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We study the localization properties of the eigenmodes of the staggered Dirac operator across the
deconfinement transition in finite-temperature Z3 pure gauge theory on the lattice in 2þ 1 dimensions.
This allows for nontrivial tests of the sea-islands picture of localization, according to which low modes
should localize on favorable Polyakov-loop fluctuations in the deconfined phase of a gauge theory.
We observe localized low modes in the deconfined phase of the theory, both in the real Polyakov-loop
sector, where they are expected, and in the complex Polyakov-loop sectors, where they are not. Our
findings expose the limitations of the standard sea-islands picture and call for its refinement. An improved
picture, where spatial hopping terms play a more prominent role, is proposed and found to be in excellent
agreement with numerical results.
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I. INTRODUCTION

Confinement of static color charges is one of the most
striking features of pure gauge theories, present at zero and
low temperatures for a large variety of gauge groups. While
an analytic understanding is still largely incomplete, this
phenomenon has been convincingly demonstrated by
means of numerical simulations in lattice gauge theory.
However, the general mechanism of confinement, and of the
deconfinement transition observed at finite temperature, is
still the object of active research. A relatively recent
approach to this issue is through the study of the localization
properties of the eigenmodes of the Dirac operator, which
are closely related to the confining properties of the theory
(see Ref. [1] for a recent review). In all the pure gauge
theories examined so far, all displaying an exact center
symmetry, it was found that localized modes are absent in
the low temperature, confined phase and present in the high
temperature, deconfined phase when the trivial Polyakov-
loop sector is selected, appearing exactly at the deconfine-
ment transition (within numerical errors) [2–12]. The
connection between localization and deconfinement has
been demonstrated also in the presence of fermions, when a
sharp transition is present [13,14]. Most interestingly, this

connection has been demonstrated, albeit in a weaker sense,
also in real-world QCD where the transition is only a
crossover, with localized modes appearing in the temper-
ature range where both confining and chiral properties of
the theory change rapidly [15–19]. Here localization of the
low modes could be the link that ties these properties
together, providing a mechanism that explains the improve-
ment of the chiral symmetry properties generally observed
at deconfinement in gauge theories with fermions (e.g.,
through the reduction of the chiral condensate).
A qualitative understanding of the close relationship

between localization and deconfinement has been sug-
gested in Ref. [7] and further developed in Refs. [1,20–22],
and is referred to as the “sea-islands picture” of localiza-
tion. In this picture, the localization of Dirac eigenmodes
is explained in terms of two features: (1) the presence in
the high-temperature phase of a “sea” of ordered local
Polyakov loops that get close to 1 in the physical, real
center sector selected by fermions and (2) the presence of
“islands” of Polyakov-loop fluctuations away from the
ordered value. The main effect of Polyakov-loop ordering,
combined with the twist imposed on fermion wave func-
tions by the antiperiodic temporal boundary condition, is to
open a “pseudogap” in the spectral density of the Dirac
operator, driven by the lowest Matsubara frequency. The
effect of a nontrivial Polyakov-loop fluctuation is to
effectively and locally reduce the temporal twist on the
fermion wave function, and for modes localized on the
fluctuation this is expected to lower the eigenvalue below
the lowest Matsubara frequency, if the spatial hopping
terms do not offset the gain. As long as this is the case, it
is then “energetically” convenient for the eigenmodes to
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localize on islands of fluctuations, leading to populating the
pseudogap with a relatively low density of modes.
The sea-islands picture leads one to expect localized low

modes in the deconfined phase of a generic gauge theory
where Polyakov loops get ordered near the trivial value,
independently of the gauge group and of the dimensionality
of the system. Such an expectation is supported by
numerical results covering a wide variety of gauge theories
[1–13,15–19] and related models [20–23]. The observed
correlation between localized modes and Polyakov-loop
fluctuations supports the mechanism outlined above
[7,12,18,19]. These studies include also the simplest theory
displaying a deconfinement transition, i.e.,Z2 gauge theory
in 2þ 1 dimensions, investigated by us in Ref. [12]. The
study of the simplest gauge models can provide valuable
information on the mechanisms underlying localization,
since in these models many features that should be
irrelevant to localization but could confuse the picture
are simply absent.
One should mention at this point that a second locali-

zation mechanism is available for topologically nontrivial
gauge groups. In this case one expects to find near-zero
modes of topological nature, originating from the exact
zero modes supported by isolated calorons and anticalor-
ons. Since at high temperature (anti)calorons form a dilute
medium, the corresponding zero modes can mix little with
each other (as well as with delocalized modes that are well
separated in energy, living beyond the pseudogap), and so
topological near-zero modes are expected to be localized
(see Refs. [24,25]). A peak of localized near-zero modes
has been indeed observed in the spectral density in SU(3)
gauge theory in 3þ 1 dimensions [26]. (See, however,
Refs. [27,28] for a different point of view on the behavior of
the lowest, almost-zero modes.) A similar peak is present
also in QCD with near-physical and lower-than-physical
quark masses [17,29–31], and there are indications that
these modes are localized [17], which could have interest-
ing consequences if the peak survives the chiral limit
[32–34]. In spite of appearance, this mechanism is not in
contrast with the sea-islands picture, since the Polyakov
loop is nontrivial near (anti)calorons, but complements it by
indicating a source of favorable Polyakov-loop fluctuations
when there is nontrivial topology. On the other hand,
localization has been observed also when topology is
trivial; even when it is nontrivial, topological fluctuations
are not sufficient to account for all the localized modes
[7,35]. The sea-islands mechanism then appears to be more
fundamental.
The sea-islands picture can be extended to the case where

a nontrivial Polyakov-loop sector is selected in the decon-
fined phase, provided one takes into account that here the
ordered Polyakov loop does not correspond to the maximal
possible twist for the fermions. This leads to a variety of
scenarios. For example, if Polyakov loops get ordered near
−1, as may be the case, e.g., in SUð2NÞ or Z2N theories,

then the localization of low modes is not expected, since the
ordered loops already correspond to the most favorable
places, where the twist on the fermion wave function is
completely offset by the Polyakov loop, and all fluctuations
correspond to a nonvanishing twist. This has been verified
in (2þ 1)-dimensional Z2 gauge theory [12]. For QCD at
imaginary chemical potential μI ¼ πT, one of the complex
Polyakov-loop sectors e�i2π

3 is selected above the decon-
finement (Roberge-Weiss) temperature, and local fluctua-
tions to the real sector reduce the twist on the fermion wave
function. This leads one to expect localization of the low
modes, which has been observed in Ref. [14].
In this context, a particularly interesting setup is the

deconfined phase of ZN theories with N odd, when
Polyakov loops get ordered near −e∓iπN. In this case one
finds again that the sea of ordered loops corresponds to the
most favorable twist on the fermion wave function. At best,
islands of fluctuations where the Polyakov loop takes the
value −e�iπN can provide an equally but not more conven-
ient twist, and so one is led to expect delocalized low
modes. Finding localized modes instead would pose a
challenge to the standard sea-islands picture of localization,
and would require the effect of spatial hopping terms in the
staggered operator to be favorable to localization, contrary
to what one would naively expect.
In this paper we continue our study of localization of the

low Dirac modes and of the sea-islands picture investigat-
ing the second simplest gauge theory with a deconfining
phase transition, namely lattice Z3 gauge theory in 2þ 1
dimensions, which we probe with the staggered Dirac
operator. There is a number of features that make this model
interesting. The most evident one is that since Z3 is the
center of SU(3), which is the gauge group of QCD, any
insight obtained here could be useful to better understand
the physically relevant case. A less evident feature is that
Z3 is the Abelian group where the standard sea-islands
picture in the trivial Polyakov-loop sector has the largest
chance to fail. In fact, the maximal possible gain in
temporal twist provided by a Polyakov loop fluctuating
to one of the complex, nontrivial sectors in a sea of trivial
Polyakov loops is here at its lowest, and the effect of the
spatial hopping terms might prevent localization. The least
evident and most interesting feature is that, as pointed out
above, when the Polyakov loop gets ordered in one of the
complex sectors one has no reason to expect localization of
the low modes based on “energetic” considerations. This
provides a nontrivial test of the standard sea-islands picture:
indeed, finding localized low modes in this case would
require one to reconsider or at least refine it.
Quite surprisingly, while there is little doubt about its

existence, the deconfinement transition in Z3 gauge theory
in 2þ 1 dimensions has not been previously studied in
detail. While there are extensive studies in the literature
concerning Z2 [36] and ZN≥5 [37–40], no determination
of the critical temperature has been done for Z3. As a
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preliminary task we then need to determine the deconfine-
ment temperature. This is most efficiently done exploiting
the duality with the three-color Potts model (see, e.g.,
Ref. [41]), which allows one to employ a straightforward
cluster algorithm [42,43] for the numerical simulations.
(Incidentally, the critical temperature for the Z4 model is
straightforwardly obtained by exploiting its equivalence
with the Z2 × Z2 model at half of the coupling, and is
simply twice that of the Z2 model, determined in Ref. [36].
The equivalence of the Z4 and Z2 × Z2 models follows
from their being dual, respectively, to the four-state clock
model and to a decoupled pair of Ising models [41], and
from the equivalence of these two models [44].)
The plan of the paper is the following. In Sec. II we

briefly review Z3 gauge theory in 2þ 1 dimensions,
focusing in particular on its duality with the three-color
Potts model, while in Sec. III we briefly review localization
of Dirac modes and how it can be detected. In Sec. IV we
revisit the standard sea-islands picture and its formulation
in the language of the “Dirac-Anderson Hamiltonian” for
staggered fermions, and provide a refined picture that better
appreciates the role of the spatial hopping terms. In Sec. V
we report our results on the deconfinement transition of Z3,
concerning in particular the critical temperature and the
nature of the transition. In Sec. VI we study the localization
properties of staggered Dirac modes, in both phases of this
model and, in the deconfined phase, both in the real and in
the complex Polyakov-loop sectors, testing in particular the
expectations of the standard and of the refined sea-islands
pictures. Finally, in Sec. VII we draw our conclusions and
show prospects for the future. A few technical details
related to duality and to the sea-islands picture are
discussed in Appendices A and B, respectively.

II. Z3 LATTICE GAUGE THEORY
IN 2 + 1 DIMENSIONS

The Wilson action SZ3
for finite-temperature Z3 lattice

gauge theory in 2þ 1 dimensions and the corresponding
partition function ZZ3

read

ZZ3
ðβÞ ¼

X
fUμðnÞg

e−SZ3 ½U;β�;

SZ3
½U; β� ¼ β

X
n

X3
μ;ν¼1
μ<ν

ð1 − ReUμνðnÞÞ; ð1Þ

where n ¼ ðn1; n2; n3Þ ¼ ðx⃗; tÞ runs over the sites of a
cubic V ¼ N1N2N3 ¼ VN3 lattice, nμ ¼ 0;…; Nμ − 1; μ̂
denotes the unit lattice vector in direction μ; the sum is over
all configurations of link variables UμðnÞ taking values in

Z3, UμðnÞ ¼ ei
2π
3
kμðnÞ, with kμðnÞ ¼ 0, 1, 2; and UμνðnÞ are

the plaquette variables associated with elementary squares
of the lattice,

UμνðnÞ¼UμðnÞUνðnþ μ̂ÞU−μðnþ μ̂þ ν̂ÞU−νðnþ ν̂Þ; ð2Þ

where U−μðnÞ ¼ Uμðn − μ̂Þ�. Periodic boundary condi-
tions are imposed in all directions. At finite temperature,
the “temporal” extension Nt ¼ N3 is kept fixed while the
“spatial” extensions N1;2 are eventually sent to infinity,
typically setting Ns ¼ N1 ¼ N2. In terms of the (mass-
dimension 1=2) gauge coupling e and of the lattice spacing
a, one has β ¼ 1=ðe2aÞ, and so the temperature of the
system is T=e2 ¼ β=Nt.

