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Transverse momentum-dependent parton distribution functions (TMDs) provide three-dimensional
imaging of the nucleon in momentum space. With its fundamental importance in understanding the spin
structure of the nucleon, the precise measurement of TMDs is considered one of the main physics topics of
the proposed Electron-Ion Collider in China (EicC). In this paper, we investigate the impact of future semi-
inclusive deep inelastic scattering (SIDIS) data from EicC on the extraction of TMDs. Taking the Sivers
function as an example, we revisited the world SIDIS data, which serves as the input for the simulated EicC
data. By performing a combined analysis of the world data and the EicC simulated data, we quantitatively
demonstrate that the Sivers functions can be precisely determined for various quark flavors, especially for
sea quarks, in the region, x > 0.005, directly covered by the EicC.
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I. INTRODUCTION

Nucleons are the basic building blocks of more than 98%
of the visible matter in the Universe. Understanding the
nucleon structure in terms of the underlying quarks and
gluons degrees of freedom is a central issue in modern
nuclear and particle physics. Because of the nonperturba-
tive property of quantum chromodynamics (QCD) at
hadronic energy scales, it is still a challenging task to
directly evaluate nucleon structures from first principles
[1], although much progress has been made in recent years
[2–4]. The nucleon spin structures have received great
interest since the first measurement of polarized lepton-
nucleon deep inelastic scattering, which found the quark
spin only contributes a small fraction to the nucleon spin
[5,6] and triggered the so-called proton spin puzzle [7,8].

The remaining part of the nucleon spin is nowadays
attributed to the gluon angular momentum and the quark
orbital angular momentum, though one may have different
decomposition versions [9–12]. After more than 30 years of
efforts from both experimental and theoretical aspects,
the quark spin contribution is relatively well determined
[13–15], and the gluon spin part is also started being known
[16–19]. However, we have very rare knowledge of the
orbital motion of quarks and gluons, which requires three-
dimensional imaging of the nucleon.
Since quarks and gluons cannot be directly observed in

modern detectors, most analyses of hadron involved high
energy scatterings rely on the QCD factorization [20,21],
which approximates the cross section by the convolution
of perturbatively calculable short-distance scattering off
partons, including quarks and gluons, and universal long-
distance functions. The measurement of partonic structures
of the nucleon was pioneered by SLAC [22] via the
inclusive lepton-nucleon deep inelastic scattering (DIS)
process,

eðlÞ þ NðPÞ → eðl0Þ þ X; ð1Þ

where only the scattered lepton in the final state is detected
and X stands for the undetected hadronic system. The labels
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l, P, and l0 in parentheses represent the four-momenta of
corresponding particles. The large momentum transfer q ¼
l − l0 withQ2 ¼ −q2 mediated by a virtual photon (or some
other gauge boson) provides a hard scale Q ≫ ΛQCD,
which localizes the probe to “see” the partons in the
nucleon. The inclusive DIS cross section can be expressed
as the convolution of the lepton-parton hard scattering cross
section and the collinear parton distribution function (PDF)
fqðx; μÞ, which describes the density of finding a parton of
flavor q carrying a fraction x of the longitudinal momentum
of the parent nucleon with μ representing the factoriza-
tion scale.
In semi-inclusive DIS (SIDIS) process,

eðlÞ þ NðPÞ → eðl0Þ þ hðPhÞ þ X; ð2Þ

a final-state hadron is identified in coincidence with the
scattered lepton. In addition to the hard scale Q, which
localizes the probe as in the inclusive DIS, the transverse
momentum Ph⊥ of the hadron defined in the virtual photon-
nucleon frame provides an adjustable scale. When Ph⊥
is integrated or compatible with Q, the SIDIS process
effectively becomes a single-scale problem, and one can
apply the collinear factorization to approximate the cross
section as the convolution of the hard scattering cross
section, the collinear PDF fqðx; μÞ, and the collinear
fragmentation function Dq→hðz; μÞ, which describes the
probability density of a parton of flavor q fragmenting to
the hadron carrying longitudinal momentum fraction z.
When Ph⊥ ≪ Q, the SIDIS is a two-scale process, which is
sensitive to the intrinsic transverse momenta of partons, and
one should apply the transverse momentum dependent
(TMD) factorization to express the cross section as the
convolution of the hard scattering cross section, the TMD
PDF fqðx; k⊥; μÞ, and the TMD FF Dq→hðz; p⊥; μÞ, where
k⊥ and p⊥ represent the transverse momenta of the parton
with respect to the hadron. The SIDIS is one of the main
processes to measure TMD PDFs and hence, to provide
three-dimensional partonic structures of the nucleon in the
momentum space.
Taking the spin degrees of freedom into account, we can

learn about much richer nucleon structures, including the
correlation between parton transverse momentum and the
spin of the parton or the nucleon. At the leading twist, one
can define eight TMD PDFs for the nucleon, and only three
of them have collinear counterparts. The Sivers function
f⊥1Tðx; k⊥Þ, as one of the eight leading-twist TMD PDFs,
was originally introduced to explain transverse single spin
asymmetries in high energy scatterings [23,24]. It reflects
the correlation between quark transverse momentum and
the transverse spin of the nucleon. The Sivers function, as
well as the Boer-Mulders function [25], is a naively time-
reversal odd function and thus, was believed to vanish in
QCD for a long time [26]. Motivated by some model
calculation, it is found that the nonvanishing Sivers

function can arise from the final-state interaction in the
SIDIS process [27] or the initial-state interaction in the
Drell-Yan (DY) process [28]. This effect is formally from
the nontrivial Wilson line, which connects the quark field
operator at different spacetime points to ensure the color
gauge invariance [29]. It is further proven in perturbative
QCD factorization that the quark Sivers function in the
SIDIS process and the one in DY process only differ by
a sign,

f⊥1Tðx; k⊥ÞjSIDIS ¼ −f⊥1Tðx; k⊥ÞjDY; ð3Þ

which receives great interest. Precise measurement of the
Sivers function from both processes will provide an
important test of the perturbative QCD (pQCD).
During the last two decades, many SIDIS experiments

have been carried out by HERMES [30–32], COMPASS
[33–35], and JLab [36,37], for explorations of nucleon
TMD PDFs. The measured sizable target transverse single
spin asymmetry (SSA), usually referred to as the Sivers
asymmetry, can be interpreted at the leading twist via the
convolution of the Sivers function and the unpolarized
TMD FF, and indicates a nonzero Sivers function.
Although it is the mostly studied polarized TMD PDF,
the extractions of the Sivers function from global analyses
of the SSA data still have large uncertainties [38,39],
especially for sea quarks. The sign change prediction
was tested through the πN DY process [40] and the pp
collision with W=Z production process [41]. The data do
favor a sign flip of the Sivers function [42], but the large
uncertainties are not able to exclude nonflip cases and other
possibilities. All these pioneering experiments have pro-
vided valuable data and revealed rich information about the
Sivers function and more generally the three-dimensional
structures of the nucleon. However, our current knowledge
of the Sivers function is still far from a satisfactory level,
especially for sea quarks. Neither the shape of the function
is well determined, nor the sign is known for all flavors.
We are nowadays at the stage toward the precise

