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Practical quantum computing holds clear promise in addressing problems not generally tractable with
classical simulation techniques, and some key physically interesting applications are those of real-time
dynamics in strongly coupled lattice gauge theories. In this article, we benchmark the real-time dynamics of
Z2 and Uð1Þ gauge-invariant plaquette models using noisy intermediate-scale quantum (NISQ) hardware,
specifically the superconducting-qubit-based quantum IBM Q computers. We design quantum circuits for
models of increasing complexity and measure physical observables such as the return probability to the
initial state and locally conserved charges. NISQ hardware suffers from significant decoherence and a
corresponding difficulty to interpret the results. We demonstrate the use of hardware-agnostic error
mitigation techniques, such as circuit folding methods implemented via the Mitiq package, and we show
what they can achieve within the quantum volume restrictions for the hardware. Our study provides insight
into the choice of Hamiltonians, the construction of circuits, and the utility of error mitigation methods to
devise large-scale quantum computation strategies for lattice gauge theories.
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I. INTRODUCTION

Gauge theories are a cornerstone in the description of
various naturally occurring phenomena in nature, whether
in particle or in condensed matter physics [1]. These
theories are characterized by the presence of local con-
servation laws, which are in general not enough to make the
models integrable. However, such local conservation laws
greatly constrain these systems, leading to exotic phenom-
ena involving quantum entanglement of the fundamental
degrees of freedom over long distances, many of which
remain unexplored due to computational difficulties with
studying them on a classical computer. In addition, one of
the outstanding challenges in fundamental physics is to
study the real-time dynamics of the quantum entanglement
inherent in gauge theories that leads to confinement. The
rapid experimental development of quantum computers
(both analog and digital) [2–6] following the pioneering
suggestion of Feynman [7] provides an opportunity to
overcome these bottlenecks and make new fundamental
progress in this field.
While certain initial exciting developments have been

obtained from the studies of finite, relatively small systems
using classical computations such as exact diagonalization
and variational methods using the MPS Ansätze, it is
pertinent to understand the corresponding behavior in
large quantum systems. This is an exponentially difficult

problem in the system size for most of the classical
computational methods in use, thus demanding the use
of new toolboxes such as quantum computers. Although
theoretically promising, current quantum computers in use
are either of the analog variety, where a certain exper-
imental setup can very efficiently emulate only a limited
variety of physical systems, or of the digital kind, which are
limited by the moderate number of available (noisy) qubits.
There has, however, been some progress toward the
development of hybrid analog-digital approaches with
the aim to combine the desirable features of both [8].
For the case of digital quantum computation, which will be
our main focus in this article, it becomes important to
devise efficient optimizations of the quantum circuitry so
that the studies can be extended to large quantum systems.
The results need to be benchmarked from an independent
computational method at small or medium system sizes.
While such studies have been extensively carried out for
spin models, implementations of quantum link models on
quantum hardware are relatively scarce, a gap which our
article aims to fill.
Moreover, one of the crucial theoretical physics prob-

lems where quantum computers could play a central role is
establishing the emergence of thermalization in isolated
many-body quantum systems, necessary to describe equi-
librium properties of the system using quantum statistical
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mechanics [9,10]. This has become well known in the
literature under the eigenstate thermalization hypothesis
(ETH). On the other hand, in the absence of thermalization,
the properties of the initial states are preserved for a long
time, and the growth of quantum entanglement is very slow.
This is known to occur in the many-body localized (MBL)
phases [11] and has raised the possibility of using such
phases as quantum memories, which can encode quantum
information with high fidelity [12]. Confining phases of
gauge theories could potentially offer the possibility of
realizing topologically stable qubits, unaffected by local
decoherent noise, and act as quantum memories. Another
relatively new development is the discovery of atypical
quantum states in (strongly) interacting quantum systems,
dubbed as quantum many-body scars [13], which do not
follow the ETH, unlike other quantum states. Even though
such states belong to the highly excited part of the energy
spectrum, they have anomalously low entropy. Studying
properties of such quantum states on large systems would
also benefit from a quantum computer, given the computa-
tional complexity for classical simulation methods.
In the context of particle physics, especially for non-

perturbative ab initio computations in lattice chromody-
namics (LQCD), a plethora of questions involving physics
at real time and high baryon density cannot be reliably
answered using classical algorithms running on classical
computers. Quantum computers, both analog and digital,
have been proposed in order to make progress on this
front [14]. Several pioneering experiments [15–20] have
already demonstrated the possibility of harnessing the new
technology to address questions posed in the context of
high-energy physics (HEP). Further, the availability of
noisy intermediate-scale (universal) quantum computers
from the IBM and the Rigetti corporations have empow-
ered the theorists to perform experiments. Recently,
there have been many such preliminary efforts to address
representative questions in simpler gauge theories using
quantum computing techniques. These include the inves-
tigation of scattering and real-time dynamics in spin
systems [21–23] and in gauge theories [24,25], and static
charges in gauge theories [26], as well as mass spectra in
Abelian and non-Abelian lattice gauge theories [27,28].
Naturally, the efforts to represent only physical states of
the corresponding gauge theory Hamiltonian, which are
invariant under the Gauss law, in the limited quantum
hardware available to us have spurred a cascade of
theoretical developments [29–40].
A major obstacle in the design of quantum circuits and

quantum algorithms is the decoherence of the supercon-
ducting qubits in contemporary quantum computers, also
called noisy intermediate-scale quantum (NISQ) devices,
such as the IBM Q and the Rigetti platforms. The qubits in
these devices are only approximately isolated from the
environment, and the gate operations needed to induce
some interaction terms among them also depend on

whether the operation is a single, or a multiqubit operation
(the latter have smaller fidelities). Moreover, single-gate
operations can have different gate times depending on the
specific qubit they are applied to. These factors induce
errors in the measured quantities, and although quantum
error correction schemes have been devised decades ago
[41,42], their implementation is hindered by the fact that
they require additional qubits to correct the error on a single
qubit, making them impractical for NISQ-era devices with
a limited number of available qubits (typically of the order
of 6–10). A recent alternate approach exploits the available
qubits but repeats the experiments for a different number
of times, and with different sets of quantum gates. The
resulting data can be extrapolated to the case when there
is no noise affecting the experiment, assuming a general
noise model. This approach, known as the zero-noise
extrapolation (ZNE), has been intensively investigated in
Refs. [43–49]. It falls into the category of error mitigation
rather than error correction. Schemes for addressing depo-
larizing errors have been investigated in Ref. [50], and
readout errors in Refs. [51–53]. Proposals of correcting
depolarizing noise in a hierarchical fashion in quantum
circuits depending on whether they contribute to the UVor
IR physics have been put forward in Ref. [54], and they
would allow targeted improvements in scientific applica-
tions in appropriate energy windows.
Our main goal in this article is to present models and