A. Duality

For a lattice of infinite size, the partition function of the
Z3 gauge theory can be recast as that of a three-state clock
(or vector Potts) model (see, e.g., Ref. [41]). This is true
also for a lattice of finite size, provided one sums over all
choices of cyclically shifted boundary conditions, i.e.,

ZZ3
ðβÞ ¼ zðβ̃Þ

X
fBμg

Z
fBμg
clockðβ̃Þ; ð3Þ

where zðβ̃Þ is a numerical prefactor, while the partition

functions Z
fBμg
clock,

Z
fBμg
clockðβ̃Þ ¼

X
fsðnÞg

e−S
fBμg
clock ½s;β̃�;

S
fBμg
clock½s; β̃� ¼ β̃

X
n

X3
μ¼1

ð1 − ResðnÞsðnþ μ̂Þ�Þ; ð4Þ

describe the interaction of complex spin variables sðnÞ ¼
ei

2π
3
σðnÞ, σðnÞ ¼ 0; 1; 2, with boundary conditions fBμg,

sðnþ Nμμ̂Þ ¼ BμsðnÞ; μ ¼ 1; 2; 3; ð5Þ

where Bμ ¼ ei
2π
3
bμ , bμ ¼ 0; 1; 2. In Eq. (3) the dual coupling

β̃ is set to

e
3β̃
2 ¼ 1þ 2e−

3β
2

1 − e−
3β
2

: ð6Þ

The need to sum over suitable boundary conditions to have
an exact duality in a finite volume is well known [36,45–47].
A simple general argument showing that shifted boundary
conditions are needed for ZN gauge theory is given in
Appendix A. The effect of such boundary conditions has
been discussed in Refs. [36,46,47]. The presence of non-
trivial B1;2 in the spatial boundary conditions leads only to
finite-size corrections to the free energy with respect to the
trivial case. For the temporal boundary conditions, a non-
trivial B3 leads in the ordered phase to the formation of a
spacelike interface between differently ordered domains,
and so to an increase in the corresponding free energy and a
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suppression of the corresponding partition functionZ
fBμg
clock. In

the disordered phase, instead, a nontrivial B3 leads only to

finite-size corrections, and so all Z
fBμg
clock are equal in the

thermodynamic limit. In both phases one can then restrict to

Zclock ≡ Z
fBμ¼1g
clock and obtain the correct V → ∞ limit for

thermodynamic observables. It is worth mentioning that the
three-state clock model is equivalent to the three-color Potts
model,

Zclockðβ̃Þ ¼ ZPotts

�
3

2
β̃

�
;

ZPottsðβ̄Þ ¼
X
fsðnÞg

e−SPotts½s;β̄�;

SPotts½s; β̄� ¼ β̄
X
n

X3
μ¼1

ð1 − δσðnÞ;σðnþμ̂ÞÞ: ð7Þ

This is actually true irrespectively of the dimension and of
the (matching) choice of boundary conditions.

B. Critical behavior

The (2þ 1)-dimensional Z3 gauge theory is expected
to display a deconfinement transition at some critical
βc ¼ βcðNtÞ, where the local Polyakov loops,

Pðx⃗Þ≡ YNt−1

t¼0

U3ðx⃗; tÞ; ð8Þ

align to one of the center elements ei
2πz
3 , z ¼ 0, 1, 2 (of

course an Abelian group coincides with its center), and the
center symmetry of the model under the transformation

U3ðx⃗; Nt − 1Þ → ei
2πz
3 U3ðx⃗; Nt − 1Þ; ∀ x⃗; ð9Þ

breaks down spontaneously. The duality relation discussed
above implies that the critical behavior of this model is the
same as that of the three-color Potts model in a thin-film,
(2þ 1)-dimensional geometry, which in turn is expected to
match that of the corresponding two-dimensional model.
We then expect the deconfinement transition in (2þ 1)-
dimensional Z3 gauge theory to be second order, and in the
same universality class as that of the two-dimensional
three-color Potts model, whose critical exponents are
known (see, e.g., Ref. [48]).
From the numerical point of view, it is convenient to

determine βcðNtÞ by exploiting the duality relation and
determining instead the critical coupling β̄cðNtÞ of the
(2þ 1)-dimensional three-color Potts model, for which one
can use a cluster algorithm [42,43] and overcome the
critical slowing down of local update algorithms near
the transition. A convenient (complex) order parameter
for the Potts model is the quantity

Φ ¼ 1

V

X
n

ei
2π
3
σðnÞ; ð10Þ

whose expectation value vanishes in the low-β̄, disordered
phase and is nonzero in the high-β̄, ordered phase. To
determine the critical coupling we performed a finite-size-
scaling study of the following Binder parameter [49],

B ¼ hjΦj4i
hjΦj2i2 ; ð11Þ

where h…i denotes the expectation value associated with
the partition function ZPotts, Eq. (7). In the disordered
phase, in the large-volume limit Φ is expected to obey a
(two-dimensional) Gaussian distribution centered at the
origin, and so B → 2 as the system size L ¼ Ns tends to
infinity. In the ordered phase, instead, the distribution of Φ
is peaked at a nonzero value and B → 1 as L → ∞. Under
the usual one-parameter scaling hypothesis, near the critical
coupling β̄c one has that B depends only on the ratio of the
(infinite-volume) correlation length ξ ∼ jβ̄ − β̄cj−ν and L,
B ¼ Fðξ=LÞ. Since this must be an analytic function of β as
long as L is finite, one finds

Bðβ̄; LÞ ¼ fððβ̄ − β̄cÞL1
νÞ ð12Þ

for some analytic function f, and so at β̄c the Binder
parameter is scale invariant.

III. LOCALIZATION OF DIRAC EIGENMODES

In this section we briefly discuss eigenmode localization
and how to detect it. Full accounts can be found in the
literature (see, e.g., Refs. [1,50,51]). In this paper we
investigate the localization properties of the eigenmodes
of the staggered Dirac operator,

Dstag
n;n0 ¼

1

2

X3
μ¼1

ημðnÞðUμðnÞδnþμ̂;n0 −U−μðnÞδn−μ̂;n0 Þ;

ημðnÞ ¼ ð−1Þ
P

ν<μ
nν ; ð13Þ

computed in the background of gauge field configurations
obtained in Z3 pure gauge theory. Periodic boundary
conditions in the spatial directions and antiperiodic boun-
dary conditions in the temporal direction are understood. In
this context Dstag acts simply as a probe of the gauge
dynamics, which does not include any backreaction from
the fermionic modes.
In the deconfined phase of the theory, the eigenmodes of

Dstag should be studied separately for the different center
sectors, characterized by the center element closest to the
spatially averaged Polyakov loop,
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P̄≡ 1

V

X
x⃗

Pðx⃗Þ: ð14Þ

One can in fact imagine including very heavy dynamical
staggered fermions, which explicitly break the center
symmetry of the theory and favor the trivial center sector,
and then remove them by sending their mass to infinity. In
this limit center symmetry is not broken explicitly, but it is
broken spontaneously in the deconfined phase, with the
trivial center sector being selected by the procedure out-
lined above. The same procedure but in the presence of a
suitable imaginary chemical potential selects instead one
of the complex sectors. In practice, in the deconfined
phase one simply studies the eigenmodes of Dstag restrict-
ing to configurations in the center sector of interest.
The change in the properties of the eigenmodes of Dstag

as the pure gauge system transitions from the confined
phase to the deconfined phase in a specific center sector
then reflects how (infinitely) heavy staggered fermions see
the phase transition (see Ref. [12] for a more detailed
discussion).
SinceDstag is anti-Hermitian, its eigenmodes have purely

imaginary eigenvalues, Dstagψ l ¼ iλlψ l, λl ∈ R. Moreover,
the spectrum fλlg is symmetric about the origin due to the

chiral property fη5; Dstagg ¼ 0, where η5ðnÞ ¼ ð−1Þ
P

ν
nν ,

so that Dstagη5ψ l ¼ −iλlη5ψ l. Since also the eigenmode
amplitude squared, jψ lðnÞj2, is the same for ψ l and η5ψ l, it
suffices to restrict our attention to λl ≥ 0. It is understood
that eigenmodes are normalized,

P
n jψ lðnÞj2 ¼ 1.

A. Participation ratio

The staggered operator is technically (−i times) the
Hamiltonian of a disordered system, with disorder provided
by the fluctuations of the gauge links. For gauge theories
with a mass gap, disorder (i.e., gauge field) correlations are
short ranged. Such systems are well known in the con-
densed matter community to display eigenmode localiza-
tion, typically at the spectrum edge [50,51]. Whether
eigenmodes in a given spectral region are localized or
not can be determined quantitatively by studying the
volume scaling of their participation ratio (PR),

PRl ≡ 1

NtV
IPR−1

l ; IPRl ≡
X
n

jψ lðnÞj4; ð15Þ

averaged over configurations and locally in the spectrum.
For a generic observable Ol associated with mode l, we
denote this type of average as

Ōðλ; VÞ≡ hPlδðλ − λlÞOli
VρðλÞ ; ð16Þ

where the dependence on the spatial volume is made
explicit, h…i denotes the expectation value associated with

the partition function ZZ3
, Eq. (1), and ρðλÞ is the spectral

density,

ρðλÞ≡ 1

V
h
X
l

δðλ − λlÞi: ð17Þ

The PR effectively measures the fraction of the system
occupied by an eigenmode. As V → ∞, in a spatially two-
dimensional system one expects

PRðλ; VÞ ∼ cðλÞVαðλÞ−2
2 ; ð18Þ

for some 0 ≤ αðλÞ ≤ 2, which is referred to as fractal
dimension. If modes in a certain spectral region are
localized, i.e., if they typically extend over a finite region
whose size does not scale with the lattice size, then α ¼ 0 in
that region. If instead they keep spreading out as the system
size increases, then they are delocalized and α ≠ 0. In
particular, for α ¼ 2 the modes spread out at the same speed
as the system size increases, and so are fully delocalized
throughout the system. In the condensed matter literature,
“delocalized” is usually reserved for α ¼ 2, while modes
with 0 < α < 2 are called “critical.” Instead of the PR, one
can equivalently look at the average “size” of the modes,

NtV · PRðλ; VÞ ¼ IPR−1ðλ; VÞ. In the large-volume limit
this quantity tends to a constant for localized modes, while
it diverges for delocalized modes.

