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Locality of staggered overlap operators
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We give an explicit proof for the locality of staggered overlap operators. The proof covers the original
two flavor construction by Adams as well as a single flavor version. As in the case of Neuberger’s operator,
an admissibility condition for the gauge fields is required.
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L. INTRODUCTION AND MOTIVATION

As Adams has shown [1], it is possible to construct
chirally symmetric lattice fermions based on the staggered
discretization. While Adams’ original construction pro-
vided a two flavor operator, single flavor versions were
found soon after [2,3]. These staggered chiral fermions are
obtained by first adding a mass term [4] to the staggered
operator, followed by an overlap construction [5], which
contains an inverse square root. It is thus evident that
staggered chiral fermions are not ultralocal by construction
and their locality needs to be proven. Numerically, Ref. [6]
found strong evidence in support of the locality of Adams’
original two flavor operator. In the free case, one can
furthermore show that the lifting of the doubler modes is
achieved via flavor dependent mass term [1,2,7]. In
addition, the index theorem has been established for the
two flavor operator [8] and the correct continuum limit
of the index was found in [9]. In this paper, we give an
analytic proof for the locality of staggered overlap fer-
mions, for both the single and two flavor cases. The general
strategy we employ is quite similar to the one used by
Hernéndez, Jansen and Liischer to demonstrate the locality
of the original Neuberger operator [10]. We will start in
Sec. II by expanding the inverse square root as a series of
Legendre polynomials, which can be shown to be local if a
spectral condition of the kernel operator is fulfilled. This
spectral condition involves an upper as well as a lower
bound on the kernel operator. In Sec. III we will show that
both bounds are fulfilled for Adams’ original two flavor
construction, provided an admissibility condition of the
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form |1 — P|| < e is fulfilled by all plaquettes P of the
gauge field. The exact value of ¢ will depend on the details
of the action, specifically the negative mass parameter s and
the Wilson parameter r. We then turn to a single flavor
staggered operator and show that similar bounds also hold
in this case.

II. LOCALITY

A. Staggered overlap Dirac operator

Let us first introduce the staggered overlap Dirac
operator

1
Ds, :E(ﬂ +A/VATA) (2.1)
with
A =aDg, —rs1 Dgy, = Dg + W (2.2)

where r is the Wilson parameter and 0 < s < 2 is the
negative mass term of the kernel operator. The staggered
operator is defined as

Dy =n,V, (2.3)
with
(), = (= 1) 2w 24)
and the symmetric derivative operator
1
Vﬂ - Z (T’l+ - T/l—)' (25)
The T, are parallel transports defined as
(Tﬂ+)xy = Uﬂ(x)(sxﬂly (T/t—)xy = U;(y)‘sx—ﬁ,y- (2'6)
The staggered Wilson term Wg; reads
We == (1-M®) (2.7)
a
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in the two flavor case [1,8,11] and
We=—(2-1+MD) (2.8)
a

in the one flavor case [2,3]. The operators M (N) are in turn
given1 by

M® =ens CMY =i, Cpo +in3uCsy (2.9)
with the phase factors
s = M3y (2.10)
e, = (=1)2% (2.11)
() = =t = (=1)20™ foru<v (212)
and the diagonal hopping terms
1
C=(G C2C3C4)sym = mPaﬁyécaCﬁCycé (2.13)
1
Cp = 3 {C..C} (2.14)
where
1
C, = 3 (T +T,-) (2.15)
and P,,; denotes the permutation symbol
1 a,p,y,61s a permutation of 1,2,3,4
Popys = { P P (2.16)
0 else.

The kernel A is ultralocal, but due to the (ATA)~!/? term
the staggered overlap Dirac operator Dy, is not. However,
if the matrix elements (Dg,),, of the staggered overlap
operator are decaying exponentially for large distances
||x — y|| with a decay constant  a~!, then we recover a
local operator in the continuum limit.

