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We extend a previously developed approach to relate thermal currents in the high temperature regime and
classical limits of amplitudes. We consider the biadjoint scalar theory, which has the basic structure of a
cubic theory and which is related to QCD and gravity through the double copy. In addition, we consider a
generalization of scalar QED to model classical spin, where massive scalars are complex higher-spin fields.
We derive Vlasov-type kinetic equations for biadjoint scalars and study their iterative solutions, while for
QED we use well-known kinetic equations. In both cases we find consistency between these solutions and
the amplitudelike approach.
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I. INTRODUCTION

Kinetic theory is useful to describe systems out of
equilibrium for a wide range of many-particle systems at
classical and quantum level. Its quantum version is based
on Wigner functions, which are quantum analogs of
classical distribution functions [1]. At quantum level they
appear from the Wigner transform of the density matrix
operator ρ̂ðtÞ, which for a single particle reads [3]

Wðx; p; tÞ ≔
Z

du e−ipu
�
xþ 1

2
u

����ρ̂ðtÞ
����x − 1

2
u

�
; ð1Þ

where x, p are phase-space variables. A suitable classical
limit renders it as the classical distribution function fðx; pÞ.
In the collision-less case the distribution function fðx; pÞ
satisfies Liouville’s equation df

dτ ¼ 0, which gives rise to the
Boltzmann equation. The Wigner transform can be gener-
alized to describe quantum fields. Then, from quantum
field theory (QFT) it is possible to deduce an equation for
the Wigner function which satisfies classical kinetic equa-
tions thus confirming the analogy between Wigner func-
tions and classical phase-space distributions.
Another alternative is to maintain the point-particle

picture and bring together Wigner transformations and
the Schwinger-Keldysh formalism in a first-quantized
worldline approach [4], thus allowing the construction of
phase-space distributions and a derivation of classical

kinetic equations of Vlasov type, which may include color
and spin degrees of freedom [6]. Following the Schwinger-
Keldysh strategy, the action expressed in terms of retarded
and advanced fields contains boundary terms that one can
formally relate to the Wigner transform of the density
operator, which is typical in finite temperature QFT [7,8].
Also typical in this context is that the path integral
over advanced variables imposes classical equations of
motion—which is also the conclusion one obtains in the
worldline approach—and hence the remaining path inte-
grals are over retarded variables.
In Ref. [9], iterative solutions of kinetic equations were

mapped to certain off-shell currents in the classical limit,
understood as the limit ℏ → 0. There, we applied the
Kosower-Maybee-O’Connell (KMOC) [10] formalism to
deal with off-shell currents rather than amplitudes in the
forward limit. KMOC was originally proposed in the
context of ongoing efforts to extract classical information
from scattering amplitudes (see Refs. [11,12] and refer-
ences therein for reviews). These efforts are concerned with
matching solutions of classical equations of motion and
scattering amplitudes, which is similar to the scenario we
discuss here, the additional ingredient being that equations
of motion are now coupled to the Boltzmann equation for
the distribution function. These solutions were constructed
in the approximation where the distribution function f can
be perturbatively expanded in powers of the coupling
constant. This situation arises, e.g., in the description of
the so-called hard thermal loops [13–17], which are
relevant in the high temperature limit of QCD and can
be mapped to solutions of kinetic equations [18].
In the context of scattering amplitudes [19,20], biadjoint

scalars are important ingredients to understand the relation-
ship between QCD and gravity through the so-called
double copy, which has been reviewed in Ref. [21].
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At tree level closed formulas for massless and massive
amplitudes are available from the Cachazo-He-Yuan rep-
resentation [22]. Biadjoint scalars have been explored from
many angles ranging from more mathematically inspired
ones [23,24] to studies of its basic properties such as
renormalization [25,26] or its exact solutions [27,28] to
name just a few. Double-copy-type relations also exist
classically [29] and, more importantly, they also exist for
particles carrying spin [30]. Since biadjoint scalar ampli-
tudes encode the kinematic structure of QCD and gravity it
raises the question of whether this is also the case at finite
temperature even for particles carrying spin.
In this paper, we will extend the approach proposed in

Ref. [9] to include biadjoint scalars to start exploring the
above questions. In addition, we will consider classical spin
from amplitudes which we will model through a generali-
zation of scalar electrodynamics in which the scalar fields
are higher-integer-spin fields [31]. As we will see, the
amplitudes-based approach leads to consistent results that
match perturbative solutions of their kinetic equations.
The remainder of the paper is organized as follows. In

Sec. II, we review semiclassical kinetic theory with spin
and color and outline the amplitudelike approach to thermal
currents. In Sec. III, we introduce color in the context of the
biadjoint scalar model. In Sec. IV, we consider classical
spin. Our conclusions are presented in Sec. V.

II. AMPLITUDES APPROACH TO THERMAL
CURRENTS

A. Thermal currents and the classical limit

Let us consider a distribution function fðx; p; c; sÞ,
which in addition to the coordinate xμ and momentum
pμ depends on two continuous variables ca and sμ,
describing color and spin degrees of freedom, respectively.
The Liouville’s equation in the collisionless case can be
expressed as [32]

d
dτ

fðx; p; c; sÞ ¼
�
_xμ

∂

∂xμ
þ _pμ ∂

∂pμ þ _ca
∂

∂ca
þ _sμ

∂

∂sμ

�
fðx; p; c; sÞ ¼ 0; ð2Þ

where the Vlasov-Boltzmann equation can be obtained from
the above after inserting the equations ofmotion of the phase-
space variables, which are generalized versions of Wong
equations [33]. In the colorless case the spin vector satisfies
the Bargmann-Michel-Telegdi equation [34]. The associated
color currents of the particles are obtained from