B. Localization and spectral statistics

Another way to detect localization is by looking at the
statistical properties of the spectrum, which reflect the
localization properties of the eigenmodes [52]. Fluctuations
of delocalized modes under changes in the gauge field
configuration are strongly correlated, and so the corre-
sponding eigenvalues are expected to obey the appropriate
type of randommatrix theory (RMT) statistics. On the other
hand, localized modes are uncorrelated, as they respond
essentially only to variations of the gauge fields where they
are localized, and so the corresponding eigenvalues are
expected to fluctuate independently and obey Poisson
statistics. This is most easily revealed by the unfolded
spectrum, defined via the following mapping,

λi → xi ¼ V
Z

λi
dλρðλÞ; ð19Þ

for which universal predictions are available both for
Poisson and RMT statistics (see, e.g., Ref. [53]). In
particular, the probability distribution of the unfolded level
spacings si ¼ xiþ1 − xi is known analytically. For Poisson
statistics this is the exponential distribution,

pPðsÞ ¼ e−s: ð20Þ
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For RMT statistics the distribution is known from the
solution of the Gaussian ensemble in the various symmetry
classes, with the unitary one being relevant in the case at
hand, but no closed form is available. A good approxima-
tion is provided by the so-called Wigner surmise,

pWSðsÞ ¼ aβsβe−bβs
2

; ð21Þ

where β ¼ 2, a2 ¼ 32
π2
, and b2 ¼ 4

π for the unitary class.
A transition from localized to delocalized modes in the
spectrum corresponds to a change in the local statistical
properties of the eigenvalues, which can be monitored by
looking at features of the unfolded level spacing distribu-
tion pλðsÞ computed locally in the spectrum. A practically
convenient choice is the integrated probability distribution,

Is0ðλ; VÞ ¼
Z

s0

0

dspλðsÞ ¼ θs0ðλ; VÞ; ð22Þ

where θs0 is the average in the sense of Eq. (16) of the
observable θs0l ¼ θðs0 − slÞ, with θðsÞ the Heaviside func-
tion. Here s0 ≈ 0.508 is chosen as the first crossing point of
the exponential and the Wigner surmise to maximize the
difference between the Poisson and RMT expectations for
this quantity, which are, respectively, IPs0 ≃ 0.398 and
IWS
s0 ≃ 0.117.

C. Anderson transitions

Regions in the spectrum where modes are localized are
separated from regions where they are delocalized by
“mobility edges,” λc, where the localization length diverges
and the system undergoes a phase transition along the
spectrum. The nature of such transitions, known as
“Anderson transitions,” depends on the dimensionality
and the symmetry class of the system [51]. While in three
spatial dimensions the known Anderson transitions are all
second order (including in finite-temperature QCD [54]), in
two spatial dimensions one finds transitions of Berezinskii–
Kosterlitz–Thouless (BKT) type for systems in the orthogo-
nal [55] and unitary classes [9,56] (except at the integer
quantum Hall transition [57,58]). There are indications that
an Anderson transition of BKT type is present also in the
spectrum of the staggered operator in lattice Z2 pure gauge
theory in 2þ 1 dimensions [12], which belongs to the
orthogonal class. In a BKT-type Anderson transition, the
localization length diverges exponentially in ðλ − λcÞ−1

2 at
the mobility edge λc, and modes change from localized to
critical, i.e., delocalized but with a nontrivial fractal
dimension 0 < α < 2, which keeps changing along the
spectrum above λc. This peculiar behavior affects that of
the spectral statistics: for BKT-type Anderson transitions
the spectral region beyond the mobility edge does not
obey RMT statistics, displaying instead a continuously
varying statistics intermediate between Poisson and RMT,

reflecting the critical nature of the eigenmodes (see
Refs. [9,56] and references therein). Since the staggered
operator in the background of Z3 gauge fields is in the
unitary class, if an Anderson transition is present one would
then expect to observe the features of a BKT-type transition.

D. Correlations with gauge observables

According to the sea-islands mechanism mentioned in
the Introduction, in the deconfined phase of a gauge theory
one generally expects the low Dirac modes to localize near
local fluctuations of the Polyakov loop away from the
ordered value. This can be checked by measuring the
correlation P̄ðλ; VÞ between modes and Polyakov loops,
where

Pl ≡
X
x⃗;t

Pðx⃗Þjψ lðx⃗; tÞj2; ð23Þ

and the average is taken according to Eq. (16). For fully
delocalized modes one expects P̄ ≃ P̄ ¼ 1

V

P
x⃗ Pðx⃗Þ, while

for localized modes, which should be concentrated on
islands of fluctuations, a clearly different value should be
obtained. Notice that, in the confined phase and in the
deconfined phase in the real sector, one expects ImP̄ ¼ 0
due to charge-conjugation invariance.
Another interesting correlation to check is that between

modes and nontrivial plaquettes. To this end we looked at
the quantities Ū and U� obtained via Eq. (16) from the
following observables:

U l ≡
X
n

AðnÞjψ lðnÞj2; U�l ≡
X

n
AðnÞ>0

jψ lðnÞj2; ð24Þ

where

AðnÞ≡ 2

3
Re

X3
μ;ν¼1
μ<ν

½4 − UμνðnÞ − Uμνðn − μ̂Þ

−Uμνðn − ν̂Þ −Uμνðn − μ̂ − ν̂Þ� ð25Þ

equals the number of nontrivial plaquettes touching n. The
quantity Ū then counts the average number of nontrivial
plaquettes seen by a mode, and so for delocalized modes
one expects Ū ≃ 8h1 − Uμνi. The quantity U� instead
measures how much of the mode weight is found on the
corners of nontrivial plaquettes. Both observables measure,
in slightly different ways, how sensitive eigenmodes are to
nontrivial plaquettes: U� shows in general how much
eigenmodes are attracted to or repelled from such pla-
quettes, while Ū shows how attracted eigenmodes are to
regions where nontrivial plaquettes cluster together.
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IV. SEA-ISLANDS PICTURE AND THE
DIRAC-ANDERSON HAMILTONIAN

A more detailed formulation of the sea-islands picture
for staggered fermions is based on the “Dirac-Anderson
Hamiltonian” formalism, developed in Ref. [21] for non-
Abelian theories. While the adaptation to an Abelian theory
is straightforward, we review here the derivation in some
detail since we are extending the original analysis while
adopting a slightly different point of view. We work in
dþ 1 dimensions for generality. A few technical details are
reported in Appendix B.

A. Dirac-Anderson Hamiltonian

The Dirac-Anderson Hamiltonian HDA is obtained via a
unitary transformation Ω as Ω†DstagΩ ¼ iHDA, where Ω
is the matrix of spatially localized eigenvectors of the
temporal part (μ ¼ dþ 1) of Dstag. Eigenmodes are
labeled by their location y⃗ ¼ ðy1;…; ydÞ and by an index
k ¼ 0;…; Nt − 1, corresponding to the Nt Matsubara
frequencies ωkðx⃗Þ associated with the x⃗-dependent
temporal boundary condition ψðx⃗; NtÞ ¼ −Pðx⃗Þψðx⃗; 0Þ ¼
−eiϕðx⃗Þψðx⃗; 0Þ. These are discussed in detail below. For
an Abelian theory with a one-dimensional internal space
one has

Ωtx⃗;ky⃗ ¼
1ffiffiffiffiffi
Nt

p δx⃗;y⃗eiωkðx⃗ÞtPðx⃗; tÞ�; ð26Þ

where Pðx⃗; tþ 1Þ ¼ Pðx⃗; tÞUdþ1ðx⃗; tÞ, with Pðx⃗; 0Þ ¼ 1

and Pðx⃗; NtÞ ¼ Pðx⃗Þ ¼ eiϕðx⃗Þ. The corresponding Dirac-
Anderson Hamiltonian reads

HDA
kx⃗;ly⃗ ¼ ekðx⃗Þδklδx⃗;y⃗ þ

1

2i

Xd
j¼1

ηjðx⃗Þ½Vþjðx⃗ÞklðTjÞx⃗;y⃗

− V−jðx⃗ÞklðT†
jÞx⃗;y⃗�; ð27Þ

with “unperturbed eigenvalues”

ekðx⃗Þ ¼ ηdþ1ðx⃗Þ sinωkðx⃗Þ; ð28Þ

and hopping terms

V�jðx⃗Þkl ¼
1

Nt

XNt−1

t¼0

e−i½ωkðx⃗Þ−ωlðx⃗�|̂Þ�tUtg
�jðx⃗; tÞ;

Utg
�jðx⃗; tÞ ¼ Pðx⃗; tÞU�jðx⃗; tÞPðx⃗� |̂; tÞ�; ð29Þ

where Tj are the spatial translation operators, ðTjÞx⃗;y⃗ ¼
δx⃗þ|̂;y⃗ (including periodic boundary conditions). Here the
superscript “tg” denotes links computed in temporal gauge,
Utg

dþ1ðx⃗; tÞ ¼ 1, ∀ x⃗, 0 ≤ t < Nt − 1, and we made explicit
the fact that ημ depend only on the spatial coordinates.

One has V−jðx⃗Þkl ¼ Vþjðx⃗ − |̂Þlk�, and one can easily show
that V�jðx⃗Þ are unitary Nt × Nt matrices.
The Hamiltonian HDA is identical to that of a set of Nt

Anderson-like models, with correlated random local poten-
tials ekðx⃗Þ, and coupled by the random hopping matrices
Vjðx⃗Þ. At this stage, however, the labeling of the ekðx⃗Þ is
arbitrary, and depends on the ordering in k of the basis
vectors and on the convention chosen for the Polyakov-
loop phase ϕðx⃗Þ, both of which can as well be x⃗ dependent.
This is formally expressed by writing

ωkðx⃗Þ¼ ω̃Nkðx⃗Þðϕðx⃗ÞÞ; ω̃nðϕÞ¼
ϕþð2nþ1Þπ

Nt
; ð30Þ

where Nkðx⃗Þ ¼ 0;…; Nt − 1 and the conventions for the
Polyakov-loop phase have to be specified. Without any loss
of generality, we can restrict the latter to ϕðx⃗Þ ∈ ½−π; πÞ at
each site. Notice that since sin ω̃nþNt

2
modNt

¼ − sin ω̃n, at

each x⃗ half of the ekðx⃗Þ in Eq. (28) are positive and half are
negative. A further simplifying choice is then to pair
opposite unperturbed eigenvalues so that

ekþNt
2
mod Nt

ðx⃗Þ ¼ −ekðx⃗Þ: ð31Þ

One can show that in this case

V�jðx⃗ÞkþNt
2
mod NtlþNt

2
mod Nt

¼ V�jðx⃗Þkl: ð32Þ

The resulting general structure of the Dirac-Anderson
Hamiltonian is then

HDA ¼
�
E 0

0 −E

�

þ 1

2i

Xd
j¼1

ηj

��
Aj Bj

Bj Aj

�
Tj − Tj

†
�
Aj

† Bj
†

Bj
† Aj

†

��
;

ð33Þ

where Eðx⃗Þ, Ajðx⃗Þ, Bjðx⃗Þ are Nt
2
× Nt

2
matrices, with E

diagonal, Aj
†Aj þ Bj

†Bj ¼ 1 and Aj
†Bj þ Bj

†Aj ¼ 0.
Here 0 and 1 are the Nt

2
-dimensional zero and identity

matrices, respectively.
The simplest possibility for Nkðx⃗Þ is clearly Nð0Þ

k ðx⃗Þ ¼ k,
which with our convention on ϕðx⃗Þ satisfies the above
requirements. This was used in Ref. [21]. However, the
ordering of the ekðx⃗Þ obtained with this choice generally
does not reflect their rank in magnitude. To give the ekðx⃗Þ
an interpretation as the different “energy levels” of an
electron in the potential of an atom sitting at the spatial
lattice site x⃗, it is convenient to order the basis vectors so
that ekðx⃗Þ are positive for 0 ≤ k ≤ Nt

2
− 1 and negative for

Nt
2
≤ k ≤ Nt − 1, and in both cases ranked by absolute

value, i.e.,
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0 ≤ e0ðx⃗Þ ≤ e1ðx⃗Þ ≤ … ≤ eNt
2
−1ðx⃗Þ; ð34Þ

with eNt
2
þkðx⃗Þ ¼ −ekðx⃗Þ, k ¼ 0;…; Nt

2
− 1. The diagonal

matrix E in Eq. (33) in this case is then positive semi-
definite. This implicitly defines Nkðx⃗Þ so that a given k
always corresponds to the energy level of the same rank at
each spatial site, thus giving k an intrinsic meaning. An
explicit expression for Nkðx⃗Þ can be worked out analyti-
cally, and is reported in Appendix B 1. In particular, the
lowest positive energy level at each site depends only on
ϕðx⃗Þ and reads

e0ðx⃗Þ ¼ Eðϕðx⃗ÞÞ ¼ sin
π − jϕðx⃗Þj

Nt
: ð35Þ

Moreover, ekðx⃗Þ remains unchanged under the replace-
ment ϕðx⃗Þ → −ϕðx⃗Þ.
Irrespectively of the choice ofNkðx⃗Þ, the Dirac-Anderson

form of the staggered operator leads one to expect, by
analogy with the usual Anderson models, that modes at
the high end of the spectrum are localized independently of
the phase of the gauge system. Since the ordering of the
Polyakov loop at the deconfinement transition is expected
to open a pseudogap in the spectrum near the origin,
thus making the near-zero region qualitatively similar to a
spectrum edge, one can understand also the localization of
the low modes in the deconfined phase by analogy with the
usual Anderson models. However, this intuitive explanation
shouldbe supplementedby amore detailedmechanism if one
wants to understandbetter the connection between low-mode
localization and deconfinement.