B. Legendre series expansion

Following the strategy employed in Ref. [10] we begin
by expanding (ATA)~!/2 in a series of Legendre polyno-
mials. In order to make the expansion convergent we
impose the following inequality, which we will show in
Sec. III:

0<u<A'A<v< oo (2.17)

'Note that in principle more general single flavor terms are
allowed [3]. These are, however, not substantially different and
the generalization is straightforward.

The inequality stands for the corresponding inequality
between the expectation values of the operators in arbitrary
normalizable states. We also explicitly assume that u < v.
In the following we can set u = A,;, and v = A, as noted
in Ref. [12].

The Legendre polynomials P;(z) can be defined through
the expansion of the generating function

[Se]

(1=21z+ 2712 =3 " 1Py(2).
k=0

(2.18)

We can now set

Amin + Amax) 1 — 2ATA
z=( min + ) (2.19)

Amax - Amin

and due to Eq. (2.17) find that this operator has norm
|lz|l = 1. Here and in the following || - || = || - ||, = Gmax (%)
refers to the spectral norm and o, refers to the largest
singular value.

Then the property |Pi(x)|<1Vxe[-1,1] together
with ||z|]] = 1 translates to

1PN < 1. (2.20)

It follows that Eq. (2.18) is norm convergent for our choice
of z for all 7 satisfying |7| < 1. Due to Eq. (2.17), we can
now introduce € through

lmax + )*min
h=——, 6>0, 2.21
o8 )*max - ﬂmin ( )
and set
t=e"?, (2.22)

which implies 0 < ¢ < 1, so that the series is convergent.
Note that this allows us to express ¢ as

VA=A
t =coshf—/cosh?§— | = Y 2max—V/min
\/lmax+ \/ﬂmin

From Eq. (2.18) we thus obtain

(2.23)

(1 =2tz 4 2)71/?

2t -1/2
=\l- (j'min + A’max - 2ATA) + 12
j*ma)( - lmin

4t

-1)2
= (1 —2¢%cosh@ + ATA + e‘”)

max ~ “‘min

/Ima - lm‘n _
X 1 ATA 1/2
4t ( )

— \/)“max ‘2|' \//lmin (ATA)_I/Z

(2.24)
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and therefore

(ATA)2 =Y " P (2)
k=0

(2.25)

with k = 2/(\//1max + V Amin)'

C. Locality of the inverse square root

The lack of ultralocality stems from the (ATA)~!/? term,
hence it is sufficient to establish the locality of that term in
the sense defined earlier. We start by defining the kernel
G(x,y) via

G(x,y) = ((ATA)712),,. (2.26)
Similarly, we define the kernels of the P;(z) via
Gi(x,y) = (Pr(2))y (2.27)
and use Eq. (2.25) to obtain
G(x.y) =Y *Gy(x.y). (2.28)

k=0

The norm convergence of the Legendre expansion implies
the absolute convergence of this series for all x and y. From
Egs. (2.20) and (2.27) we infer that

|Gi(x, )| €1, VxVyVk, (2.29)

where the norm is in color space.

Because Pj(z) is a polynomial in ATA and A is an
ultralocal operator, we find that G (x, y) vanishes unless x
and y are sufficiently close to each other. If we introduce the
Manhattan distance || - ||;, we have

1
Gelry) =0, Vk<o—llv=yl,. (230)

where ¢ is the range of the operator A in lattice units, i.e.,
the maximum Manhattan distance in lattice units between
points coupled by the operator. For two flavor staggered
Wilson fermions we have ¢ = 4, for one flavor staggered
Wilson fermions £ = 2 and for Wilson fermions £ = 1.
Using the shorthand notation d = ||x — y||,/(2¢a) we find

GG =&Y HGi(x )]
k=d

(5]

SKZlk

= " exp (= fx -yl
1= P\ T Y

1 1
=——exp|—=|x-
— p< ;l y||1)

and thus an exponential falloff with the decay constant’

- 0 o 1 Vﬂmax+ \/ﬂmin 1

(2.31)

V /1max —V /Imin

This establishes the locality of (ATA)~!/? providing
Eq. (2.17) holds with the spectral bounds given by u =
Amin and v = A,.«. The equivalent of this particular form for
usual overlap fermions was derived in Ref. [12].