JμaðxÞ ¼ g
Z

dΦðpÞ
Z

dc
Z

dscaðpμ þ Sμν∂νÞfðx;p;c; sÞ;

ð3Þ

where Sμν is the spin tensor and dΦðpÞ is the usual Lorentz
invariant phase space. The invariant measures for color and

spin space are dc and ds, respectively. The invariant
measures are given by [35]

dΦðpÞ ≔ d4p
ð2πÞ3Θðp0Þδðp2 −m2Þ; ð4Þ

dc ≔ d8c cRδðcacbδab − q2Þδðdabccacbcc − q3Þ; ð5Þ

ds ≔ d4s cSδðsμsμ þ 2s2ÞδðpμsμÞ; ð6Þ

where q2, q3, s2 are Casimir invariants [36]. The factors cS
and cR ensure that spin and color measures are normalized
to unity. We have set the gauge group to be SUð3Þ and for
spin to be SUð2Þ. The integration over phase space can be
done using the relation between the spin vector and spin
tensor

Sμν ¼ −
1

m
ϵμνρσpρsσ; ð7Þ

where ϵ0123 ¼ 1. There is a one-to-one correspondence
between classical color factors ca and the generators of the
gauge group and similarly for spin. Therefore the invariants
q2, q3, and s2 are defined through the traces of the
generators of the gauge group

TrðTaTbÞ ¼ C2δ
ab; ð8Þ

where for SUðNÞ the quadratic Casimir C2 ¼ N in the
adjoint representation and C2 ¼ 1=2 in the fundamental.
Thus, properties of integration over classical phase spaces
are equivalent to traces of color factors, namelyZ

dc ca ¼
Z

ds sμ ¼ 0;Z
dc cacb ¼ C2δ

ab;Z
ds sμsν ¼ −

2

3
s2
�
ημν −

pμpν

m2

�
: ð9Þ

The last equalities express the fact that c2 and s2 are
constants of the motion. For spin, the last equality is
equivalent to the trace of the spin tensor and s2 is
proportional to the eigenvalue of the Casimir operator
[37,38]. More generally, the projectors in parenthesis will
depend on the matter content [2].
We may evaluate the currents of Eq. (3) iteratively by

assuming a perturbative expansion of fðx; p; c; sÞ in
powers of the coupling constant g around the equilibrium
state fðp0Þ, where the distribution depends only on the
energy p0 (see Ref. [39] for review of this approach). We
allow the equilibrium distribution to be either Bose-
Einstein (f−ðp0Þ) or Fermi-Dirac (fþðp0Þ) so strictly
speaking this approach is semiclassical. For QCD the
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relation between color currents and thermal currents in the
high temperature approximation (hard thermal loops) is
conveyed by

JaμðxÞ ¼ Πab
μνAbν þ 1

2
Πabc

μνρAbνAcρ þ…; ð10Þ

where the currents Πa1���an
μ1���μn thus obtained match those

obtained in the high temperature limit of QCD [18,40].
In Ref. [9], we proposed to obtain thermal currents by

taking the classical limit of a regulated off-shell current in
the forward limit adapting the KMOC formalism. Let us
briefly recap the main points. The forward limit is, in
general, singular so a regularization scheme is required.
Here, it is understood as discarding diagrams with a zero
momentum internal edge [41]. Let S be the set of those
diagrams and letF be the set of all diagrams contributing to
the amplitude, then the regularized current is defined by

Anðp; k1; ;…; kn; pÞ ≔
X

G∈FnS
dðGÞ; ð11Þ

where dðGÞ is a rational expression of the form
NðGÞ=DðGÞ. Denoting by k ≔ ðk1;…; knÞ the n-tuple of
external off-shell momenta and, with the understanding that
the amplitude is computed in the forward limit, we some-
times write Anðp; kÞ. The classical limit is obtained as
follows: Compute the Laurent expansion in powers of ℏ of
the nþ 2 current Anðp; k1;…; kn; pÞ where the momenta
of the particles 1;…; n is considered soft and off shell
(k2i ≠ 0), while massive particles carrying momenta p are
on shell (p2 ¼ m2). Soft momenta scale with ℏ, i.e.,
k → ℏk, implementing the distinction between momentum
and wave number of a particle, which is an important step
in the KMOC formalism. In practice the current can be
computed, e.g., from Feynman graphs (see Fig. 1). Recall
that we are using units in which kB ¼ c ¼ 1 but keeping
ℏ ≠ 1 since we are interested in the classical limit. We
adopt the convention that our classical results depend on
the dimensionless coupling g ¼ ḡ

ffiffiffi
ℏ

p
and e ¼ ē=

ffiffiffi
ℏ

p
, and

that the external momenta is associated to wave numbers.
Suppressing color and Lorentz indices the classical limit of
the current is given by

Ānðp; kÞ ¼ bTrðlim
ℏ→0

Anðp;ℏkÞÞ; ð12Þ

where the trace is defined by

bTrð•Þ ≔ �
ℏn−2Trð•Þ QCD

Idð•Þ QEDand gravity
; ð13Þ

where Id is the identity operator and the ℏn−2 is required on
dimensional grounds. We then have a simple relation
between thermal currents and the classical limit [42]

ΠnðkÞ ¼
Z

dΦðpÞfðp0ÞĀnðp; kÞ; ð14Þ

where fðp0Þ is the distribution function at equilibrium. If
we are interested in fermions we will define the distribution
function with a minus sign due to the presence of a fermion
loop. This relation represents a map between the classical
limit and the high temperature in the forward limit [17].
In Secs. III and IV we will add two more cases where
Eq. (14) holds.
Let us briefly mention that color factors in calculations

are defined through

hpijCajpji ≔ ðCaÞji ¼ ℏðTaÞji ; ð15Þ

where Ca are operators that realize the Lie algebra of the
gauge group

½Ca;Cb� ¼ iℏfabcCc: ð16Þ

Color charge operators can be explicitly derived from the
Noether procedure (see Secs. 2 and 4 of Ref. [43]).
Classical color charges ca ≔ hψ jCajψi are obtained as
expectation values of those operators taken from appro-
priate coherent states jψi. Using these estates, color charge
operators satisfy the important property (shown in
Appendix A of Ref. [43]) of the factorization

hψ jCaCbjψi ¼ hψ jCajψihψ jCbjψi þOðℏÞ; ð17Þ

so classical color charges commute.