B. Standard sea-islands picture

As a first step in this direction, the formalism of the
Dirac-Anderson Hamiltonian discussed above allows one
to formulate the sea-islands picture more precisely. In fact,
the twist on the fermion wave functions provided by the
effective local temporal boundary conditions ψðx⃗; NtÞ ¼
−Pðx⃗Þψðx⃗; 0Þ can be quantified by the lowest energy level
Eðϕðx⃗ÞÞ, Eq. (35). The sea-islands picture then amounts to
state that places with lower E are “energetically” favorable
for the localization of Dirac eigenmodes. This can be tested
in detail by looking at how much weight is allocated on the
different “branches” of the wave function corresponding to
the different energy levels, and how this correlates with the
energy levels themselves.
The components Ψlðx⃗; kÞ of the lth eigenvector in the

new basis are obtained from Ψl ¼ Ωψ l, and read

Ψlðx⃗; kÞ ¼
1ffiffiffiffiffi
Nt

p
XNt−1

t¼0

e−iωkðx⃗ÞtPðx⃗; tÞψ lðx⃗; tÞ: ð36Þ

Clearly, HDAΨl ¼ λlΨl. For each mode, the weight on
branch k is

wlðkÞ ¼
X
x⃗

jΨlðx⃗; kÞj2; ð37Þ

and the corresponding unperturbed energy averaged over
spatial sites is

εlðkÞ ¼
1

wlðkÞ
X
x⃗

ekðx⃗ÞjΨlðx⃗; kÞj2: ð38Þ

It is easy to show that the components Ψ−lðx⃗; kÞ of η5ψ l
(corresponding to eigenvalue −λl) in the new basis are

Ψ−lðx⃗; kÞ ¼ ηdþ1ðx⃗ÞΨl

�
x⃗; kþ Nt

2
mod Nt

�
; ð39Þ

and so for the corresponding weights one finds w−lðkÞ ¼
wlðkþ Nt

2
modNtÞ.

The sea-islands picture leads one to expect, perhaps
naïvely, that low positive (negative) modes, if present, have
a large weight wlð0Þ [wlðNt

2
Þ], and correspondingly εlð0Þ

should be close to the most favorable value of E (its
negative), leading to localization when such favorable
places are rare.

C. Refined sea-islands picture

While the idea of interpreting sites with low Eðϕðx⃗ÞÞ as
“energetically” favorable for the eigenmodes is suggestive,
the fact that HDA is not positive-definite makes it ques-
tionable. On the other hand, the correlation between such
sites and the localization centers of low localized modes is
evident in the numerical data [7,12,18,19]. We now argue
that this correlation can be better explained in an indirect
way, which will lead us to a refinement of the sea-islands
mechanism.
In the high-temperature phase one expects the ordering

of the Polyakov loops to induce strong correlations among
time slices. One then expects to a first approximation that
Pðx⃗Þ ≈ P� ¼ eiϕ� and Utg

j ðx⃗; tÞ ≈Utg
j�ðx⃗Þ, and so E to be

approximately x⃗ independent. An explicit calculation [see
Appendix B 2, Eq. (B4)] shows that in this case
Vjðx⃗Þkl ≈ δk;lþNt

2
modNt

Utg
j�ðx⃗Þ, or in other words Ajðx⃗Þ ≈

0 and Bjðx⃗Þ ≈Utg
j�ðx⃗Þ1. Notice that this does not depend on

the detailed definition of Nkðx⃗Þ as long as Eq. (31) is
enforced and the sign of ekðx⃗Þ at fixed k is constant
throughout the lattice: The actual ordering of the positive
unperturbed eigenvalues is then immaterial, as it should be.
In this case

ðHDAÞ2 ≈ E2 þ
�
1

2i

Xd
j¼1

ηjðBjTj − Tj
†Bj

†Þ
�2

≡H2
B; ð40Þ

and so generally a gap of size ½Eðϕ�Þ�2 opens in the
spectrum of ðHDAÞ2. In the opposite limit of Bj ≈ 0 and

GYÖRGY BARANKA and MATTEO GIORDANO PHYS. REV. D 106, 094508 (2022)

094508-8



Aj approximately proportional to 1, again assuming con-
stant E, one finds instead

ðHDAÞ2 ≈ diagðH2þ; H2
−Þ≡H2

A;

H� ¼ E� 1

2i

Xd
j¼1

ηjðAjTj − Tj
†Aj

†Þ; ð41Þ

which generally has an ungapped spectrum. One then
generally expects that low modes prefer locations where
Aj deviates from zero, and even more so in the deconfined
phase, where a large eigenmode amplitude in these regions
is required for the corresponding eigenvalue to get below
the gap. Since deviations from B†

jBj ¼ 1 are expected to
show up in places where the Polyakov loop is disordered,
and since in the deconfined phase these places are rare and
spatially well separated from each other, this makes them
able to localize the low eigenmodes. While Aj ≈ 1 is
unlikely to happen since it requires strong anticorrelation
among spatial links across different time slices [see
Appendix B 2, Eq. (B5)], for Hamiltonians intermediate
between Eqs. (40) and (41)—HAB-type Hamiltonians, for
want of a better name—one still expects a sizeable density
of low modes.
To see this in detail, one can switch off the hopping terms

connecting the extended B-type region where Aj ≈ 0 for
all j, from AB-type regions where it is non-negligible for
some j, and diagonalize separately the Hamiltonians of
the resulting independent subsystems. For the first region
one finds a Hamiltonian of type HB, Eq. (40), and so
delocalized modes and an almost sharply gapped spectrum.
For the second region one finds instead a Hamiltonian of
type HAB (or more precisely a set of spatially separated
Hamiltonians of this type), intermediate between Eqs. (40)
and (41), and so localized modes and an ungapped
spectrum, with a small but still sizeable density of low
modes. When switching on again the hopping terms at
the boundary of the two regions, one finds that the lowest
AB-type modes, far below the gap, can hardly mix with the
B-type modes due to the large energy difference, and with
other AB-type modes due to the large spatial separation, so
that they remain localized also when accounting for the full
interaction. This argument leads then to a different type of
sea-islands picture, where the sea and the islands are
defined in terms of the spatial hopping terms, rather than
the local potential.
The argument above clarifies the important role played

by the ordering of the Polyakov loop and the associated
depletion of the near-zero spectral region for the localiza-
tion of the low modes in the deconfined phase. By contrast,
in the confined phase no extended B-type region appears
with its almost gapped spectrum, and there seems to be no
mechanism preventing delocalization of the low modes,
which are likely to display also a larger spectral density.

Notice also that for the same constant matrix E, the
spectrum of the Hamiltonian Eq. (41) typically extends to
higher values than that of the Hamiltonian Eq. (40). An
argument similar to the one above suggests that places
where Aj deviates from zero are favorable also for the
localization of the high modes in the deconfined phase,
with delocalization being prevented by energy or spatial
separation. In the confined phase where favorable islands
are more frequent, repeating the argument by separating
now the regions where Aj is the largest from the rest, one
sees that modes localized on the most favorable islands are
likely to reach larger eigenvalues, and to remain stable
against delocalization when the remaining hopping terms
are switched on due to a large energy separation.
The refined sea-islands picture described above provides a

more detailed understanding of the microscopic mechanism
behind the localization of the low Dirac modes in the
deconfined phase of a gauge theory. On the one hand, it
does not contradict but rather subsume the standard sea-
islands picture in the physical, real Polyakov-loop sector,
since local disorder leading to Aj ≉ 0 is naturally associated
with Polyakov-loop fluctuations, and these automatically
lead to a smaller E. On the other hand, it extends the old
picture to cases where there really are no “energetically
favorable” islands, such as the deconfined phase ofZ3 gauge
theory in a complex center sector: even in this case the local
Polyakov-loop fluctuations are expected to lead to favorable
fluctuations in the hopping terms, despite the fact that E is not
lower than in the sea of ordered Polyakov loops. Moreover,
fluctuations in the hopping terms could also appear inde-
pendently of the Polyakov-loop ones: according to the refined
picture these would be favorable for localization, while they
are overlooked by the standard picture. This is a distinguish-
ing signature that can be looked for in numerical data.
As a final remark, we note that the argument above can

be easily extended to non-Abelian theories after dealing
with only minor technical complications: this is discussed
in Appendix B 3.

V. DECONFINEMENT TRANSITION

In this section we report our numerical results on the
deconfinement transition in (2þ 1)-dimensional Z3 gauge
theory, determined via duality from a study of the corre-
sponding three-color Potts model. Periodic boundary con-
ditions are understood on both sides of the duality (see the
discussion in Sec. II A).
After a preliminary sweep with a standard Metropolis

algorithm to bracket the transition, we performed numerical
simulations with a standard cluster algorithm [42,43] near
the critical coupling of the (2þ 1)-dimensional three-color
Potts model on a cubic N2

s × Nt lattice. Keeping the
temporal extension fixed to Nt ¼ 2, 4, 6, we determined
the critical coupling β̄cðNtÞ by means of a finite-size-
scaling analysis of the Binder parameter B, Eq. (11).
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We measured B on a sample of well decorrelated configu-
rations, estimating its statistical error by a standard jack-
knife procedure. For the finite-size-scaling analysis we
made the usual one-parameter scaling hypothesis, leading
to Eq. (12), which we subsequently approximated by a
polynomial of order n,

Bðβ̄; NsÞ ¼
Xn
j¼0

fjuðβ̄; NsÞj;

uðβ̄; NsÞ ¼ ðβ̄ − β̄cÞN
1
ν
s: ð42Þ

We then fitted our numerical data with Eq. (42) using the
constrained fitting approach of Ref. [59], varying the order
n of the polynomial until the errors on the fitting parameters
stabilize. Through this procedure, the error estimate from
the fitting routine already takes into account the systematic
effect due to the truncation of Eq. (42). Fits were performed
using the MINUIT library [60,61]. We did not use any
priors for β̄c and ν, and very broad Gaussian priors for the
coefficients fn. Errors turn out to be stable already at n ¼ 6.
Details on the volumes, statistics, and fitting ranges
employed in the analysis are reported in Table I. Our
results for the critical coupling β̄c, the correlation length
critical exponent ν, and the critical Binder parameter
Bc ¼ f0 are reported in Table II. There we also report
the dual critical coupling βc, at which the deconfinement
transition takes place in Z3 gauge theory. The quality of
the resulting collapse plot shown in Fig. 1 confirms the
goodness of the one-parameter scaling assumption. The
critical exponent ν is in good agreement with the value
ν2DPotts ¼ 5

6
of the two-dimensional three-color Potts modes

[48], confirming the second-order nature and universality

class of the transition expected from universality arguments
(see Sec. II B). For comparison, the critical parameters of
the two-dimensional model are β2DPotts

c ¼ logð1þ ffiffiffi
3

p Þ
[48,62] and B2DPotts

c ¼ 1.16ð1Þ [63].