Let us finally remark that this result can be slightly
generalized in the case of a single isolated zero or near zero
mode A,,;,. As shown in Sec. 2.4 of Ref. [10], one can treat
a single isolated zero or near zero mode separately and still
establish locality. In that case we identify the lower spectral
bound u = 1, with the second smallest eigenvalue of ATA.
If Apin < u/2, locality can again be established [10].

5—1

III. BOUNDS ON AfA

We now need to establish the spectral bounds as defined
in Eq. (2.17) for the kernel operator. We first derive some
useful identities and then establish the upper bound, which
is straightforward. The main task is then to establish the
lower bound, which we do separately for the two and one
flavor case. In both instances, the bound can be established
given an admissibility condition for the gauge fields.

A. Some useful identities

We first note that the parallel transports fulfill the
relatiqns T, = T; L= T;}L, which implie?s that the T,
are unitary and thus have singular values 1, i.e., || T, || = 1.
The covariant second derivative operator is given by

Ay =Ty +T,_ -2, (3.1)
so we can recast Eq. (2.15) as
A
C, =1+ > (3.2)

*Note that the log term may provide subleading corrections to
this behavior only.
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Using this relation we find

=1 +%(Tﬁ++Tﬁ_—2). (3.3)
Defining
V,= ! (T2, + T3 -2) (3.4)
4
it follows that
C=1+4+V, (3.5)
From Eq. (2.15) we also find
Gl <5 UL +HIT, ) =1 (36)
which implies
1MP]] = [|nsCel| < 1 (3.7)

and, since both 75 and € commute with C and square to the
identity, M(®? = C2. Another useful identity is

a?Vi =V, (3.8)
which, together with the anti-Hermiticity condition
V) = -V, implies that

0<a’V\V,=-V (3.9)

e
Additionally, the Hermiticity condition Cl = C, implies
that C2 >0 and thus 1+ V, > 0.

Next, we want to find a more explicit expressions for
ATA. Noting that

IJvt > v,
vlﬂ/]u = {’7 : 8 (310)
_nuvﬂ H<v,
we find
S oV, =V 4> 0V, Vi, (3.11)
8% H>v
where we have introduced the shorthand notation
V=3V, V,. (3.12)
"
We then find
A;Az = —a?V? - aZZnﬂm[Vﬂ, V, ]+ r*(1(1 =)
u>v
- M<2))2 - ar[M(2>, 1V, (3.13)

in the two flavor case and

ATA = —a®V? - azznﬂny[vﬂ, V] +72(1(2-5)

u>v

+ MM)? —|—ar[M(1>,r]”V”] (3.14)
in the one flavor case.
B. Upper bound
Using ||T,.|| = 1 we find the following bounds
1
laVull <5 UTui | +IT-1) < 1. (3.15)
lan,Vull < 4, (3.16)
1
1Cull = 51Ty + Tl < 1, (3.17)

1
IC = 1(C1CC3C)gymll < 7741 [[lcl <1 (3.18)
H"

and using Eq. (3.7) we find

[r(1(1=s) =M@ <|r|(2-s).  (3.19)
Putting all this together, we find
1As] = llan, Vv, + r(1(1 = 5) = M®))]|
<4+ |r|(2-5s). (3.20)
The same bound holds for A} and so
1ASAS || < A5 [1A2 ]l < (4 + P2 = 9)>  (3.21)

is uniformly bounded from above for all r and s and we can
establish the existence of v in Eq. (2.17) in the two
flavor case.

For the one flavor case we note that

ICll=5HCaCHl <1 (322)
from which it follows that
MO < [ICyol + [[Call < 2. (3.23)
Hence we find
12 —s)+MD|| <4-5 (3.24)

and it follows, similarly to the two flavor case, that

1AL <4+ ]r|(4—s). (3.25)
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Since A] does obey the same bound, we obtain

IATA || < (4 + [r](4 = 5))*. (3.26)

This establishes the existence of » in Eq. (2.17) in the single
flavor case as well.