measurement of TMD PDFs. The multihall SIDIS program
at the 12 GeV upgraded JLab aims at the measurement at a
relatively large-x region, sometimes referred to as the
valence quark region. The Electron-Ion Collider (EIC)
[43,44] to be built at BNL has unique advantages to reach
the small-x region, down to about 10−4. The Electron-Ion
Collider in China (EicC) [45] was recently proposed as one
of the next-generation colliders in the World. It is designed
to deliver a 3.5 GeVelection beam colliding with a 20 GeV
polarized proton beam or a polarized 3He beam, as well as
several other kinds of ion beams. The ion beam can be
longitudinally or transversely polarized with 70% polari-
zation, and the electron beam is polarized with 80%
polarization. The instantaneous luminosity of ep collision
can reach 2 × 1033 cm−2 s−1. The precise measurement of
nucleon three-dimensional structures, especially the sea
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quark distributions, is one of the main physics goals at
EicC. The combination of the polarized proton beam and
the effectively polarized neutron beam and the capability
of particle identifications of pions and kaons allows a
complete separation of all light quark flavors [46]. The
kinematic coverage of EicC can fill the gap between JLab
and EIC. The combination of the three projects is expected
to provide complete three-dimensional imaging of the
nucleon, varying from low scale to high scale and from
large x to small x.
In this paper, we take the Sivers function as an example

to investigate the impact of the EicC three-dimensional
nucleon spin structure program on the determination of
TMD PDFs. We perform a global analysis of existing world
SIDIS SSA data, including the TMD evolution as the
baseline. The improvement of EicC is then estimated by
adding simulated pseudodata of semi-inclusive charged
pion and charged kaon productions from both ep and e3He
collisions. The paper is organized as follows. In Sec. II, we
briefly summarize the theoretical framework to extract the
Sivers function from SIDIS target transverse SSA data,
leaving some detailed formulas in Appendix A. The global
analysis of world data and the EicC projection are pre-
sented in Sec. III, followed by the summary in Sec. IV.

II. THEORETICAL FORMALISM

A. TMD factorization formula

We consider the SIDIS process (2) on a transversely
polarized nucleon. With the one-photon-exchange approxi-
mation, one can express the differential cross section as

dσðS⊥Þ
dxBdydzhdP2

h⊥dϕhdϕS
¼ σ0½FUU þ ϵ⊥αβSα⊥F

β
UT þ � � ��;

ð4Þ

where

σ0 ¼
α2

xByQ2

1 − yþ 1
2
y2 þ 1

4
γ2y2

1þ γ2

�
1þ γ2

2xB

�
; ð5Þ

and Sα⊥ represents the transverse polarization of the
nucleon. As commonly used in the SIDIS process, we
define the kinematic variables,

Q2 ¼ −q2 ¼ −ðl − l0Þ2;

xB ¼ Q2

2P · q
; y ¼ P · q

P · l
; zh ¼

P · Ph

P · q
;

γ ¼ 2xBM
Q

¼ MQ
P · q

;

where l is the incoming lepton momentum, l0 is the
outgoing lepton momentum, P is the incoming nucleon
momentum, Ph is the detected outgoing hadron

momentum, and M is the nucleon mass. The transverse
antisymmetric tensor is

ϵμν⊥ ¼ ϵμνρσ
Pρqσ

P · q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ; ð6Þ

with the convention ϵ0123 ¼ 1. Following the Trento con-
vention [47], we define the hadron transverse momentum
Ph⊥ and azimuthal angles in the virtual photon-nucleon
frame, as illustrated in Fig. 1. The ϕh is the angle from the
lepton plane to the hadron plane, and the ϕS is the angle
from the lepton plane to the transverse spin S⊥ of the
nucleon. These variables can also be expressed in Lorentz
invariant forms as

Ph⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν⊥ PhμPhν

q
; l⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν⊥ lμlν

q
;

cosϕh ¼ −
lμPhνg

μν
⊥

l⊥Ph⊥
; sinϕh ¼ −

lμPhνϵ
μν
⊥

l⊥Ph⊥
;

cosϕS ¼ −
lμS⊥νg

μν
⊥

l⊥S⊥
; sinϕS ¼ −

lμS⊥νϵ
μν
⊥

l⊥S⊥
;

where

gμν⊥ ¼ gμν −
qμPν þ Pμqν

P · qð1þ γ2Þ þ
γ2

1þ γ2

�
qμqν

Q2
−
PμPν

M2

�
: ð7Þ

The structure functions FUU and Fβ
UT are functions of

xB, zh, Ph⊥, and Q. For the convenience to apply the QCD
factorization, one usually expresses the structure functions
in the “Wþ Y” formalism [48],

FUUðxB; zh; Ph⊥; QÞ ¼ WUUðxB; zh; Ph⊥; QÞ
þ YUUðxB; zh; Ph⊥; QÞ; ð8Þ

lepton plane

hadron plane

x

z

y

FIG. 1. The Trento conventions of SIDIS kinematic variables.

TOWARD THREE-DIMENSIONAL NUCLEON STRUCTURES AT … PHYS. REV. D 106, 094039 (2022)

094039-3



Fβ
UTðxB; zh; Ph⊥; QÞ ¼ Wβ

UTðxB; zh; Ph⊥; QÞ
þ Yβ

UTðxB; zh; Ph⊥; QÞ: ð9Þ
The “W” term dominates the cross section in the small PhT
region, where the TMD factorization works, and the “Y”
term provides a matching to the collinear factorization
region at large PhT . In this study, we restrict to the small
PhT region and neglect the “Y” term. The resummation
formula of the “W” term is derived in the impact parameter
space via a Fourier transform,

WUUðxB; zh; Ph⊥; QÞ ¼
Z

d2b⃗
ð2πÞ2 e

−iq⃗⊥·b⃗W̃UUðxB; zh; b;QÞ;

ð10Þ

Wβ
UTðxB; zh; Ph⊥; QÞ ¼

Z
d2b⃗
ð2πÞ2 e

−iq⃗⊥·b⃗W̃β
UTðxB; zh; b;QÞ;