implement corresponding quantum circuits suitable for
NISQ devices for simulating real-time dynamics in pure
gauge theories on single and double plaquettes. The
plaquette interaction has been considered before in
Ref. [27] following the usual Wilson formulation of
formulating lattice gauge fields, having an infinite-
dimensional Hilbert space for each link degree of freedom.
This necessarily needs a truncation in the allowed set of
states to be represented in an architecture with a finite
number of qubits. Instead, we will consider a different
formulation of lattice gauge theories, which are commonly
known as quantum link models (QLMs) [55–57]. This
formulation is ideally suited for implementation in quantum
computers, since gauge invariance is realized exactly with a
finite-dimensional Hilbert space for each link degree of
freedom. In fact, the dimensionality of the local Hilbert
space can be tuned in a gauge-invariant manner.
The strength of QLMs for NISQ devices is

illustrated quantitatively in Table I (see Appendix C in
the Supplemental Material for more details [58]), where the
minimum number of two-qubit gates needed per qubit to
simulate a single Trotter step of the time evolution of gauge
theory potential terms is given for QLMs as well as
truncated Wilson theories. A d-dimensional square lattice
is assumed, and the circuit implementation used is the one
we use in our simulations, and is described in Sec. III. The
Wilson column refers to the potential terms of the Kogut-
Susskind Hamiltonian [59–61], and the Improved Wilson
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column is for the Symanzik correction terms which have
been proposed to reduce the number of Trotter steps
necessary for a simulation [59,62]. While the Kogut-
Susskind Hamiltonian and the Symanzik improvement
have the prospect of being very useful for simulating
gauge theories in the future of quantum computing,
Table I makes it clear that quantum link models are much
more suited for taking the first steps of simulating time
evolution for gauge theories on real hardware, with the
aforementioned advantage of being gauge invariant at every
tuning step. In fact, even exactly gauge-invariant QLMs of
non-Abelian theories are in much closer reach for time
evolution than alternative formulations—for example, an
SOð3Þ-symmetric theory would require 162ð2d − 2Þ two-
qubit gates per qubit per Trotter step [57,63].
QLMs are quite popular for implementation on analog

quantum simulators [16,18,19], and it makes sense to
develop the corresponding implementation in digital plat-
forms as well. Initial studies of the construction of quantum
circuits for the plaquettes using the QLM approach
were reported in Refs. [64,65]. We focus on the theories
with Z2 and Uð1Þ local symmetries and explore their
formulations on triangular and square lattice geometries.
The Hamiltonians with these local symmetries have been
used to describe physical systems in condensed matter and
quantum information [66–68]. A quantum circuit for a
triangular Uð1Þ quantum link model has been proposed in
Ref. [69] and tested with classical hardware. Another recent
work dealing with the triangular Uð1Þ quantum link model
used dualization to obtain dual quantum height variables,
which allows a denser encoding in terms of qubits [70].
To the best of our knowledge, our article is the first to
demonstrate a hardware-independent error mitigation tech-
nique for the real-time evolution of quantum link lattice
gauge theories.
The rest of the paper is organized as follows: In Sec. II,

we describe the Hamiltonians, as well as the corresponding
local unitary Abelian transformations which keep the
Hamiltonian invariant, showing the constrained nature of
the Hilbert space in these models. In Sec. III, we describe
the quantum circuit used to implement the Hamiltonian
interactions and perform the real-time dynamics. We out-
line the methodology we adopted in mitigating the errors
due to decoherence and readout in Sec. IV, and we outline
the experimental results obtained in Sec. V. Finally, we
discuss possibilities of extending this study to larger lattice
dimensions, as well as to non-Abelian gauge theories
in Sec. VI.

II. ABELIAN LATTICEGAUGE THEORYMODELS

In this section, we discuss the quantum Hamiltonians,
which are invariant under local Z2 and the Uð1Þ trans-
formations. The gauge theory Hamiltonians are character-
ized by the plaquette term, which is the simplest
gauge-invariant operator that can be constructed.

A. The Z2 gauge theory

Consider a square lattice, for which the smallest closed
loop would be a plaquette containing the four links around
an elementary square. Through a four-spin interaction
involving Sz¼σz=2 operators, and a single-spin Sx¼σx=2
operator on each of the links, we can realize the Z2 gauge
theory Hamiltonian:

H ¼ −g
X

□

U□ − Γ
X

i

Sxi ; ð1Þ

U□ ¼ Szr;μS
z
rþμ;νS

z
rþν;μS

z
r;ν: ð2Þ

The gauge symmetry arises due to the invariance of the
Hamiltonian under local unitary transformations according
to the operator

Vr ¼ σxr;μσ
x
r;νσ

x
r−μ;μσ

x
r−ν;ν

¼ exp

�
iπ
X

μ

ðSxr;μ − Sxr−μ;μÞ
�
: ð3Þ

This can be directly proven from the fact that the
Hamiltonian commutes with the local operator Vr, which
is known as the Gauss law operator. This commutation
relation ½U□; Vr� ¼ 0 follows from a few lines of algebra.
The eigenstates of the Hamiltonian are classified into

two super-selection sectors according to Vrjψi ¼ �1jψi
in the computational basis of σx. For a square lattice, four
links touch a single vertex, and 24 spin configurations are
possible, but only half of them have Vr ¼ 1 and the other
half Vr ¼ −1, giving rise to two superselection sectors.
We are interested in implementing the real-time evolu-

tion of simple plaquette models on superconducting-qubit-
based IBM Q quantum computers. For our purposes, we
can work in the σx basis, where the Gauss law as well as the
Γ term in the Hamiltonian are diagonal. We aim to start with
initial product states in the σx basis, which is then evolved
by an off-diagonal plaquette Hamiltonian. We note that the
Γ term not only contributes a diagonal term in this basis but

TABLE I. The number of two-qubit gates necessary for each qubit that corresponds to a link, for a single Trotter step and as a function
of square lattice dimension d. Details are in Appendix C of the Supplemental Material [58].