C. Lower bound

As ATA is Hermitian and positive semidefinite we are
left with showing the absence of zero-modes. However, in
general this operator can have zero-modes for certain gauge
configurations, therefore no uniform positive lower bound
exists. Zero-modes can only be excluded if we assume the
gauge field to be sufficiently smooth. In our case let us
assume that

II1 — P|| <& for all plaquettes P. (3.27)

As a consequence of the smoothness condition, we obtain
the following relations (see Appendix)

1a*[V,. V]I < e,
lalC,, VLI < &.

I[Cu CII < e.
(3.28)

1. Lower bound on the two flavor operator A;Az

There are four terms in

A;Az = —a?V? — Znﬂnyaz[vﬂ, V, ]+ r*(1(1 =)

u>v

- M) —ar[M® 5,9, (3.29)

for which we will find bounds individually. We will
consider the case 0 < r <1 first and derive a bound for
r> 1 later.?

The first and third term We first look at —a’V? + r>C?,
where M®?2 = C? is used. Using inequality (3.28) we find
(cf. Appendix)

IC? = (CIGECEC)gymll < 9. (3.30)

Using Egs. (3.5), (3.8), and (3.9), we furthermore see that
for0<r<i1

The r < 0 case can be covered by the simple replacement of
r — |r| in the bounds. However, negative r do not represent a
physically different system compared to positive r and will
therefore not be considered further.

2
sym —9roe

1
= _zvy + r247Pa/}75(1 + Va)(l + Vﬂ)(l + VJ/)
"

—a*V? + r*C? > —a?V? + P(CICIC5CF)

x (1 +Vy) —9r%

- —ZVM +rr 4+ rZZVﬂ + % rZZVﬂVy
] ]

1222

1
+—r

5 > VLVt PR(VVaV3Vy) g — 9%

HFVFAFp

1
=rr—(1- rz)ZVﬂ + ErszﬂVy
"

HFV

1
+5 r Z V.V,Va+ (Vv V2V3V4)sym - 9re
T pFrEatu

1 1
2
>r <1 +3 AP +30 > VLV,
HFV HFVFAFp

+ (V1V2V3V4)sym_9€)' (331)

Using the relation (3.9), we conclude that
(3.32)

so that each contribution to the two-product term as well as
the four-product term is positive semidefinite. We use these
properties and 1+ V,, > 0 to obtain

— V2 + 2C?

1 1
> r2<1+izvﬂvy+§ Z VMVUV{I—9€>

%% " pFrEaEN

1
>r2(1+§ > Vﬂvv(va+1)—9g)

" pFVFaFEU

> r?(1-9e). (3.33)

Using Eq. (3.7), we finally obtain

V2 + (11 = 5) — M®?))?
= —a®’V2 4 r2C* =27 (1 = s)M® 4 r2(1 = 5)?1
>r2(1=9¢ =21 —s| + |1 —5]?)

=r}(1—|1-s])?-9r% (3.34)

for 0 < r < 1. For the case r > 1 we can decompose
-a®V? + 2 (1(1 =s) — M<2))2
=—a’V2 + (1(1 = 5) = M®P))?

+ (P2 =1D)(1(1 = 5) = MP)? (3.35)

094509-5
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and, since 7> — 1 > 0, observe that the last term is positive
semidefinite. The first two terms, however, just correspond
to the r = 1 case, so the r = 1 lower bound also applies for
the r > 1 case. All together we thus have

V2 + (11 = 5) = M®P)?

{r2(1—|1—s|)2—9r28 0<r<i,

(1—=1=1s])>=9¢ (3.36)

r>1.