VI. LOCALIZATION OF STAGGERED
MODES: NUMERICAL RESULTS

We numerically simulated pure Z3 gauge theory on
(2þ 1)-dimensional N2

s × Nt lattices, with Nt ¼ 4 and
Ns ¼ 20, 24, 28, 32, and with β values on both sides of
the deconfinement transition, using a standard Metropolis
algorithm. For each β and Ns we collected 1500 well
decorrelated gauge configurations, and for each of them we
computed the full set of eigenvalues and eigenvectors of the
staggered Dirac operator, Eq. (13), using the LAPACK
library [64]. We also measured the local plaquettes and
Polyakov loops in order to study their correlation with the
staggered eigenmodes.
As explained in Sec. III, in the deconfined phase

(β > βc) averages are computed separately for configura-
tions in the physical, real Polyakov-loop sector (ImP̄ ¼ 0,
ReP̄ > 0) and in the complex sectors (ImP̄ ≠ 0, ReP̄ < 0).
Since the two complex sectors ImP̄ ≷ 0 yield identical
results thanks to C invariance, it suffices to study the sector
ImP̄ > 0. To ensure that configurations are in the desired
center sector we make a suitable center transformation,
Eq. (9), whenever needed, thus effectively collecting 1500
configurations in both sectors under study. In the confined
phase (β < βc) where center symmetry is realized, averages
are instead computed over the full set of configurations,
covering evenly all the sectors.
For a finite ensemble of gauge configurations, the local

averages Ōðλ; VÞ, Eq. (16), are estimated by averaging over
the modes in small disjoint intervals of equal width Δλ ¼
0.05 (in lattice units), and assigning the result to the average

FIG. 1. The Binder parameter B, Eq. (11), for the (2þ 1)-
dimensional three-color Potts model as a function of the coupling,
for temporal size Nt ¼ 4 and various spatial sizes Ns. The solid
line shows the result of a fit to the data with Eq. (42), for n ¼ 6.

TABLE I. Simulation and analysis details for the study of the
(2þ 1)-dimensional three-color Potts model for temporal exten-
sion Nt.

Nt Ns Configurations Fitting range

2 50, 60, 70, 80, 90 20000 [0.6372,0.6381]
4 50, 60, 70, 80, 90 20000 [0.5640,0.5649]
6 90, 100, 110, 120, 130 20000 [0.5546,0.5557]

TABLE II. Critical coupling β̄c, correlation length critical
exponent ν and critical Binder parameter Bc of the (2þ 1)-
dimensional three-color Potts model for temporal extension Nt,
and corresponding critical coupling βc of (2þ 1)-dimensional Z3

gauge theory.

Nt β̄c ν Bc βc

2 0.637700(15) 0.772(63) 1.1737(13) 0.982070(16)
4 0.5644100(73) 0.846(30) 1.2036(17) 1.0670181(90)
6 0.555176(56) 0.799(36) 1.2246(28) 1.078506(70)
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eigenvalue in the bin. Errors are estimated via the standard
jackknife method. Additional care is required for the
calculation of the PR in the presence of degenerate
eigenvalues, which do show up in discrete gauge theories
in small and moderate volumes (see Ref. [12] for the case
of Z2). In this case a single value of the PR is assigned to
the whole degenerate subspace by means of a suitable
average and included in the bin average with multiplicity
equal to the dimension of the subspace (see the Appendix
of Ref. [12] for details). The fractal dimension is then
estimated from PRðλ; VÞ using pairs of system spatial sizes
Ns1;2 via

αðλ;Ns1 ; Ns2Þ ¼ 2þ log ½PRðλ; N2
s1Þ=PRðλ; N2

s2Þ�
logðNs1=Ns2Þ

: ð43Þ

The corresponding error is obtained by standard linear
propagation. For sufficiently large volumes where eigen-
values become dense, unfolded spacings can be computed
by dividing the level spacings λiþ1 − λi by the average level
spacing ðVρÞ−1, i.e.,

si ¼ xiþ1 − xi ¼ V
Z

λiþ1

λi

dλρðλÞ;

≃ ðλiþ1 − λiÞVρðλiÞ: ð44Þ

For a finite ensemble, this is done in practice by estimating
the average spacing in each spectral bin by including those
spacings λlþ1 − λl for which λl lies in the bin, and dividing
λiþ1 − λi by the average spacing in the bin where λi
belongs. Other definitions are possible (e.g., one could
include in each bin average only those spacings for which
the middle point between the eigenvalues lies in the bin),
but they are all equivalent in the large-volume limit. This
practical definition of unfolded spacings avoids problems
with accidental degeneracies of eigenvalues.
In the deconfined phase the Polyakov loops become

spatially ordered, breaking spontaneously the center sym-
metry of the system, and inducing strong correlations
among different time slices. In a first approximation,
typical gauge configurations can be thought of as fluctuat-
ing around the perfectly ordered configuration Pðx⃗Þ ¼ eiϕ0

with spatial links all equal to unity. A fermion in this gauge
background is equivalent to a free fermion subject to
nontrivial temporal boundary conditions, a setup for which
the staggered operator can be diagonalized exactly. The
positive eigenvalues read

λk;j1;j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsinωkÞ2 þ ðsinpj1Þ2 þ ðsinpj2Þ2

q
; ð45Þ

where ωk ¼ ϕ0þð2kþ1Þπ
Nt

with k ¼ 0;…; Nt − 1, and pj1;2 ¼
2πj1;2
Ns

with j1;2 ¼ 0;…; Ns − 1. The free spectrum Eq. (45)
lies in the interval ½λL; λH� where

λL ¼ min
k
j sinωkj; λH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max
k

ðsinωkÞ2 þ 2
q

: ð46Þ

When looking at the results for the interacting spectrum in
the deconfined phase, one can use the end points of the free
spectrum for the appropriate values of ϕ0 andNt to separate
the bulk from the low modes (λ < λL) and the high modes
(λ > λH). These points are marked by vertical dashed lines
in our figures. For Nt ¼ 4, in the real sector (ϕ0 ¼ 0) one

has λðrÞL ¼ 1ffiffi
2

p and λðrÞH ¼
ffiffi
5
2

q
, while in the complex sectors

(ϕ0¼�2π
3
) one has λðcÞL ¼ sin π

12
and λðcÞH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsin 5π

12
Þ2 þ 2

q
.

Since in the confined phase all center sectors contribute, in
the corresponding figures all the special points mentioned
above are marked by vertical dashed lines. The square root

of the average eigenvalue squared, λ� ¼
ffiffi
3
2

q
, is also marked

by a solid vertical line in our figures. This point in the
spectrum is characterized by a sizeable degeneracy of
eigenmodes for the medium-size lattices used here and
often corresponds to a noticeable dip or peak in the plots of
the various observables.

A. Mode size, fractal dimension, and spectral statistics

As explained in Sec. III, localization is conveniently
detected by studying the size and the fractal dimension of
the eigenmodes, and the statistical properties of the
corresponding eigenvalues. Numerical results for the aver-

age mode size NtV · PRðλ; VÞ ¼ IPR−1ðλ; VÞ ∼ VαðλÞ and
the corresponding fractal dimension αðλÞ, Eq. (18), and for
the local average of the integrated unfolded level spacing
distribution Is0ðλ; VÞ, Eq. (22), are shown in Figs. 2–4 for
typical β values both below and above βcðNt ¼ 4Þ (see
Table II), and for different lattice sizes.

1. Confined phase

Results for the confined phase are shown in Fig. 2. In this
phase the low modes are delocalized, but with a nontrivial
fractal dimension close to 1.A similar behaviorwas found for
gauge groupZ2 [12]. In the standard language of disordered
systems, these modes are therefore critical. As λ increases,
modes become more and more delocalized, with an increas-
ing fractal dimension that gets close to 2 as one enters the
bulk of the spectrum. Our estimates of α remain always
slightly smaller than 2, but this may as well be only a finite
size effect, with full delocalization eventually reached in the
middle of the spectrum for larger volumes. Finally, at thehigh
end of the spectrum the fractal dimension is compatible with
zero, indicating that modes are localized.
Results for Is0 (Fig. 2, bottom) support this picture, with

low modes displaying a nontrivial, λ-dependent statistics
intermediate between Poisson and RMT, and only mildly
dependent on the volume; bulk modes compatible with
RMT behavior, except towards both ends of the bulk where
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they depart from it; and high modes quickly becoming
compatible with Poisson statistics. We then expect an extend
region of critical modes at the low end of the spectrum, either
extending all theway across thebulk or containing a region of
fully extended modes, and a region of localized modes at the
high end of the spectrum. Which of these alternatives is
realized for the bulk modes cannot be decided with the
current lattice and gauge ensemble sizes.

2. Deconfined phase

Real sector.—Results for the real sector in the decon-
fined phase are shown in Fig. 3. There both low and high
modes are clearly localized. Bulk modes instead are
delocalized, with a fractal dimension quickly rising from
around 1 to 2 (i.e., full delocalization) as one enters the bulk
from either end. In the transition regions α has little to no
volume dependence while being clearly separated from 2.
This is the kind of behavior expected for a BKT-type
Anderson transition (see Sec. III C). While difficult to
determine precisely with the available data, the mobility

edges are found in the vicinity of λðrÞL and λðrÞH .

Results for the spectral statistics (Fig. 3, bottom) support
the picture obtained from the mode size. In the low-mode
region Is0 is rather flat near zero, and closer to the value
expected for Poisson statistics than that expected for RMT
statistics. More importantly, it shows a tendency to become
flatter and closer to the Poisson expectation as the volume
is increased. Although the volume dependence is not much
stronger than in the confined phase, the relative flatness of
Is0 at the low end of the spectrum in the deconfined phase
suggests that low modes all share the same spectral
statistics, as opposed to the changing statistics observed
in the confined phase. For bulk and high modes one finds
spectral statistics very close, respectively, to RMT and to
Poisson statistics, exactly as in the confined phase. Near the
mobility edges one finds for Is0 a value intermediate
between the Poisson and the RMT expectation, and
approximately volume independent, again supporting the
expectation that the Anderson transitions are of BKT type.
Complex sectors.—Results for the complex sectors are

shown in Fig. 4. Also in these sectors the low modes appear
to be localized, with their fractal dimension (Fig. 4, center)
tending to zero as the lattice sizes used for its estimate are

FIG. 2. Eigenmode properties in the confined phase. Top: mode
size. Center: fractal dimension. Horizontal lines mark expect-
ations for localized (dashed) and fully delocalized modes (dot
dashed). Bottom: integrated unfolded level spacing distribution.
Horizontal lines mark expectations for Poisson (dashed) and
RMT statistics (dot dashed). Here Nt ¼ 4.

