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We have studied the transport coefficients as a tool to probe the collision integral appearing in the
Boltzmann transport equation. For this purpose, we have estimated the transport coefficients (momentum:
fη; ζg, heat: fκg, and charge: fσelg) in the kinetic theory approach with the collision integrals in Bhatnagar-
Gross-Krook (BGK) and relaxation-time (RT) approximations and ask whether we can distinguish between
the two collision integrals. For example, η gets enhanced while ζ gets reduced with respect to RT. As a
corollary, we then investigate the interplay among the aforesaid transport coefficients, viz. fluidity and
transition point of QCD medium by evaluating the ratios, η=s and ζ=s, respectively, nature of flow
(Reynolds number, RI), sound attenuation (Prandtl number, Pr), and competition between the momentum
and charge diffusion (γ), etc. as further plausible tools to decipher the same. With BGK collision integral,
the ratios η=s (increase) and ζ=s (decrease) show opposite behavior, whereas Pr, RI, γ, and the ratio ζ=η get
reduced with respect to RT. We then examine how a strong magnetic field modulates the impact of the
collision integral, which, in a way, explores the dimensionality dependence of the transport phenomena,
especiallymomentum transport because the quark dynamics is effectively restricted to 1D only and only the
lowest Landau levels are populated. As a result, η (ζ) gets reduced (amplified), which will have
ramifications on the ratios, viz. η=s (ζ=s) becomes smaller (larger), enhancement of Pr, γ, and ζ=η, etc. In
this study, the thermomagnetic medium effects have been incorporated by adopting a thermodynamically
consistent quasiparticle model, where the medium-generated masses of the partons have been obtained
from the pole of their resummed propagators calculated using perturbative thermal QCD in strong B.
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I. INTRODUCTION

Heavy-ion collision experiments at Relativistic Heavy
Ion Collider (RHIC) and Large Hadron Collider (LHC)
produce an extremely hot and dense phase of matter,
dubbed as quark gluon plasma (QGP), which has also
cosmological and astrophysical relevance. Recent inves-
tigations at RHIC and LHC conclude that a very intense
magnetic field (of the order of m2

π at RHIC [1] and 15m2
π at

LHC [2]) perpendicular to the reaction plane also originates
due to the noncentrality of the collisions. Earlier, it was
believed that the lifetime of this strong magnetic field
was too short to have any observable effect on the bulk
properties of the QGP, but later it was found that the
lifetime gets elongated due to finite electrical conductivity.
The heavy-ion community pays much attention to incor-
porate the effects of magnetic field on the bulk properties of

the hot and dense QCD medium, viz. thermodynamical
[3,4], transport properties [5–24], production of soft pho-
tons [25], dilepton production rate [26,27], refractive
indices [28], heavy quarkonia [29–32], and heavy-quark
dynamics [33–35]. Similarly, the study of salient features in
QCD, viz. chiral magnetic effect [1,36], (inverse) magnetic
catalysis [37,38], axial magnetic effect [39,40], and chiral
vortical effect [41,42], have been resurrected due to the
feasibility of strong magnetic field.
Recently we have studied the charge and heat transport

coefficients in an ambience of strong magnetic field in
kinetic theory framework with the collision terms in
Bhatnagar-Gross-Krook (BGK) and relaxation-time (RT)
approximations [43]. We found that the BGK and RT
collision terms yield different solutions to the transport
equation, which, in turn, yield different predictions for the
heat and charge transport coefficients. Since the collision
integral directly controls the momentum distribution of the
particles, the collision integral could have direct impact on
the momentum transport coefficients. This motivates us to
explore the sensitivity of collision terms on the momentum
transport because the transport coefficients: shear (η) and
bulk (ζ) viscosities are very important input parameters to
model the hydrodynamical evolution of the strongly
interacting matter. Certain (conformal) field theories, which
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are dual to gravity in higher space-time dimensions, show a
lower bound 1=4π for the ratio, η=s (s is the entropy
density) [44] and also conjecture this same value as a lower
limit for all substances. RHIC and LHC data, represented
by radial and elliptic flow, also indicate very small viscosity
[45–50]. Lattice simulations also predict the small shear
viscosity [51]. On the other hand, at the classical level the
bulk viscosity vanishes for the conformal fluid and mass-
less QGP, but quantum corrections break the conformal
symmetry and it acquires nonzero value even for the
massless QGP found in the lattice studies of SUð3Þ gauge
theory [52]. In some other studies, the value of the ratio η=s
is found to be minimum [53,54] near the phase transition
while the bulk viscosity is found to be maximum [55,56].
Keeping these studies in mind, many groups in the heavy-
ion community have calculated the shear and bulk viscos-
ities [57–62] and some derived coefficients, viz. Prandtl
number [63–65], Reynolds number [66,67], dimensionless
ratio γ ¼ ðη=sÞ=ðσel=TÞ (where σel is the electrical con-
ductivity) of the hot QCD medium in the kinetic theory
[12,68] with RT collision term, and Chapman-Enskog
approach with quasiparticle description through an effec-
tive fugacity model [69]. The relative significance of the
shear and bulk viscosity (ζ=η) is studied in many systems,
such as interacting scalar field [70], hot QCD medium
using the perturbation theory [60], strongly coupled gauge
plasma using the gauge gravity duality [71,72], and for the
quasigluon plasma [73].
The transport coefficients discussed so far are limited to