Gauge group QLM Wilson Improved Wilson

Z2 2ð2d − 2Þ 2ð2d − 2Þ 2 × 3ð2d − 2Þ þ 2ð2d − 4Þð2d − 2Þ
Uð1Þ 16ð2d − 2Þ 2 × 2048ð2d − 2Þ 2 × 32 × 4096 × 3ð2d − 2Þ þ 2 × 32 × 4096 × ð2d − 4Þð2d − 2Þ
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would also be zero for certain Gauss law sectors for the
single-plaquette system. We choose Γ ¼ 0 for the experi-
ments performed on the quantum computer.
For the single-plaquette system shown in Fig. 1 (top row)

with four links in all and two links touching each vertex
(labeled as A, B, C, and D), we start by explicitly writing
the Hamiltonian and the Gauss law:

H¼−gSz1S
z
2S

z
3S

z
4;

VA¼σx1σ
x
4; VB¼σx1σ

x
2; VC¼σx2σ

x
3; VD¼σx3σ

x
4: ð4Þ

For a single plaquette, 16 states are possible in total,
which comprise the full Hilbert space. We construct the
Hamiltonian in each of the sectors characterized by
particular local values of the Gauss law. Since this a Z2

theory, the Gauss law can only take �1 values. The two
states illustrated in the top row of Fig. 1 have Vxjψi ¼ 1jψi
at each site. Similarly, it is possible to obtain two
configurations which have Vxjψi ¼ −1jψi at each site.
Furthermore, it is possible to place two positive and two
negative Z2 charges, giving rise to six more sectors. Each
sector has two states which are related to each other by
charge conjugation (global Sx ↔ −Sx flip).
For our purposes, we consider the quench dynamics

within the sector ðVA; VB; VC; VDÞ ¼ ðþ;þ;þ;þÞ. The
Hamiltonian is two-dimensional in this sector with the
eigenstates

jΨ1i ¼ ðj1111i þ j0000iÞ=
ffiffiffi
2

p
;

jΨ2i ¼ ðj1111i − j0000iÞ=
ffiffiffi
2

p
: ð5Þ

Here, the notation j0000i denotes all spins aligned in the
þ1 direction of the Sx (computational) basis, and j1111i
denotes all spins aligned in the −1 direction. Similarly, for
the ð−;−;−;−Þ sector, we get

jΨ3i ¼ ðj1010i þ j0101iÞ=
ffiffiffi
2

p
;

jΨ4i ¼ ðj1010i − j0101iÞ=
ffiffiffi
2

p
: ð6Þ

Again, the 0’s and 1’s denote spins aligned in the þ1 and
−1 directions of the Sx basis, respectively. The real-time
evolution starting from an initial state j1111i is therefore a
two-state Rabi oscillation. A useful quantity to measure is
the return, or the Loschmidt probability, defined as the
projection of the time-evolved initial state onto the initial
state:

LðtÞ ¼ jGðtÞj2; GðtÞ ¼ hψ0je−iHtjψ0i: ð7Þ

In Fig. 2, we show the return or the Loschmidt probability,
which is an indicator for the so-called dynamical quantum
phase transitions [71]. As shown in the figure, increasing
the frequency is equivalent to speeding up the dynamics by
the same factor.
It is also possible to consider the Z2 gauge theory on

different lattices, such as the triangular, hexagonal, or
the checkerboard lattice. Here we will also consider the
example of a triangular lattice. Again, considering a single
plaquette as illustrated in Fig. 1 (bottom row), there are
three links in a plaquette, and each vertex contains two
links where the Gauss law can be imposed. In this case,
labeling the three vertices as A, B, andC; and the three links
as 1, 2, and 3, the Hamiltonian and the Gauss law are

B
1

2

34

A

D C

(i) B
1

2

34

A

D C

3 3

(iii)
A B

C C

B

(ii)

(iv)
12 2

A
1

FIG. 1. Basis states of the Z2 gauge theory in the Sx basis for
both the square plaquette (upper row) and the triangular plaquette
(lower row). The configurations (i) and (ii) satisfy the Gauss law
Vr ¼ 1 at all sites for the square, and the configurations (iii) and
(iv) satisfy Vr ¼ 1 at all sites for the triangular plaquette.

FIG. 2. Oscillations of the Loschmidt probability LðtÞ ¼
pð1111Þ for the square Z2 plaquette on the ibmq_qasm_simu-
lator, which is a general-purpose simulator. The points are the
points from the simulator, and the line is provided only to guide
the eye. The system has a two-dimensional gauge-invariant
Hilbert space, and there is a two-state Rabi oscillation when
started from the state j1111i to the state j0000i. An identical
behavior is also observed in the triangular Zð2Þ plaquette.
Increasing the coupling by a factor of 2 is identical to speeding
up the dynamics by a factor of 2.
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H ¼ −gSz1S
z
2S

z
3;

VA ¼ σx1σ
x
2; VB ¼ σx2σ

x
3; VC ¼ σx3σ

x
1: ð8Þ

The analysis of the triangular plaquette is also similar to
that of the square plaquette, leading to two quantum states
in each Gauss law sector (and four sectors total), and thus
the real-time evolution also displays a characteristic Rabi
oscillation similar to the one in the square plaquette.
In the following sections, we study both plaquette

models on a quantum hardware, where decoherence will
cause mixing among the different sectors. The extent of the
mixing can help us to understand the (in)efficiency of the
quantum hardware and which optimizations, error correc-
tions, or mitigations are likely to help.

B. The U(1) quantum link model

We next consider the case of the Uð1Þ lattice gauge
theory, which has considerably richer physics—and as a
stepping stone to studying QED, has relevance to the
fundamental physics of nature. We will consider the theory
on both the square and the triangular lattice, as in the case
of the Z2 theory. The phase diagrams of both systems have
been studied in the literature [70,72], as well as aspects of
dynamics and thermalization of the model on the square
lattice [73] and its potential realization on analog and
digital computers [74–76]. Since we want to implement the
models using actual quantum hardware, we will consider
very small systems involving single and double plaquettes,
as shown in Fig. 3.
To implement a local Uð1Þ symmetry for the

Hamiltonian in a simple way, we need the spin-raising
and -lowering operators, given by Ul¼ Sþl ¼ 1ffiffi

2
p ðσxl þ iσyl Þ

and U†
l ¼ S−l ¼ 1ffiffi

2
p ðσxl − iσyl Þ. The operators Ul (and U†

l )

are canonically conjugate to the electric flux operator living
on the same link, El ¼ Szl , and they obey the following
commutation relations:

½E;U� ¼ U; ½E;U†� ¼ −U†; ½U;U†� ¼ 2E: ð9Þ

Operators residing on different links always commute.
With these operators, we can now define the lattice
Uð1Þ Gauss law:

Gx ¼
X

μ

ðEx;μ − Ex−μ;μÞ: ð10Þ

Note that μ denotes the lattice unit vectors, and thus for the
square lattice, μ ¼ 1; 2; while for the triangular lattice,
μ ¼ 1; 2; 3. This operator Gx generates the gauge trans-
formations,which can be expressed asV¼Q

xexpð−iαxGxÞ,
where αx is the (local) parameter associated with the local
unitary transformation. This operator commutes with the
plaquette Hamiltonian defined on the entire lattice. For the

square lattice, the local Hamiltonian involves four links
around a plaquette, and the model has the form

H□ ¼ −g
X

□

ðU□ þU†
□
Þ;

U□ ¼ Sþr;μSþrþμ;νS
−
rþν;μS

−
r;ν; ð11Þ

where μ, ν are the lattice axes and r is the bottom-left corner
of a square plaquette. For the triangular lattice, the three-link
plaquette Hamiltonian has the form

H△ ¼ −g
X

△

ðU△ þU†
△
Þ;