III. COLOR: THE BIADJOINT SCALAR

The field theory Lagrangian of the model is given by
[27,44]

LBA ≔ LBAðφ; ∂φÞ ¼
1

2
∂μφ

aα
∂
μφaα −

m2

2
φaαφaα

þ y
3!
fabcf̃αβγφaαφbβφcγ; ð18Þ

where m is the mass and y the coupling constant. The
biadjoint scalar field φaα transforms under the adjoint
representation for each factor of its globally symmetry
group G × G̃. The Lie algebra for each factor has the form

FIG. 1. Regulated off-shell current in the forward limit. The
blob represents a sum over tree-level Feynman diagrams where
diagrams generating a zero-momentum internal edge are sup-
pressed. Wavy lines represent off-shell outgoing soft particles.
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½Ta; Tb� ¼ ifabcTc and the adjoint representation is given
by its structure constants, i.e., ðTa

AÞbc ¼ −ifabc.
Throughout we use greek indices for the group G̃.
Before developing a kinetic theory for biadjoint scalars
let us briefly discuss how these are computed from the
KMOC formalism.

A. Off-shell currents for biadjoint scalars

We consider the theory in d ¼ 6 − 2ϵ dimensions, where
the biadjoint scalar can be renormalized with a dimension-
less coupling. We will keep the same definition of color
factors in the adjoint representation as in Eq. (15) so color
factors have dimensions of ℏ and, as it should be, they are
absent in the classical limit. Since the action has units [45]
of ML, in d ¼ 6 the field φaα has dimensions

ffiffiffiffiffiffiffiffiffiffiffiffi
M=L3

p
so

the dimensionful coupling ȳ has units of 1=
ffiffiffiffiffiffiffiffi
ML

p
, and

therefore the dimensionless coupling scales as
ffiffiffi
ℏ

p
ȳ. Then,

thermal currents are obtained through Eq. (14) with the
trace bTrð•Þ now defined as

bTrð•Þ ≔ Trð•Þ eTrð•Þ; ð19Þ

where it is understood that first and second traces are
referred to the untilded and tilded color factors, respec-
tively. This adds another instance of Eq. (13). Notice
however that for a general representation R [46]

TrðTa
RT

b
RT

c
RÞ ¼ dabcR þ i

2
fabcI2ðRÞ; ð20Þ

where I2ðRÞ is the index of the representation. Since in the
adjoint representation dabcR ¼ 0, classical phase space
integration is reproduced through the replacement fabc →
dabc at the end of the calculation (see Appendix B).

1. Example

The 2-point off-shell current in the regulated forward
limit can be obtained from the trivalent diagrams shown in
Fig. 2 and their permutations. The contributing diagrams
coincide with the half-ladders that appear in the forward
approach to thermal currents [47]. Using momentum
conservation and renaming the independent momentum
by k, a simple calculation gives

iAδd;α1a1;α2a2;ϵeðp;ℏkÞ ¼ iy2
	
ðfδα1α3fϵα2α3fcda1fcea2 − fδα2α3fϵα1α3fcda2fcea1Þ 1

ℏp · k

þ 1

4
ðfδα2α3fϵα1α3fcda2fcea1 þ fδα1α3fϵα2α3fcda1fcea2Þ k2

ðp · kÞ2


þOðℏÞ; ð21Þ

where the seemingly singular term in the first line vanishes
upon computing the trace. Hence, calculating the trace we
obtain

Āa1a2;α1α2ðp; kÞ ¼ y2C2
2δ

a1a2δα1α2
1

2

k2

ðp · kÞ2 : ð22Þ

The squared retarded propagator has been left implicit
and can be recovered by the analytic continuation
k0 → k0 þ io, where o is a small positive number. Using
now Eq. (14) and the integrals computed in Appendix A
(with f−ðp0Þ) we find that in the high temperature limit
the 2-point current reads

Πa1a2;α1α2ðkÞ ¼ δa1a2δα1α2
C2
2y

2

2

T2

96π

�
k20
jkj2 − 1

�

×
	
−2þ k0

jkj log
� jkj þ k0 þ io
−jkj þ k0 þ io

�

; ð23Þ

which agrees with cubic theory in Ref. [48]. In the limit
where k0 ≪ jkj we have

Πa1a2;α1α2ðkÞ ≈ δa1a2δα1α2
C2
2y

2

2

T2

96π

�
2 − iπ

k0
jkj

�
; ð24Þ

where the imaginary part corresponds to Landau
damping.