thermal QCD medium in the absence of magnetic field;
however, the advent of strong magnetic field created at
RHIC and/or LHC motivates researchers to estimate the
transport coefficients in this kind of environment because
the dissipative magnetohydrodynamics needs an under-
standing of the viscosity coefficients in the presence of
magnetic field. In strong B⃗, only the lowest Landau levels
(LLLs) are populated, which in turn constrains the dynam-
ics of quarks to 1D. This dimensional reduction in phase
space has deep impact on the collision integral (through the
relaxation time), which subsequently modifies the solution
of the Boltzmann equation. However, the strong B mod-
ulates the transport coefficients directly because the ten-
sorial structure of the transport coefficients gets modified.
In case of momentum transport, the viscous tensor in B⃗
have seven independent tensors, compared to only two
independent tensors in the absence of magnetic field. That
is, the number of viscosity coefficients in a magnetic field
are seven, out of which five are shear, one is bulk, and
the last one is the cross term between ordinary and bulk
viscosities. When the strength of B⃗ is very strong, the
transverse components of velocity (with respect to the
direction of B⃗) vanish, so nondiagonal terms vanish and
only diagonal (longitudinal) terms survive. The nonvanish-
ing terms are further grouped into traceless and nonzero
trace tensor; the coefficients of them are (longitudinal)

shear and bulk viscosities, respectively. These coefficients
in magnetic field have been studied recently in kinetic
theory [12] with RT collision term, Chapman-Enskog
method [13], perturbative QCD in weak magnetic field
[14], Kubo formalism [14–16,22], and using the holo-
graphic technique [74,75]. Apart from the influences of B⃗,
and collision integral, other important factors in transport
phenomena are the quasiparticle descriptions for partons.
The aim of the present paper is to treat the transport

coefficients as a probe to understand the microscopic
aspects of the medium in threefold respects: (i) By looking
into the relative behavior of transport coefficients (shear
and bulk viscosities, thermal and electrical conductivities,
etc.) due to the collision integral of different kinds used in
the transport equation, we can decipher the nature of the
collision term. Here, we use the BGK collision term and the
commonly used simplified RT collision term. (ii) Once we
decipher the correspondence between the transport coef-
ficients and the collision integral, we will further ask
whether this correspondence is still restored in dimensional
reduction (3 → 1 dimension), which is made possible in a
strong magnetic field. (iii) We explore the aforesaid
correspondence from higher to lower dimension (artifact
of strong B⃗) in a realistic description of partons in thermal
QCD medium, known as the quasiparticle model (QPD).
A hot and dense QCD medium manifests a hierarchy in
mass scales perturbatively: T ≪ gT ≪ g2T (g is strong
running coupling constant). Physically, gT is the (electric-
screening) scale at which the system develops collective
oscillation, which is also viewed as the mass generated to
the partons in a thermal medium. We envisage QPD by
assigning masses to partons, which are obtained from their
dispersion relations (details are in Sec. II) [76]. There are
many versions of QPDs, such as effective theory-based
models: Nambu-Jona-Lasinio (NJL) and PNJL models
[77–79], effective fugacity model [80], models based on
the Gribov-Zwanziger quantization [81–83], etc.
The BGK collision integral in the transport equation has

been used earlier in the calculation of the refractive index
[84], the dielectric permitivity [85], heavy-quark energy
loss [86], and collective modes of the hot QCD medium
[87]. In this work, we have calculated the shear and bulk
viscosities in kinetic theory with quasiparticle description
of partons. In addition to viscosity coefficients, we have
revisited our recent calculations [43] on thermal and
electrical conductivities to study the impact of collision
terms on the specific viscosities (η=s, ζ=s), Prandtl number,
Reynolds number, dimensionless ratio γ, and the ratio ζ=η,
etc. The entire aforesaid calculations are done in two steps:
in the absence and presence of strong magnetic field. In
B⃗ ¼ 0 case, both η and ζ increase with the temperature. The
magnitude of η (ζ) gets enhanced (reduced) in the BGK
collision term in comparison to RT, wherein η=s is
minimum while ζ=s is maximum near the deconfinement
temperature (TC ∼ 0.16 GeV). The Prandtl and Reynolds
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numbers have been found to be increasing with T. The
magnitude of the Pr, RI, γ, and ζ=η slightly get reduced in
the BGK collision term. In the presence of strong B⃗, the
above-mentioned transport coefficients show similar trends
with respect to the collision integral except ζ=s, which has
almost the same magnitude in both the collision integrals.
The coefficients, Pr, γ, and ζ=η become larger while RI
becomes smaller. Thus, we observe that the collision
integrals of different kinds predict different values of the
transport coefficients. Transport coefficients are experi-
mentally measurable quantities, whereas collision integral
is a theoretical input to the transport (Boltzmann) equation;
thus, by inverting this one-to-one correspondence, we can
have an idea about the collision integral with the help of the
transport coefficients.
The manuscript has been organized in the following

manner: We have started with the discussion on a hot
QCD medium in an ambience of strong magnetic field in
Sec. II, whose dispersion relation gives rise to quasiparticle
dispersion of partons through the masses generated by the
artifact of a thermal medium. In Sec. III, we have discussed
the general framework of the kinetic theory approach and
collision integrals to linearize the Boltzmann transport
equation. In subsections III A and III B, we calculate the
shear and bulk viscosities in the absence as well as in the
strong B, respectively. In subsection III C, we have revisited
our earlier study related to the charge and heat transport.
Further, in Sec. IV, we discuss the various derived coef-
ficients like η=s, ζ=s Pr, RI, γ factor, and at last the ratio ζ=η.
Finally, we conclude in Sec. V.

