϕðΛÞ.

FIG. 3. Running of the scalar couplings for Mϕ ¼ 1 TeV, tan θ ¼ 0.1, λhϕðΛÞ ¼ 0.3, λϕðΛÞ ¼ 0.01.
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tan θ ¼ 0.1, λhϕðΛÞ ¼ 0.3, λϕðΛÞ ¼ 0.01. We scanned all
new parameter space satisfying the vacuum stability and the
perturbativity of the couplings and will apply this result to
the DM phenomenology study in the next section.

IV. PHENOMENOLOGY

We first consider the relic density constraints on this
model. At present, the most accurate determination of the
DM mass density ΩDM comes from global fits of cosmo-
logical parameters to a variety of observations such as
Planck primary cosmic microwave background (CMB)
data plus the Planck measurement of CMB lensing [1]:

ΩCDMh2 ¼ 0.1200� 0.0012: ð16Þ

This relic density observation will exclude some regions in
the model parameter space. The relic density analysis in this
section includes all possible channels of ϕiϕi pair annihi-
lation into the SM particles. Using the numerical package
micrOMEGAs [30] that utilizes CalcHEP for computing the
relevant annihilation cross sections [31], we compute the
DM relic density and the spin-independent DM-nucleon
scattering cross sections. Especially, micrOMEGAs is known
to be effective for the relativistic treatment of the thermally
averaged cross section and for a precise computation of the
relic density in the region where annihilation through a
Higgs exchange occurs near resonance [32].
For illustration of allowed new model parameter spaces,

we choose the benchmark points for the DM self-coupling
λϕ ¼ 0.01, 0.1. We consider the N ¼ 2 case only for
simplicity, which corresponds to the case containing
two exact copies of the DM. Large values of N are
disfavored because this ruins perturbativity of the scalar
couplings at high scale. Using the conditions provided in
Sec. III, we perform the phenomenological analysis of the

model by varying the following three NP parameters: tθ,
Mϕ, λhϕ. The new scalar massM2 is determined byMϕ and
tθ from Eq. (12), and the dependency of other NP
parameters are shown in Eq. (13). To see the relic density
constraints on the scalar DM interaction, we first plot the
allowed region of the Higgs-DM coupling λhϕ and the
scalar mixing angle tan θ constrained by the current relic
density observations at 3σ level for M2 ≤ 800 GeV in
Fig. 4. If one adopts the conditions that lead to a strong
first-order phase transition as needed to produce the
observed baryon asymmetry of the Universe, the preferred
h2 mass should be less than 1 TeV [33]. The chosen upper
bound on M2 corresponds to the several TeV of Mϕ

depending on the value of tan θ. In the figure, the red
(blue) line corresponds to the upper (lower) bound of
perturbativity (vacuum stability) condition. The gold and
light blue colored data satisfy the perturbativity condition
obtained in Sec. III, and the remaining data are grayed out.
The gold and light blue data represent the stable and
metastable vacua, respectively. As emphasized earlier, one
can clearly see that λhϕ should be sizable in order to satisfy
all the theoretical and phenomenological constraints. The
larger value of λϕ gets a stronger bound from the
perturbativity constraint because it contributes to the β
function of the Higgs quartic positively, so the smaller
value of λϕ derives the larger allowed parameter space.
Figure 5 shows the allowed regions of the DM mass Mϕ

and λhϕ by relic density observations at 3σ level for 0 ≤
tan θ ≤ 0.2 similarly to Fig. 4. For reference, three bench-
mark points for the scalar mixing angle tan θ ¼ 0.05, 0.10,
0.15 are represented as red, green, and blue, respectively,
in order to see tan θ dependence clearly. The behavior of
the favored λhϕ for a fixed θ was explained in much detail
including relevant formulas in our previous study [15], so
we will not repeat it here. Although λϕ was assumed to be

FIG. 4. Allowed regions for the parameter sets of (λhϕ; tan θ) by relic density observations at 3σ level for M2 ≤ 800 GeV. The gold
region satisfies both of the vacuum stability and perturbativity conditions obtained in Sec. III, the light blue region satisfies only the
perturbativity condition, and the remaining data are grayed out.
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zero in the previous study, the nonzero λϕ case in this work
shows similar behavior but with stronger constraints.
Next, we consider the implications of the direct

detection experiments on this model. Nonobservation of
DM-nucleon scattering events is interpreted as an upper
bound on DM-nucleon cross section. In Fig. 6, we plot the
spin-independent DM-nucleon scattering cross section by
varying the DM mass Mϕ with parameter sets allowed by
the relic density observation within 3σ range and compare

the results with the observed upper limits obtained at 90%
level from DEAP-3600 (2019) [34], LUX (2017) [35],
PandaX-II (2017) [36], XENON1T [37], and expected
limits from XENONnT [38]. The DM-nucleon scattering
occurs only through the two t-channel diagrams exchang-
ing h1 and h2. If h2 is very light, then the enhancement of
the h2 exchange diagram dominates over the contribution
of the SM-like Higgs boson h1. As we increase the DM
mass, M2 and λsϕ increase as well, and h1 contributions

FIG. 5. Allowed regions for the parameter sets of (Mϕ, λhϕ) by relic density observations at 3σ level for 0 ≤ tan θ ≤ 0.2 and
M2 ≤ 800 GeV. The gold region satisfies both of the vacuum stability and perturbativity conditions obtained in Sec. III, the light blue
region satisfies only the perturbativity condition, and the remaining data are grayed out. For reference, three benchmark points for the
scalar mixing angle tan θ ¼ 0.05, 0.10, 0.15 are represented as red, green, and blue, respectively, and the vertical dotted line indicates the
minimum value of Mϕ obtained in Eq. (12) for N ¼ 2.