B. Schwinger-Keldysh for biadjoints and kinetic theory

We proceed now to develop a classical kinetic theory for
biadjoint scalars along the lines of the Schwinger-Keldysh
worldline approach by Mueller-Venugopalan [6]. Suppose
that we are interested in the description of the time
evolution of the matrix density operator

ρðtfÞ ¼ Uðtf; tiÞρðtiÞUðti; tfÞ; ð25ÞFIG. 2. Diagram that contribute for 2-point current.
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where Uðt; t0Þ is the evolution operator with ti and tf

denoting the initial and final times, respectively. Following
the usual Schwinger-Keldysh approach [49] we double the
degrees of freedom and consider the difference

L ¼ LBA;1ðφ1; ∂φ1Þ − LBA;2ðφ2; ∂φ2Þ; ð26Þ

where the Lagrangians LBA;1ðφ1; ∂φ1Þ and LBA;2ðφ2; ∂φ2Þ
are associated with the upper and lower branches of the
contour shown in Fig. 3. Now, using a quantum/back-
ground (φi → φ̄i þ φi) expansion leads to a quadratic
action of the form

Lð2Þ ¼ 1

2
φ̄aα
1 ð−δaαδbβð∂2 þm2Þ þ yφ̂aα;bβ

1 Þφ̄bβ
1

−
1

2
φ̄aα
2 ð−δaαδbβð∂2 þm2Þ þ yφ̂aα;bβ

2 Þφ̄bβ
2 ; ð27Þ

where φ̂aα;bβ
i ≔ fabcf̃αβγφcγ

i . Hence the particle matrix-
valued Hamiltonian associated with each Lagrangian can
be read off from Eq. (27)

Hi ¼
1

2
½δaαδbβð−p2

i þm2Þ − yφ̂aα;bβ
i �: ð28Þ

Notice that the total Lagrangian (27) has a diagonal matrix
structure with respect to the indices of φaα

i in addition to the
matrix structure due to color indices.
Its diagonal form implies that the path integral repre-

sentation of the dressed propagator [50] on the Schwinger-
Keldysh contour is simply

GΩ ≔ GΩðxi1; xf1; xi2; xf2;φ1;φ2Þ
¼ G1ðxi1; xf1;φ1ÞG2ðxi2; xf2;φ2Þjxf

1
¼xf

2

; ð29Þ

where phase space variables w evaluated at initial and final
times are written as wðtiÞ ¼ wi, wðtfÞ ¼ wf, respectively.
Here the variables x1, x2 describe upper and lower contours
with the boundary condition xf1 ¼ xf2 . Inserting a worldline
path integral representation for each dressed propagator
then leads to

GΩ ¼
Z

D½e1; e2�
volðGaugeÞ

Z
D½x1; x2�

Z
D½p1; p2�TeiðS1−S2Þ;

ð30Þ

where T denotes time ordering and D½w1; w2� ≔ Dw1Dw2.
Hence, after introducing complete sets of (initial) states,
we find that the evolution of the matrix density operator
ρf ≔ hxf1 jρðtfÞjxf2i is given by

ρfΩ ≔
Z

d4xi1

Z
d4xi2ρðxi1; xi2ÞGΩ; ð31Þ

which is to be understood as the dressed propagator
evaluated over the Schwinger-Keldysh contour Ω (see
Fig. 3) weighted by the density matrix. Closing the contour
leads to the real time effective action in Ref. [6]. This
definition is a specialization of the QFT case applied to
worldlines, see, e.g., [7,8,52].
In the following we will introduce the auxiliary variables

ψa and ϕα to replace time ordering in path integrals
following Ref. [53], where the interested reader can find
details. The worldline action in phase space for the
biadjoint scalar in real time τ is

SBA ¼
Z

dτ½pμ _xμ þ iψ̄a _ψ
a þ iϕ̄α

_ϕα − eH − aJ − ã J̃�;

ð32Þ
where H; J; J̃ denote first class constraints

H¼1

2
ð−p2þm2þyCaφaαðxÞC̃αÞ;

Ca¼−ifabcψ̄bψc; C̃α¼−if̃αβγϕ̄βϕγ; ð33Þ

J ¼ ψ̄aψ
a − s; J̃ ¼ ϕ̄αϕ

α − s̃; ð34Þ

which we identify with the particle Hamiltonian, the color
charges and the particle current, respectively. To avoid
cluttered expressions we define P ≔ ðpμ; iψ̄a; iϕ̄αÞ, X ≔
ðxμ;ψa;ϕαÞ and group together the first class constraints
into eHt, where e ≔ ðe; a; ãÞ and H ≔ ðH; J; J̃Þ. Here At

denotes transpose of A [54]. In condensed notation the
worldline action is then

SBA ≔
Z

dτðP _Xt − eHtÞ: ð35Þ

We may now introduce color variables that exchange
time ordering by an additional integration over auxiliary
variables ψ ;ϕ. The dressed propagator then reads [55]

GΩ½Xi
1;X

f
2;φ1;φ2� ¼

Z
D½e1; e2�
volðGaugeÞ

Z
D½X1;X2�

×
Z

D½P1;P2�eiðSBA;1−SBA;2Þ: ð36Þ

FIG. 3. Representation of the Schwinger-Keldysh path. The
small vertical line at tf does not contribute to the path integral.
Phase-space variables in the upper contour and lower contour are
labeled as w1 and w2, respectively.
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Setting e ¼ 2T, where T is the so-called Schwinger proper
time, produces the usual representation of the dressed
propagator, but the message of Ref. [6] is to keep the
einbein unfixed to perform the path integral, which we will
also do here. Hence the path integral representation of the
effective action is

ΓΩ½φ1;φ2�¼
Z

dXi
1

Z
dXi

2ρðXi
1;X

i
2Þ
Z

D½e1;e2�
volðGaugeÞ

×
Z

D½X1;X2�
Z

D½P1;P2�eiðSBA;1−SBA;2Þ; ð37Þ

where dX ≔ d4xdψdψ̄dϕdϕ̄. Now we introduce
Schwinger-Keldysh coordinates

zR ≔
1

2
ðz1 þ z2Þ; zA ≔ z1 − z2; ð38Þ

for all phase-space coordinates. We interpret zA as a
quantum degree of freedom measured in units of ℏ. We
can then obtain the so-called truncated Wigner approxi-
mation [56] by expanding in powers of ℏ