II. QUASIPARTICLE MODEL

The basic idea behind quasiparticle models is that one
can study the various properties of a system of strongly
interacting quarks and gluonS by considering it as an
ensemble of quasiquarks and quasigluons, where the
information about the interaction is hidden in the
medium-generated mass of the quasiparticles. The quasi-
particles manifest a collective behavior of the medium,
not the independent singular nature of a parton. There are
many effective models in the literature to study the various
properties of the QGP [76–83]. In the present work, we
have exploited a thermodynamically consistent phenom-
enological model [76] which explains the lattice QCD data
well in its domain of applicability. In this model, the
quasiparticle mass of the quark has been parametrized as

m2
i ¼ m2

i0 þ
ffiffiffi
2

p
mi0miT þm2

iT ; ð1Þ

where mi;0 and mi;T are the current quark and the medium-
generated masses of the ith quark flavor, respectively. The
medium-generated thermal masses of the quarks have been
calculated by using the perturbative thermal QCD in the
hard thermal loop (HTL) approximation [88,89]:

m2
iT ¼ g02T2

6
; ð2Þ

where g0ð¼ ffiffiffiffiffiffiffiffiffiffi
4πα0s

p Þ is the QCD coupling constant which
depends on the temperature and α0s is given by its one-loop
expression:

α0sðTÞ ¼
6π

ð33 − 2NfÞ ln
�

Q
ΛQCD

� ; ð3Þ

the scale, Q is set at 2πT (T is the temperature).
Similarly, gluons also acquire a thermal mass as a result

of the interaction with the surrounding partons in the HTL
approximation as [89,90]

m2
g ¼

g02T2

6

�
NC þ Nf

2

�
: ð4Þ

In the presence of a strong magnetic field, we will use a
similar parametrized mass for the quasiparticles:

m2
i ¼ m2

i0 þ
ffiffiffi
2

p
mi0miT;B þm2

iT;B; ð5Þ

where miT;B is the thermally generated mass which is
calculated from the poles of the resummed quark propa-
gator in the strong magnetic field using the self-consistent
Dyson-Schwinger equation:

S−1ðpkÞ ¼ γμpkμ − ΣðpkÞ: ð6Þ

ΣðpkÞ in the above Eq. (6) refers to the quark self-energy
which can be written up to one loop in the presence of
temperature and strong B as

ΣðpÞ ¼ −
4

3
g2i

Z
d4k
ð2πÞ4 ½γμSðkÞγνD

μνðp − kÞ�; ð7Þ

where 4=3 corresponds to the Casimir factor and the strong
coupling g now runs with the magnetic field only [91]:

g2

4π
¼αsðjqfBjÞ¼

1

ðα0ðμ0ÞÞ−1þ 11NC
12π ln

�
kz2þM2

B
μ2
0

�
þ 1

3π

P
i
jqiBj
σ

;

ð8Þ

where

α0ðμ0Þ ¼
12π

11NC ln
�
μ2
0
þM2

B

Λ2
V

� :

Here, MB refers to the infrared mass (1 GeV) and ΛV and
μ0 are chosen as 0.385 and 1.1 GeV, respectively, and
kz ¼ 0.1

ffiffiffiffiffiffi
eB

p
.
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SðkÞ corresponds to the quark propagator in an external
magnetic field which has been calculated by the Schwinger
proper-time method [92] as

iSðkÞ ¼
X
n

−idnðαÞDþ d0nðαÞD̄
k2k −m2

i;0 þ 2njqfBj
þ i

γ · k⊥
k2⊥

; ð9Þ

where the variable α ¼ k2⊥=jqfBj is dimensionless and D,
D̄, dnðαÞ, and d0nðαÞ read as [93]

D ¼ ðmi;0 þ γ · kkÞ þ γ · k⊥
m2

i;0 − k2k
k2k

;

D̄ ¼ γ1γ2ðmi;0 þ γ · kkÞ;
dnðαÞ ¼ ð−1Þne−αCnð2αÞ;

d0nðαÞ ¼
∂dn
∂α

:

The Cn’s can further be expressed in terms of Laguerre
polynomial (Ln):

Cnð2αÞ ¼ Lnð2αÞ − Ln−1ð2αÞ:

The above quark propagator SðkÞ is simplified in the strong
magnetic field (jqfBj ≫ T2) regime as

SðkÞ ¼ ie−
k2⊥
jqiBj

ðγ0k0 − γ3kz þmi;0Þ
k2k −m2

i;0
ð1 − γ0γ3γ5Þ; ð10Þ

where the perpendicular and parallel part of the metric
tensors are defined as

gμν⊥ ¼ diagð0;−1;−1; 0Þ;
gμνk ¼ diagð1; 0; 0;−1Þ;

similarly of four vectors as

k⊥μ ≡ ð0; kx; ky; 0Þ;
kkμ ≡ ðk0; 0; 0; kzÞ:

Dμνðp − kÞ corresponds to the gluon propagator which is
not affected by strong B:

Dμνðp − kÞ ¼ igμν

ðp − kÞ2 : ð11Þ

The quark self-energy (7) can be further simplified using
the imaginary-time formalism as (see Appendix B) [94]

ΣðpkÞ ¼
g2jqiBj
3π2

�
πT
2mi;0

− lnð2Þ
�

×

"
γ0p0

p2
k

þ γ3pz

p2
k

þ γ0γ5pz

p2
k

þ γ3γ5p0

p2
k

#
: ð12Þ

The general structure of the quark self-energy in the strong
magnetic field can be written as [4,95]

ΣðpkÞ ¼ Aγμuμ þ Bγμbμ þ Cγ5γμuμ þDγ5γμbμ; ð13Þ

where uμð1; 0; 0; 0Þ and bμð0; 0; 0;−1Þ correspond to the
direction of the heat bath and magnetic field, respectively.
The form factors A, B, C, and D are calculated in LLL as

