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In this paper we investigate the next-to-leading power contribution to the Bs → γγ and Bs → γll̄ decays
from the strange quark mass effect with the dispersion approach which is QCD inspired and more
predictive. We present the analytic expression of the quark mass contribution in the Bs → γγ and Bs → γll̄
decays, together with a new term that is missed in the previous study. We also evaluate the resolved photon
contribution from the A-type amplitude in Bs → γll̄ decay. The numerical results of the strange quark
mass contribution to the Bs → γγ decay is about 6% relative to the total branching ratio, while it is relatively
small in the Bs → γll̄ decay due to the large resonance contribution.
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I. INTRODUCTION

The double radiative decayBs → γγ and radiative leptonic
decayBs → γll̄ are of great importance to the determination
of the parameters of the light cone distribution amplitudes
(LCDA) of Bs meson, which is the fundamental nonpertur-
bative input in the study on the Bs meson decays. They are
also sensitive to the new physics effect since they are induced
by the flavor-changing neutral-current processes [1,2], and
the latter also serves as an important background of the
leptonic decay Bs → lþl−. Relatively little attention has
been paid to these modes due to their small branching ratios,
while the current machines with high luminosity such as
LHC and SuperKEKB have the capability to detect these
decays [3]. The experimental progresses on these decay
modes raise the necessity of more precisely theoretical
predictions, which have been improved in several aspects.
A comprehensive study on the Bd;s → γγ decays is

presented in [4], where both leading-power contributions
and power-suppressed contributions to the decay amplitude
have been analyzed in detail. The leading power amplitude
of Bd;s → γγ can be factorized into the convolution of
the effective Wilson coefficients, the jet function and the

leading-twist LCDA of Bd;s meson [5], where both the
effective Wilson coefficients and the jet function have been
provided up to two-loop order in QCD [6,7], and the next-
to-leading logarithm resummation has been performed
within the framework of soft-collinear effective theory
[8,9]. Various subleading power contributions have also
been investigated, including the power-suppressed local
contribution, the power suppressed nonlocal contribution
from the hard-collinear propagator, the power suppressed
term in the heavy quark expansion, the contribution from
high twist LCDAs of B meson, the strange quark mass
effects and resolved photon contribution. Some power-
suppressed contributions are proved to be factorizable, such
as the nonlocal contributions from the hard-collinear
propagator, from the heavy quark expansion, and from
the high twist LCDAs, while the factorization theorem
cannot be applied to the strange quark mass contribution
due to the emergence of endpoint singularity.
As endpoint singularity appears in the convolution

between the jet function and leading-twsit LCDA of Bs
meson in the contribution from the strange quark mass
term in Bs → γγ decay, it is a tough task to predict this
contribute with high credibility. A parametrization method
is employed in [4], which is model dependent with sizable
theoretical uncertainty. In this paper we will adopt an
alternative method with better predictive power, which is
called dispersion approach in the literature. This approach
has been widely used in the evaluation of the power
suppressed contribution in the exclusive processes such
as γ�γ → π, B → γνl et al. to estimate the contribution
from the resolved photon effect [10–15], and the results are
consistent with the prediction from employing the photon
LCDAs [16–22]. The basic idea of the dispersion method is
to take the photon momentum (from the QED vertex) off
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shell and replace the endpoint region of the convolution
between the jet function and the LCDA of Bs meson with
hadronic representation of the correlation functions below
the effective continuum threshold, and take the q2 ¼ 0 limit
after the replacement. The power suppressed resolved
photon contribution to the helicity form factors of Bs → γγ
decay is obtained through the difference between the
hadronic representation with isolated vector meson state
and the endpoint region of the factorization formula of the
correlation function at leading power [4]. After including
the strange quark mass contribution to the correlation
function, we can reach the contribution from the resolved
photon and the strange quark mass, respectively.
The Bd;s → γll̄ decays in the kinematic region of large

photon energy was intensively analyzed with QCD factori-
zation techniques recently [23],which constructs a systematic
expansion in inverse powers of large photon energy
and heavy quark mass. The leading-power contribution has
been split into the A-type amplitude ĀA-type (which accounts
for the finial-state photon emit from the constituents of B
meson) and the B-type amplitude ĀB-type (where the on shell
photon is emitted directly from the dipole operators). The
next-to-leading power (NLP) corrections to the amplitudes
due to local and nonlocal A-type and B-type operators in the
soft-collinear effective theory, as well as the local four-quark
contributions, are also considered. The numerical calculation
indicates that the NLP contribution can give rise to about
20%–30% correction to the branching ratios of the decay
channels [23]. Compared with the large resonant amplitude,
the strange quarkmass effect can be safely neglected from the
B-type amplitude. Both the resolve photon contribution and
strange quarkmass effect from theA-type amplitude have not
been investigated in theBs → γll̄ decays, andwewill fill this
gap with a similar method as that in the Bs → γγ decay.
This article is organized as follows: In the next section

we will review leading power and NLP contribution to
the Bs → γγ and Bs → γll̄ decays. In Sec. III we will take
advantage of the dispersion approach to evaluate the NLP
contribution from the quark mass term in the Bs → γγ and
Bs → γll̄ decays. The numerical result is given in Sec. IV.
A summary is presented in the last section.