ð11Þ
where q⊥ ¼ Ph⊥=zh can be understood as the transverse
momentum of the virtual photon in the nucleon-hadron
back-to-back frame.
According to the TMD factorization, one has the

factorized expressions as

W̃UUðxB; zh; b;QÞ
¼ Hðμ; QÞ ⊗ f1ðx; b; μ; ζ1Þ ⊗ D1ðz; b; μ; ζ2Þ;
W̃β

UTðxB; zh; b;QÞ
¼ Hðμ; QÞ ⊗ bβMf⊥1Tðx; b; μ; ζ1Þ ⊗ D1ðz; b; μ; ζ2Þ; ð12Þ
with corrections suppressed by powers of q⊥=Q. The
Hðμ; QÞ is the hard factor describing the short-distance
scattering. In the calculation of the nucleon transverse SSA,
the hard factors cancel out between the denominator and
the numerator for fixed μ and Q, and hence, we do not
consider its effect in this work. f1ðx; b; μ; ζÞ, f⊥1Tðx; b; μ; ζÞ
and D1ðz; b; μ; ζÞ are, respectively, the unpolarized TMD
PDF, the Sivers function, and the unpolarized TMD FF in
the b space with x representing the longitudinal momentum
fraction carried by the active quark inside the nucleon and z
representing the longitudinal momentum fraction carried
by the hadron from the fragmented quark. They are related
to the corresponding functions in transverse momentum
space via a Fourier transform,

f1ðx; k⊥; μ; ζÞ ¼
Z

∞

0

dbb
2π

J0ðbk⊥Þf1ðx; b; μ; ζÞ;

k⊥
M

f⊥1Tðx; k⊥; μ; ζÞ ¼
Z

∞

0

dbb2M
2π

J1ðbk⊥Þf⊥1Tðx; b; μ; ζÞ;

D1ðz; p⊥; μ; ζÞ ¼
Z

∞

0

dbb
2π

J0ðbp⊥ÞD1ðz; b; μ; ζÞ;

ð13Þ

where J0;1 are the Bessel functions. The μ is the factori-
zation scale, which one can choose arbitrarily. The scales ζ1
and ζ2 in Eq. (12) are related to the invariant mass of virtual
photon by ζ1ζ2 ¼ Q4, and the “W” term only depends on
their product ζ1ζ2. For convenience, we set the scales in the
calculation as

μ2 ¼ ζ1 ¼ ζ2 ¼ Q2: ð14Þ

The convolutions over x and z in (12) are indicated by “⊗”.
At the leading order, i.e., the tree level, we have xB ¼ x
and zh ¼ z.

B. Energy evolution and TMD resummation

In perturbation theory, one expands the factorized
formula (12) in powers of the strong coupling constant
αs. However, at each fixed order, e.g., the nth order, the
TMD functions f1ðx; b;Q;Q2Þ, f⊥1Tðx; b;Q;Q2Þ, and
D1ðz; b;Q;Q2Þ contain logarithmic enhanced terms of
½αs ln2ðQbÞ�n and ½αs lnðQbÞ�n. In order to obtain a reliable
prediction from perturbation theory, one needs to take into
account the large logarithms of all orders. This can be
achieved by evolving the scales Q and Q2 to μi ∼ 1=b and
ζi ∼ 1=b2 and in the meantime, resuming the large loga-
rithms into an evolution factor R½b; ðμi; ζiÞ → ðQ;Q2Þ�.
Then one can formally relate the TMD functions at ðQ;Q2Þ
and ðμi; ζiÞ as

f1ðx; b;Q;Q2ÞD1ðz; b;Q;Q2Þ
¼ R2½b; ðμi; ζiÞ → ðQ;Q2Þ�f1ðx; b; μi; ζiÞD1ðz; b; μi; ζiÞ;
f⊥1Tðx; b;Q;Q2ÞD1ðz; b;Q;Q2Þ
¼ R2½b; ðμi; ζiÞ → ðQ;Q2Þ�f⊥1Tðx; b; μi; ζiÞD1ðz; b; μi; ζiÞ:

ð15Þ

The TMD evolution equations are given by

d
d ln μ

f1ðx; b; μ; ζÞ ¼ γFðμ; ζÞf1ðx; b; μ; ζÞ; ð16Þ

d
d ln ζ

f1ðx; b; μ; ζÞ ¼ −Dðμ; bÞf1ðx; b; μ; ζÞ; ð17Þ

where γFðμ; ζÞ is the TMD anomalous dimension and
Dðμ; bÞ is the rapidity anomalous dimension, with similar
equations for f⊥1Tðx; b; μ; ζÞ and D1ðz; b; μ; ζÞ. By solving
the equations above, one can express the factor
R½b; ðμi; ζiÞ → ðQ;Q2Þ� as a path integral from ðμi; ζiÞ
to ðQ;Q2Þ,

R½b; ðμi; ζiÞ → ðQ;Q2Þ�

¼ exp

�Z
P

�
γFðμ; ζÞ

μ
dμ −

Dðμ; bÞ
ζ

dζ

��
; ð18Þ
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where the path P can be chosen arbitrarily because of the
integrability condition,

ζ
d
dζ

γFðμ; ζÞ ¼ −μ
d
dμ

Dðμ; bÞ ¼ −ΓcuspðμÞ; ð19Þ

where ΓcuspðμÞ is the cusp anomalous dimension. Then the
anomalous dimension γFðμ; ζÞ can be written as

γFðμ; ζÞ ¼ ΓcuspðμÞ ln
�
μ2

ζ

�
− γVðμÞ; ð20Þ

where γVðμÞ is the finite part of the renormalization of the
vector form factor. Expanding these factors in powers of the
strong coupling constant,

ΓcuspðμÞ ¼
X∞
n¼0

anþ1
s Γn; ð21Þ

γVðμÞ ¼
X∞
n¼1

ansγn; ð22Þ

with as ¼ αs=ð4πÞ introduced for convenience, one can
calculate the coefficients Γn and γn perturbatively when
μ ≫ ΛQCD, and up to two-loop level,

Γ0 ¼ 4CF; ð23Þ

Γ1 ¼ 4CF

��
67

9
−
π2

3

�
CA −

20

9
TRNf

�
; ð24Þ

γ1 ¼ −6CF; ð25Þ

γ2¼C2
Fð−3þ4π2−48ζ3ÞþCFCA

�
−
961

27
−
11π2

3
þ52ζ3

�

þCFTRNf

�
260

27
þ4π2

3

�
; ð26Þ

where CF ¼ 4=3, CA ¼ 3, and TR ¼ 1=2 are color factors
of the SUð3Þ, Nf ¼ 4 is the number of active quark flavors,
and ζ3 ≈ 1.202 is the Apéry’s constant. Similarly, one can
expand Dðμ; bÞ in powers of as as,

Dpertðμ; bÞ ¼
X∞
n¼0

ansdnðLμÞ; ð27Þ

which is only valid when 1=b ≫ ΛQCD, as indicated by the
subscript “pert”. The Lμ is defined as