A ¼ 1

4
Tr½Σγμuμ� ¼

g2jqiBj
3π2

�
πT
2mi;0

− lnð2Þ
�
p0

p2
k
; ð14Þ

B ¼ −
1

4
Tr½Σγμbμ� ¼

g2jqiBj
3π2

�
πT
2mi;0

− lnð2Þ
�
pz

p2
k
; ð15Þ

C ¼ 1

4
Tr½γ5Σγμuμ� ¼ −

g2jqiBj
3π2

�
πT
2mi;0

− lnð2Þ
�
pz

p2
k
; ð16Þ

D ¼ −
1

4
Tr½γ5Σγμbμ� ¼ −

g2jqiBj
3π2

�
πT
2mi;0

− lnð2Þ
�
p0

p2
k
:

ð17Þ

We observe from the above equations that C ¼ −B
and D ¼ −A.
Using the right- and left-hand chiral projector operators

PR ¼ ð1þ γ5Þ=2 and PL ¼ ð1 − γ5Þ=2, we can express the
self-energy (13) as

ΣðpkÞ ¼ PR½ðA − BÞγμuμ þ ðB − AÞγμbμ�PL

þ PL½ðAþ BÞγμuμ þ ðBþ AÞγμbμ�PR: ð18Þ

The inverse effective quark propagator (6) can be written in
terms of the chiral projector operators as

S−1ðpkÞ ¼ PRγ
μXμPL þ PLγ

μYμPR; ð19Þ

where

γμXμ ¼ γμpkμ − ðA − BÞγμuμ − ðB − AÞγμbμ; ð20Þ

γμYμ ¼ γμpkμ − ðAþ BÞγμuμ − ðBþ AÞγμbμ: ð21Þ

The effective propagator can be further written as

SðpkÞ ¼
1

2

�
PR

γμYμ

Y2=2
PL þ PL

γμXμ

X2=2
PR

�
; ð22Þ
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where

X2

2
¼ X2

1 ¼
1

2
½p0 − ðA − BÞ�2 − 1

2
½pz þ ðB − AÞ�2; ð23Þ

Y2

2
¼ Y2

1 ¼
1

2
½p0 − ðAþ BÞ�2 − 1

2
½pz þ ðBþ AÞ�2: ð24Þ

In order to get the medium-generated mass, we take the
static limit (p0 ¼ 0; pz → 0) of either X2

1 or Y
2
1 (which are

equal in LLL). The thermal mass has been obtained as

m2
iT;B ¼ g2jqiBj

3π2

�
πT
2mi;0

− lnð2Þ
�
; ð25Þ

which exhibits dependence on both B and T. The strong
magnetic field does not have any direct impact on the
gluons; rather, the quark loop’s contribution to its self-
energy gets modified. The thermal mass of the gluons in the
presence of the strong B has been calculated as [32,96]

m2
g;B ¼ g02T2NC

6
þ
X
f

g2jqfBj
8π2

: ð26Þ

We have exploited these medium-generated masses in
distribution functions of the quarks and gluons to evaluate
the transport coefficients in the next section.

III. MOMENTUM TRANSPORT IN A THERMAL
MEDIUM OF QUARKS AND GLUONS

In the kinetic theory approach, the time evolution of the
plasma system is governed by the relativistic Boltzmann
transport equation (RBTE), which is given for a single-
particle distribution function as

pμ
∂μfðx; pÞ ¼ C½fðx; pÞ�; ð27Þ

where C½fðx; pÞ� is the collision integral which encodes the
collision processes in the medium. In a realistic scenario,
we need transition rates of the various QCD processes to
get the collision integral C½f�, but for a qualitative analysis
of the transport phenomenon, C½f� can be written by using
the mean-free path treatment in RT approximation:

C½f� ¼ −
pμuμ
τ

ðfðx⃗; p⃗; tÞ − feqðjp⃗jÞÞ; ð28Þ

where τðpÞ is the time period after which the distribution
function attains the equilibrium configuration feqðjp⃗jÞ. This
time τðpÞ is a free parameter commonly known as relaxation
time. The problem with RT collision term is that it violates
the charge and particle number conservation. Later, the RT
collision term was modified to ensure the particle number
and charge conservation by BGK as [97,98]

C½f� ¼ −
pμuμ
τ

�
fðx⃗; p⃗; tÞ − nðx⃗; tÞ

neq
feqðjp⃗jÞ

�
; ð29Þ

which conserves the particle number instantaneously, i.e.,

Z
d3p
ð2πÞ3 C½f� ¼ 0: ð30Þ

Therefore, the BGK collision term is found to yield the
simple-minded RT term in a special case, when the instanta-
neous number density, nðx⃗; tÞ, of the system during the
deviation from its equilibrium becomes equal to the equi-
librium density, neqðx⃗; tÞ. Since nðx⃗; tÞ=neqðx⃗; tÞ < 1, so the
magnitude of the BGK collision term is more than the RT
term, which could have varied ramifications on the transport
coefficients.
Now, in the forthcoming sections, we will investigate the

effects of the BGK collision term on the momentum
transport in the thermal QCD medium and will further
see the implications of the strong magnetic field on the
BGK collision term, which will indirectly modulate the
momentum transport through the relaxation time, phase
space, and medium-generated masses of the partons.