The second term As a result of Eq. (3.28) we find

S 0@V V| < 1@V, V| < 6e. (3.37)
H>v H>v
so that we obtain the lower bound
=> nmd*V,.V,] > —6¢ (3.38)

u>v

for the second term.
The fourth term From the commutation properties

n,C
Cﬂm:{ vTH
-n,C, u<v,

2 y?
a (3.39)

it follows that Cy, = (—1)**'n,C. Similarly one can show
that Vs = (=1)¥5V,. Using these relations we find

(M, 7,V,] = (ensCn,V, =,V ensC)
= e(nsCn,V, +n,V,nsC)
= €(nsm, (1) CV, 415, (=1)*V,C)
= 67]511”(—1)”+1 [C.V,]. (3.40)

From Egs. (3.6) and (3.28) we can then conclude that

1

c,=-(C,C,+C,C,)*

i S M S

(c,C,C,C, +C,C,C,C, +C,C,C

la[M®) .0, V]Il < a_Jl[C. V|
Y
<ay |lIC. Vi
Hv
<3

HFV

and thus we obtain the lower bound

arM®,n,V,| > —12re (3.42)

for all » > 0.
Final lower bound Combining Egs. (3.36), (3.38), and
(3.42), we get a lower bound for the two flavor operator

AlAy > {rz(l—|l—s|)2—(6+12r+9r2)8 0<r<l,
(1=|1=s|)2=(15+12r)e r>1.

(3.43)

2. Lower bound on the one flavor operator AIAI

We will now try to find a lower bound on the operator

A;Al =—a’V* - Znﬂﬂuaz [vw vv}

u>v

—|—r2(2~1]—i—M(l)—s]])z—i-ar[M(l),n”V I,  (3.44)

by finding a bound of each term separately. Since the
second term is the same as in the two flavor case, we can
take the previous result Eq. (3.38). Once again, we consider
the case 0 < r < 1 first.

The first and third terms We start by observing that

v-u /ICU_I_CIJC}ICDCM)

> (C2C2 — e+ C3C2 =26 + C2C2 — 26 + C2C2 — ¢)

4
GG+ CIC -3¢
- > .

(3.45)

where we have used Eq. (3.28). For 0 < r < 1 we thus obtain the bound
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—a2V2 + r2(1] -+ M(1>)2 = —a2V2 + r2(1 + iﬂlzclz + ii’]34C34)2
= _Zvﬂ +r7(Chy + C +{(1 4+ in12Cra), (1 + in34Cag) } = 1)
u

- Y, (c%cg + C3C% -3¢ N G3C + gﬁcg -3¢ 1)
M

=2V +%2({(1 + V), (L4 V)b +{(1+V3), (1 +V4)} -2 - 6¢)

72
= _;VM +E (2 + Z;Vy +{V,Va} +{V;3,V4} - 68)

>—(1- rz)ZV” + (1 — 6¢)

> r2 — 612,

For the general case of 0 < s < 2 we use

1T+MD > -1, (3.47)

which follows from ||M(1|| <2, to find

—a®V? 4+ 12((2 = 5)1 + M1))?
= —a®V2 + (1 =5)1 4 (1 + MW))?
= —a’V2 + (1 4+ M) + (1 - 5)*1
+272(1 = s)(1 4+ MD)
> 12 —6rfe + 2|1 — s> = 2r2|1 — 5|

=r2(1 =1 -s])? - 6r7%. (3.48)

The lower bound of the first and third term for 0 < r < 11is
thus given by

—a®V? 4+ 12((2 = )T+ MW)?2 > 2(1 = |1 = 5])* = 672%.
(3.49)
For the r > 1 case we can again show that the » = 1 bound

holds with the same argument used in Eq. (3.35). We thus
obtain the general lower bound

—a*V2 + (2= 5)1 4+ MWD)?
{rz(l —1-s))?=6r’e 0<r<il,

(1—1-s|)2—6¢ (3.50)

r>1.

The fourth term Let us first decompose the mass term

a[M(l)J/]ﬂvﬂ] :ai([']12cl2"7/4vu] + [7734C34’77/4v/4]) (351)

and look at the first of the two commutators. We have

(3.46)

|
ain;,C,, nMV”]
= ai(m2[C12. 1,V + 1,112[Cr2. V.| 4+ 1,112, V, | C12)
= ai(=2m121:C 12V + 1,m12[C12, V] 4 21112V, C 1)
= ai(=1)%2n,12[C12, V], (3.52)

which results in

||ai[7712C12’77;4Vu”|
= ||ai(_1)5”‘2’7;ﬂ712[clz,Vﬂ]”
a
<5 UGG VI +IECL VD
a
<5 UGG VI +CL V]G]