U△ ¼ SþxySþyzSþzx; ð12Þ

where the points x, y, z are the vertices of a triangle.
Mathematically, the commutation relation ½Gx;H� ¼ 0
ensures that the Hamiltonian is invariant under local unitary
transformations H ¼ VHV†, resulting in a highly con-
strained system.
From these equations, the single-plaquette case can be

obtained by only keeping the links that exist in the triangle
or the square geometry, and gives rise to

H□ ¼ −gðSþ1 Sþ2 S−3 S−4 þ S−1 S
−
2 S

þ
3 S

þ
4 Þ;

H△ ¼ −gðSþ1 Sþ2 Sþ3 þ S−1 S
−
2 S

−
3 Þ; ð13Þ

with Gauss law operators given by

1 2

4 3

1 2

3

(i) (ii)
A B

CD
4

A B

CD

(i) (ii)
1

2 233

1

FIG. 3. Sample basis states for the square (top) and triangular
(bottom) plaquettes of the Uð1Þ QLM, where the spins are
quantized in the σz basis. For the square lattice, the spins pointing
up (down) indicated by arrows on the vertical links correspond to
E ¼ þ 1

2
ð− 1

2
Þ. For the links along the x axis (the horizontal links),

the arrows pointing to the right (left) indicate spins quantized
along E ¼ þ 1

2
ð− 1

2
Þ. For the triangular plaquette, the arrows

pointing in the clockwise (counterclockwise) direction indicate
spins quantized along E ¼ þ 1

2
ð− 1

2
Þ. Each of these examples of

the basis states are in the Gx ¼ 0 sector, which can be seen
physically from the fact that every point has one arrow coming in
and another going out.
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GA ¼ Sz4 þ Sz1; GB ¼ Sz2 − Sz1;

GC ¼ −Sz2 − Sz3; GD ¼ Sz3 − Sz4 ð14Þ

for the square plaquette, and

GA ¼ Sz1−Sz3; GB ¼ Sz2−Sz1; GC ¼ Sz3−Sz2 ð15Þ

for the triangular plaquette, where the link subscripts
correspond to the labels in Fig. 3. Note that the conventions
for the signs of the electric flux are given in the caption of
the figure.
For our purposes, it is useful to further simplify Eq. (13)

and express the Hamiltonian in terms of the Pauli matrices,
which will allow us to construct the quantum circuits using
the circuit identities introduced in the next section. For the
square plaquette, we obtain

H□ ¼ −
g
2
½σx1σx2σx3σx4 þ σy1σ

y
2σ

y
3σ

y
4 − σx1σ

x
2σ

y
3σ

y
4

− σy1σ
y
2σ

x
3σ

x
4 þ σy1σ

x
2σ

y
3σ

x
4 þ σy1σ

x
2σ

x
3σ

y
4

þ σx1σ
y
2σ

y
3σ

x
4 þ σx1σ

y
2σ

x
3σ

y
4�: ð16Þ

Thus, there are eight terms for a single plaquette when
expressed with the Pauli matrices. For the triangular
plaquette, we have four independent plaquette terms which
have to be implemented in a quantum circuit:

H△ ¼ −g=
ffiffiffi
2

p
½σx1σx2σx3 − σy1σ

y
2σ

x
3−σ

y
1σ

x
2σ

y
3 − σx1σ

y
2σ

y
3�: ð17Þ

The solution of the single-plaquette problem is straight-
forward: for the Uð1Þ system as defined here, it is more
natural to consider the system quantized in the σz basis
(instead of the σx basis used in the Z2 case), such that the
spin-up and the spin-down can be denoted by arrows
pointing in and pointing out from a given site, respectively.
This can be interpreted physically as the plaquette operators
raising or lowering states by a unit of magnetic field (which
is like a clockwise or counterclockwise arrangement of the
electric fluxes around the plaquette). For the triangular
lattice, this means that there are only 23 ¼ 8 basis states,
and the square lattice has 24 ¼ 16 such basis states. The
Gauss law further selects only two basis states for each of
the two lattices. For the triangular lattice with Gx ¼ 0
everywhere as an example, we denote them as j000i and
j111i; while for the square lattice with Gx ¼ 0 we denote
them as j0011i and j1100i. Note that 0 denotes a spin-up
and 1 a spin-down in the σz basis. The states are shown in
Fig. 3. The Hamiltonian for both cases is therefore a two-
dimensional off-diagonal matrix. The two eigenstates are
thus given by a symmetric and antisymmetric linear super-
position of the two basis states. The real-time evolution—
with the Loschmidt probability oscillating between the
two basis states—is qualitatively the same as that given
in Fig. 2—the period simply differs as a function of g.

C. Two-plaquette system

As one more test of the quantum hardware, we consider a
two-plaquette system on a square lattice with periodic
boundary conditions for theZ2 gauge theory. The geometry
of the system is shown in Fig. 4. For clarity, let us explicitly
write the Hamiltonian and the Gauss law for this case:

H ¼ −gSz1S
z
2S

z
3S

z
4 − gSz5S

z
4S

z
6S

z
2;

GA ¼ σx1σ
x
4σ

x
5; GB ¼ σx5σ

x
2σ

x
1;

GC ¼ σx6σ
x
2σ

x
3; GD ¼ σx3σ

x
4σ

x
6; ð18Þ

following the labeling in Fig. 4. Because the σzN’s commute
with each other, the time evolution given by this Hamiltonian
can be decomposed as the evolution given by the product of
the time evolution given by each of the two terms for H in
Eq. (18). This decomposition is exact and not subject to any
Trotter errors. For each term, we can use the strategy to be
described in the next section: introduce an ancillary qubit
which couples to the rest of qubits in the plaquette, and
perform dynamics with the help of the ancillary qubit.
Further, the structure of the Gauss law implies that we can
impose the constraint Gx ¼ 1 for all the sites. Without the
constraint, there are 26 ¼ 64 states. TheGauss law constraint
will then reduce this number. For example, imposingGA ¼ 1
affects the spins on the links 1, 4, and 5. The only
configurations allowed are those where either all three
have þ1 in the σx basis, or exactly two of the spins 1, 2,
and 5 have −1 in the σx basis, and the third spin is þ1.
While the solution of the two-plaquette system is worked

out in Appendix B of the Supplementary Material [58] we
summarize the relevant points for the simulation of quench
dynamics of this system. The two-plaquette system in the
sector Gx ¼ 1 for all x has eight basis states. These eight
states can be further divided into two sectors using the
global winding number symmetry, which cuts the pla-
quettes horizontally and vertically.
For a general rectangular system with sizes Lx × Ly, we

can define a global winding number Wn for each of the
spatial directions. If we draw a line at a fixed x ¼ x0
(y ¼ y0) along the y (x) direction, then this line cuts all
horizontal (vertical) links [i.e., those pointing in the x (y)
direction]. Denoting the set of spins on the line as fσmg,
our winding number operator is given by