A. Shear (η) and bulk (ζ) viscosities
in the absence of magnetic field

Now, we will calculate viscous coefficients η and ζ of a
thermal QCD medium for B ¼ 0 case. We assume that the
system is in local equilibrium with local temperature TðxÞ
and flow velocity uμðxÞ. Here, uμðxÞ represents the velocity
of baryon number flow in the Eckart frame while the
velocity of energy transport in the Landau-Lifshitz frame.
To know the response of the system while inflicted with a
velocity gradient, we allow the system to get shifted
slightly from equilibrium; the infinitesimal deviation in
the energy-momentum tensor can be written as

πμν ¼ Tμν − Tμν
eq ; ð31Þ

where Tμν refers to the energy momentum tensor of the
system in the out of equilibrium state, which reads

Tμν ¼
Z

d3p
ð2πÞ3 p

μpν

�X
i

2gi
fi
ωi

þ gg
fg
ωg

�
: ð32Þ

Here, factor 2 in the above Eq. (32) corresponds to the
equal contributions from quarks and antiquarks since we
are interested in medium with zero chemical potential
(μ ¼ 0). Apart from this, gi and gg are the quark and gluon
degeneracy factors, respectively. The dissipative part,
which contains all the necessary information about how
the system approaches equilibrium from the nonequili-
brium state, reads
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πμν ¼
Z

d3p
ð2πÞ3 p

μpν

�X
i

2gi
δfi
ωi

þ gg
δfg
ωg

�
; ð33Þ

where, δfi (δfg) is the infinitesimal deviation in the
equilibrium distribution function for quarks (gluons). This
deviation for the ith flavor reads as δfi ¼ fi − feq;i, where
feq;i is the equilibrium distribution function:

feq;i ¼
1

eβu
αpiα þ 1

; ð34Þ

where pα
i is ðωi;pÞ and uα refers to the four-velocity of the

fluid, which can be written as uα ¼ ð1; 0; 0; 0Þ in case of
local rest frame, whereas the energy ωi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
.

Similarly, deviation δfg for the gluon is defined as
δfg ¼ fg − feq;g, where the equilibrium distribution for
gluons reads

feq;g ¼
1

eβu
αpα − 1

; ð35Þ

and pα is ðωg;pÞ.
The deviations δfi and δfg will be obtained from the

relativistic linearized Boltzmann transport equation with
the BGK collision term (29) for quarks and gluons,
respectively:

pμ
∂μfiðx; pÞ ¼ −pμuμνiðfi − nin−1eq;ifeq;iÞ; ð36Þ

pμ
∂μfgðx; pÞ ¼ −pμuμνgðfg − ngn−1eq;gfeq;gÞ; ð37Þ

where

ni ¼ gi

Z
d3p
ð2πÞ3 ðfeq;i þ δfiÞ; ð38Þ

neq;i ¼ gi

Z
d3p
ð2πÞ3 feq;i; ð39Þ

ng ¼ gg

Z
d3p
ð2πÞ3 ðfeq;g þ δfgÞ; ð40Þ

neq;g ¼ gg

Z
d3p
ð2πÞ3 feq;g: ð41Þ

The collision frequencies of the quarks and gluons, νi
and νg, are given by the inverse of their respective
relaxation times, τi and τg [99],

τiðTÞ ¼
1

5.1Tα02s logð 1α0sÞ½1þ 0.12ð2Ni þ 1Þ� ;

τgðTÞ ¼
1

22.5Tα02s logð 1α0sÞ½1þ 0.06Ni�
: ð42Þ

where α0s is the running coupling given by Eq. (3).
In nearly equilibrium approximation (δfi ≪ feq; i), the

linearized RBTE (36) for ith flavor is cast into the form1

(see Appendix A)

δfi − gin−1eq;ifeq;i

Z
p
δfi ¼ −

τi
pνuν

pμ
∂μfiðx; pÞ; ð43Þ

which is then solved iteratively up to first order as

δfi ¼ δfð0Þi þ gin−1eq;ifeq;i

Z
p0
δfð0Þi : ð44Þ

The zeroth order in deviation, δfð0Þi , is expressed in terms
of temperature and velocity gradients for a medium in local
equilibrium, Tðx⃗; tÞ with a flow-velocity profile, u⃗ðx⃗; tÞ for
partons:

δfð0Þi ¼ −
τi
ωi

pμ
∂μfiðx; pÞ

¼ −
τi
ωiT

pμfeq;ið1 − feq;iÞ
�
uαpαuμ

DT
T

þ uαpα
∇μT

T

− uμpαDuα − pα∇μuα

�
; ð45Þ

where the gradients in flow velocity and the temperature can
be expressed as the sum of the time- and space part in the
covariant form through D ¼ uμ∂μ, where ∂μ ¼ uμDþ∇μ.
Similarly, we evaluate the response by the gluonic

component in terms of the deviation, δfg from RBTE
(37) for gluons:

δfg ¼ δfð0Þg þ ggn−1eq;gfeq;g

Z
p0
δfð0Þg ; ð46Þ

where

δfð0Þg ¼ −
τg
ωg

pμ
∂μfgðx; pÞ;

¼ −
τg
ωgT

pμfeq;gð1þ feq;gÞ
�
uαpαuμ

DT
T

þ uαpα
∇μT

T

− uμpαDuα − pα∇μuα

�
: ð47Þ

Using the gradients in terms of equation of state

DT
T

¼ −
�
∂P
∂ε

�
∇αuα;

Duα ¼
∇αP
εþ P

; ð48Þ

1We use the notation for momentum integration,
R
p ¼ R d3p

ð2πÞ3.
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the first-order viscous tensor (33) is thus obtained as

πμν ¼ 2
X
i

gi

Z
d3p
ð2πÞ3

pμpν

ωiT
τi

	
feq;ið1 − feq;iÞ

�
ωi

�
∂P
∂ε

�
∇αuα þ pα

� ∇αP
εþ P

−
∇αT
T

�
þpαpβ

ωi
∇αuβ

�

þ gin−1eq;ifeq;i

Z
p0
feq;ið1 − feq;iÞ

�
ω0
i

�
∂P
∂ε

�
∇αuα þ p0α

� ∇αP
εþ P

−
∇αT
T

�
þp0αp0β

ω0
i

∇αuβ

�


þ gg

Z
d3p
ð2πÞ3

pμpν

ωgT
τg

	
feq;gð1þ feq;gÞ

�
ωg

�
∂P
∂ε

�
∇αuα þ pα

� ∇αP
εþ P

−
∇αT
T

�
þ pαpβ

ωg
∇αuβ

�

þ ggn−1eq;gfeq;g

Z
p0
feq;gð1þ feq;gÞ

�
ω0
g

�
∂P
∂ε

�
∇αuα þ p0α

� ∇αP
εþ P

−
∇αT
T

�
þ p0αp0β

ω0
g

∇αuβ

�

; ð49Þ

where ω0 ¼ ωðp0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þm2

p
.