+IGICL VI + G2, VICHD. (3.53)

With Eqs. (3.28) and (3.17) we thus obtain the upper bound

|lai[n12C2.1,V,]|| < 2¢ (3.54)

for the first term. Similarly, we obtain for the second term

||ai['134C34”I/4V;4]|| = ||ai(—1)5“‘477,4’l34[c34,VM]|| <2
(3.55)

and thus conclude

arMV,n,V,] > —4re. (3.56)

u

Final lower bound Combining Egs. (3.50), (3.38), and
(3.56), we get a lower bound for the single flavor operator

. 2(1=]1=s|)2=(6+4r+6r*)e 0<r<1
” {r( [1=s)?=(6+ar+ 6 0<rst - )

! (1—[1=s])2=(12+4r)e r>1
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IV. CONCLUSION

In this note we have proven that, when the admissibility
condition ||1 — P|| < € is imposed on every plaquette P,
both one and two flavor staggered overlap operators are
local. In particular, we can perform a Legendre expansion
of the inverse square root of ATA, which is convergent if
the spectral condition of Eq. (2.17) is fulfilled. From
Egs. (3.43) and (3.57), we find that this is the case when

% two flavor, 0<r<1, (4.1)
e < (111'1_7;;)2 two flavor, r > 1, (4.2)
% single flavor, 0 <r <1, (4.3)
€< % single flavor, r>1, (4.4)

which is dependent on the projection point s and the Wilson
parameter r. The staggered overlap operator is thus con-
ceptually on the same footing as the standard overlap
operator with a Wilson kernel.

APPENDIX: PLAQUETTE DEPENDENT
COMMUTATORS

1. Representations of the plaquette

Since it is essential for the proof to have a bound on the
plaquette, we first want to show how the plaquette can be
represented. Let us define the plaquette as the operator

(Pu)sy = Up()U, (x + 1) UL(x + D)UL(x)5,y. (Al
We find that
(Tu+ Tb+ TM— Tu— )xy

- Uﬂ (x)5x+f4.,z U, (Z)51+ﬁ,t Ul-E (u)ét—ﬁ.u UZ (y)(su—ﬂ,y

= U,(0)U, (x + ) Ui(x + D)UL (7).

= (Pu)xy (A2)
or equivalently

P;w = T}H-TL/-I-T}I—TD—' (A3)

Similarly, we can define plaquettes into negative coordinate
directions as

P(—y)v - Ty—Tu+ T,LH'TI/—’ <A4)

=T,.,T,T,T,,.,

(AS)

u(-v)

P =TT, T Ty, (A6)

With these, we can find commutation relations among the
T,  (u#v)as

[T/Hrv T, )= Ty Ty =Ty Ty

= ﬂ+Tv+(1 - Tv—Tﬂ—Tv+Tﬂ+)

=T, Ty (1=Py-p) (A7)

and similarly for other combinations.

2. Implications for some commutators

We will need the commutator

1
a [vw V.= Z([T/H-v T,.]+ [Tﬂ—’ T, |- [T/H-v T,

- [Tﬂ—’ TerD
1
= Z(Tﬂ+Tv+(1 - P(—D)(—ﬂ)) + T,M—TI/—(l _Pw)
- T/H-Tv—(l _Pv(—u)) - TM—TD+<1 _P(—U)ﬂ))’
(A8)

where we used Eq. (2.5). Imposing a smoothness condition

1T = (Pu)ull < & (A9)
on every plaquette and remembering that all ||T, .|| = 1, we
find that
€
@[V, VIl < 3 (T Tore 4 1T To |
F T Tl + 1T=T o 1)
=e. (A10)
Similarly we find
1
[Cw Cv] = Z ([T;H-? Tu+] + [Tﬂ—7 Tb+]
+ [Tu+9 TU—] + [Tu—7 TU—D (All)
1
= 1 T T (1= Piyn) + Ty Ty (1= Py
+ T,u+Tu—(1 - Pl/(—/l)) + TM—TL/—(I - Pu,u)) (Alz)
and thus
[[Cu. CII <& (A13)