51

2

A

4

D D

A

C

B

63

4

FIG. 4. The setup for two plaquettes which have periodic
boundary conditions in the longer direction. The links are marked
with numerals, while the sites are marked with letters.
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Wn ¼
Y

m

σxm; ð19Þ

where n ¼ y if m ¼ x, and vice versa. For our case, the
expressions for the operators are

Wx ¼ σx4σ
x
2; Wyð13Þ¼ σx1σ

x
3; Wyð56Þ¼ σx5σ

x
6: ð20Þ

The last two expressions for Wy are actually the same, as
can be seen by using the Gauss law for the sites. Thus, in a
perfect implementation, only four basis states entangle with
each other under a unitary evolution. In Fig. 5, we show the
Loschmidt probability for starting in one of these states,
and the oscillations into the other three states. This system
thus provides a good playground for tuning quantum
hardware to reproduce these involved oscillations, as well
as benchmarking to what extent local and global sym-
metries can be preserved in these circuits.
For completeness, we consider the Uð1Þ theory on two

plaquettes—the entire Hamiltonian would have a total of 16
terms, which, when represented by the quantum gates, are

H ¼ −
J
2
½σx1σx2σx3σx4 þ σy1σ

y
2σ

y
3σ

y
4 − σx1σ

x
2σ

y
3σ

y
4

− σy1σ
y
2σ

x
3σ

x
4 þ σy1σ

x
2σ

y
3σ

x
4 þ σy1σ

x
2σ

x
3σ

y
4 þ σx1σ

y
2σ

y
3σ

x
4

þ σx1σ
y
2σ

x
3σ

y
4 þ σx5σ

x
4σ

x
6σ

x
2 þ σy5σ

y
4σ

y
6σ

y
2 − σx5σ

x
4σ

y
6σ

y
2

− σy5σ
y
4σ

x
6σ

x
2 þ σy5σ

x
4σ

y
6σ

x
2 þ σy5σ

x
4σ

x
6σ

y
2

þ σx5σ
y
4σ

y
6σ

x
2 þ σx5σ

y
4σ

x
6σ

y
2�: ð21Þ

These terms do not all commute with each other, so
Trotterization would be necessary to simulate their real-
time evolution. In this paper, we only consider the Z2 case
which involves no Trotter steps.

III. QUANTUM HARDWARE AND CIRCUITS

In our plaquette model simulations, we make use of IBM
Q hardware, which is based on superconducting (transmon)
qubits. We discuss below a few details on how we work
with this NISQ hardware, both in terms of selecting the
platform for each experiment and in terms of circuit
implementation.

A. Hardware selection

Superconducting qubits have the advantage of being
relatively fast at running experiments compared to trapped-
ion qubits, but the disadvantage of relatively short
decoherence times [77].
Because of this, the topology of the circuits is important,

as it will make a difference for how many gates are
necessary to realize a particular simulation. Figure 6 shows
three real-hardware topologies that are used in this paper.
For each experiment, we may select hardware depending
on optimal topology.
Another important consideration for choosing hardware

is the quantum volume of the device, which is generally a
measure of the most complex circuit that can compute
accurate quantities according to a particular threshold for a
given device. IBM Q measures quantum volume using the
following formula:

VQ ¼ 2minðd;mÞ; ð22Þ

where d is the depth of the circuit (measured according to
two-qubit gates), and m is the number of qubits, so that
minðd;mÞ tells us the largest square circuit possible that
still meets the set accuracy threshold [78]. The IBM Q
devices each have a VQ measured, and so in our experi-
ments we favor using those with the higher VQ values.

FIG. 5. Quench dynamics of the two-plaquette simulation from
state 1 into states 2, 3, and 4, given by the ibmq_qasm_simulator.
The Loschmidt probability oscillates between 0 and 1 for the
states 1 and 3, while it oscillates between 0 and 0.25 for the states
2 and 4. Moreover, the probability oscillations between states 1
and 3 are exactly out of phase, as in the two-state systems
considered previously, but they have equal projections into states
2 and 4. As before, the points are the ones from the simulator, and
the dashed line only guides the eye.

FIG. 6. Three circuit topologies used for the simulations.
Images taken from IBM Quantum Experience.

TOWARD THE REAL-TIME EVOLUTION OF GAUGE-INVARIANT … PHYS. REV. D 106, 094502 (2022)

094502-7



Specifically, the devices used to obtain our results include
IBM Q Valencia and IBM Q Quito, which each have
VQ ¼ 16, as well as IBM Q Bogota, IBM Q Santiago, and
IBM Lagos, which each have VQ ¼ 32.

B. Circuit implementation and scaling

The real-time simulation of plaquette dynamics involves
realizing Hamiltonians of several spins on a plaquette.
A very simple case looks like

HN ¼ −gσ3xyσ3yzσ3zwσ3wx; ð23Þ

where N ¼ 4 and the sites x, y, z, w are corners of a
square plaquette. To realize a real-time evolution with the
above Hamiltonian, we implement the following gate
sequence [64,65]:

US;AðtÞ ¼ exp

�
i
π

4
σ3A

XN

j¼1

σ3j

�
exp ½igtσ1A�

× exp

�
−i

π

4
σ3A

XN

j¼1

σ3j

�
: ð24Þ

A proof of Eq. (24) is detailed in Appendix A of the
Supplementary Material [58].
This identity has the nice property of being applicable to

plaquettes that contain a general number of spins, N, and in
all cases it allows for the time-evolution portion to be
performed entirely on a single extra spin, which we label
with the index A. This spin is in addition to the N spins
that make up the plaquette, and is known as ancillary. In
principle, for a quantum circuit implementation (where we
represent each spin with a qubit), one would only need one
ancillary qubit for the entire system, but due to topological
issues it may be more efficient in terms of circuit depth to
add more ancillary qubits in systems with more plaquettes.
Still, with at most one ancillary qubit per plaquette, the
number of qubits needed for simulation scales linearly with
the number of links in the system.
If all terms in the Hamiltonian commute, the number of

gates needed is constant as a function of real time, but in the
more generic case where the terms do not commute and so
Trotterization is necessary, the circuit depth scales linearly
with time. In our examples below, we focus only on cases
where no Trotterization is needed.

IV. ERROR MITIGATION METHODOLOGIES

As mentioned earlier, one major practical obstacle to
developing physical devices to perform quantum computa-
tions is the significant inherent noise that affects NISQ
quantum devices. In theory, quantum error correction is
possible by encoding the information of the desired circuit
into a highly entangled state composed of a very large
number of physical qubits [41,42]. However, this large

number of qubits makes the hardware requirements too
demanding to be implemented in practice (although prom-
ising results point in the right direction [79]). An alternative
is to take advantage of systematic and reproducible proper-
ties of the hardware. These properties are exploited as part
of the so-called error mitigation schemes, which have proven
to be successful in NISQ-era devices [43–49,51–53,80].
Among these, we consider two types: readout error miti-
gation and zero noise extrapolation (ZNE), which aim to
reduce noise coming from two different sources: readout and
gate operation decoherence. We emphasize that while here
we use these techniques on IBMQ hardware, they are in fact
hardware-agnostic techniques—they rely only on the set of
gates available and do not rely on the details of the hardware
such as the type of qubits used—and therefore can be used to
improve results on any universal quantum device.