Finally, the nonvanishing spatial components of πμν tensor yield into the form [with the help of definitions:
D≡ ð∂t; 0Þ, ∇μ ≡ ð0; ∂iÞ]

πij ¼ 2
X
i

gi

Z
d3p
ð2πÞ3

pipj

ωiT
τi

	
feq;ið1 − feq;iÞ

�
ωi

�
∂P
∂ε

�
∇kuk þ pk

� ∇kP
εþ P

−
∇kT
T

�
þpkpl

ωi
∇kul

�

þ gin−1eq;ifeq;i

Z
p0
feq;ið1 − feq;iÞ

�
ω0
i

�
∂P
∂ε

�
∇kuk þ p0k

� ∇kP
εþ P

−
∇kT
T

�
þp0kp0l

ω0
i

∇kul

�


þ gg

Z
d3p
ð2πÞ3

pipj

ωgT
τg

	
feq;gð1þ feq;gÞ

�
ωg

�
∂P
∂ε

�
∇kuk þ pk

� ∇kP
εþ P

−
∇kT
T

�
þ pkpl

ωg
∇kul

�

þ ggn−1eq;gfeq;g

Z
p0
feq;gð1þ feq;gÞ

�
ω0
g

�
∂P
∂ε

�
∇kuk þ p0k

� ∇kP
εþ P

−
∇kT
T

�
þ p0kp0l

ω0
g

∇kul

�

: ð50Þ

Let us first discuss the general form of the first-order
viscous tensor, πij and compare it with the above-
mentioned form (50) derived from the kinetic theory to
extract the coefficient of viscosities. There are two kinds of
viscosity: one is shear (η) and other is bulk (ζ). They are
defined as the coefficients in the viscous stress tensor, πij,
which depends on the space derivatives of the velocity.
If the velocity gradients are small, we may suppose that
the momentum transfer due to the viscosity depends only
on the first derivatives of the velocity. To the same
approximation, πij may be supposed a linear function of
the derivatives ∂ui=∂xj. There can be no terms in πij
independent of ∂ui=∂xj, since πij must vanish for the
u ¼ constant. Moreover, πij must also vanish when whole
fluid is in uniform rotation. Hence, πij must contain the
symmetrical combinations of the derivatives ∂ui=∂xj:

∂ui
∂xj

þ ∂uj
∂xi

: ð51Þ

The most general tensor of rank two satisfying the above
condition is

πij ¼ −η
�
∂vi
∂xj

þ ∂vj
∂xi

−
2

3
δij

∂vl
∂xl

�
− ζδij

∂vl
∂xl

: ð52Þ

The coefficients η and ζ are independent of the velocity,
which is true for the isotropic fluid because its properties
must be described by scalar quantities only (in this case, η
and ζ). The terms in (52) are arranged so that the expression
in parentheses has the property of vanishing on contraction
with respect to i and j.
Thus, the traceless part of πij (nondiagonal components)

is associated with η, which measures the response of the
medium to the fluctuations in the transverse momentum
density and the nonzero trace part is related to ζ, which
is a measure of the response of the medium to expansion.
That is why the nonzero trace part is related to the diagonal
components of πij, which quantify the change in the
pressure of the medium. Thus, in the presence of velocity
gradients, the leading-order correction to the energy-
momentum tensor for a rotationally symmetric and
isotropic medium can be parametrized in terms of η and
ζ as [100]

πij ¼ −ηWij − ζδij∂lul; ð53Þ

where

Wij ¼ ∂jui þ ∂iuj −
2

3
δij∂lul: ð54Þ
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Now, we replace the velocity gradients by the expression

∂kul ¼ −
1

2
Wkl −

1

3
δkl∂juj ð55Þ

to rewrite the tensor πij obtained from the kinetic theory (50) into the generic form (53) as

πij ¼ 2
X
i

gi

Z
d3p
ð2πÞ3

pipj

ωiT
τi

	
feq;ið1 − feq;iÞ

��
ωi

�
∂P
∂ε

�
−

p2

3ωi

�
∂lul þ pk

� ∇kP
εþ P

−
∇kT
T

�
−
pkpl

2ωi
Wkl

�

þ gin−1eq;ifeq;i

Z
p0
feq;ið1 − feq;iÞ

��
ω0
i

�
∂P
∂ε

�
−

p02

3ω0
i

�
∂lulþp0k

� ∇kP
εþ P

−
∇kT
T

�
−
p0kp0l

2ω0
i
Wkl

�


þ gg

Z
d3p
ð2πÞ3

pipj

ωgT
τg

	
feq;gð1þ feq;gÞ

��
ωg

�
∂P
∂ε

�
−

p2

3ωg

�
∂lul þ pk

� ∇kP
εþ P

−
∇kT
T

�
−
pkpl

2ωg
Wkl

�

þ ggn−1eq;gfeq;g

Z
p0
feq;gð1þ feq;gÞ

��
ω0
g

�
∂P
∂ε

�
−

p02

3ω0
g

�
∂lul þ p0k

� ∇kP
εþ P

−
∇kT
T

�
−
p0kp0l

2ω0
g
Wkl

�

: ð56Þ

The comparison of Eqs. (56) and (53) thus yields the
shear and bulk viscosities, which is decomposed into RT
contribution and some correction factor as