Using the fact that ||C,|| < 1, we can also infer that
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<e (Al4)

lic,.c H .,

for any number n of additional C, terms. We thus see that

IC? = (CCCECT) yym|| < N, (A15)
where N is determined by the number of commutations we
have to perform to bring the terms in C? into the correct
order. Let us first rewrite

e - (G

sym

1
= —Pup,5(C,CsC,C5C — C?,C%}C%C%). (A16)

4!
For each term in the symmetrization bracket we now
perform the commutations in two steps. First we bring
the terms in C into order, so we are left with (C,CsC,Cj5)*.
For each of the 4! products in C this requires a different
number of commutations, namely

2 3 4 5 6
3565 31

Number of commutations: 0 1

Number of products: 1

On average we thus have 3 commutations in this first step.

From there on it takes 6 more commutations to obtain
C3C5C;C5, so we have performed 9 commutations on
average. Since we average over all permutations, we have

IC? = (CICCECT) gyl < 9. (A17)

In order to find a||[C,. V,]|| we use Egs. (2.15) and (2.5) to
determine

1
a[cwvb] :Z([Tﬂ+’ Tv+] + [Tﬂ—’ Tv+] - [T/H-v Tu—]

- [Tﬂ—’ Tu—])

1
:Z(TM+TD+(1 _P(—D)(—ﬂ)) +T/4—TD+(1 _P(—v)u)

- T/H-Tu—(l _Pl/(—/l)) _Tﬂ—TD—(l _Puy))7
(AIS)
from which it follows that
la[C,. V,]|| <e. (A19)

Also, for y = v the commutator trivially vanishes.

[1] D.H. Adams, Phys. Lett. B 699, 394 (2011).

[2] C. Hoelbling, Phys. Lett. B 696, 422 (2011).

[3] C. Hoelbling and C. Zielinski, Phys. Rev. D 94, 014501
(2016).

[4] M.F. Golterman and J. Smit, Nucl. Phys. B245, 61 (1984).

[5] H. Neuberger, Phys. Lett. B 417, 141 (1998).

[6] P. de Forcrand, A. Kurkela, and M. Panero, Proc. Sci.,
LATTICE2010 (2010) 080 [arXiv:1102.1000].

[7] P. de Forcrand, A. Kurkela, and M. Panero, J. High Energy
Phys. 04 (2012) 142.

[8] D. H. Adams, Phys. Rev. Lett. 104, 141602 (2010).
[9] D. H. Adams, R. Har, Y. Jia, and C. Zielinski, Proc. Sci.,
LATTICE2013 (2014) 462.
[10] P. Hernandez, K. Jansen, and M. Luscher, Nucl. Phys. B552,
363 (1999).
[11] D.H. Adams, Proc. Sci., LATTICE2010 (2010) 073
[arXiv:1103.6191].
[12] D.H. Adams, Nucl. Phys. B, Proc. Suppl. 129, 513
(2004).

094509-9


https://doi.org/10.1016/j.physletb.2011.04.034
https://doi.org/10.1016/j.physletb.2010.12.062
https://doi.org/10.1103/PhysRevD.94.014501
https://doi.org/10.1103/PhysRevD.94.014501
https://doi.org/10.1016/0550-3213(84)90424-3
https://doi.org/10.1016/S0370-2693(97)01368-3
https://arXiv.org/abs/1102.1000
https://doi.org/10.1007/JHEP04(2012)142
https://doi.org/10.1007/JHEP04(2012)142
https://doi.org/10.1103/PhysRevLett.104.141602
https://doi.org/10.22323/1.187.0462
https://doi.org/10.22323/1.187.0462
https://doi.org/10.1016/S0550-3213(99)00213-8
https://doi.org/10.1016/S0550-3213(99)00213-8
https://arXiv.org/abs/1103.6191
https://doi.org/10.1016/S0920-5632(03)02626-4
https://doi.org/10.1016/S0920-5632(03)02626-4