II. THE AMPLITUDES OF B̄s → γγ
AND B̄s → γll̄ DECAYS

In order to express the decay amplitudes of the B̄s → γγ
and B̄s → γll̄ decays, we start with the effective weak
Hamiltonian where the unitarity of the CKM matrix has
been employed

Heff ¼
4GFffiffiffi

2
p

X
p¼u;c

VpbV�
ps

�X2
i¼1

CiðνÞPðpÞ
i ðνÞ

þ
X8
i¼3

CiðνÞPiðνÞþ
αem
4π

X10
i¼9

CiðνÞPiðνÞ
�
þH:c: ð1Þ

where the PðpÞ
1;2 are four-quark tree operators and the P3-6 are

four quark QCD-penguin operators. The specific form of
these operators and the corresponding Wilson coefficients
Ci can be found in [4]. P7 is the electromagnetic penguin
operator which leads to b → sγ transition at leading order
in αs. P8 is the chromomagnetic penguin operator, and
P9;10 are semileptonic operators for b → qll transitions.
These four effective operators are listed as

P7 ¼ −
gemm̄bðνÞ
16π2

ðs̄LσμνbRÞFμν;

P8 ¼ −
gsm̄bðνÞ
16π2

ðs̄LσμνTabRÞGa
μν;

P9 ¼ −½s̄γμPLb�½l̄γμl�;
P10 ¼ −½s̄γμPLb�½l̄γμγ5l�;
PL ¼ ð1 − γ5Þ=2; ð2Þ

where m̄bðνÞ is the b-quark mass in the MS scheme
and the convention of the covariant derivative are the same
with [4]. The amplitudes of B̄s → γγ and B̄s → γll̄ decays
can be written by the matrix elements of the effective
Hamiltonian, i.e.,

ĀðB̄s → γγÞ ¼ −hγðk; ϵ�1Þγðq; ϵ�2ÞjHeff jB̄sðkþ qÞi;
ĀðB̄s → γll̄Þ ¼ −hγðk; ϵ�ÞlðplÞl̄ðpl̄ÞjHeff j

× B̄sðkþ pl þ pl̄Þi: ð3Þ

In the following, we quote the detailed expression of the
decay amplitudes of B̄s → γγ and B̄s → γll̄ processes
which are obtained in [4,23] so that we can get the full
amplitude after obtaining the contribution from the
strange quark mass. For the B̄s → γγ decays, the amplitude
including the power-suppressed contributions takes the
form,

ĀðB̄s → γγÞ ¼ −i
GFαemffiffiffi

2
p

π
m3

Bs
ϵ�μ1 ðpÞϵ�ν2 ðqÞ½ðg⊥μν − iε⊥μνÞĀL

− ðg⊥μν þ iε⊥μνÞĀR�; ð4Þ

where ϵ⋆μ1 and ϵ⋆ν2 stand for the polarization vector of the
two outgoing photons. The shorthand notations g⊥μν and ϵ⊥μν
are defined as

g⊥μν ≡ gμν −
nþμn−ν

2
−
n−μnþν

2
;

ε⊥μν ≡ 1

2
εμνρτn

ρ
þnτ− ¼ εμνρτn

ρ
þvτ; ð5Þ

where the convention ε0123 ¼ −1 has been adopted. The
light cone vectors nþ; n− have been introduced, which
satisfy n2þ ¼ 0, n2− ¼ 0 and nþ · n− ¼ 2. The amplitudes
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ĀL and ĀR are classified according to the polarization of the final state photons. The manifest expressions of ĀL and ĀR
can be derived in the following

ĀL¼
X
p¼u;c

VpbV�
ps

X8
i¼1

Ci

h
FðpÞ;LP
i;L þFðpÞ;fac;NLP

i;L þFðpÞ;soft;NLP
i;L

i
;

ĀR¼
X
p¼u;c

VpbV�
ps

X8
i¼1

Ci

h
FðpÞ;LP
i;R þFðpÞ;fac;NLP

i;R þFðpÞ;soft;NLP
i;R

i
; ð6Þ

where the three terms in the square bracket denote the leading power contribution, the factorizable NLP contribution and the
power suppressed soft contribution, respectively. The factorizable NLP contribution collects various subleading power
contributions, which is written as

X8
i¼1

CiF
ðpÞ;fac;NLP
i;L ¼ Ceff

7

h
Fhc;NLP
7;L þ F

mq;NLP
7;L þ FA2;NLP

7;L þ FHT;NLP
7;L þ Feb;NLP

7;L

i
þ fBs

mBs

h
F ðpÞ;WA

V − F ðpÞ;WA
A

i
;

X8
i¼1

CiF
ðpÞ;fac;NLP
i;R ¼ fBs

mBs

h
F ðpÞ;WA

V þ F ðpÞ;WA
A

i
: ð7Þ

From the above equationwe can see that only the contribution
from weak annihilation mechanism, which is induced by the
four-quark operators can give rise to the amplitudewith right-
handed polarized photon, since the other contributions
induced by electromagnetic penguin operator are left handed
in nature. All the amplitudes in (7) have been derived in [4]

with great detail. For B̄s → γγ decays, the nonvanishing
strange quark mass leads to the term Fms;NLP