FIG. 3. Eigenmode properties in the deconfined phase—real
sector. Top: mode size. Center: fractal dimension. Horizontal
lines mark expectations for localized (dashed) and fully delocal-
ized modes (dot dashed). Bottom: integrated unfolded level
spacing distribution. Horizontal lines mark expectations for
Poisson (dashed) and RMT statistics (dot dashed). Here Nt ¼ 4.
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increased. As discussed in Secs. I and IV C, this cannot be
explained in terms of “energetically” favorable islands of
Polyakov-loop fluctuations alone. Notice that the mode size
of the low modes is larger in the complex sectors than in
the real sector. For bulk and high modes the situation is
the same found in the real sector, i.e., bulk modes are
delocalized (and fully so deep in the bulk) and high modes
are localized, with mobility edges again in the vicinity of

λðcÞL and λðcÞH , therefore different from those found in the real
sector and closer to the spectrum edges.
In Fig. 4, and in all other plots concerning the complex

sectors in the deconfined phase, we also show two other
special points in the spectrum, λM1 and λM2, marked by
vertical dotted lines. These correspond to choosing j1;2 so
that ðsinpj1Þ2 þ ðsinpj2Þ2 ¼ 1, and k ¼ 0 or 1, corre-
sponding to sinω0 ¼ sin π

12
or sinω1 ¼ sin 5π

12
, in the free

spectrum Eq. (45). At these points we also found a sizeable
degeneracy of eigenmodes, as well as dips or peaks in the
various observables. Remarkably, Fig. 4, center, shows
that in the interval between these two points the fractal
dimension of bulk modes equals 2 within errors, departing

from it outside this interval and dropping towards zero as
one enters the low or high mode region. Moreover, in the
whole bulk region there is little to no dependence on the
lattice volumes used for the estimate of α. This suggests
that also in the complex sectors the Anderson transition at
the mobility edges is of BKT type.
This picture is again supported by our findings for the

spectral statistics (Fig. 4, bottom), which are similar to
those obtained in the real sector. The main difference,
besides the position of the mobility edges, is the lower
value of Is0 attained by the low modes in the complex
sectors on the available volumes. This agrees with the fact
that in the complex sectors the localized low modes are
more extended than in the real sector (see Figs. 3 and 4, top
panels). In fact, the typical overlap between two distinct,
well localized modes in a finite system is small but
nonetheless finite, vanishing only in the infinite-volume
limit where they can be arbitrarily far apart. This leads to a
finite correlation between the fluctuations of the corre-
sponding eigenvalues under a change in the gauge field
configuration, and so to a deviation from Poisson statistics,
which in particular shows up as a finite-volume effect in the
unfolded level spacing distribution. Clearly, localized
modes of larger size have larger typical overlap, and so
a larger deviation from Poisson statistics.
Near-zero modes.—The localization properties of the

near-zero modes as a function of β are summarized in
FIG. 4. Eigenmode properties in the deconfined phase—com-
plex sectors. Top: mode size. Center: fractal dimension. Hori-
zontal lines mark expectations for localized (dashed) and fully
delocalized modes (dot dashed). Bottom: integrated unfolded
level spacing distribution. Horizontal lines mark expectations for
Poisson (dashed) and RMT statistics (dot dashed). Here Nt ¼ 4.

FIG. 5. Top: fractal dimension of near-zero modes as a function
of β. Data points for the real and complex sectors in the
deconfined phase have been symmetrically shifted horizontally
for clarity. Bottom: spectral density of near-zero modes as a
function of β. Here Ns ¼ 32.
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Fig. 5 (top), where we show the fractal dimension α of
modes in the lowest spectral bin λn ∈ ½0;Δλ�. Central
values correspond to α obtained from the pair of largest
sizes (28, 32). Error bars are obtained by adding in
quadrature the statistical error and the systematic error
due to finite-size effects, estimated as the standard
deviation of the sample of values of α obtained from all
possible pairs of sizes ðNs1; Ns2Þ.
A drastic change takes place at the deconfinement

transition, both in the real and in the complex sectors, as
modes suddenly turn from critical to localized, with a
fractal dimension compatible with zero within numerical
errors. For the real sector this gives further support to the
general expectation that localized lowmodes appear right at
the deconfinement transition. For the complex sector this
requires instead to revisit the sea-islands picture. Error bars
are noticeably larger in the deconfined phase than in the
confined phase, both close to βc and high above it. Close to
the transition, this is mostly due to large finite-size effects
caused by the correlation length of the system diverging at
βc, causing also a visible increase in the error for the closest
point in the confined phase. Another source of uncertainty
is the low count of near-zero modes in the deconfined
phase, discussed below.
In Fig. 5 (bottom) we show the spectral density of near-

zero modes, i.e., the average number of modes per unit
volume in the lowest spectral bin divided by Δλ. This
decreases with increasing β, changing more rapidly near the
transition, and becoming very small although still nonzero
at large β. This explains why the error bars for α remain
large also far from the transition.
Different values are found in the two center sectors, with

a lower density in the real one. These findings are
consistent with the quite general pattern of deconfinement
improving on the chiral symmetry properties of the system,
indicated here by the large decrease in the near-zero
spectral density and with the fact that fermions prefer
the real Polyakov-loop sector over the complex ones.

B. Gauge observables

In Fig. 6 we show our results for the correlation between
eigenmodes and Polyakov loops. For bulk modes, ReP̄ is
always close to the real part of the expectation value hRePi
of the Polyakov loop. In the confined phase (hPi ¼ 0) and
in the deconfined phase in the real sector (hRePi > 0) there
is a mild correlation with real Polyakov loops, while in the
deconfined phase in the complex sectors (hRePi < 0) the
deviation from hRePi is minimal. For low and high modes,
the behavior of ReP̄ is quite different in the three cases. In
the confined phase ReP̄ shows a mild correlation of the
eigenmodes with complex Polyakov loops. In the decon-
fined phase in the real sector ReP̄ shows a strong
correlation of the eigenmodes with complex Polyakov
loops, with ReP̄ reaching down to almost 0 for low modes,
and to negative values for high modes. This means that

around 2=3 or more of the weight of the low modes is found
on islands of Polyakov-loop fluctuations. This agrees with
the standard sea-islands picture, as there are very few
islands of fluctuations and still a large fraction of the mode
is localized on those islands.
On the other hand, in the deconfined phase in the

complex sectors ImP̄ shows a strong correlation of these
modes with Polyakov-loop fluctuations in the opposite
complex sector, and moreover ReP̄ shows a mild but
sizeable correlation with real Polyakov-loop fluctuations.
This means that the localized low and high modes have
larger weight on Polyakov-loop fluctuations than delocal-
ized modes, including on the “energetically unfavorable”
real Polyakov-loop fluctuations, which for the low modes
contradicts the general expectations of the standard sea-
islands picture.
In Fig. 7 we show our results for the correlation between

eigenmodes and nontrivial plaquettes. Qualitatively, the
situation is the same found for Z2 gauge theory [12]. Low
and high modes always show a strong correlation with
nontrivial plaquettes, as signaled by a value of U� close
to 1; and with clusters of nontrivial plaquettes in particular,
as signaled by a value of Ū larger than 1. For the low modes
this happens independently of their localization properties,
although in the deconfined phase, where nontrivial pla-
quettes become less frequent, this indicates localization.
For modes deep in the bulk (near λ�) one finds instead a

FIG. 6. The real part of the Polyakov loop weighted by the
modes (top), and its imaginary part in the deconfined phase in the
complex sector ImP̄ > 0 (bottom). The horizontal lines corre-
spond to the real or the imaginary part of the average Polyakov
loop hPi, as appropriate, in the deconfined phase—real sector
(dot dashed), confined (short dashed), and deconfined phase—
complex sector (long dashed). Here Ns ¼ 32.
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value of Ū close to (and below) the value 8h1 −Uμνi
expected for perfectly delocalized modes [jψ j2¼1=ðNtVÞ].
The correlation with clusters of nontrivial plaquettes gen-
erally increases as one moves away from the deep bulk near
λ�, where modes are repelled by them. The mode weight on
negative plaquettes keeps similarly increasing as one moves
away from λ�. Notably, in the deconfined phase the special
points in the spectrum correspond to clear changes in the
behavior of Ū and U�.

C. Standard sea-islands picture

To study the standard sea-islands picture in detail, we
measured the weights and average energy of the various
branches of the eigenmodes, Eqs. (37) and (38), averaged
locally in the spectrum, Eq. (16). For the confined phase we
chose β ¼ 1.05, while for the deconfined phase we chose
β ¼ 1.08 and looked at the real sector and at the complex
sector with ImP̄ > 0. For each setup we used 100 con-
figurations on a 202 × 4 lattice. Our results are shown in
Fig. 8. Irrespectively of the phase or center sector, the
lowest positive modes have the largest weight on the k ¼ 0

branch, as expected, but also a sizeable weight on the
corresponding negative branch k ¼ Nt

2
¼ 2, up to (and also

partially including, for the confined phase and the complex
sectors in the deconfined phase) the bulk region. In the
deconfined phase in the real sector, k ¼ 0 and k ¼ 1 have
practically equal weights throughout the bulk. This can be
understood by noticing that these two branches are degen-
erate for ϕðx⃗Þ ¼ 0, so that for bulk modes, delocalized
all over the sea of ordered and trivial Polyakov loops, one
expects that they fully mix. This kind of degeneracy
between branches is generally expected in the real sector,
since for ϕðx⃗Þ ¼ 0 one finds sin ω̃Nt

2
−1−kð0Þ ¼ sin ω̃kð0Þ.

The same argument applies to the pair of branches k ¼ 1, 3.
The branch k ¼ Nt − 1 ¼ 3 never contributes substantially
to the eigenmodes, except at the high end of the bulk in the
deconfined phase in the complex sectors, where it gives the
second largest contribution.
Except for the large mixing of branches in the bulk of

the spectrum observed in the deconfined phase in the real
sector, whose origin is clear, our results show that in the
bulk and in the high-mode regions there is always one of
the coupled Anderson models dominating the wave func-
tion (except of course in the transition regions where the
dominant Anderson model changes). For the lowest modes,
instead, the k ¼ 0 (positive) and the k ¼ Nt

2
¼ 2 (negative)

branch contribute comparably. This requires only a rather
mild adjustment to the expectations of the standard sea-
islands picture, with the positive and the negative energy
level closest to zero both playing a role. Nonetheless, this
does not help explaining why low modes localize in the
complex Polyakov-loops sectors.
Results for the average energy level seen by a branch are

again in nice agreement with the standard expectations in the
case of the real sector of the deconfined phase, with the
leading k ¼ 0 and k ¼ 2 branches of the low modes clearly
showing a preference for Polyakov-loop fluctuations to the
complex sectors. For bulk modes instead one observes an
approximate degeneracy of the k ¼ 0; 1 and of the k ¼ 2; 3
branches, as onewould expect based on the discussion above.
In the complex sectors of the deconfined phase, instead, the
low localized modes show a small but clear deviation from
what onewould naïvely expect, indicating again that they are
surprisingly favoring real Polyakov-loop fluctuations over
themore “energetically” convenient sea. This further calls for
reconsidering the standard sea-islands picture.