A. Readout error mitigation

One important source of errors are the so called “read-
out” errors, which arise due to the comparable measure-
ment and decoherence times [51–53,81]. This can cause
undesired state decays, affecting the state captured in the
measurement. Assuming a classical stochastic model for
the noise-affecting measurements, the statement of the
problem can be formulated by using the response matrix
PðmjtÞ, which connects a noisy measurement m to the
true/ideal measurement t by the relation m ¼ Pt. Naively,
one can use the inverse of the response matrix to obtain
t ¼ P−1m and recover the true value of the measurement.
The problem then consists in performing a series of
calibration experiments to measure P, and then using it to
recover t given m in subsequent independent experiments.
Packages such as qiskit-ignis [82] are based on the

response matrix formulation of the readout error mitigation
scheme, but (by default) do not try to compute P−1 directly
by matrix inversion. Instead, t is recovered by finding the
minimum of the least squares expression:

fðtÞ ¼
X2n

i¼1

ðmi − ðP · tÞiÞ2; ð25Þ

where n is the total number of qubits in the circuit. This
methodology is more robust than matrix inversion for
general NISQ hardware [52,82]. More involved methods
combine the previous approach with gate inversion to
further improve the error mitigation results [53], while
unfolding methods have also been proposed and tested in
the literature [52].
In most cases, the ability to apply readout error miti-

gation is limited by the number of qubits (n) in the circuit,
as the number of calibration experiments required to
evaluate P grows as 2n. Moreover, the calibration step
of estimating P is hardware dependent and needs to be
performed immediately before running the experiments to
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guarantee that temporal deviations in the particular hard-
ware are accounted for. An real-hardware example of the
response matrix obtained for a five-qubit system (IBM Q
Manila) using ignis is shown in Fig. 7. As expected, the
diagonal entries have probability values close to 1, but there
is still significant drift toward nondiagonal entries. As
presented and discussed in Sec. V, correcting for these
small deviations resulted in significant improvements in the
final mitigated data.
Clearly, going beyond circuits with a small number of

qubits would be prohibitively expensive due to the number
of experiments required to evaluate the response matrix.
Some proposals have considered the possibility of assum-
ing close to uncorrelated readout errors between the qubits,
which would drastically reduce the number of experiments
required [81]. Studying these potential improvements goes
beyond the scope of this work.

B. Corrections against decoherence: Mitiq

The second source of error comes from the gate portion
of the circuit before measurements occur. Longer circuits
will consist of more gates, and both the longer runtimes and
the gate implementation (transmon qubits in the case of the
IBM Q devices) will cause additional errors to pile up. To
mitigate this source of error, we use a method known as
zero-noise extrapolation (ZNE), where we introduce addi-
tional noise in a controlled way in order to empirically
develop a noise model that we can extrapolate to the zero-
noise case.
Implementations of ZNE include those that involve pulse

control and run multiple experiments with pulses of differ-
ent durations [44], and those that involve folding, which
consists of insertions of additional gate identities to the
circuit which would not change the results in an ideal
simulation, but will make results on real hardware more
noisy. This information on how the gates affect the noise
level can then be used to develop a noise model and
extrapolate back to an “ideal” result.
We used the folding option in this paper, and specifically

we used the Mitiq package to implement it [46]. As an
example, Fig. 8 shows two equivalent circuits, but the
second circuit has three extra identity insertions, each
consisting of two identical CNOT gates in a row. Because
the error rates of the two-qubit CNOT gates are significantly
higher than those for the single-qubit gates (roughly 10
times different on IBM Q devices), we will assume perfect
fidelities for the single-qubit gates and model all the error
coming from the two-qubit gates (an option within Mitiq).
With this in mind, because circuit a in Fig. 8 has ten CNOT

gates, and circuit b has sixteen CNOT gates, the scale factor
of circuit b is 1.6 times that of circuit a.
Figure 9 shows real-hardware examples of different

extrapolations for several circuits, with the ideal result
for each (determined using a simulator) marked at scale
factor “0.” The first row shows example extrapolations for
the Z2 model on the square plaquette at two different times

FIG. 7. Response mitigation matrix computed by ignis for
IBM Q Manila (five-qubit system).

FIG. 8. An example of using the Mitiq package for folding a circuit that gives the time evolution of the Zð2Þ gauge theory on a
triangular plaquette. Both circuits are equivalent, but the second one contains additional identity insertions of CNOT gates such that when
measured using the CNOT circuit depth, the second circuit is 1.6 times longer than the former.
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in the evolution. The bottom-left image shows an extrapo-
lation at t ¼ 0 for the Z2 theory on the triangular plaquette,
and the bottom-right image shows one at t ¼ 0 for the U(1)
theory on the square plaquette. The two extrapolations
shown are a quadratic fit and a Richardson extrapolation,
explained in Kandala et al. [44]. From this empirical data,
we decided to use the quadratic extrapolation for our data,
as it appeared less susceptible to experimental outliers
(such as those in the bottom left of Fig. 9).
It is interesting to note the presence of two regimes

which display sensitivity to a change in the circuit depth.
For larger scale factors which exceed the quantum volume
of the system, the dependence on the scale factor becomes
insensitive. At t ¼ 0, the measurements for increasing the
circuit length decay only slowly until the scale factors
exceed 3 for the Z2 model, and about 6 for theUð1Þmodel.
For t ¼ 0.6, this decay is much faster for the Uð1Þ model
than the Z2 model. Typically, the Uð1Þ circuit is signifi-
cantly more entangled, and it becomes more so when the
extrapolation is attempted at finite t.

V. RESULTS

This section gives our real-time evolution results for the
Loschmidt probability, as well as observables Gx and Wy
for plaquette simulations on NISQ hardware. In each
simulation, we take five measurements (8192 shots per

measurement) at every point in time and at each of the eight
different scale factors illustrated by Fig. 9. This allows us to
get error bars and perform ZNE at every time. For each
time, the different scale factor measurements were all taken
within the same calibration: see Appendix D in the
Supplemental Material for a note about the fluctuations
of the measurements across different calibrations of the
IBM Q hardware [58]. Each simulation consists of 20
points in time total, leading to 5 × 8 × 20 ¼ 800 circuit
measurements to produce the error mitigated plots for a
theory on a particular plaquette.