FIG. 6. Spin-independent DM-nucleon scattering results allowed by relic density observations for 0 ≤ λhϕ ≤ 0.8 and 0 ≤ tθ ≤ 0.2.
Also shown are observed limits from DEAP-3600 (2019), LUX (2017), PandaX-II (2017), XENON1T, and expected limits from
XENONnT. The gold region satisfies both of the vacuum stability and perturbativity conditions obtained in Sec. III, the light blue region
satisfies only the perturbativity condition, and the remaining data are grayed out. For reference, three benchmark points for the scalar
mixing angle tan θ ¼ 0.05, 0.10, 0.15 are represented as red, green, and blue, respectively, and the vertical dotted line indicates the
minimum value of Mϕ obtained in Eq. (12) for N ¼ 2.
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become more significant. The cross sections hit those
minima when M2 ≃M1 and increase again mainly due to
λsϕ. One can see from the figure that the allowed mixing
angle tan θ is highly constrained in the heavy Mϕ region
and our lower bound on the DM mass is Mϕ ∼ 1070 GeV.
There are other observational constraints on DM anni-

hilation cross section such as Fermi-LAT [39] and H.E.S.S.
[40] measurements. They give stringent limits on the
annihilation cross sections of the DM, especially on bb̄
and ττ̄ for a lighter DM mass less than a few hundred GeV.
However, our model prefers DM mass heavier than about
1 TeV and predicts far smaller cross sections than the
experimental constraints. Also, there is an observational
constraint on the extra Higgs portal scalar particle. Big
bang nucleosynthesis gives a constraint on the lifetime of
the scalar particle h2 less than 1 sec [41,42], and it is
consistent in our model.
Since the hidden sector is connected to the SM by the

Higgs portal in this model, there are also constraints from
the collider experiments. Our choice of the mixing angle
tθ ≤ 0.2 is quite safe against the LEP2 constraints since the
h2 mass exceeds the corresponding LEP2 lower mass bound
for the DM mass over 1 TeV. Additional constraints from
nonobservation of Higgs-like particles in the high-mass
Higgs searches through WW and ZZ modes at the LHC
[43–45] do not give severe restrictions to our analysis.
A similar discussion on the Higgs portal scalar with a
fermionic DM can be found in Ref. [27]. For future collider
experiments, the perturbativity bound on tθ < 0.156
obtained in Fig. 4 in this model does not lie within the
expected precision of Very Large Hadron Collider and High
Luminosity Large Hadron Collider on tθ from the deviation
of experimental value of the Higgs self-coupling c111 [46].
But the deviation of the experimental value of Higgs boson
couplings lies within the expected precision of International
Linear Collider (ILC) experiment in ZZ modes for tθ ≳ 0.12
at

ffiffiffi
s

p ¼ 250 GeV and for tθ ≳ 0.11 at
ffiffiffi
s

p ¼ 500 GeV
[47]. Therefore, tθ ≳ 0.11 case in this model will be able to
be tested in future collider experiments sooner or later.

V. SUMMARY AND CONCLUSION

In this work, we investigated vacuum structure and
vacuum stability in an extension of the SM which is
renormalizable and classically scale invariant. We intro-
duced the SM gauge singlet DM sector that consists of a real
scalar field S as a pseudo-Nambu-Goldstone boson of scale
symmetry breaking and a scalar multiplet of global OðNÞ
symmetry as a viable DM candidate. The communication
between the SM and the singlet DM sectors is accomplished

by the Higgs portal interaction. The scalar masses are
generated quantum mechanically through the Coleman-
Weinberg mechanism for the EWSB. Also, the DM scalar
ϕ couples directly to the SM Higgs with the coupling λhϕ,
which plays an important role in resolving the vacuum
stability issue as well as in DM phenomenology.
Adopting the framework of GW, we chose a flat

direction at tree level lifted by radiative corrections.
Through the mixing of the scalar mediator with the SM-
like Higgs boson, two light scalar particles h1 and h2
interact with both visible and hidden sectors. After EWSB,
the SM Higgs h1 and the DM scalars ϕ have the tree-level
masses, while the new scalar singlet h2 acquires its mass
through radiative corrections of the SM particles and ϕ as
obtained in Eq. (12) using the relationship between Higgs
portal couplings simplified at the GW scale. The metasta-
bility of the electroweak vacuum can be overcome by the
new dimensionless couplings, which can change the β
function and the infrared boundary condition of the Higgs
quartic.
With four independent new parameters tθ, Mϕ, λhϕ, and

λϕ, we presented the allowed region of NP parameters by
the relic density observation satisfying the vacuum stability
and the perturbativity constraints in Figs. 4 and 5 for the
N ¼ 2 case. We also show and the spin-independent
DM-nucleon scattering cross section of the scalar DM
by varying the DM mass Mϕ with the same allowed
parameter sets and compare the results with the observed
upper limits from various experiments in Fig. 6. In the
figures, one can clearly see that the allowed parameter
space constrained by both the relic density observation and
the vacuum stability condition is located in the mass region
of Mϕ heavier than about 1 TeV. We performed the
numerical analysis for tθ ≤ 0.2, and found that the tθ ≤
0.05 case is disfavored in this model due to the recent
PandaX-II bound. We also found that our model is not
constrained by the current indirect detection bounds for the
given parameter sets, but the tθ ≳ 0.11 case will be able to
be tested in future collider experiments such as ILC.
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