Lμ ¼ ln

�
μ2b2

4e−2γE

�
; ð28Þ

with γE the Euler-Mascheroni constant. Up to a two-loop
order, one has

d0ðLμÞ ¼ 0; ð29Þ

d1ðLμÞ ¼
Γ0

2
Lμ; ð30Þ

d2ðLμÞ ¼
Γ0

4
β0L2

μ þ
Γ1

2
Lμ þ d2ð0Þ: ð31Þ

where

d2ð0Þ ¼ CFCA

�
404

27
− 14ζ3

�
−
112

27
TRNfCF: ð32Þ

Following the treatment in [49], one can substitute
Dpertðμ; bÞ into (19) to get a set of equations of dnðLμÞ.
By solving these equations, one can sum the series of
logarithmic terms Xn for each dnðLμÞ, with X ¼ β0asLμ,
and obtain the resummed expression,

Dresumðμ; bÞ ¼ −
Γ0

2β0
lnð1 − XÞ þ as

2β0ð1 − XÞ
�
−
β1Γ0

β0
ðlnð1 − XÞ þ XÞ þ Γ1X

�
þ a2s

ð1 − XÞ2
�
Γ0β

2
1

4β30
ðln2ð1 − XÞ − X2Þ

þ β1Γ1

4β20
ðX2 − 2X − 2 lnð1 − XÞÞ þ Γ0β2

4β20
X2 −

Γ2

4β0
XðX − 2Þ þ CFCA

�
404

27
− 14ζ3

�
−
112

27
TRNfCF

�
:

ð33Þ

However, the perturbative expansion is invalid when
b≳ 1=ΛQCD, and hence, one can only apply the above
expression up to some b value. For a smooth connection,
one usually introduces the modified b variable as

b� ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2=B2

NP

p ; ð34Þ

which serves as an effective truncation since b� < BNP
holds for arbitrary large b and b� ≈ b for small b.
Meanwhile, the large b behavior of Dðμ; bÞ is modeled
by a function dNP, which we adopt the form in
Ref. [50],

dNPðbÞ ¼ c0bb�; ð35Þ
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which is linear function at large-b region as suggested in
Refs. [51–54]. We set the free parameters BNP¼1.93GeV−1
and c0 ¼ 0.0391 GeV2 as determined in Ref. [55] by fitting
unpolarized SIDIS and DY data. Finally, the Dðμ; bÞ is
expressed as

Dðμ; bÞ ¼ Dresumðμ; b�Þ þ dNPðbÞ: ð36Þ

According to the ζ prescription [55], by solving the
equation,

d ln ζμðμ; bÞ
d ln μ2

¼ γFðμ; ζμðμ; bÞÞ
2Dðμ; bÞ ; ð37Þ

with the boundary conditions,

Dðμ0; bÞ ¼ 0; γFðμ0; ζμðμ0; bÞÞ ¼ 0; ð38Þ

one can find a special point ζμðQ; bÞ, so that

R½b; ðμi; ζiÞ → ðQ;Q2Þ� ¼
�

Q2

ζμðQ; bÞ
�

−DðQ;bÞ
: ð39Þ

Then, the Eq. (37) can be rewritten as

d ln ζμðDðμ; bÞ; bÞ
dDðμ; bÞ Γcusp ¼

γFðμ; ζμðμ; bÞÞ
2Dðμ; bÞ : ð40Þ

Using Eq. (36) as an input, one can obtain a solution that is
independent of the form of Dðμ; bÞ as

ζexactμ ðμ; bÞ ¼ μ2e−gðμ;bÞ=Dðμ;bÞ: ð41Þ

Up to a two-loop order, gðμ; bÞ can be written as

gðμ; bÞ ¼ 1

as

Γ0

2β20

�
e−p − 1þ pþ as

�
β1
β0

�
e−p − 1þ p −

p2

2

�
−
Γ1

Γ0

ðe−p − 1þ pÞ þ β0γ1
Γ0

p
�

þ a2s

��
Γ2
1

Γ2
0

−
Γ2

Γ0

�
ðcoshp − 1Þ þ

�
β1Γ1

β0Γ0

−
β2
β0

�
ðsinhp − pÞ þ

�
β0γ2
Γ0

−
β0γ1Γ1

Γ2
0

�
ðep − 1Þ

��
; ð42Þ

where

p ¼ 2β0Dðμ; bÞ
Γ0

: ð43Þ

At an extremely small b region, there could be numerical
difficulties for the solution (41) to reduce to match the
pQCD prediction [55]. On the other hand, Dðμ; bÞ will
reduce to DpertðQ; bÞ since it is determined by pQCD in
such a region. Instead of Dðμ; bÞ, one use DpertðQ; bÞ as an
input to solve Eq. (37) and will obtain the solution,

ζpertμ ðμ; bÞ ¼ 2μe−γE

b
e−vðμ;bÞ; ð44Þ

which is consistent with the pQCD result by construction.
Up to a two-loop order, vðμ; bÞ can be written as

vðμ; bÞ ¼ γ1
Γ0

þ as

�
β0
12

L2
μ þ

γ2 þ d2ð0Þ
Γ0

−
γ1Γ1

Γ2
0

�
: ð45Þ

To match the large-b region solution ζexactμ ðμ; bÞ and the
small-b region solution ζpertμ ðμ; bÞ, we express ζμðμ; bÞ as [55]

ζμðμ; bÞ ¼ ζpertμ ðμ; bÞe−b2=B2
NP þ ζexactμ ðμ; bÞð1 − e−b

2=B2
NPÞ:
ð46Þ

C. Unpolarized TMD PDF and FF

Taking the phenomenological ansatzes in Ref. [55], one
can express the unpolarized TMD PDF and FF as

f1;f←hðx; b; μi; ζiÞ ¼
X
f0

Z
1

x

dy
y
Cf←f0 ðy; b; μPDFOPEÞ

× f1;f0←h

�
x
y
; μPDFOPE

�
fNPðx; bÞ; ð47Þ

D1;f→hðz; b; μi; ζiÞ ¼
1

z2
X
f0

Z
1

z

dy
y
y2Cf→f0 ðy; b; μFFOPEÞ

× d1;f0→h

�
z
y
; μFFOPE

�
DNPðz; bÞ; ð48Þ

where fNPðx; bÞ and DNPðz; bÞ are nonperturbative func-
tions, f1;f0←hðx; μÞ and d1;f0→hðx; μÞ are collinear PDF and
FF, and Cf←f0 ðy; b; μÞ and Cf→f0 ðy; b; μÞ are matching
coefficients that can be calculated via pQCD. In this work,
we consider the CðCÞ functions up to the one-loop order,
and the expressions are provided in Appendix A. The
evolution of scales μPDFOPE and μFFOPE in the ζ prescription are
independent of external parameters. Here, we adopt the
choices [55],

μPDEOPE ¼ 2e−γE
b

þ 2 GeV; ð49Þ
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μFFOPE ¼ 2e−γEz
b

þ 2 GeV; ð50Þ

and 2 GeV is a typical reference scale for PDFs and FFs.
Correspondingly, we take the parametrization of the non-
perturbative functions fNPðx; bÞ and DNPðz; bÞ as [55]

fNPðx;bÞ¼ exp

�
−
λ1ð1−xÞþλ2xþxð1−xÞλ5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þλ3xλ4b2
p b2

�
; ð51Þ

DNPðz;bÞ¼ exp

�
−
η1zþη2ð1−zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þη3ðb=zÞ2

p b2

z2

��
1þη4

b2

z2

�
; ð52Þ

where the parameters λ’s and η’s parameters λ and η are
extracted from unpolarized SIDIS and Drell-Yan data at
small transverse momentum. Their values in this study are
listed in Table I.