7;L , which will be
specifically investigated in the next section.
For the B̄s → γll̄ decays, the decay amplitude can be

parametrized as

ĀðB̄s → γll̄Þ ¼ ie
αemGFffiffiffi

2
p

π
Eγϵ

⋆
μ ½ðgμν⊥ − iεμν⊥ ÞðĀLV ½ūγνv� þ ĀLA½ūγνγ5v�Þ−ðgμν⊥ þ iεμν⊥ ÞðĀRV ½ūγνv� þ ĀRA½ūγνγ5v�Þ�; ð8Þ

where V and A refer to the vector and axial-vector chirality
structure of the lepton currents, respectively. The helicity
amplitudes are given by

ĀhV ¼
X
p¼u;c

VpbV�
ps

X9
i¼1

CiF
ðiÞ
h ;

ĀhA ¼
X
p¼u;c

VpbV�
psC10F

ð10Þ
h ; h ¼ L;R; ð9Þ

where the helicity form factors FðiÞ
h contain both the leading

power contribution and NLP contributions with the ss̄
resonance, which can be expressed by

FðiÞ
h ¼ Fði;LPÞ

h þ Fði;NLPÞ
h þOðα2s ; αsλ2; λ4Þ; ð10Þ

where λ≡ ΛQCD=Eγ and the specific expression for these
form factors have been given in [23]. In this paper the
nonvanishing quark mass contributions are denoted by

Fð7AÞ
m;h , F

ð7BÞ
m;h , and Fð9;10Þ

m;h in order to distinguish the con-
tribution with the photon emission from P7 or P9;10, and the

subscript h ¼ L or R according to the helicity. In addition,

we use we Fð7AÞ
soft;h and F

ð9;10Þ
soft;h to denote the contribution from

the resolved photon.

III. THE CONTRIBUTION FROM THE QUARK
MASS TERM WITH DISPERSION APPROACH

Before constructing the theoretical framework to evalu-
ate the contribution from the quark mass term, we show
explicitly the mass term in the hard-collinear quark
propagator (see Fig. 1) as

=k − =lþms

ðk − lÞ2 −m2
s þ i0

¼ =k
nþkn−ðk − lÞ þ i0

þ −=l
nþkn−ðk − lÞ þ i0

þ ms

nþkn−ðk − lÞ þ i0
þO

�Λ2
QCD

m2
b

�
; ð11Þ

where l and k denote the momentum of the light strange
quark inside the B̄s meson and the momentum of the
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photon from the QED vertex respectively, and we have
employed the on shell condition l2 ¼ m2

s in the above
equation. In the light cone coordinate system, a momentum
aμ can be written as a¼ðn− ·a=2;nþ ·a=2;a⊥Þ. According
to our power counting rule, the soft momentum scales
as l ∼mbðλ; λ; λ), and collinear momentum scales as
k ∼mbðλ2; 1; λÞ. As a result, the leading-power term which
is given in the first line of Eq. (11) scales as 1=ðλmbÞ. We
assume the strange quark mass ms ∼ λmb, then the second
term in the second line of Eq. (11) is at subleading power,
similar to the first term which has been extensively studied
in [4]. A straightforward calculation of the second term at
tree level leads to the following expression

Tms;NLP
7;αβ ¼ −½iQsm̄bðνÞmsfBs

mBs
�½g⊥αβ − iε⊥αβ�

×
Z

∞

0

dω
ϕ−
Bðω; μÞ
ω

; ð12Þ

where the endpoint singularity appear, since the LCDA
ϕ−
Bðω; μÞ does not vanish when ω → 0. In the following

we evaluate the mass term contribution to the B̄s → γγ
and B̄s → γll̄ decays with the dispersion approach.

A. The contribution from the quark mass term
in B̄s → γγ

We start from the correlation function

T̃μν
7 ðk; qÞ ¼ 2m̄bðνÞ

Z
d4xeik·xh0jTfjνsðxÞ; ½s̄σαμqαPRb�ð0ÞgjB̄sðkþ qÞijk2<0 þ ½k ↔ q; ν ↔ μ�; ð13Þ

where k is the momentum of the interpolation electromag-
netic current jμs ¼ Qs½s̄γμs�. It is regarded to be a hard-
collinear mode, i.e., jk2j ∼mbΛ and k2 < 0, so that the
correlation function can be calculated using a perturbation
approach. This correlation function is induced by the
electromagnetic penguin operator which gives rise to
the left-handed amplitude, therefore it takes the following
form

T̃μν
7 ¼ iðgμν⊥ − iϵμν⊥ Þm̄bQsm2

Bs
F̃7;

F̃7 ¼ F̃7;LP þ F̃ms
7;NLP þ F̃other

7;NLP; ð14Þ

where the scalar correlation function can be expressed
as the factorization form after a calculation on the
partonic level