A. Z2 theory on single plaquettes

We first discuss the results for the Z2 theory on square
and triangular plaquettes, which were simulated on IBM Q
Valencia and IBM Q Bogota, respectively. The results are
plotted in Fig. 10. Figures 10(a) and 10(b) in the top row
show a simulation of a single square-plaquette system for
two different couplings: g ¼ 1.0 and g ¼ 2.0. We chose
IBM Q Valencia for this simulation because of its T-shaped
topology, illustrated in Fig. 6(b), which reduced the circuit
depth necessary, since the ancillary qubit could be placed at
a junction directly connected to three other qubits. There
was other hardware available with better VQ (32 versus 16
for Valencia), but the topological advantage of the T-shaped
hardware made for better results despite the worse VQ.

(a) (b)

(c) (d)

FIG. 9. The plots in the top row show zero-noise extrapolation for the Z2 theory on a square plaquette (IBM Q Valencia hardware) at
two times: (a) t ¼ 0 and (b) t ¼ 0.6. The bottom row shows zero-noise extrapolation for (c) theZ2 gauge theory on a triangular plaquette
(IBM Q Bogota) at t ¼ 0, and (d) a U(1) gauge theory on a square plaquette (IBM Q Quito) at t ¼ 0.
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In these plots, we give the ideal simulator measurement
of the Loschmidt probability in addition to the original
(raw) data from the circuit, followed by the readout error
correction, followed by the readout and ZNE error correc-
tions in combination. Here we see that with both these
corrections, we are able to get to the correct simulator
measurements within errors.
The next two plots, Figs. 10(c) and 10(d) in the bottom

row of Fig. 10, give the results for a Z2 theory on a
triangular plaquette instead. Here, a smaller circuit depth is
needed as compared to the square plaquette, so we use IBM
Q Bogota due to its better quantum volume [it has a linear
topology, as seen in Fig. 6(a)]. These plots give the time
evolution for the two states in the VA ¼ VB ¼ VC ¼ 1
sector: j000i and j111i, and one can see from the simulator
lines that their probabilities always add up to 1. As in the
case for the Z2 theory on the square plaquette, the error
mitigation methods allow for the fully mitigated data to
track the simulator data within error bars. The last plot,
Fig. 10(e), in the lower-right corner of Fig. 10, is a measure
of how well the circuits for the system on the triangular
plaquette are producing only states that have VA ¼ 1. It
shows measurements throughout the time evolution of
hVAi, and as the simulator line shows, ideally it would
remain exactly equal to 1 throughout the time evolution.
The mitigated measurements show how, for most time
measurements, we are able to produce hVAi ¼ 1 within
error bars.

We further note that the circuit depths for the simulations
of the Z2 theory on the square plaquette lead to circuit
volumes clearly greater than the quantum volume VQ

measurements of the quantum hardware (d ¼ 8, m ¼ 5,
leading to a circuit volume of 40 for the square plaquette;
whereas VQ is 16 on IBM Q Valencia, suggesting a
maximum square circuit volume of 16, with d¼m¼ 4).
The simple mitigation techniques employed thus seem to
allow us to “beat” the quantum volume limitations for the
hardware and get results consistent with the simulator
within errors. For the triangular plaquette on IBM Q
Bogota, we have d ¼ 8, m ¼ 4, leading to a circuit volume
of 32; whereas the VQ of the hardware is 32, corresponding
to a d ¼ m ¼ 5 square. It is less clear whether we have
exceeded quantum volume limitations for this simulation,
and indeed, empirically, most Loschmidt probability data
seems to meet the IBM Q threshold of 67% of the ideal
amplitude [78], but again, we see that our mitigation efforts
are successful at restoring the full measurement values.

B. Uð1Þ Theory on single plaquettes

We next present the data for the Uð1Þ theory on a single
square plaquette and a single triangular plaquette, which we
ran on IBM Q Quito and IBM Q Manila, respectively.
Similarly to the Z2 case, IBM Q Quito has a T-shaped
architecture [as seen in Fig. 6(b)] with VQ ¼ 16, while IBM
Q Manila has a linear topology [as seen in Fig. 6(a)] with

(a) (b)

(c) (d) (e)

FIG. 10. Real-time evolution of the Z2 theory on a single plaquette. Plots (a) and (b) in the first row show the Loschmidt probability
data for a square plaquette on IBM Q Valencia (with two couplings: g ¼ 1.0, 2.0); then plots (c) and (d) show the Loschmidt probability
data for a triangular plaquette on IBM Q Bogota. Finally, plot (e) shows the Gauss law observable VA, which means the observable
involving the links 1 and 2, as shown in Fig. 1.
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VQ ¼ 32. We ran the square plaquette simulation on the
T-shaped architecture because despite its lower VQ, the
topological advantages requiring fewer two-qubit gates
made for better data. Indeed, we could not get any signal
at all for the square plaquette Uð1Þmodel on current linear-
topology IBM Q devices.
Figure 11 shows the data for the Uð1Þ simulations. The

first row of plots gives the square plaquette simulation
data, with the first two plots, Figs. 11(a) and 11(b),
showing Loschmidt probability data for the two states
j1100i and j0011i in the Gx ¼ 0 sector. Here we are
running circuits that have much greater volume than the
quantum volume limitations, with m ¼ 5 and d ¼ 80, and
so we cannot come close to the correct amplitudes of the
oscillations (shown by the dashed simulator lines), but we
are able to make out some oscillations and see some
qualitative similarity between the experimental data and
the simulator data. It is clear, however, that the folding
ZNE is unable to improve the accuracy of the data at
this level.
The last plot in the top row, Fig. 11(c), is a test of how

well the time-evolved system stays in the Gx ¼ 0 sector by
measuring two quantities:GA in particular and then

P
x G

2
x.

For both of these quantities, we would expect to get zero in
the ideal case, and indeed the data for GA stays quite close
to zero. As this is a simple average of GA, however, we

cannot rule out that many GA measurements of þ1 and −1
also exist in roughly equal quantities and are being
averaged away, and indeed the leakage seen from the other
plots suggests this must be occurring. We can quantify this
leakage better by additionally measuring

P
x G

2
x, which

ideally should also be equal to 0 at all times. Here we also
plot two lines: one at 4, which is the maximum value one
could possibly get [by staying in the Gx ¼ �1 sectors,
because the observable would be 4 × ð�1Þ2 ¼ 4], and one
at 2, which is the value one would get if all sectors were
equally represented in the time evolution [for the 16-sector
average, we would get ð2 × 0þ 12 × 2þ 2 × 4Þ=16 ¼ 2].
When we look at our experimental data, we see that indeed
the measurements are quite close to all sectors being
equally likely, but they are mostly slightly below that line.
This suggests a slight bias toward the Gx ¼ 0 sector.
The second row of Fig. 11 shows the data for the Uð1Þ

theory on the triangular plaquette, with the first two plots,
Figs. 11(d) and 11(e), giving the Loschmidt probability
for states j000i and j111i, which are the two states in the
Gx ¼ 0 sector. Again, with d ¼ 4 and m ¼ 40, we are
likely far past the volume threshold suggested by VQ ¼ 32,
and indeed the original data never comes close to the
maximum amplitudes of 1 in the oscillations. However,
again we are able to make out a qualitative agreement in
behavior. We also see a close agreement in the frequency of

(a) (b) (c)

(d) (e) (f)

FIG. 11. Real-time evolution of the Uð1Þ theory on a single plaquette. The top row shows results for the square plaquette on IBM Q
Quito hardware, with plots (a) and (b) showing Loschmidt probability data, and then plot (c) showing different Gauss law observables
GA and

P
x G

2
x, with Gx defined as in Eq. (10). The bottom row shows results for the triangular plaquette on IBM Q Manila hardware,

with again the first two plots (d) and (e) showing Loschmidt probability data, and plot (f) showing the GA and
P

x G
2
x Gauss law

observables.