D. Sivers asymmetry

The Sivers asymmetry in SIDIS is a transverse single
spin asymmetry. It can be generally defined as

Asinðϕh−ϕSÞ
UT ¼ 2

R
dϕSdϕh½dσ↑ − dσ↓� sinðϕh − ϕSÞR

dϕSdϕh½dσ↑ þ dσ↓� ; ð53Þ

where σ↑ and σ↓ represent the cross sections from
transversely polarized nucleon. The azimuthal angles ϕS
and ϕh are defined following the Trento convention as
illustrated in Fig. 1.
Within the TMD formalism presented above, one can

express the Sivers asymmetry Asinðϕh−ϕSÞ
UT as

Asinðϕh−ϕSÞ
UT ¼ −

M
P

qe
2
q

R∞
0

bdb
2π bJ1

	
bjPhT j

z



R2½b; ðμi; ζiÞ → ðQ;Q2Þ�f⊥1T;q←h1

ðx; bÞD1;q→h2ðz; bÞP
qe

2
q

R∞
0

bdb
2π J0

	
bjPhT j

z



R2½b; ðμi; ζiÞ → ðQ;Q2Þ�f1;q←h1ðx; bÞD1;q→h2ðz; bÞ

: ð54Þ

The precision for the perturbative calculation of the factors
in powers of αs in this work is summarized in Table II.

III. EXTRACT THE SIVERS FUNCTION FROM
THE SIDIS DATA

We parametrize the Sivers function of each quark flavor as

f⊥1T;q←pðx; bÞ ¼ Nq
ð1 − xÞαqxβqð1þ ϵqxÞ

nðβq; ϵq; αqÞ
expð−rqb2Þ;

ð55Þ

where Nq, αq, βq, ϵq, and rq are free parameters. The factor,

nðβ; ϵ; αÞ ¼ Γðαþ 1Þð2þ αþ β þ ϵþ ϵβÞΓðβ þ 1Þ
Γðβ þ αþ 3Þ ;

is introduced to reduce the correlation between the param-
eters controlling the shape and the parameter for the
normalization.
To extract the Sivers function from the SIDIS SSA data,

one also needs unpolarized TMD PDF f1ðx; bÞ and
unpolarized TMD FF D1ðz; bÞ, which we take from recent
global analysis [55], as mentioned in the previous section.
For simplicity, we only consider nonvanishing Sivers
functions for light flavors, i.e., u, d, s, ū, d̄, and s̄, while
heavy quark Sivers functions are all set to zero. We also
assume the isospin symmetry to relate the Sivers function
of the neutron and the Sivers function of the proton as

f⊥1T;u←nðx; bÞ ¼ f⊥1T;d←pðx; bÞ;
f⊥1T;ū←nðx; bÞ ¼ f⊥

1T;d̄←p
ðx; bÞ;

f⊥1T;d←nðx; bÞ ¼ f⊥1T;u←pðx; bÞ;
f⊥
1T;d̄←n

ðx; bÞ ¼ f⊥1T;ū←pðx; bÞ;
f⊥1T;s←nðx; bÞ ¼ f⊥1T;s←pðx; bÞ;
f⊥1T;s̄←nðx; bÞ ¼ f⊥1T;s̄←pðx; bÞ: ð56Þ

Since a free neutron target is not available for SIDIS
experiments, the polarized deuteron and polarized 3He are

TABLE I. The values of the parameters in the parametrization
of unpolarized TMD PDF and FF. Their units are in GeV2 except
for λ4.

λ1 λ2 λ3 λ4 λ5
0.198 9.30 431 2.12 −4.44

η1 η2 η3 η4
0.260 0.476 0.478 0.483

TABLE II. The precision of the factors in powers of αs in this
work.

Γcusp γV Dresum ζpertμ ζexactμ CðCÞ
FUU α3s α2s α2s α1s α1s α1s
FUT α3s α2s α2s α1s α1s α0s
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commonly used to obtain parton distributions in the
neutron. As an approximation, we set the Sivers functions
of the deuteron and the 3He via the weighted combination of
the proton Sivers function and the neutron Sivers function.
For the deuteron, the Sivers function is expressed as

f⊥1T;q←dðx; bÞ ¼
Pn
df

⊥
1T;q←nðx; bÞ þ Pp

df
⊥
1T;q←pðx; bÞ

2
; ð57Þ

where Pn
d ¼ Pp

d ¼ 0.925 are effective polarizations of the
neutron and the proton in a polarized deuteron [56].
Similarly, the Sivers function of the 3He is

f⊥
1T;q←3Heðx; bÞ ¼

Pn
Hef

⊥
1T;q←nðx; bÞ þ 2Pp

Hef
⊥
1T;q←pðx; bÞ

3
;

ð58Þ

where Pn
He ¼ 0.86 and Pp

He ¼ −0.028 are effective polar-
izations of the neutron and the proton in a polarized 3He
[57]. Here, we have followed the convention to normalize
the distribution to per nucleon.
This parametrization setup is applied in the following

for both the fit to world SIDIS data and the fit to EicC
pseudodata.

A. Fit to world SIDIS data

We first perform the fit to existing SIDIS target trans-
verse SSA data from HERMES [32], COMPASS [33,34],
and JLab [36,37]. For the COMPASS measurements, we
only include the analyzed data with particle identifications
of the final state hadron for the purpose of flavor separation,

although the results without hadron particle identifications
for the same datasets have also been published [35]. For the
validity of the TMD factorization, only small transverse
momentum data with δ ¼ jPh⊥j=ðzQÞ < 0.5 are selected.
After applying this cut, there are 130 data points, as
summarized in Table III. These data are all from fixed-
target experiments with various beam energies: 160 GeV
muon beam for COMPASS, 27.6 GeV electron/positron
beam for HERMES, and 5.9 GeV electron beam for JLab.
Since the existing world data are not precise enough to

constrain so many parameters introduced in (55) for all
light flavors, we reduce the number of parameters by
setting s and s̄ quarks Sivers function to 0 and imposing
the following assumptions for u; d; ū; d̄ quarks:

rū ¼ rd̄ ¼ rsea; βū ¼ βd̄ ¼ βsea;

αu ¼ αd ¼ 3; αū ¼ αd̄ ¼ 5; ϵū ¼ ϵd̄ ¼ 0: ð59Þ

Then, we have 12 free parameters, as listed in Table IV. To
estimate the uncertainty, we randomly shift the central
values of the data points by Gaussian distributions with the
Gaussian widths to be the experimental uncertainties and
then perform the fit to each smeared dataset. By repeating
this procedure, 100 replicas are created for calculations of
central values and uncertainties of physical quantities
related to the Sivers function. The total χ2=N of the fit
as well as its value for various experimental datasets are
listed in Table V. Here, N is the number of experimental
data points. The details of the calculation are explained in
Appendix B.