F̃7;LP ¼ Û1ðmb; μh; μÞÛ2ðmb; μh; μÞK−1ðmb; μhÞCðA0Þ
T1

fBs

×
Z

∞

0

ϕþ
B ðωÞ

ω − n−k
J̃ðn−k;ω; μÞdω; ð15Þ

F̃ms
7;NLP ¼ −

�
fBs

ms

mBs

n−q
nþk

�Z
∞

0

ϕ−
BðωÞ

ω − n−k
dω: ð16Þ

The leading power factorization formula (15) has been
derived in [4]. The n−k in the denominator of formula (16)
regularize the endpoint singularity, at the cost of the
nonphysical off shellness of the photon. The on shell limit
is to be taken after removing the singularity, then the on shell
condition will be recovered and the correlation function turns
to the physical matrix element. F̃other

7;NLP denotes the power
suppressed terms other than the strange quark mass con-
tribution, and it reduces to Ffac;NLP

7;L when the photon
momentum is taken to be on shell. The difference between
F̃other
7;NLP and Ffac;NLP

7;L is further suppressed by the small
parameter λ compared with the resolved photon contribution
relative to the leading power contribution, and it will be
neglected. The correlation function will be also expressed in
terms of hadronic parameters after inserting the complete set
of hadronic states and isolate the ground state contribution.
The hadronic form factors relevant to the B → V transitions
induced by the tensor current are defined as

FIG. 1. The leading-order Feynman diagram of B̄s → γγ and B̄s → γll̄ decay, where the other two diagrams due to the exchange of
two gauge bosons are not presented.
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h0jq̄γμqjVðk; ϵÞi ¼ iaðqÞV fVmVϵμðkÞ;
hVðk; ϵ�Þjq̄σμνqνbjB̄sðkþ qÞi ¼ 2aðqÞV T1ðq2Þεμνρσϵ�νðkÞkρqσ;

hVðk; ϵ�Þjq̄iσμνγ5qνbjB̄sðkþ qÞi ¼ aðqÞV T2ðq2Þ½ðm2
B −m2

VÞϵ�μðkÞ − ðϵ� · qÞð2kþ qÞμ�

þ aðqÞV T3ðq2Þðϵ� · qÞ
�
qμ −

q2

m2
B −m2

V
ð2kþ qÞμ

�
; ð17Þ

where the flavor factor aðqÞV comes from the quark structure of the vector mesons, and in this work aðsÞϕ ¼ 1 will be employed.
The hadronic representation of the correlation functions then reads,

T̃μν
7 ¼ iðgμν⊥ − iϵμν⊥ Þm̄bm2

Bs

�
QsfVmV

m2
V − k2

�
nþk
mBs

T1ðq2Þ þ T2ðq2Þ
�
þ 1

π

Z
∞

ωs

dω0 ρhadðω0Þ
ω0 − n−k − i0

�
: ð18Þ

Accordingly, the scalar correlation function F̃7 at the hadronic level is written by

F̃7;LP þ F̃ms
7;NLP þ F̃other

7;NLP ¼
fVmV

m2
V − k2

�
nþk
mBs

T1ðq2Þ þ T2ðq2Þ
�
þ 1

π

Z
∞

ωs

dω0 ρhadðω0Þ
ω0 − n−k − i0

: ð19Þ

Matching the two different representations of the correlation functions with the parton-hadron duality; namely, equalizing
the dispersion integral in the QCD expression and the hadronic expression of the correlation function above the threshold,
and performing the Borel transformation with respect to the variable n−k, we obtain the sum rules for the form factors relative
in QCD,

nþk
mBs

T1ðq2Þ þ T2ðq2Þ ¼
nþk
fVmV

1

π

Z
ωs

0

exp
�
m2

V − nþkω0

nþkωM

�
ðImω0F̃7;LP þ Imω0F̃ms

7;NLP þ Imω0F̃other
7;NLPÞdω: ð20Þ

The procedure of evaluation of the above form factors is actually the B-meson light cone sum rules [24,25], which has
been used to calculate various heavy-to-light transition form factors [26–31]. With the specific expression of the term
nþk
mBs

T1ðq2Þ þ T2ðq2Þ in hand, we substitute Eq. (20) into Eq. (19), replace the continuum states contribution by the QCD

result above the threshold in (19), and take the limit n−k → 0, and the scalar correlation function F̃7 turns to the physical
amplitude F7,

F7 ¼
1

π

Z
∞

0

Imω0F̃7;LP

ω0 dω0 þ 1

π

Z
∞

0

Imω0F̃other
7;NLP

ω0 dω0 þ 1

π

Z
ωs

0

�
nþk
m2

V
exp

�
m2

V − nþkω0

nþkωM

�
−

1

ω0

�
Imω0F̃7;LP

þ 1

π

Z
ωs

0

nþk
m2

V
exp

�
m2

V − nþkω0

nþkωM

�
Imω0F̃ms

7;NLPdωþ 1

π

Z
∞

ωs

Imω0F̃ms
7;NLP

ω0 dω0; ð21Þ

where the first line corresponds to the leading-power contribution and the factorizable NLP contributionFfac;NLP
7;L in [4], and the

second line is identical to resolved photon contribution. Consequently, we can organize the NLP quark mass corrections to the
form factors of Bs → γγ as the last line. Inserting the specific expression of the imaginary part of F̃ms