SΩ;BA ¼
Z

dτðPR
_Xt
A þ PA

_Xt
R − eRHt

A − eAHt
RÞ; ð39Þ

where we have kept orders up to OðzAÞ and we have
defined the following quantities:

HR ¼
�
1

2
ð−p2

R þm2 þ yCa
Rφ

aα
R C̃α

RÞ; JR; J̃R

�
;

HA ¼
��

−pA · pR þ y
1

4
xμAC

a
R∂μφ

aα
R C̃α

R

�
;

ψ̄Aaψ
a
R þ ψ̄Raψ

a
A; ϕ̄Aαϕ

α
R þ ϕ̄Rαϕ

α
A

�
: ð40Þ

Notice the absence of mixing terms involving ψ̄b
Rψ

c
A or

ϕ̄β
Rϕ

γ
A, which vanish due to the antisymmetry of the

structure constants. Using the equations of motion we
can rewrite the action as

SΩ;BA ¼ Pi
R · Xi;t

A − eAHt
R −

Z
dτ

�
_PR þ ∂H

∂Xt
A

�
Xt
A

þ
Z

dτPA

�
_Xt
R −

∂H
∂PA

�
; ð41Þ

where we notice that the boundary terms obtained through
integration by parts produce the Wigner function

WðXi
R;P

i
RÞ ≔

Z
dXi

Ae
iPi

R·X
i
Aρ

�
Xi
R þ 1

2
Xi
A;X

i
R −

1

2
Xi
A

�
:

ð42Þ

Finally, the Schwinger-Keldysh real-time effective action
for the biadjoint scalars is

ΓΩ ¼
Z

dXi
R

Z
dPi

RWðXi
R;P

i
RÞ

Z
DeR

Z
DXR

Z
DPR

×
Y
τ

δðP2
R −m2ÞδðJRÞδðJ̃RÞδð _PR − _̄PÞδð _XR − _̄XÞ;

ð43Þ

where X̄ and P̄ satisfy classical equation of motion and P2
R

can be read off from Eq. (40). Following [6], the Liuoville’s
equation then reads

d
dτ

WðX;PÞ ¼
�
_xμ

∂

∂xμ
þ _pμ ∂

∂pμ þ _ψa ∂

∂ψa þ _̄ψa ∂

∂ψ̄a

þ _ϕa ∂

∂ϕa þ _̄ϕ
a ∂

∂ϕ̄a

�
WðX;PÞ ¼ 0 ð44Þ

for some given initial conditionWðXi
R;P

i
RÞ. Let us mention

that in the field theory case, the appearance of the on-shell
delta function is required to conserve momentum at each
vertex [7].

C. Vlasov-type equation for biadjoint scalars

For our purposes it will be more convenient to work
directly with the classical limits of the color charges Ca and
C̃α instead of the auxiliary ones. In the classical limit the
charges defined in Eq. (33) correspond to classical color
charges for large representations in a coherent state basis.
These are controlled by s and s̃ in (34) as can be seen by
performing explicit path integration over auxiliary variables
after gauge fixing (see Appendix A of [57]). Therefore in
the classical limit we may simply set

Ca → ca; C̃α → cα: ð45Þ

We can derive classical kinetic equations from the action
(32) setting a ¼ ã ¼ 0 and e ¼ −1 (so p ¼ _x). We obtain

− _pμ þ y
2
cac̃α∂μφaα ¼ 0; ð46Þ

i _ψa þ y
2

∂Cc

∂ψ̄a
φcαC̃α ¼ 0; ð47Þ

i _̄ψa −
y
2

∂Cc

∂ψa
φcαC̃α ¼ 0; ð48Þ

with an additional pair of equations for ϕα. Since
_Ca ¼ −ifabcð _̄ψbψc þ ψ̄b _ψcÞ, we may pack together the
last two equations leading to

_ca ¼ y
2
fabccbc̃αφcα; ð49Þ
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where we have used the Jacobi identity. The additional
equation for c̃α can be obtained similarly. Therefore the
Liouville’s equation df=dτ ¼ 0 for the semiclassical dis-
tribution function fðx; p; c; c̃Þ leads to the Vlasov-type
equation for biadjoint scalars

�
pμ ∂

∂xμ
þ 1

2
ycac̃α∂μφaα ∂

∂pμ þ
1

2
yfabccbc̃αφcα ∂

∂ca

þ 1

2
yfαβγ c̃βcaφaγ ∂

∂c̃α

�
f ¼ 0: ð50Þ

Perturbative thermal currents can be obtained from

JaαðxÞ ¼ y
Z

dΦðpÞ
Z

dc
Z

dc̃ cac̃αfðx; p; c; c̃Þ; ð51Þ

where the color phase space invariant measure is defined
in Eq. (5).

1. Example

Let us check the consistency of the semiclassical kinetic
theory just constructed for the 2-point thermal current.
Expanding the distribution function around equilibrium we
have

fðx; p; c; c̃Þ ¼ fð0Þðp0Þ þ yfð1Þðx; p; c; c̃Þ þ…; ð52Þ

where fð0Þðp0Þ ¼ 1=ðeβp0 − 1Þ is the Bose-Einstein distri-
bution function and β ¼ 1=T. Moving to Fourier space and
plugging Eq. (52) into (50) we find

f̃ð1Þðk; p; c; c̃Þ ¼ −cac̃α
kμ

k · p
∂fð0Þ

∂pμ φ̃aαðkÞ; ð53Þ

where f̃ð1Þðk; p; c; c̃Þ denotes the Fourier transform of
fðx; p; c; c̃Þ. Inserting this equation into the definition of
the current we obtain

J̃aα¼y2

2

Z
dΦðpÞ

Z
dc

Z
dc̃cac̃αcbc̃βfð0Þðp0Þ

k2

ðk ·pÞ2φ
bβ;

ð54Þ

which leads to

Πab;αβðkÞ ¼ δabδαβ
C2
2y

2

2

Z
dΦðpÞfð0Þðp0Þ

k2

ðk · pÞ2 ; ð55Þ

where we have used the identities in Eq. (9). This is
reproduces exactly the result we obtained from QFT
in Eq. (22).