TABLE III. World SIDIS data used in our analysis. The numbers in parentheses are the original
number of data points before applying δ cut.

Dataset Target Beam Data points Reaction

COMPASS [33] 6LiD 160 GeV μþ 10(41) μþd → μþπþX
μþd → μþπ−X
μþd → μþKþX
μþd → μþK−X
μþd → μþK0X

COMPASS [34] NH3 160 GeV μþ 10(36) μþp → μþπþX
μþp → μþπ−X
μþp → μþKþX
μþp → μþK−X

HERMES [32] H2 27.6 GeV e� 104(256) e�p → e�πþX
e�p → e�π−X
e�p → e�KþX
e�p → e�K−X

JLab [36] 3He 5.9 GeV e− 4(8) e−n → e−πþX
e−n → e−π−X

Jlab [37] 3He 5.9 GeV e− 2(5) e−3He → e−KþX
e−3He → e−K−X
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The central values of the parameters together with their
uncertainties are listed in Table VI. The β parameters turn
out to be negative for up and down quarks while positive for
sea quarks, which gives us some hints that in small-x region
the Sivers effect for sea quarks is weaker than that of up and
down quarks. On the other hand, existing world data are not
precise enough, and therefore, a decisive conclusion will
rely on future data from electron-ion colliders. The com-
parisons between experimental data and the calculations
by using replicas are shown in Figs. 2–5, where the filled
data points with δ < 0.5 are included in the fit while the
open data points with δ > 0.5 are not. The results of the
Sivers functions are shown in Fig. 7 via slices at various x
values. For better visualization of the x dependence, we
also present k⊥-integrated distributions of the Sivers
function via its zeroth and first transverse momentum
moments,

f⊥ð0Þ
1T ðxÞ ¼ π

Z
dk2⊥f⊥1Tðx;k2⊥Þ; ð60Þ

f⊥ð1Þ
1T ðxÞ ¼ π

Z
dk2⊥

k2⊥
2M2

f⊥1Tðx;k2⊥Þ: ð61Þ

Since TMDs are well defined at small transverse momen-
tum and the fit only includes data in the small transverse
momentum region, we truncate the integrals at kmax⊥ ¼
0.6 GeV. The truncated zeroth and first transverse momen-
tum moments are shown in Figs. 8 and 9, respectively. Our
results are compared with BPV20 [39] in Fig. 10. Within
uncertainty, the results are consistent with each other.

TABLE IV. The values of the parameters from the fit to world
SIDIS SSA data. The central values are the average of the results
from 100 fits, and the uncertainties are the standard deviations.
The values of ru, rd, and rsea are provided in unit of GeV2 and the
others are dimensionless.

Parameter Value Parameter Value

ru 0.08þ0.04
−0.03 Nu −0.08þ0.02

−0.04

rd 0.2þ0.9
−0.2 Nd 1.0þ2.6

−0.5

rsea 0.2þ1.5
−0.2 Nū 0.1þ0.7

−0.1

βu −0.5þ0.2
−0.2 Nd̄ 0.0þ0.9

−0.2

βd −0.97þ0.12
−0.02 ϵu 10þ7

−2

βsea 0.4þ2.2
−0.8 ϵd 113þ215

−82

TABLE V. The χ2 values for different datasets. N is the number
of data points for each experimental dataset.

Dataset N χ2=N

COMPASS [33] 10 1.08þ0.52
−0.41

COMPASS [34] 10 1.29þ0.61
−0.44

HERMES [32] πþ 26 1.95þ0.48
−0.48

HERMES [32] π− 26 1.83þ0.46
−0.37

HERMES [32] Kþ 26 2.23þ0.63
−0.48

HERMES [32] K− 26 2.35þ0.49
−0.48

JLab [36,37] 6 1.03þ0.75
−0.46

Total 130 1.90þ0.18
−0.18

TABLE VI. The parameters from the fit to world SIDIS data and EicC pseudodata. The central values are the average of the results
from 100 fits, and the uncertainties are the standard deviations. The values of ru, rd, rs, rū, rd̄, and rs̄ are provided in unit of GeV2 and
the others are dimensionless. The “Stat.” column means that only statistical uncertainties of EicC pseudodata are considered in the fit,
while “Stat.þ Syst.” column means that both statistical and systematic uncertainties of EicC pseudodata are included in the fit.

Parameter Stat. Stat.þ Syst. Parameter Stat. Stat.þ Syst.

ru 0.068þ0.002
−0.001 0.067þ0.002

−0.002 Nu −0.075þ0.001
−0.001 −0.075þ0.001

−0.001

rd 0.092þ0.003
−0.003 0.091þ0.003

−0.003 Nd 0.72þ0.02
−0.02 0.72þ0.02

−0.02

rs 0.005þ0.044
−0.005 0.009þ0.054

−0.009 Ns −0.001þ0.001
−0.001 −0.001þ0.001

−0.001

rū 0.065þ0.011
−0.008 0.064þ0.012

−0.009 Nū 0.012þ0.001
−0.001 0.012þ0.001

−0.001

rd̄ 0.044þ0.008
−0.006 0.044þ0.007

−0.007 Nd̄ −0.016þ0.001
−0.001 −0.016þ0.001

−0.001

rs̄ 1.1þ6.7
−1.0 × 10−8 1.5þ12.2

−1.4 × 10−8 Ns̄ 0.002þ0.001
−0.001 0.001þ0.001

−0.001

βu −0.44þ0.02
−0.03 −0.44þ0.02

−0.03 αu 2.57þ0.04
−0.04 2.55þ0.07

−0.05

βd −0.9840þ0.0003
−0.0003 −0.9840þ0.0003

−0.0004 αd 2.52þ0.06
−0.05 2.56þ0.08

−0.06

βs 0.2þ3.8
−0.6 0.2þ4.1

−0.6 αs 6þ4
−2 6þ4

−2

βū −0.37þ0.04
−0.04 −0.38þ0.05

−0.05 αū 4.60þ0.36
−0.27 4.53þ0.39

−0.39

βd̄ 0.17þ0.08
−0.07 0.16þ0.10

−0.08 αd̄ 1.003þ0.008
−0.002 1.004þ0.006

−0.003

βs̄ −0.7þ0.1
−0.1 −0.7þ0.2

−0.1 αs̄ 7þ3
−1 7þ3

−2

ϵu 5.5þ0.9
−0.5 5.5þ1.2

−0.6 ϵd 24þ11
−11 25þ13

−12
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However, the uncertainties of sea quark Sivers functions in
Ref. [39] are much smaller than our estimations because of
strong assumptions in the parametrization. To be more
specific, in Ref. [39], the intrinsic k⊥ dependence for all
the quarks is assumed to be the same, and additionally, the
Sivers functions of sea quarks (ū, d̄, s̄, s) are assumed to be
identical, except for a separate normalization parameter for
the s quark.