7;NLP, we arrive at the final
expression of the strange mass term with the dispersion approach as

Fms
7;NLP ¼ −

QsfBs
m̄bms

m2
Bs

�
mBs

m2
ϕ

Z
ωs

0

exp

�
m2

ϕ −mBs
ω0

mBs
ωM

�
ϕ−
Bðω0Þdω0 þ

Z
∞

ωs

ϕ−
Bðω0Þ
ω0 dω0

�
; ð22Þ

where we used nþk ¼ n−q ¼ mBs
and mV ≡mϕ, and the threshold parameter and Borel parameter

ωs ¼
s0
nþk

∼O
�Λ2

QCD

mBs

�
; ωM ¼ M2

nþk
∼O

�Λ2
QCD

mBs

�
: ð23Þ

Noted here, the well-known hierarchy structure of weak interaction also clearly emerges in quark mass corrections.
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B. The contribution of the quark mass term in B̄s → γll̄

The subleading power contribution to the B̄s → γll̄ decays from the strange quark mass effect as well as the resolved
photon contribution is not considered in [23], we formally work out the factorization formula of quark mass contribution
first. Following [23], we divide the correlation functions relevant to this process into A-type and B-type, which take the
following form respectively

Tμν
i ¼

Z
d4xeikxh0jTfQs½s̄γνs�ðxÞ; ½q̄γμPLb�ð0ÞgjB̄si; i ¼ 9; 10

Tμν
7A ¼ 2m̄b

q2

Z
d4xeikxh0jTfQs½s̄γνs�ðxÞ; ½q̄iσμαqαPRb�ð0ÞgjB̄si;

Tμν
7B ¼ 2m̄b

q2

Z
d4xeiqxh0jTfQs½s̄γμs�ðxÞ; ½q̄iσναkαPRb�ð0ÞgjB̄si: ð24Þ

After contraction of the strange quark field, it is straightforward to isolate the quark mass term and obtain the related
factorization formula directly

T̃μν;ms
9;10 ¼ ðgμν⊥ − iϵμν⊥ ÞQsfBs

mBs

4

ms

nþk

Z
∞

0

ϕ−
BðωÞ
ω

dωþ ðgμν⊥ þ iϵμν⊥ ÞQsfBs
mBs

4

ms

nþk

Z
∞

0

ϕþ
B ðωÞ
ω

dω;

T̃μν;ms
7A ¼ −ðgμν⊥ − iϵμν⊥ Þ 2m̄b

q2
QsfBs

mBs
n−q

4

ms

nþk

Z
∞

0

ϕ−
BðωÞ
ω

dω − ðgμν⊥ þ iϵμν⊥ Þ 2m̄b

q2
QsfBs

mBs
nþq

4

ms

nþk

Z
∞

0

ϕþ
B ðωÞ
ω

dω;

T̃μν;ms
7B ¼ −ðgμν⊥ − iϵμν⊥ Þ 2m̄b

q2
QsfBs

nþkms

4

Z
∞

0

ϕ−
BðωÞ

ω − nþq
dω: ð25Þ

From the above equations, it is obvious that there is no endpoint singularity in the B-type contribution for the existence of
nþq in the denominator, and no endpoint singularity in the right-handed amplitudes since they are proportional to the first
inverse moment 1=λBs

. While for the other amplitudes, the endpoint singularity arises due to the endpoint behavior of the
LCDAs of the B-meson. Following the same procedure with B̄s → γγ decay, we start from the correlation function in which
the momentum related to the electromagnetic current is taken to be off mass shell, then the endpoint singularity is
regularized. For the convolution with the integration variable below the threshold parameter, we express the correlation
functions with the help of hadronic form factors

½Tμν;LP
7A þ Tμν;ms

7A �jω<ωs
¼ 1

2
ðgμν⊥ − iϵμν⊥ Þ m̄b

q2
QsfVmVmBs

m2
V − k2

½nþkT1ðq2Þ þmBs
T2ðq2Þ�;

½Tμν;LP
9;10 þ Tμν;ms

9;10 �jω<ωs
¼ 1

4
ðgμν − iϵμν⊥ Þ fVmVQs

m2
V − k2

½nþkVðq2Þ þmBs
A1ðq2Þ�: ð26Þ

In the above equation we do not include the other power suppressed contribution since they are irrelevant to the extraction of
the quark mass contribution and the resolve photon effect corresponding to the lead power amplitude. The B → V form
factors induced by the vector and axial vector current are defined by

hVðk; ϵ�Þjq̄γμbjB̄ðkþ qÞi ¼ −
2iaðqÞV Vðq2Þ
mB þmV

ϵμνρσϵ
�νkρqσ;

hVðk; ϵ�Þjq̄γμγ5bjB̄ðkþ qÞi ¼ 2mVϵ
� · q

q2
qμa

ðqÞ
V A0ðq2Þ þ ðmB þmVÞ

�
ϵ�μ −

ϵ� · q
q2

qμ

�
aðqÞV A1ðq2Þ

−
ϵ� · q

mB þmV

�
ð2kþ qÞμ −

m2
B −m2

V

q2
qμ

�
aðqÞV A2ðq2Þ: ð27Þ

Similar to Eq. (20) the LCSR of the form factors Vðq2Þ and Aiðq2Þ can be obtained using the dispersion integral of the scalar
functions which are defined through the Lorentz decomposition of the correlation functions in Eq. (24) as follows:

Tμν
i ðk; qÞ ¼ Eγ

h
gμν⊥

	
FðiÞ
L − FðiÞ

R



− iεμν⊥

	
FðiÞ
L þ FðiÞ

R


i
: ð28Þ
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Inserting the LCSR of the form factors Vðq2Þ, Aiðq2Þ, Tiðq2Þ into the correlation function (24), we arrive at the final
expressions of the power-suppressed resolved photon contribution Fi

soft;L, the quark mass dependent amplitudes Fi
m;L, and

the explicit expression reads

Fð9;10Þ
soft;L ¼ QsfBs

mBs

4Eγ

Z
ωs

0

�
2Eγ

m2
ϕ

exp

�
m2

ϕ − 2Eγω
0

2EγωM

�
−

1

ω0

�
ϕþ
B ðω0Þdω0;

Fð7AÞ
soft;L ¼ −

2m̄b

q2
QsfBs

m2
Bs

4Eγ

Z
ωs

0

�
2Eγ

m2
ϕ

exp

�
m2

ϕ − 2Eγω
0

2EγωM

�
−

1

ω0

�
ϕþ
B ðω0Þdω0;

Fð9;10Þ
m;L ¼ QsfBs

mBs
ms

8E2
γ

�Z
ωs

0

dω0 2Eγ

m2
ϕ

exp

�
m2

ϕ − 2Eγω
0

2EγωM

�
ϕ−
Bðω0Þ þ

Z
∞

ωs

ϕ−
Bðω0Þ
ω0 dω0

�
;

Fð7AÞ
m;L ¼ −

2m̄b

q2
QsfBs

m2
Bs
ms

8E2
γ

�Z
ωs

0

dω0 2Eγ

m2
ϕ

exp

�
m2

ϕ − 2Eγω
0

2EγωM

�
ϕ−
Bðω0Þ þ

Z
∞

ωs

ϕ−
Bðω0Þ
ω0 dω0

�
: ð29Þ

The other amplitudes are factorizable, and we present the
factorization formula as follows:

Fð7BÞ
m;L ¼ −

2m̄b

q2
QsfBs

ms

2

Z
∞

0

ϕ−
BðωÞ

ω − q2=mBs

dω;

Fð9;10Þ
m;R ¼ QsfBs

mBs
ms

8E2
γ

Z
∞

0

ϕþ
B ðωÞ
ω

dω;

Fð7AÞ
m;R ¼ −

2m̄b

q2
QsfBs

mBs
ðmBs

− 2EγÞms

8E2
γ

Z
∞

0

ϕþ
B ðωÞ
ω

dω;

F7B
m;R ¼ 0; ð30Þ

The helicity amplitudes corresponding to the resolved
photon contribution and the strange quark effects are then
given by

X9
i¼1

ηiCiF
ðiÞ
soft;h ¼Ceff

7 Fð7AÞ
soft;hþCeff

9 Fð9Þ
soft;h h¼L;R;

X9
i¼1

ηiCiF
ðiÞ
m;h¼Ceff

7 ðFð7AÞ
m;h þFð7BÞ

m;h ÞþCeff
9 Fð9Þ

m;h h¼L;R:

ð31Þ

IV. NUMERICAL ANALYSIS

In this section we will evaluate the numerical results of
the quark mass contribution to the B̄s → γγ and B̄s → γll̄
decays and the resolved photon contribution to B̄s → γll̄
decay. We firstly discuss the nonperturbative hadronic
inputs entering the factorized expressions of the helicity
amplitudes. The leptonic decay constant of the Bs meson is
taken from the average values of Lattice simulation [32].
The two-particle Bs meson distribution amplitudes in
HQET serve as the fundamental ingredients in the factori-
zation formulas and the expression of the amplitudes from
the dispersion approach. Following [14] we will introduce
the general three-parameter ansatz for the leading-twist
LCDA ϕþ

B ðω; μ0Þ

ϕþ
B ðω; μ0Þ ¼

Z
∞

0

ds
ffiffiffiffiffiffi
ws

p
J1ð2

ffiffiffiffiffiffi
ws

p Þηþðs; μ0Þ;

ηþðs; μ0Þ ¼ 1F1ðα; β;−sω0Þ; ð32Þ

where J1ðxÞ is the Bessel function, and 1F1ðα; β; xÞ is a
hypergeometric function. It is useful to define the first
inverse moment and the inverse-logarithmic moments of
the leading-twist Bs-meson LCDA

TABLE I. Input parameters in the numerical calculations.