IV. SPIN

Classical color charges and spin vectors have in common
that they may be associated with expectation values of
certain operators with respect to coherent states. Indeed,
provided one is able to build coherent states that furnish an
irreducible representation of the Lie group, say SUðNÞ,
then the following properties hold [58]

hψ jAjψi ¼ finite; ð56Þ
hψ jABjψi ¼ hψ jAjψihψ jBjψi þ…; ð57Þ

where the ellipsis means terms that do not contribute in the
classical limit. In particular, one may use the Schwinger-
boson formalism for SUðNÞ to build explicit realizations of
these states and show the above properties. This construc-
tion was used in Ref. [43] to describe colored observables
and for spin in Ref. [59]. Therefore one expects that the
dynamics of color charges and spin share some similarities
as studied in Refs. [60–62].
The description of classical spin may also be done by

introducing (integer) higher-spin massive particles
described by symmetric traceless rank-s tensor fields
φa1���as
s [63], where for brevity we will suppress its indices

henceforth. Lorentz generators also carry (symmetrized)
sets of indices, which we will also suppress but use matrix
notation Mμν to indicate that the contraction of indices is
understood as matrix multiplication. Let εðpÞ ≔ εðs; pÞ be
the polarization tensors of the massive particle with
momentum p. Denoting by εðp̃Þ · εðpÞ the contraction
of the tensor indices of the polarization tensors, the relation
between classical spin tensors and Lorentz generators Mμν

is given by the identities

εðp̃ÞMμνεðpÞ ¼ Sμνεðp̃Þ · εðpÞ þ…;

εðp̃ÞfMμν;MρσgεðpÞ ¼ SμνSρσεðp̃Þ · εðpÞ þ…; ð58Þ
where fA;Bg ≔ 1

2
ðABþ ABÞ and p̃ ≔ p − q. We refer the

interested reader to Ref. [31] for details on the spin
formalism. The ellipsis denotes terms that do not contribute
in the classical limit. The spin vector and spin tensor are
related through Eq. (7). The spin vector is constrained by
the so-called covariant spin supplementary condition

pμSμν ¼ 0: ð59Þ

A. Spinning off-shell currents

Let Fμν be the usual Maxwell field strength and Dμ the
corresponding covariant derivative. The Lagrangian density
of the higher-spin scalar electrodynamics is given by [31]

LEM¼−
1

4
FμνFμνþD†

μφ̄sDμφs−m2φ̄sφsþeFμνφ̄sMμνφs;

ð60Þ
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where φs are higher-spin fields. Using the double copy, this
theory has been used recently in the context of scattering
amplitudes to describe the post-Minkowskian two-body
problem of spinning particles in gravity [64,65]. Classical
currents including spin contributions may be computed
from Eq. (14) with bTrð•Þ now defined as

bTrð•Þ ≔ Trsð•Þ; ð61Þ

where by construction satisfies the same properties of phase-
space integration over classical spin given in Eq. (9): e.g.,
Tr0ð•Þ ¼ Idð•Þ is equivalent to R ds ¼ 1 classically. We can
now use Eq. (14) to perform calculations. Notice that in the
forward limit we may set εðpÞ · εðpÞ ¼ 1.
For instance, consider the 2-point current (see Fig. 4). It

receives contributions from the same diagrams as in scalar
QED but has, in addition, contributions coming from the
last term in Eq. (60). The off-shell current has the structure

Aμνðp; kÞ ¼ εsðpÞ · Aμνðp; kÞ · εsðpÞ: ð62Þ

However, from the properties of the trace (or equivalently
from the phase integration) we see that only those terms
appearing quadratically may lead to meaningful contribu-
tions. Keeping this in mind, the current now can be written
as follows:

Aμνðp; kÞ ¼ Aμν
0 ðp; kÞ þ Aμν

s ðp; kÞ; ð63Þ

where the scalar part is the current in scalar QED

iAμν
0 ðp; kÞ ¼ 2ie2

	
ημν −

ðkμ þ 2pμÞðkν þ 2pνÞ
2ð2k · pþ k2Þ

−
ðkμ − 2pμÞðkν − 2pνÞ

2ðk2 − 2k · pÞ


; ð64Þ

which in the classical limit leads to

Aμν
0 ðk;pÞ≔ 2e2Π̄μν

0 ¼ 2e2
�
ημν −

pμkν þpνkμ

k ·p
þ k2pμpν

ðk ·pÞ2
�
:

ð65Þ

On the other hand, the spin-dependent contribution reads

iAμν
s ðp;kÞ¼−2ie2

�	ð2pþkÞμ
2p ·kþk2

þ ð2p−kÞμ
−2p ·kþk2



iðk ·MÞν

−μ↔ νþ2kαkβ

�
MαμMβν

2p ·kþk2
þ MβνMαμ

−2p ·kþk2

��
;

ð66Þ

where kμMμν ≔ ðk ·MÞν. Now, keeping only contributions
quadratic in spin and using Eq. (58), we find that in the
classical limit [66]

Aμν
s ðp; kÞjS2 ≔ 2e2Π̄μν

s ¼ 2e2
k2

ðp · kÞ2 ðk · SÞ
μðk · SÞν; ð67Þ

which satisfies the Ward identity kμA
μν
s ðp; kÞjS2 ¼ 0. To

reach this form we have also used the usual algebra ofMμν.
We will see in Sec. IV B that this matches the result
computed from a classical perspective. Computing the
trace, or equivalently the phase space integration, we obtain