B. EicC projections of the Sivers function

The SIDIS events are generated at the vertex level using a
Monte Carlo event generator [58], which has been adopted
in the simulation of several JLab12 SIDIS experiments. It
allows us to run in collider mode. According to the
conceptual design of EicC, the electron beam energy is
set at 3.5 GeV, the proton beam energy is set at 20 GeV, and
the 3He beam energy is set at 40 GeV. The unpolarized

FIG. 2. Comparison with HERMES SSA data [32] from the proton target for πþ (upper left), π− (upper right), Kþ (lower left), and
K− (lower right) productions. The filled data points are included in the fit, while the open data points are not. The green lines are
the central value calculated from the fit and the bands represent the 1 standard deviation of the calculated asymmetries by using
100 replicas.

FIG. 3. Comparison with COMPASS SSA data [34] from the proton target for πþ, π−, Kþ, and K− productions. The markers and
bands have the same meaning as in Fig. 2.
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SIDIS differential cross section used in the generator is
based on global fit to HERMES and COMPASS multi-
plicity data. A similar cross section parametrization is also
adopted in SIDIS-RC EvGen [59], a recently released
generator for radiative correction studies in the SIDIS
process. For acceptance reasons, we require the electron
momentum greater than 0.35 GeV and the hadron momen-
tum greater than 0.30 GeV. The pseudorapidity η is
restricted to −3.5 < η < 3.5 for both the electron and
the hadron. Full azimuthal angle coverage in the laboratory
frame is assumed. To have full flavor separation of all light
quarks, we include both charged pion, π�, and charge kaon,
K�, productions in SIDIS. For the particle identification
(PID) of the final electron, pion, and kaon, we apply a PID
acceptance cut on the maximum particle momentum, pmax,
in different pseudorapidity regions,

η ½−3.5;−1� ð−1; 1� (1, 3.5]

pmax 4 GeV 6 GeV 15 GeV

where the initial ion beam is defined along the positive
direction. We further impose the physical cuts, Q2 >
1 GeV2, 0.3 < z < 0.7, W > 5 GeV, and W0 > 2 GeV,
to select events in the deep inelastic region and to exclude
resonance regions.
We estimate the statistics by assuming 50 fb−1 for

ep collisions and 50 fb−1 for e3He collisions. Such
accumulated luminosities can be achieved with about
one year running according to the designed instantaneous

luminosity 2 × 1033 cm−2 s−1. Keeping the statistical
uncertainty at 10−3 level, we obtain 13545 data points in
four-dimensional bins in x, Q2, z, and Ph⊥. Not only the
precision of the EicC pseudodata is much higher than
existing world data, but also the amount of data points is
about 10 times more. It allows us to apply more strict
kinematic cuts for a cleaner selection of data in the TMD
region. In this study, we choose δ < 0.3, and 4983 EicC
pseudo-data-points are selected. The distributions of the
EicC pseudodata are shown in Fig. 6, where the colored
points are selected in the fit while the gray ones are
excluded. Since the energies per nucleon are different
for the proton beam and the 3He ion beam, the kinematics

FIG. 5. Comparison with JLab SSA data [36,37] from the 3He target. The asymmetry values for πþ and π− productions in the left panel
have been effectively converted to those of the neutron, and the asymmetry values for Kþ and K− productions. The markers and bands
have the same meaning as in Fig. 2.

FIG. 4. Comparison with COMPASS SSA data [33] from the deuteron target for πþ, π−, Kþ, K−, and K0
S productions. The markers

and bands have the same meaning as in Fig. 2.

FIG. 6. Kinematic distributions of the EicC pseudodata in
x −Q2 (left) and z − Ph⊥ (right) planes. Each bin is plotted as
a point at the bin center kinematic values. Kinematics cuts,
Q2 > 1 GeV2, W > 5 GeV, W0 > 2 GeV, and 0.3 < z < 0.7
have been applied. The blue points are the proton data with
δ < 0.3, the red points are the neutron data with δ < 0.3, and the
gray points are the data with δ > 0.3.
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of the proton data and the neutron data are slightly different
but still overlap in a wide range.
The SSAvalues of the pseudodata are calculated with the

central value of the result from the fit to the world data.
Since a realistic estimation of systematic uncertainties is
only possible when the detailed designs of detectors are
available, we only consider some expected dominant
sources of systematic uncertainties. For the proton data,
we assign 3% relative uncertainty to account for the
polarization of the proton beam, and for the neutron data,
we assign 5% relative uncertainty to account for the
polarization of the 3He ion beam and the nuclear effect.
Total uncertainties are evaluated via the quadrature combi-
nation of statistical uncertainties and systematic uncertain-
ties. The precise EicC data with wide kinematics coverage
allows us to adopt a more flexible parametrization of
the Sivers functions. Therefore, we remove the artificial
assumptions in Eq. (59), while still keep ϵū ¼ ϵd̄ ¼
ϵs ¼ ϵs̄ ¼ 0, and then we have 26 free parameters, as
listed in Table VI. To estimate the impact of the EicC on the
extraction of the Sivers function, we perform a simulta-
neous fit to the world data and the EicC pseudodata as
described above. Following the same procedure, 100
replicas are created by randomly shifting the values
according to the simulated statistical uncertainty. The fit
reaches χ2=N ¼ 1.15 for only statistical uncertainties and
χ2=N ¼ 1.13 for both statistical and systematic uncertain-
ties. The average values of the parameters and their
uncertainties are provided in Table VI. The results of the

EicC projection of the Sivers functions are shown in Fig. 7
via slices at various x values, in Fig. 8 via the truncated
zeroth transverse momentum moment, and in Fig. 9 via the
truncated first transverse momentum moment in compari-
son with the results of the fit to existing world data.