Parameter Value Ref. Parameter Value Ref.

mBs
5.36688 GeV [38] mϕ 1.01946 GeV [38]

fBs
jNf¼2þ1þ1 230.3 MeV [39] m̄bð4.8 GeVÞ 4.101 GeV [38]

m̄sð2 GeVÞ 92.9� 0.7 MeV [38] λBs
0.40� 0.15 GeV [23]

αð5Þs ðmZÞ 0.1188� 0.0017 [38] τBs
ð1.527� 0.011Þ ps [38]

fσ̂ð1ÞBs
ðμ0Þ; σ̂ð2ÞBs

ðμ0Þg f0.0� 0.7; 0.0� 6.0g [23] fM2
ϕ; s

0
ϕg f1.9� 0.5; 1.6� 0.1g GeV2 [30]
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λ−1Bs
ðμÞ ¼

Z
∞

0

dω
ϕþ
B ðω; μÞ
ω

σ̂ðnÞBs
ðμÞ ¼ λBs

ðμÞ
Z

∞

0

dω
ω

�
ln

�
λBs

ðμÞ
ω

�
− γE

�
n

ϕþ
B ðω; μÞ:

ð33Þ

The shape parameter λBs
and the associated inverse-

logarithmic moments σ̂ðnÞBs
are related to the parameters

ω0, α, β with the following identities

λBs
ðμ0Þ ¼

�
α − 1

β − 1

�
ω0;

σ̂ð1ÞBs
ðμ0Þ ¼ ψðβ − 1Þ − ψðα − 1Þ þ ln

�
α − 1

β − 1

�
;

σ̂ð2ÞBs
ðμ0Þ ¼ ½σ̂ð1ÞBs

ðμ0Þ�2 þ ψ ð1Þðα − 1Þ − ψ ð1Þðβ − 1Þ þ π2

6
;

ð34Þ

so that the parameter α, β, ω0 can be determined through

λBs
and σ̂ðnÞBs

. However, even the inverse moment λBs
has

not been satisfactorily constrained albeit that distinct
techniques and strategies has been employed to inves-
tigate this parameter since it is defined by a nonlocal
operator [13,14,18,26,28,33–37]. Consequently, we will
vary the input value of λBs

in the conservative interval
as presented in Table I. For the associated inverse-

logarithmic moments σ̂ðnÞBs
, we adopt the same values

as [4]. The two-particle twist-3 LCDAs of Bs-meson are
also of great importance in our calculation, we adopt the
following model

ϕ−WW
Bs

ðω; μ0Þ ¼
Z

∞

ω
dρfðρÞ ð35Þ

ϕ−tw3
Bs

ðω; μ0Þ ¼
1

6
κðμ0Þ½λ2Eðμ0Þ − λ2Hðμ0Þ�

×
�
ω2f0ðωÞ þ 4ωfðωÞ − 2

Z
∞

ω
dρfðρÞ

�

ð36Þ
with

Z
∞

0

dωfðωÞ ¼ λ−1Bs
ðμ0Þ;Z

∞

0

dωωfðωÞ ¼ 1;
Z

∞

0

dωω2fðωÞ ¼ 4

3
Λ̄;

κ−1ðμ0Þ ¼
1

2

Z
∞

0

dωω3fðωÞ

¼ Λ̄2 þ 1

6
½2λ2Eðμ0Þ þ λ2Hðμ0Þ�: ð37Þ

For the other parameters such as the running quark mass,
the threshold parameter, and the Borel mass, we also
follow the same choice as [4]. The specific vales are given
in Table I.
Inputting all the values of the parameters into the analytic

formulas, we can obtain the numerical results for various
decay amplitudes and the phenomenological observables.

FIG. 2. The leading power and various NLP amplitudes in B̄s → γγ decays as a function of λBs
. Except for the strange quark mass

contribution, the other amplitudes are from Ref. [4].

TABLE II. CP-averaged branching ratio of Bs → γγ decays
with uncertainty in unit of 10−7.

Contributions
Central
value

Total
error

Error
from λBs

Leading power(LP) 3.87 þ5.69
−1.85

þ5.66
−1.77

LPþ NLP 3.25 þ2.09
−1.73

þ1.54
−0.80

LPþ NLPþ quarkmass 3.49 þ2.21
−1.80

þ1.67
−0.87
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In what follows, we first present the numerical result of the
strange quark mass effect in the B̄s → γγ decay. The λBs

dependence of the real part of the left-handed polarized
amplitude from the leading-power contribution, the NLP
contribution without quark mass effect, and the full results

are shown in the left panel of Fig. 2. It can be seen that the
contribution from the quark mass is a few percent of the full
amplitude, which is almost independent of the parameter
λBs

. As a result, it plays a more important rule in the NLP
contribution as λBs

becomes large. The right panel of Fig. 2
exhibits the amplitudes from various sources of NLP
contribution, and it is obvious that the cancellation between
them highlights the contribution from the quark mass term.
The branching ratio of Bs → γγ decay is given in

Table II, where the uncertainty is obtained by varying
separate input parameters within their ranges and adding
the different uncertainties of the form factors in quadrature.
The main uncertainty is obviously from the parameter λBs

.
From the central value we can see that the quark mass
term can enhance the branching ratio by about 6%,
which deserves a reliable study if one intends to precisely
determine the parameters in the standard model. In Fig. 3
we plotted the λBs

dependence of the branching ratio of
Bs → γγ decay, which can serve as a good method to
determine λBs

. However, the accuracy of the determination
of the parameter λBs

is limited by the large theoretical
uncertainty from other parameters. An optional method to
improve the accuracy is to perform a global fit together with
the other processes.