TrsðAμν
s ðp; kÞÞ ¼ −

4e2s2

3
k2
�

1

m2
Π̄μν

0 þ k2ημν − kμkν

ðk · pÞ2
�
:

ð68Þ

Therefore the off-shell current in the classical limit includ-
ing spin contributions is

Āμνðp; kÞ ¼ 2e2
	�

1 −
2s2k2

3m2

�
Π̄μν

0 −
�
2s2k2

3

�
N̄μν

ðk · pÞ2


;

ð69Þ

where Nμν ≔ k2ημν − kμkν.
A few comments are in order. Recall that we still need to

be integrate over phase space. Notice that the numerator
Nμν in second term in parenthesis also appears in the
renormalization of QED. Let us perform the analytic
continuation k0 → k0 þ io as usual and consider the high
temperature regime. Since Nμν is independent of the
momentum p we require the integral

Z
dΦðpÞf

ð0Þ
þ ðp0Þ
ðk ·pÞ2 ¼−

1

16π2k2

	
1

ϵ
þ k0
jkj log

� jkjþk0þ io
−jkjþk0þ io

�

þ logðβ2μ2Þ


þOðϵÞ; ð70Þ

which has been evaluated in d ¼ 4 − 2ϵ (see Appendix A).
The temperature-independent divergence cancels after sub-
tracting the zero temperature contribution while the temper-
ature dependent log may be combined with the logðm2=μ2Þ
in the renormalization of Πμν. Notice also that Eq. (69) is
strictly valid only where m ≠ 0. The reason is that the spin
supplementary condition pμSμν ¼ 0 can no longer be used
as a condition that fixes Sμν uniquely as the spin tensor in

FIG. 4. Graphs that contribute to the 2-point current. Besides
the usual interactions in scalar QED, the higher-spin model
allows interactions proportional to Lorenz generators.
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the rest frame of the particle since there is no such frame for
massless particles. Instead, for massless particles one can
choose a frame characterized by a timelike vector uμ and set
pμ → uμ in Eq. (59) [67,68].

B. Comparison with semiclassical kinetic theory

In order to check the validity of our approach let us now
consider a classical perspective. The generic form of
the collisionless relativistic Boltzmann-Vlasov equation
reads [69,70]

pμ ∂f
∂xμ

þ e
∂ðFμfÞ
∂pμ ¼ 0; Fμ ¼Fμνpνþ

1

2

∂Fνρ

∂xμ
Sνρ: ð71Þ

This equation can be derived within Wigner function
formalism applied for spin 1

2
particles [38,71]. Now, as

in the spinless case, let us perturb the distribution function
f around equilibrium

f ¼ fð0Þðp0Þ þ efð1Þðx;p;SÞ þ e2fð2Þðx;p;SÞ þ…; ð72Þ

where fð0Þðp0Þ is the Fermi-Dirac distribution function. We
are interested in computing the associated current

JμðxÞ ¼ e
Z

dΦðpÞ
Z

ds ðpμ þ Sμν∂νÞfðx; p; SÞ: ð73Þ

Solving for the coupled system of Eqs. (71) and (73) in
momentum space, we obtain

f̃ð1Þðk; p; SÞ ¼ i
k · p

	
kμ

2
ðkνÃρ − kρÃνÞ ∂ðf

ð0ÞSνρÞ
∂pμ

þ ipνðkμÃν − kνÃμÞ ∂f
ð0Þ

∂pμ



: ð74Þ

Plugging this into Eq. (73) and using integration by parts
we can bring the current into the form

J̃μ;ð1ÞðkÞ ¼ −e2
Z

dΦðpÞ
Z

ds f̃ð0Þðp0Þ½Π̄μν
0 ðk; pÞ

þ Π̄μν
s ðk; pÞ�Ãν; ð75Þ

where the spin-dependent contribution is

Π̄μν
s ðk; pÞ ¼ k2

ðk · pÞ2 ðk · SÞ
μðk · SÞν; ð76Þ

and Π̄μν
0 ðk; pÞ is given in Eq. (65). This matches our results

obtained using classical limits of off-shell currents.

V. CONCLUSIONS

We have extended the scattering amplitudes approach of
Ref. [9] in two ways: We have considered thermal currents

for biadjoint particles and spin. To test its validity, we have
compared against computations based on iterative solutions
of classical kinetic equations finding agreement. The
semiclassical kinetic equations for biadjoints were derived
from the worldline approach in Sec. III following Mueller-
Venugopalan [6], who have shown that in the classical limit
kinetic equations follow from the Schwinger-Keldysh
effective action adapted to worldlines. For the case of spin
we have used the well-known Boltzmann-Vlasov equations
for spinning particles. On the amplitudes side, we have
modeled classical spin through a higher-spin generalization
of scalar QED.
Hard thermal loop actions can be computed from other

methods including the worldline approach as found a long
time ago [72,73]. Moreover, the worldline setting of
Ref. [6] suggests that these may also be derived from
the recently proposed worldline QFT approach [74–79].
Therefore it would be interesting to investigate whether
both thermal and classical observables can be unified in a
worldline framework. Having introduced spin into the
formalism of Ref. [9] the remaining task is to include
collision functions. These have been studied in the context
of classical transport in Refs. [80–82]. We leave this for
future work.
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APPENDIX A: MASSIVE PHASE-SPACE
INTEGRALS