D. Refined sea-islands picture

To test the refined sea-islands picture discussed in
Sec. IV C, we have directly inspected a few gauge
configurations in the deconfined phase, both in the real
and in the complex Polyakov-loop sectors, looking for
correlations between where localized modes live and the
locations where the hopping terms deviate from Aj ≈ 0. As
a measure of this deviation we used

FIG. 7. Average number of nontrivial plaquettes touched by a
mode (top), and weight of modes on negative plaquettes
(bottom). Horizontal lines in the top panel correspond to
8h1 −Uμνi at the given β values in the confined and deconfined
phase. Here Ns ¼ 32.
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Aðx⃗Þ¼ 1

8

X2
j¼1

trfAjðx⃗Þ†Ajðx⃗ÞþAjðx⃗− |̂Þ†Ajðx⃗− |̂Þg; ð47Þ

with Aðx⃗Þ ∈ ½0; 1�. To identify where modes localize, we
summed their amplitude square over time slices, and over
modes in the low (0 ≤ λn ≤ λL) and high (λn ≥ λH) spectral
regions,

pLðx⃗Þ ¼
� X

n
0≤λn≤λL

XNt−1

t¼0

jψnðx⃗; tÞj2
�
;

pHðx⃗Þ ¼
�X

n
λn≥λH

XNt−1

t¼0

jψnðx⃗; tÞj2
�
; ð48Þ

with λL;H depending on the center sector under study.
Results are shown in Fig. 9 for one typical configuration in
the real sector and its center-rotated version in the complex
sector ImP̄ > 0. The correlation between larger A and
localization is clear in both center sectors. In the real sector,
regions with A deviating from zero cover the areas
favorable for localization much more accurately than
fluctuations of the Polyakov loop to the complex sector.
In particular, regions where modes do indeed localize but
far from Polyakov-loop fluctuations are correctly identified
by usingA ≉ 0 as a criterion. In the complex sector, where

the standard sea-islands picture leads one to expect delo-
calized low modes, A ≉ 0 again correctly identifies loca-
tions where both low and high modes localize. These
include also sites where the Polyakov loop fluctuates to the
real sector, which the standard sea-islands picture would
deem “energetically” unfavorable. Notice that on these
configurations A reaches up at most to around 0.42 in the
real sector and to around 0.47 in the complex sector.
To see how modes in different spectral regions respond

to fluctuations in the spatial hopping terms, as measured by
Aðx⃗Þ, we have measured the mode weight on sites where
this is above a fixed tolerance level,

pðA0Þ
n ¼

X
x⃗

XNt−1

t¼0

θðAðx⃗Þ −A0Þjψnðx⃗; tÞj2; ð49Þ

and averaged it locally in the spectrum according to
Eq. (16). We analyzed separately configurations in the
real and complex Polyakov-loop sectors, also in the
confined phase where the difference should be milder.
Results are shown in Fig. 10, using A0 ¼ 1=16. Since the
volume dependence is rather mild, only data for Ns ¼ 32
are shown. We used 200 configurations for each β value.
Low and high modes favor regions with larger Aðx⃗Þ in all
phases and center sectors. In the real sector of the

deconfined phase, pðA0ÞðλÞ changes abruptly when entering

FIG. 8. Standard sea-islands picture: average weight (top row) and energy (bottom row) per branch, in the confined phase (left panels),
deconfined phase [real sector (center panels)], and deconfined phase [complex sectors (right panels)]. Here Ns ¼ 20 and Nt ¼ 4.
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the bulk, where it drops by a factor of 2 or more. In the
complex sector the decrease is smoother, but a change in
behavior is clearly visible, and a significant drop is found
comparing the lowest modes with the bulk modes. Since in
the deconfined phase sites with Aðx⃗Þ ≉ 0 become less

frequent, low modes favoring them comes at the price of
becoming localized.
These results strongly support the refined sea-islands

picture discussed in Sec. IV C, which allows one to explain
the observed localization of low modes in the complex

FIG. 9. Correlation between mode amplitude and hopping terms for a single 322 × 4 gauge configuration at β ¼ 1.08 (top row), and
for its center-rotated version in the complex sector ImP̄ > 0 (bottom row), for low modes (λn ≤ λL, left panels) and high modes
(λn ≥ λH , right panels). Dots are located on spatial lattice sites, and squares cover the corresponding Wigner-Seitz cell. The dot size is
proportional to the low and high mode amplitudes pL and pH , Eq. (48), with an extra enhancement factor 5=3 in the complex sector for
better visualization. Red circles denote nontrivial Polyakov loops; in the complex sector, a double circle denotes a real Polyakov loop. A
darker shade of gray of the squares corresponds to a largerA, Eq. (47), indicating a more favorable place for localization according to the
refined sea-islands picture.
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Polyakov-loop sectors. This also partially explains the
strong correlation between localized modes and nontrivial
plaquettes displayed in Fig. 7. Indeed, nontrivial spatial-
temporal plaquettes indicate the presence of the kind of
disorder in the hopping terms that, as argued above, leads to
favorable locations for localized low (as well as high)
modes.

VII. CONCLUSIONS

Localized low Dirac modes are found in the deconfined
phase of many gauge theories and related models [1–23],
appearing precisely at deconfinement when this is a
genuine phase transition [2–14]. This naturally suggests
a close connection between low-mode localization and
deconfinement. An explanation of this connection is
provided by the sea-islands picture of localization
[1,7,20–22], according to which islands of fluctuations
in the sea of ordered Polyakov loops found in the
deconfined phase provide favorable locations for Dirac
eigenmodes, as they effectively and locally reduce the twist
on the fermion wave functions induced by the antiperiodic
temporal boundary conditions. A prediction of the sea-
islands picture is then that the low-lying Dirac modes
become localized in the deconfined phase of a gauge
theory, under quite general conditions. So far, this pre-
diction has always been successfully verified. Moreover,
numerical support for the proposed mechanism has been
provided [7,12,18,19].
In this paper we have studied the localization properties

of the eigenmodes of the staggered lattice Dirac operator in
(2þ 1)-dimensional Z3 pure gauge theory. This model
provides nontrivial tests for the standard sea-islands picture
of localization outlined above. In the deconfined phase in
the physical, real Polyakov-loop sector where the Polyakov
loop gets ordered near Pðx⃗Þ ¼ 1, fluctuations to the
complex sectors Pðx⃗Þ ¼ e�i2π

3 provide only a mild gain
in twist, and low modes may not be able to localize. More

importantly, in the complex Polyakov-loop sectors where
Pðx⃗Þ gets ordered near ei

2π
3 or e−i

2π
3 , local fluctuations

provide no gain in twist at all, leaving it unchanged (for
fluctuations to the opposite complex sector) or even
increasing it (for fluctuations to the real sector). A
simple-minded use of the sea-island picture then leads
one to expect that low modes do not localize in this case.
Our numerical results show that localized low modes are

present in the deconfined phase both in the real and in the
complex sectors, appearing right at the deconfinement
transition in both cases. While for the real sector our
results agree with the general expectations of the standard
sea-islands picture, for the complex sector this is unex-
pected. Even more puzzlingly, in this case the localized low
modes do not avoid Polyakov-loop fluctuations to the real
sector, as one would expect.
A comprehensive understanding of these results is

obtained by reconsidering the sea-islands picture from
the point of view of the spatial hopping terms of the
Dirac operator, rather than of the Polyakov-loop fluctua-
tions. Hopping terms are strongly influenced by the
presence of Polyakov-loop fluctuations, but quite inde-
pendently of the gain or loss in the temporal twist on the
wave functions that these provide. Moreover, for a strongly
ordered configuration of Polyakov loops and spatial links,
the resulting “ordered-type” hopping terms lead to the
opening of a gap in the spectrum and to full delocalization
of the eigenmodes; deviations from order modify the
hopping terms to the “non-ordered type,” and generally
allow for eigenvalues below the gap. Typical configurations
in the deconfined phase display a sea of sites connected by
ordered-type hopping terms, with rare islands where one or
more of the hopping terms is of the non-ordered type.
Localizing on these islands allows the mode to penetrate
the spectral gap, and so explains the localization of the low
modes, as well as their low density. In the language of first-
order perturbation theory, modes living on islands are stable
against delocalization due to the fact that they can hardly

FIG. 10. Average mode weight on sites where Aðx⃗Þ ≥ A0, in the real sector (left) and in the complex sectors (right), on a 322 × 4
lattice. Here A0 ¼ 1=16.
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mix among themselves, due to large spatial separation, and
with delocalized modes living on the sea, due to the large
energy difference coming from the presence of a gap.
Islands where hopping terms of non-ordered type are

present can also support modes with much larger eigen-
values than those found in the presence of ordered-type
hopping terms, and so support localized high modes by a
similar no-mixing argument. Even in the confined phase,
where no sea is present, particularly favorable fluctuations
in the hopping terms supporting very large modes are likely
to be spatially separated, and so high modes are again
expected to be localized. However, it is only in the
deconfined phase where a spectral (pseudo)gap opens that
low modes living on islands are stable against delocaliza-
tion. In the confined phase there is instead no gap and there
are no islands, and so no no-mixing argument and no
reason for low modes not to delocalize. A simple way to
describe the different situations in the two phases is that the
ordering of the Polyakov loop and the resulting spectral
pseudogap in the deconfined phase makes the near-zero
region similar to a spectrum edge with low spectral density.
In such a region even a relatively weak disorder (and in
gauge theories the disorder strength is bounded due to the
unitary nature of link variables) can lead to mode locali-
zation, as it is known from the study of Anderson models.
While non-ordered-type islands are expected to correlate

strongly with Polyakov-loop fluctuations away from its
ordered value, they do not require any gain in temporal
twist to become favorable to localization (and can also be
found away from any Polyakov-loop fluctuation). This is
consistent with the observed correlation between localized
modes and Polyakov-loop fluctuations in the physical
center sector of the deconfined phase [7,12,18,19]. At
the same time, this also explains why low modes can
localize even in the complex sectors of Z3 gauge theory in
the deconfined phase, where no gain in temporal twist can
be obtained anywhere.
It is worth noticing that in SU(3) pure gauge theory no

localized modes were found in the complex Z3 center
sectors at the critical point [65], while the results of
Refs. [2,3] deeper in the deconfined phase do not allow
for conclusive statements. This calls for further investiga-
tion of the onset of low-mode localization in a complex
center sector of a gauge theory.
While the specific results obtained for Z3 are likely to be

strongly affected by the discreteness of the gauge group and
the lower dimensionality of the system, the refined sea-
islands mechanism unveiled here should be of universal
value and apply to a general gauge theory. This should be
tested on physically more relevant models, including
lattice QCD.
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APPENDIX A: DUALITY IN (2 + 1)-DIMENSIONAL
ZN GAUGE THEORIES ON FINITE LATTICES

The partition function of (2þ 1)-dimensional ZN gauge
theories on a finite N1 × N2 × N3 cubic lattice Λ can be
written as (see Ref. [41])

Z ¼ e−3βV
X
fkpg

Y
l

δCl;0

Y
p

ckpðβÞ; ðA1Þ

where V ¼ N1N2N3, and l and p run, respectively, over
links and plaquettes, with links conventionally oriented in
the same direction as the unit lattice vectors and plaquettes
oriented counterclockwise. The sum over fkpg runs over all
choices of the integers kp ¼ 0;…; N − 1, each associated
with a plaquette p. Moreover, ckp are known coefficients
and, for each link l, δCl;0 imposes the constraint