FIG. 3. The branching ratio of Bs → γγ decays as a function of
λBs

: (1) With only the leading-power contribution; (2) With NLP
contributions except for the strange quark mass term; (3) The
complete contribution.

FIG. 4. The quark mass and soft contribution to the real parts of B̄s → γμþμ− decay amplitude ĀLV;LA [left] and ĀRV;RA [right] from
operator P9;10 and P7 as a function of q2.
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The strange quark mass effect in the B̄s → γμþμ− decay
is a bit more complicated since several operators can
contribute besides the electromagnetic penguin operator,
and the right-handed polarized amplitude can also receive
corrections from the strange quark mass effect. The size
of the quark mass term induced by the operators P7;9;10

are collected in Fig. 4 as a function of q2. We can see
that almost all the effects of axial-vector currents or right-
helicity amplitudes come from semileptonic operators

P9;10. It is clear that there exists cancellation between
different operators, which reduces the total quark mass
term contribution. In the amplitude level, the ratio between
the quark mass term and the full amplitude is close to
that of the B̄s → γγ decays. We exhibit relative magnitude
between the quark mass effect and the full amplitude in
Fig. 5 induced by P7;9 operators. In this figure, the total
results with ϕð1020Þ resonance contribution around
q2 ≃ 1 GeV [gray] are also shown. It is obvious that the
mass term contribution in the B̄s → γμþμ− decay is
negligibly small except for an enhancement from operator
P7 at very small q2, which can be seen from Fig. 4.
The differential branching ratio of Bs → γμþμ− decay

with respect to q2 is plotted in Fig. 6, where we have
included the on shell hadronic state contribution in order
to compare with the future data. The quark mass effect is
negligible at small q2 region compared with the large
hadronic resonance contribution. The integrated branching
ratios are listed in Table III, where we have considered two
integration regions ½4m2

μ; 6.0� GeV2 and ½4m2
μ; 8.64� GeV2

of invariant mass of the lepton pair. The uncertainty from
the strange quark mass term is also negligible compared
with the other error from [23]. The results in this table
indicate that the quark mass effect is less important in
Bs → γμþμ− decay than that in the Bs → γγ decay. This is
mainly due to the inclusion of the hadronic state contri-
bution at small q2, which significantly enhance the total
branching ratio.

V. SUMMARY

The power-suppressed contributions play an important
role in the radiative decays Bd;s → γγ and radiative leptonic
decays Bd;s → γll̄. Some of them are factorizable and can
be investigated using a factorization approach; however, the
emergence of the endpoint singularity prevents us from

FIG. 5. The quark mass [violet, cyan] contribution to real parts of B̄s → γμþμ− decay amplitude ĀLA (left) and ĀRA (right) from
operator P7 and P9 as a function of q2. For comparison, the total results with ϕð1020Þ resonance around q2 ≃ 1 GeV [gray] are
also shown.

TABLE III. Integrated branching ratios (in unit of 10−9) of
Bs → γμþμ− decay with and without the quark mass and the soft-
photon effect.

Region of q2 ½4m2
μ; 6.0� GeV2 ½4m2

μ; 8.64� GeV2

Without ms and soft 12.43þ3.83
−1.93 12.74þ4.15

−2.08

With ms and soft 12.28þ3.83
−1.93 12.49þ4.15

−2.08

FIG. 6. The CP-averaged differential branching ratio dB=dq2

distributions for Bs → γμþμ− decay with and without the mass
term and soft contribution.
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applying the factorization methods to many other contri-
butions. Therefore, one must find some special techniques
to deal with the nonfactorizable contributions. The con-
tribution from the quark mass term in the Bs → γγ as well
as Bs → γll̄ decays suffers from the endpoint singularities.
In the previous study it was parametrized in a model
dependent way. In order to reduce the model dependence
and improve the theoretical precision, we revisit this NLP
contribution with a QCD-inspired approach; namely, the
dispersion approach. In this approach, we introduce the
Bs → V form factors instead of the arbitrary momentum
cutoff to deal with the endpoint singularity; therefore, the
prediction power is highly improved. Taking advantage of
the dispersion approach, the analytic expression of the
quark mass contribution and the resolved photon contri-
bution in the Bs → γγ and Bs → γll̄ decays an be obtained
simultaneously.
The numerical results of the NLP contribution to the

Bs → γγ and Bs → γll̄ decays from the strange quark
mass effect have also been presented. In the Bs → γγ decay,
the strange quark mass term can give rise to about 6%
contribution relative to the total amplitude, which makes

sense if this process is employed to determine the param-
eters in the standard model. The strange quark mass
contribution to the Bs → γll̄ decays is relatively small,
due to the cancellation between the contributions from
different operators and the enhancement of large hadronic
resonance contribution. The uncertainty of the input
parameters is sizable, which renders us from a more
accurate prediction so far. However, it is promising to
achieve more precise predictions with our improved theo-
retical method once future experiments can precisely
constrain the hadronic parameters.
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