We can parametrize the momentum p as p ¼
ðp0; jpj cos θ; jpj sin θ1d−2Þ, where 1d−2 is a unit vector
in d − 2 dimensions. Hence recalling that dΦðpÞ ≔
ddp=ð2πÞðd−1Þδðp2 −m2ÞΘðp0Þ we may write down the
measure as [86]

dΦðpÞ ¼ 1

ð2πÞd−1 dΩd−2dp0djpjdðcos θÞjpjd−2Θðp0Þ

× δðp2
0 − jpj2 −m2Þ sind−4 θ; ðA1Þ

where

Z
dΩn ¼

2πn=2

Γðn=2Þ : ðA2Þ

We are the interested in solving the family of integrals
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I�½a� ≔
Z

dΦðpÞ f
ð0Þ
� ðp0Þ
ðk · pÞa ; ðA3Þ

where fð0Þ� ðp0Þ ¼ 1=ðeβp0 � 1Þ and β ¼ 1=T. The simplest
case is the case where a ¼ 0. Performing a change of
variables x ¼ βp0 the result is proportional to the integral
of Z

∞

0

dx ðx2 − β2m2Þðd−3Þ=2f�ðx=βÞ ðA4Þ

so in the high temperature limit, we obtain

I−½0� ¼
Td−2

4πd=2
Γ½d=2 − 1�Lid−2ð1Þ; ðA5Þ

where Linð1Þ is the polylogarithm, which reduces to the
Riemann zeta function ζðd − 2Þ. We also have Iþ ¼
ð1 − 23−dÞI−½0�. The general case can be treated as follows.
Without loss of generality wemay choose k ¼ ðk0; jkj; 0d−2Þ
and perform the analytic continuation k0 → k0 þ io, hence
k · p ¼ k0p0 − jpjjkj cos θ þ iop0. Then, introducing the
change of variables α ¼ jpj=p0 we have

k · p ¼ p0ðk0 þ io − αjkj cos θÞ; ðA6Þ

and so we may perform the angular integral leading to

Z
1

−1
dðcos θÞ sind−4θ

ðk0 þ io − αjkj cos θÞa

¼
ffiffiffi
π

p
Γ½d=2 − 1�

Γ½d=2 − 1=2�ðk0 þ αjkjÞa
× 2F1ða; ðd − 2Þ=2; d − 2; BðαÞÞ; ðA7Þ

where d > 2 and 2F1ða; b; c; xÞ is the Gauss hypergeometric
function. Its argument is

BðαÞ ≔ 2
αjkj

k0 þ ioþ αjkj : ðA8Þ

Now solving the integral overα by using theDirac-delta and a
change of variables x ¼ βp0, we find

I�½a� ¼ β2þa−d ð4πÞð1−dÞ=2
Γ½ðd − 1Þ=2�

×
Z

∞

0

dx f�ðp0=βÞx−a
ðx2 − β2m2Þðd−3Þ=2
ðk0 þ ffiffiffi

y
p jkjÞa

× 2F1ða; ðd − 2Þ=2; d − 2; Bð ffiffiffi
y

p ÞÞjy¼ðx2−β2m2Þ=x2 ;

ðA9Þ

which is analytically regularized with d ¼ n − 2ϵ for n > 2.
This integral is in general hard to evaluate analytically.
However, we can use this representation to obtain an
expansion in powers of λ ¼ βm and take the leading order.
It is easy to check that when a ¼ 0 this integral reduces to
Eq. (A4). Other cases can be obtained similarly. For instance,
the integral is finite for d ¼ 4 and a ¼ 1, so using

2F1ð1; 1; 2; Bð
ffiffiffi
y

p ÞÞjy¼ðx2−β2m2Þ=x2

¼ 1

2

jkj þ k0
jkj log

� jkj þ k0 þ io
−jkj þ k0 þ io

�
þOðλ2Þ; ðA10Þ

one obtains standard results in the literature [87]. For a ¼ 2
we consider two cases in themain text. (This integral has been
studied, e.g., in Ref. [88] using Mellin-Barnes techniques in
the limit jkj → 0. Our results are in agreement.) They are

Iþ½2� ¼

8>>><
>>>:

1
96πjkj2β2

	
−C1 þ k0

C2jkj log
�

jkjþk0þio
−jkjþk0þio

�

þOðϵÞ; n ¼ 6

− 1
16π2k2

	
1
ϵ þ k0

jkj log
�

jkjþk0þio
−jkjþk0þio

�
þ logðβ2μ2Þ



þOðϵÞ; n ¼ 4

; ðA11Þ

where μ is some renormalization scale. Here C2 ¼ 2 and C1 ¼ 1 for fþðp0Þ and C2 ↔ C1 for f−ðp0Þ.

APPENDIX B: 3-POINT EXAMPLE

We can compute the 3-point current in a similar fashion considering all permutations of the diagrams in Fig. 5 leading to

Āa1α1;a2α2;a3α3ðp; kÞ ¼ C2
2

y3

32
fa1a2a3fα1α2α3

X
σ∈Cyclic

�
k2σ1k

2
σ2

ðp · kσ1Þ2ðp · kσ2Þ2
þ k2σ1k

2
σ1

ðp · kσ1Þ2ðp · kσ2Þðp · kσ3Þ
�
; ðB1Þ

where Cyclic is the set of cyclic permutations of f1; 2; 3g. This matches the same kinematics of the simple cubic theory as
can be easily checked. The classical result based on Eq. (50) can be obtained by an additional iteration of fðx; p; c; c̃Þ. As
usual, there are seemingly singular terms in the classical limit which vanish after computing the trace. Using this result we
may implement a “classical double copy” replacement [89] with y → g and
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fα1α2α3 → ½ημ1μ2ðk1 − k2Þμ3 þ ημ2μ3ðk2 − k3Þμ1
þ ημ3μ1ðk3 − k1Þμ2 �: ðB2Þ

Upon matching conventions this recovers an ansatz for the
logarithmic dependence in temperature T of the 3-point
function in QCD proposed in Ref. [90].
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