HUFFMAN, GARCÍA VERA, and BANERJEE PHYS. REV. D 106, 094502 (2022)

094502-12



the oscillations, and that ZNE does still incrementally
improve the results, unlike in the square plaquette case.
The last plot, Fig. 11(f) in the bottom row, again

measures GA and
P

x G
2
x, and again the GA observable

is mostly close to 0, but once more, this can be explained by
“leaky” states in both theGA ¼ 1 andGA ¼ −1 sectors also
being sampled (so long as both the GA ¼ 1 and GA ¼ −1
errors are equally likely). We see this more clearly by
measuring

P
x G

2
x as well. Again, we show two lines for

comparison: the “maximum value” line shows the case
where we get the largest value for the triangular plaquette,
which occurs when Gx ¼ �1 for two of the sites and
Gx ¼ 0 for the third site. This results in an average value of
2, and we see that our experimental values are well below
that. The second line again shows the value we would get if
all sectors in the time evolution were equally likely
[obtained by computing ð2 × 0þ 6 × 2Þ=8 ¼ 3=2 for the
eight sectors of the triangular plaquette system]. Here we
see quite clearly that even though our experimental data forP

x G
2
x is much larger than 0, it is also clearly smaller than

3=2, indicating a clear bias toward the Gx ¼ 0 sector.

C. Z2 Theory: Two-plaquette system

Finally, we turn to the time evolution of the Z2 theory on
the two-square-plaquette system, whose ideal behavior is
shown in Fig. 5, where we see that if the system’s initial
state is in the sector where Gx ¼ 1, the system’s evolution
involves only the four states that fall into that sector.

As illustrated by Fig. 4, we are using periodic boundary
conditions, and so there are six distinct links in the two-
square-plaquette system. With the addition of an ancillary
qubit, that brings us to seven qubits minimum for our
simulation, and so we have used the seven-qubit IBM
Lagos device to obtain real-time dynamics data.
Figure 12 gives the results for the simulation, with the

first four plots, Figs. 12(a)–12(d), giving Loschmidt
probability data for the four states in the Gx ¼ 1 sector,
which we label j000000i, j101011i, j010111i, and
j111100i in reference to the numbered links in Fig. 4.
The VQ ¼ 32 for IBM Lagos tells us that the maximum
square circuit meeting the accuracy threshold is 5 × 5.
Comparing that to the two-plaquette-system circuit
requirement with m ¼ 7, d ¼ 48 indicates that we are
way beyond the quantum volume limit. However, espe-
cially for the states j000000i and j101011i, where the
simulator shows us the maximum amplitude goes up to 1,
we are able to see qualitative agreement, and the readout
error and ZNE error corrections do provide incremental
improvements to the results.
The last two plots, Figs. 12(e) and 12(f), give data for

the winding number observableWy, defined in Eq. (20). As
noted from before, the winding number in the y direction
can be measured using links 1 and 3 as well as links 5 and
6, and in each case the result should be the same throughout
the time evolution for the initial conditions that we chose:
Wy ¼ 1. Indeed, when we take the data and use ZNE,

(a) (b) (c)

(d) (e) (f)

FIG. 12. Plots for the two-plaquette Z2 system, which was run on IBM Lagos. The first two plots (a) and (b) give the Loschmidt
probabilities for states j000000i and j101011i which oscillate between 0 and 1, and the next two plots (c) and (d) give the Loschmidt
probabilities for states j010111i and j111100i, which oscillate between 0 and 0.25. The last two plots (e) and (f) are for the winding
number observables in the y direction, the first involving links 5 and 6, and the second involving links 1 and 3, as defined in Fig. 4.
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we do see a bias in the data closer to þ1 than −1 for both
Wy observables. As discussed in Sec. II, the winding
number is a topological quantity, which is dependent on
how the spins along a line spanning the entire system
behaves. It is thus expected that this quantity could be
robust against decoherence noise. In fact, our results here
qualitatively confirm this, since we see that the winding
number expectation value stays close to the winding
number sector that the initial state belonged to. Of course,
one needs to verify this on larger circuits.

VI. CONCLUSIONS

In this paper, we have explored the possibilities for real-
time simulations of plaquette theories on current NISQ
hardware, including theories with Z2 symmetries as well
as the Uð1Þ symmetry, which is of particular interest from
the QED perspective. We find that for the Z2 single-
plaquette models, we can successfully overcome quantum
volume, VQ, limitations with the error mitigation schemes
of readout error mitigation, as well as ZNE through circuit
folding. In cases where the circuit significantly exceeds the
quantum volume, such as the cases of the two-plaquette ZZ
model and the Uð1Þ models, the error mitigation does not
have a significant effect on the results. However, since the
error mitigation techniques used are hardware agnostic, this
has promising implications for NISQ devices in general,
rather than only on IBM Q devices. Even in cases where we
cannot overcome VQ limitations, we are still able to see
qualitative signals of the real-time dynamics for circuits
that are many times deeper than the VQ measurements
for the hardware. We have seen that topology is also an
important consideration for quantum simulations with
superconducting qubits in particular, and found significant
quantitative advantages in choosing the best topology for
each experiment.

Future improvements specific to superconducting qubits
would involve using pulse control for ZNE rather than
folding, as well as denser data points to capture the time
evolution for a plaquette model. Additionally, future work
could involve simulating the real-time dynamics of non-
Abelian plaquette models. Another immediate attempt
would be to use different encoding strategies already with
the microscopic model. For example, the Uð1Þ or the Z2

models can be represented in terms of dual height variables
in two spatial dimensions, which already removes much of
the gauge noninvariant states. Formulating quantum cir-
cuits on the dualized versions of such models would enable
bigger lattices to be realized on quantum circuits [70].
Similarly, the use of rishons allows a gauge-invariant
formulation of several non-Abelian gauge theories such
as the aforementioned SOð3Þ-symmetric model, which can
then be used to construct quantum circuits on NISQ
devices [63,83].

The source code for our experiments is available at [84].
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