Cl ¼
X

p
l∈∂p

τpkp ¼ 0 mod N; ðA2Þ

where ∂p is the boundary of plaquette p, and τp ¼ þ1 or
−1 depending on whether one traverses l along or opposite
to its orientation when going around p.
The constraints in Eq. (A2) are most easily solved using

the dual lattice Λ̃, with dual sites located at the center of
elementary cubes of the original (direct) lattice. Dual links
l̃ connecting dual sites pierce exactly one of the direct
plaquettes p perpendicularly, and in the same direction as
the plaquette orientation. Dual links and direct plaquettes
are then identified. In this setup, after setting k̃l̃ ¼ kp,
solving Eq. (A2) is equivalent to finding the most general

configuration of gauge link variables V l̃ ¼ ei
2πk̃l̃
N such that

for all elementary dual plaquettes one has
Q

l̃∈∂p̃ V l̃ ¼ 1.
The solution is found by transforming to the maximal
temporal gauge (mtg),

Vmtg
l̃

¼ 1 for

l̃ ¼

8>><
>>:

ðñ; 1̂Þ; 0 ≤ ñ1 < N1 − 1

ðñ; 2̂Þ; ñ1 ¼ 0; 0 ≤ ñ2 < N2 − 1

ðñ; 3̂Þ; ñ1;2 ¼ 0; 0 ≤ ñ3 < N3 − 1

; ðA3Þ

where l̃ ¼ ðñ; μ̂Þ is the dual link connecting ñ and ñþ μ̂.
For each configuration there are exactly N gauge trans-
formations GgðñÞ, all leading to the same set of new link
variables Vmtg

l̃
satisfying the maximal temporal gauge

condition Eq. (A3),

V l̃ ¼ GgðñÞVmtg
l̃

Ggðñþ μ̂Þ�: ðA4Þ
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These read GgðñÞ ¼ ei
2πg
N sðñÞ, with g ¼ 0;…; N − 1, and

sðñÞ ¼ ei
2πσðñÞ

N , with σðñÞ ¼ 0;…; N − 1, and

sðñÞ ¼ W3ð0; 0; 0; 0; 0; ñ3ÞW2ð0; 0; ñ3; 0; ñ2; ñ3Þ
×W1ð0; ñ2; ñ3; ñ1; ñ2; ñ3Þ;

Wμðñ; ñþ Lμ̂Þ ¼
YL−1
s¼0

Vðñþsμ̂;μ̂Þ�: ðA5Þ

In this gauge the solution is readily found and reads

Vmtg
l̃

¼ 1; if l̃ ∉ ∪3
μ¼0∂μΛ̃;

Vmtg
l̃

¼ Bμ ¼ ei
2πbμ
N ; if l̃ ∈ ∂μΛ̃; ðA6Þ

with bμ ¼ 0;…; N − 1, and where

∂μΛ̃ ¼ fl̃ ¼ ðñ; μ̂Þjñμ ¼ Nμ − 1g ðA7Þ

denotes the links on the boundary of the dual lattice in
direction μ. The value of Bμ is the same across the whole
boundary ∂μΛ̃. Undoing the gauge transformation, one
writes for the most general solution

Vðñ;μ̂Þ ¼ ei
2πk̃ðñ;μ̂Þ

N ¼ sðñÞsðñþ μ̂Þ�; ðA8Þ

with arbitrary sðñÞ obeying the boundary condition
sðñþ Nμμ̂Þ ¼ BμsðñÞ. Equivalently, one has k̃ðñ;μ̂Þ ¼
σðñÞ − σðñþ μ̂Þ, with arbitrary σðñÞ satisfying the boun-
dary condition σðñþ Nμμ̂Þ ¼ σðñÞ þ bμ modN. One
easily shows that the Vðñ;μ̂Þ are uniquely identified by
the spin variables sðñÞ or σðñÞ and by the boundary
conditions Bμ up to global transformations sðñÞ →
sðñÞei2πgN , g ¼ 0;…; N − 1, corresponding to the N gauge
transformations leading to maximal temporal gauge.
Summing without restrictions over sðñÞ or σðñÞ and over
all possible boundary conditions yields then all the allowed
configurations of k̃l̃, with each configuration appearing
exactly N times. One concludes that

Z ¼ e−3βVN−1
X
fbμg

Z̃fbμg;

Z̃fbμg ¼
X
fσðñÞg

Y
ðñ;μ̂Þ

ckðñ;μ̂Þ ðβÞ
			kðñ;μ̂Þ¼σðñÞ−σðñþμ̂Þmod N

σðñþNμμ̂Þ¼σðñÞþbμ mod N

; ðA9Þ

which is the desired duality relation. Substituting the values
of ckðβÞ for N ¼ 3 one finds Eq. (3).

APPENDIX B: SEA-ISLANDS PICTURE:
TECHNICAL DETAILS

1. Ordering of on-site energies

The ranking of the unperturbed energy levels ekðx⃗Þ ¼
ηdþ1ðx⃗Þ sinωkðx⃗Þ ¼ ηdþ1ðx⃗Þ sin ω̃Nkðx⃗Þðϕðx⃗ÞÞ by magni-
tude [see Eqs. (30) and (34)] is achieved by setting
Nkðx⃗Þ ¼ nkðϕðx⃗Þ; ηdþ1ðx⃗ÞÞ, with nkðϕ; ηdþ1Þ chosen as
follows:

n2kðϕ; 1Þ ¼ θ0ð−ϕÞkþ θ0ðϕÞ
�
Nt

2
− 1 − k

�
;

n2lþ1ðϕ; 1Þ ¼ θ0ð−ϕÞ
�
Nt

2
− 1 − l

�
þ θ0ðϕÞl;

n2kðϕ;−1Þ ¼
Nt

2
þ n2kðϕ; 1Þ;

n2lþ1ðϕ;−1Þ ¼
Nt

2
þ n2lþ1ðϕ; 1Þ; ðB1Þ

with k;l∈f0;…;Nt
4
−1g if Nt ¼ 4m, and k ∈ f0;…; Nt−2

4
g,

l ∈ f0;…; Nt−2
4

− 1g if Nt ¼ 4mþ 2, and

nNt
2
þkðϕ;�1Þ ¼ Nt

2
þ nkðϕ;�1Þ mod Nt; ðB2Þ

with k ∈ f0;…; Nt
2
− 1g. Here θ0ðxÞ ¼ 1 if x ≥ 0 and

θ0ðxÞ ¼ 0 if x < 0.

2. Strongly ordered configurations

For strongly ordered configurations with spatially
constant Polyakov loop, Pðx⃗Þ ¼ P� ¼ eiϕ� , the quantity
ωkðx⃗Þ ¼ ω̃nkðϕ�;ηdþ1ðx⃗ÞÞðϕ�Þ≡ ω̃n̂kðηdþ1ðx⃗ÞÞ depends on x⃗ only
through the ηdþ1 dependence of nk, and so only on whether
x⃗ is an even or odd site (ηdþ1 ¼ �1). Moreover, from
Eqs. (B1) and (B2) one has

n̂kð�1Þ ¼ Nt

2
þ n̂kð∓1Þmod Nt: ðB3Þ

If also Utg
�jðx⃗; tÞ ¼ Utg

�j�ðx⃗Þ, as one would approximately
expect when there are strong temporal correlations and
spatial-temporal plaquettes (μ ¼ j, ν ¼ dþ 1) reduce to
Ujdþ1ðx⃗; tÞ ≈Ujðx⃗; tÞUjðx⃗; tþ 1Þ�, then from Eqs. (29),
(30), and (B3) one finds

V�jðx⃗Þkl ¼ Utg
�j�ðx⃗Þ

1

Nt

XNt−1

t¼0

e−i
2π
Nt
ðn̂kðηdþ1ðx⃗ÞÞ−n̂lðηdþ1ðx⃗ÞÞ−Nt

2
Þt;

¼ Utg
�j�ðx⃗Þδk;lþNt

2
mod Nt

: ðB4Þ

If a perfect anticorrelation was found for the spatial links,
Utg

�jðx⃗; tÞ ¼ ð−1ÞtUtg
�j�ðx⃗Þ ¼ eiπtUtg

�j�ðx⃗Þ, then

GYÖRGY BARANKA and MATTEO GIORDANO PHYS. REV. D 106, 094508 (2022)

094508-20



V�jðx⃗Þkl ¼ Utg
�j�ðx⃗Þ

1

Nt

XNt−1

t¼0

e−i
2π
Nt
ðn̂kðηdþ1ðx⃗ÞÞ−n̂lðηdþ1ðx⃗ÞÞÞt;

¼ Utg
�j�ðx⃗Þδk;l: ðB5Þ

These results differs from those reported in Ref. [21] due to
the different convention used in defining ωkðx⃗Þ, in par-
ticular the inclusion of ηdþ1 in the quantities to be ranked.

3. Non-Abelian case

Here we extend the argument of Sec. IV C to a non-
Abelian theory, with link variables UμðnÞ providing a
unitary representation of the gauge group (assumed to be
semisimple and compact). In this case the unperturbed
eigenvalues ekaðx⃗Þ have a further index a ¼ 1;…; Nc,
running over the internal “color” degree of freedom, and
are obtained as

ekaðx⃗Þ ¼ ηdþ1ðx⃗Þ sinωkaðx⃗Þ;
ωkaðx⃗Þ ¼ ω̃Nkaðx⃗Þðϕaðx⃗ÞÞ; ðB6Þ

with ϕaðx⃗Þ ∈ ½−π; πÞ the Nc eigenphases of the Polyakov
loop

Pðx⃗Þ ¼ uðx⃗Þ†diagðeiϕ1ðx⃗Þ;…; eiϕNc ðx⃗ÞÞuðx⃗Þ;
uðx⃗Þ†uðx⃗Þ ¼ 1: ðB7Þ

Notice that with our convention one generally finds for
special unitary UμðnÞ that

PNc
a¼1 ϕa ¼ 2πq with integer but

not necessarily zero q. This differs from the choice made in
Ref. [21]. The hopping matrices also acquire extra indices,
V�jðx⃗Þka lb, and are now defined as

V�jðx⃗Þka lb ¼
1

Nt

XNt−1

t¼0

e−i½ωkaðx⃗Þ−ωlbðx⃗�|̂Þ�t½Utdg
�jðx⃗; tÞ�ab;

Utdg
�jðx⃗; tÞ ¼ Pðx⃗; tÞU�jðx⃗; tÞPðx⃗� |̂; tÞ†; ðB8Þ

where Pðx⃗; tþ 1Þ ¼ Pðx⃗; tÞUdþ1ðx⃗; tÞ, Pðx⃗; 0Þ ¼ 1 is the
Nc-dimensional identity matrix, Pðx⃗; NtÞ ¼ Pðx⃗Þ, and
moreover U−jðx⃗; tÞ ¼ Ujðx⃗ − |̂; tÞ†. Here “tdg” denotes

the temporal diagonal gauge where Utdg
dþ1ðx⃗; tÞ ¼ 1, ∀ x⃗,

0 ≤ t < Nt − 1, and all Polyakov loops are diagonal,
Ptdgðx⃗Þ ¼ diagðeiϕaðx⃗ÞÞ. Notice that V�jðx⃗Þ are now unitary
matrices in the extended NcNt-dimensional space. As
long as Nkaðx⃗Þ is chosen so that Eq. (31) holds for all
a, i.e., ekþNt

2
modNta

ðx⃗Þ ¼ −ekaðx⃗Þ, and that ekaðx⃗Þ ≥ 0 for

k ¼ 0;…; Nt
2
− 1, then Eq. (33) holds, and the argument

outlined in Sec. IV C carries through.
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