IV. SUMMARY

In this paper, we present a quantitative assessment of
the impact of EicC SIDIS program on the determination
of TMDs. Taking the Sivers function as an example,
we perform a global fit of the Sivers asymmetry data in
SIDIS at small transverse momentum, including the TMD
evolution at the NNLL accuracy. The impact of EicC is
studied by adding the EicC pseudodata. In this study, both
statistical uncertainties and dominant systematic uncertain-
ties are taken into account for the EicC pseudodata, while
complete detailed systematic uncertainty studies are left for
the future when the detector design is ready. It has been
demonstrated that the Sivers functions can be precisely
determined for various quark flavors, and particularly the
sea quark distributions, including the strange and anti-
strange, can be extracted at high precision with the future
EicC SIDIS data.
Once the precise data are available from EicC, one will

be able to have less biased extractions of the Sivers
functions by using much more flexible parametrizations.
Besides, in the EicC era, one can have a cleaner selection of
data for TMD studies, e.g., by applying a more strict
requirement on δ≡ jPh⊥j=ðzQÞ to restrict data in the low

FIG. 7. The transverse momentum distribution of the Sivers functions at different x values. The green bands represent the uncertainties
of the fit to world SIDIS data, the red bands represent the EicC projections with only statistical uncertainties, and the blue bands
represent the EicC projections including systematic uncertainties as described in the text.
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transverse momentum region and higher W and W0 cuts to
avoid the resonance region. It is important to remark that
both polarized electron-proton and electron-3He data are
necessary for a complete flavor separation. To fully explore
the potential of 3He as an effective neutron source, detailed
nuclear effect corrections should be further investigated
both experimentally and theoretically in the future, since it
is the dominant source of systematic uncertainty in reality
by using 3He data.
In principle, the EicC enables us to measure all 18

TMDs-related structure functions in SIDIS via the
combination of different electron and ion beam polariza-
tion configurations and the separation of different azimu-
thal modulations. The study of the Sivers function as
presented in this paper can be extended to other TMDs.

Multidimensional binning on x, Q2, z, and ph⊥ will be
available for the spin asymmetry measurements, and the
coverage of x by EicC can reach down to about 0.005.
Given the existing fixed-target experiments covering the
low-Q2 and high-x region and the Electron-Ion Collider to
be built at BNL in US (US-EIC) reaching much lower x
values, EicC will fill the kinematics gap between the
coverage between the JLab-12 GeV program and the
US-EIC. Combining the measurements at all these facili-
ties, we will be able to have a complete physical picture
of the three-dimensional structures of the nucleon with
systematically controllable uncertainties. Therefore, EicC
will play an important role in the understanding of
nucleon spin structures with its unique significance for
sea quarks.

FIG. 9. The first transverse moment of the Sivers functions as defined in Eq. (61) with the k⊥ integral truncated at 0.6 GeV. The green
bands represent the uncertainties of the fit to world SIDIS data, the red bands represent the EicC projections with only statistical
uncertainties, and the blue bands represent the EicC projections including systematic uncertainties as described in the text.

FIG. 8. The zeroth transverse moment of the Sivers functions as defined in Eq. (60) with the k⊥ integral truncated at 0.6 GeV. The
green bands represent the uncertainties of the fit to world SIDIS data, the red bands represent the EicC projections with only statistical
uncertainties, and the blue bands represent the EicC projections including systematic uncertainties as described in the text.
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APPENDIX A: EXPRESSION OF MATCHING
FUNCTIONS

For TMD PDFs, the coefficient function C up to NLO
is [55]

Cf←f0 ðx;b;μÞ¼δð1−xÞδff0 þasðμÞ
	
−LμP

ð1Þ
f←f0 þCð1;0Þ

f←f0



;

ðA1Þ
where

Cð1;0Þ
q←q0 ðxÞ ¼ CF

�
2ð1 − xÞ − δð1 − xÞ π

2

6

�
δqq0 ; ðA2Þ

Cð1;0Þ
q←g ðxÞ ¼ 2xð1 − xÞ; ðA3Þ

Pð1Þ
q←q0 ðxÞ ¼ 2CF

�
2

ð1− xÞþ
− 1− xþ 3

2
δð1− xÞ

�
δqq0 ; ðA4Þ

Pð1Þ
q←gðxÞ ¼ 1 − 2xþ 2x2: ðA5Þ

For TMD FFs, the matching coefficient C up to NLO
follows the same pattern as in Eq. (A1) with the replace-

ment of the PDF DGLAP kernels Pð1Þ
f←f0 ðxÞ by the FF

DGLAP kernels [60],

Pð1Þ
q→q0 ðzÞ ¼

2CF

z2

�
1þ z2

1 − z

�
þ
δqq0 ; ðA6Þ

Pð1Þ
q→gðzÞ ¼ 2CF

z2
1þ ð1 − zÞ2

z
; ðA7Þ

and the replacement of Cð1;0Þ
f←f0 ðxÞ by [55]

Cð1;0Þ
q→q0 ðzÞ ¼

CF

z2

�
2ð1− zÞþ 4ð1þ z2Þ lnz

1− z
− δð1− zÞπ

2

6

�
δqq0 ;

ðA8Þ

Cð1;0Þ
q→g ðzÞ ¼ 2CF

z2

�
zþ 2ð1þ ð1 − zÞ2Þ ln z

z

�
: ðA9Þ

The “þ” prescription is defined asZ
1

x0

dx½gðxÞ�þfðxÞ ¼
Z

1

0

dxgðxÞ½fðxÞΘðx − x0Þ − fð1Þ�;

ðA10Þ
where Θðx − x0Þ is the Heaviside step function.

APPENDIX B: ESTIMATION OF
UNCERTAINTIES BY USING REPLICAS

We randomly shift the central values of the data points
by Gaussian distributions with the Gaussian widths to be
the experimental uncertainties. Repeating the process,
we get 100 datasets y ¼ fy1; y2;…; yi;…; y100g. Then
each dataset is fitted to yield the best estimation of
various parameters, and hence, a replica is created.
Afterward, one can calculate the set C ¼ fχ21=N; χ22=N;…;
χ2i =N;…; χ2100=Ng, where N is the total number of exper-
imental data points. The central value, χ2=N, is the mean
value of the set C. In principle, C could be any physical
quantity, for example, the Sivers function or the asymmetry

Asinðϕh−ϕSÞ
UT . In order to calculate the upper and lower

uncertainties of χ2=N, we define C ¼ fCup; Clog, where
Cup ¼ fχ21=N; χ22=N;…; χ2i =N;…; χ2k=Ng for χ2i =N >
χ2=N and Clo ¼ fχ21=N; χ22=N;…; χ2i =N;…; χ2100−k=Ng
for χ2i =N < χ2=N. Then, we can calculate the upper and
lower uncertainties by

δþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
1

ðχ2i =N − χ2=NÞ2
k

vuut ðB1Þ

for χ2i =N in Cup, and

δ− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX100−k

1

ðχ2i =N − χ2=NÞ2
100 − k

vuut ðB2Þ

for χ2i =N in Clo.

FIG. 10. The comparisons between our result and the result
from Ref. [39] for Sivers functions of u; d; ū; d̄ quark in the
momentum space at x ¼ 0.1 andQ ¼ 2 GeV.Within uncertainty,
the results are consistent with each other.
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