η ¼ ηRT þ ηcorr; ð57Þ

where

ηRT ¼ 2β

15

X
i

giτi

Z
d3p
ð2πÞ3

p4

ω2
i
feq;ið1 − feq;iÞ

þ β

15
ggτg

Z
d3p
ð2πÞ3

p4

ω2
g
feq;gð1þ feq;gÞ; ð58Þ

ηcorr ¼ 2β

15

X
i

g2i n
−1
eq;iτi

Z
d3p
ð2πÞ3

p2

ωi
feq;iðpÞ

×
Z
p0

p02

ω0
i
feq;iðp0Þð1 − feq;iðp0ÞÞ

þ β

15
g2gn−1eq;gτg

Z
d3p
ð2πÞ3

p2

ωg
feq;gðpÞ

×
Z
p0

p02

ω0
g
feq;gðp0Þð1þ feq;gðp0ÞÞ: ð59Þ

Similarly, the bulk viscosity can also be written as

ζ ¼ ζRT þ ζcorr; ð60Þ

where

ζRT ¼ 2

3

X
i

gi

Z
d3p
ð2πÞ3

p2

ωi
feq;ið1 − feq;iÞAi;1

þ 1

3
gg

Z
d3p
ð2πÞ3

p2

ωg
feq;gð1þ feq;gÞAg;1; ð61Þ

ζcorr ¼ 2

3

X
i

g2i n
−1
eq;i

Z
d3p
ð2πÞ3

p2

ωi
feq;iðpÞ

×
Z
p0
feq;iðp0Þð1 − feq;iðp0ÞÞAi;2

þ 1

3
g2gn−1eq;g

Z
d3p
ð2πÞ3

p2

ωg
feq;gðpÞ

×
Z
p0
feq;gðp0Þð1þ feq;gðp0ÞÞAg;2; ð62Þ

where

Ai;1 ¼
τi
3T

	
p2

ωi
− 3ωi

�
∂P
∂ε

�

; ð63Þ

Ag;1 ¼
τg
3T

	
p2

ωg
− 3ωg

�
∂P
∂ε

�

; ð64Þ

Ai;2 ¼
τi
3T

	
p02

ω0
i
− 3ω0

i

�
∂P
∂ε

�

; ð65Þ

Ag;2 ¼
τg
3T

	
p02

ω0
g
− 3ω0

g

�
∂P
∂ε

�

: ð66Þ

To calculate the bulk viscosity, the Landau-Lifshitz con-
dition, which requires the “00” component of πμν to vanish
(i.e., π00 ¼ 0), should be satisfied in the local rest frame.
For that purpose, we have replaced Ai;1, Ai;2, Ag;1, and
Ag;2 by A0

i;1 → ðAi;1 − biωiÞ, A0
g;1 → ðAg;1 − bgωgÞ, A0

i;2 →
ðAi;2 − b0iω

0
iÞ, and A0

g;2 → ðAg;2 − b0gω0
gÞ, respectively, in

Eq. (49) such that [101]
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X
i

gi

Z
d3p
ð2πÞ3 ωifeq;ið1 − feq;iÞðAi;1 − biωiÞ ¼ 0; ð67Þ

X
i

g2i n
−1
eq;i

Z
d3p
ð2πÞ3 ωifeq;iðpÞ

×
Z
p0
feq;iðp0Þð1 − feq;iðp0ÞÞðAi;2 − b0iω

0
iÞ ¼ 0; ð68Þ

Z
d3p
ð2πÞ3 ωgfeq;gð1þ feq;gÞðAg;1 − bgωgÞ ¼ 0; ð69Þ

Z
d3p
ð2πÞ3 ωgfeq;gðpÞ

Z
p0
feq;gðp0Þ

× ð1þ feq;gðp0ÞÞðAg;2 − b0gω0
gÞ ¼ 0: ð70Þ

We have evaluated the constants bi; bg; b0i, and b0g from
Eqs. (67)–(70), respectively, and have replaced Ai;1, Ai;2,
Ag;1, and Ag;2 by A0

i;1, A
0
i;2, A

0
g;1; and A0

g;2, respectively, in
Eqs. (61) and (62) to get final expressions of the bulk
viscosity:

ζRT ¼ 2β

9

X
i

giτi

Z
d3p
ð2πÞ3 feq;ið1 − feq;iÞ

	
p2

ωi
− 3ωi

�
∂P
∂ε

�

2

þ β

9
ggτg

Z
d3p
ð2πÞ3 feq;gð1þ feq;gÞ

	
p2

ωg
− 3ωg

�
∂P
∂ε

�

2

; ð71Þ

ζcorr ¼ 2β

9

X
i

g2i n
−1
eq;iτi

Z
d3p
ð2πÞ3

p2

ωi
feq;i

Z
p0
feq;iðpÞð1 − feq;iðpÞÞ

	
p02

ω0
i
− 3ω0

i

�
∂P
∂ε

�
− b0iω

0
i




þ β

9
g2gn−1eq;gτg

Z
d3p
ð2πÞ3

p2

ωg
feq;gðpÞ

Z
p0
feq;gðp0Þð1þ feq;gðp0ÞÞ

	
p02

ω0
g
− 3ω0

g

�
∂P
∂ε

�
− b0gω0

g



; ð72Þ

where the constants b0i and b0g are given by

b0i ¼
P

ig
2
i n

−1
eq;i

R d3p
ð2πÞ3 ωifeq;iðpÞ

R
p0 feq;iðp0Þð1 − feq;iðp0ÞÞfp02

ω0
i
− 3ω0

ið∂P∂εÞgP
ig

2
i n

−1
eq;i

R d3p
ð2πÞ3 ωifeq;iðpÞ

R
p0 feq;iðp0Þð1 − feq;iðp0ÞÞω0

i

; ð73Þ

b0g ¼
R d3p

ð2πÞ3 ωgfeq;gðpÞ
R
p0 feq;gðp0Þð1þ feq;gðp0ÞÞfp02

ω0
g
− 3ω0

gð∂P∂εÞgR d3p
ð2πÞ3 ωgfeq;gðpÞ

R
p0 feq;gðp0Þð1þ feq;gðp0ÞÞω0

g

: ð74Þ

Now we could visualize the correspondence between the
collision integrals and the momentum transport coefficients
by computing the shear (η) and bulk (ζ) viscosities as a
function of temperature (seen in Fig. 1). We found that η for
the medium with BGK collision term is always larger than
(∼1.7 times) its value with the simplified RT term, whereas
ζ in BGK becomes smaller (∼0.7 times) than the RT value.
This happens due to the opposite behaviors manifested
by the correction factors, ηcorr and ζcorr, i.e., ηcorr is always
positive and relatively large while ζcorr is always negative
and relatively small. This implies that the BGK collison
term, especially the extra term in (29), affects shear and
bulk viscosities differently.
Having understood the relation between the transport

coefficients: η and ζ and the input in the transport equation:
BGK and RT collision terms, we wish to see how a external
strong magnetic field could affect the aforesaid relation in
the next subsection.

B. Shear ðηBÞ and bulk ðζBÞ viscosities
in the presence of strong magnetic field

In this section, we will evaluate η and ζ viscous
coefficients of the magnetized hot QCD medium. The
presence of magnetic field leads to the quantization of the
quark energy in terms of the Landau levels as [102]

ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2

i þ 2njqiBj
q

; ð75Þ

where n ¼ 0; 1; 2.… corresponds to various Landau levels.
In addition to this, the phase-space integral also gets
modified as [102]

Z
d3p
ð2πÞ3 →

X∞
n¼0

jqiBj
2π

Z
dp3

2π
ð2 − δn0Þ: ð76Þ
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In the strong magnetic field (SMF) limit (jqiBj ≫ T2),
there is a huge energy gap between the LLL and the higher
Landau levels (HLLs); hence, only n ¼ 0 state is popu-
lated. In this situation, motion of the quarks gets restricted
in the transverse direction and becomes purely longitudinal
(along the direction of the magnetic field, i.e., B ¼ Bẑ).
The quark contribution to the energy-momentum tensor
will get modified (the gluon part remains as it is because
gluons are not affected by the magnetic field directly2). The
quark part in LLL takes the form

Tμν
B;q ¼ 2

X
i

gijqiBj
4π2

Z
dp3

pμpν

ωi
fBi ; ð77Þ

where fBi ¼ fBeq;i þ δfBi . f
B
eq;i is the equilibrium distribution

function:

fBeq;i ¼
1

eβωi þ 1
; ð78Þ

and ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2

i

p
. Now, we assume that the system has

slightly deviated from the equilibrium; the dissipative part
of the energy-momentum tensor reads as

πμνB;q ¼
X
i

gijqiBj
2π2

Z
dp3

pμpν

ωi
δfBi ; ð79Þ

where δfBi is the deviation in the distribution function of the
quarks. In the effective (1þ 1) dimensional kinetic theory
in the SMF, the RBTE for quarks takes the form

pμ
∂μfBi ðx; pÞ ¼ −pμuμνBi ðfBi − nBi n

B−1
eq;if

B
eq;iÞ: ð80Þ

Here, pμ ≡ ðp0; 0; 0; p3Þ, xμ ≡ ðx0; 0; 0; x3Þ, and nBeq;i refers
to the equilibrium number density of the quarks which reads

nBeq;i ¼
gijqiBj
4π2

Z
dp3fBeq;i; ð81Þ

and νBi is collision frequency which is given by the inverse
of the relaxation time. In the strong B, τBi depends on the
longitudinal component of the momentum p3 unlike in pure
thermal medium (42) where τi remains constant and does
not depend on momentum. The relaxation time has been
computed in the presence of strong B [8]:

τBi ðp3;T; jqiBjÞ ¼
ωiðeβωi − 1Þ

αsCFm2
i ðeβωi þ 1Þ

�Z
dp0

3

ω0
iðeβω0

i þ 1Þ

�
−1
;

ð82Þ

where CF (¼ 4=3) is the Casimir factor and αs is the QCD
coupling in the strong magnetic field (8).
We can solve the RBTE (80) up to first order to get the

δfBi as.3

δfBi ¼ δfBð0Þi þ gin−1eq;ifeq;i

Z
p0
3

δfBð0Þi ; ð83Þ

where

FIG. 1. Shear viscosity (a) and bulk viscosity (b) as a function of T in the absence of strong magnetic field.

2Gluon thermal mass will get magnetic-field dependence due
to the modification of the quark-loop contribution to the gluon
self-energy.

3We use the symbol
R
p0
3
for momentum integration in strong B,R

p0
3
¼ jqiBj

2π

R dp0
3

2π .
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δfBð0Þi ¼ −
τBi
pνuν

pμ
∂μfBi ðx; pÞ

¼ −
τBi
ωiT

pμfBeq;ið1 − fBeq;iÞ
�
uαpαuμ

DT
T

þ uαpα
∇μT

T
− uμpαDuα − pα∇μuα

�
: ð84Þ

Substituting δfBi in (79), we finally obtain the spatial component of stress-energy tensor in the strong B⃗ as

πijB;q ¼
X
i

gijqiBj
2π2

Z
dp3

pipj

ωiT

	
τBi f

B
eq;ið1 − fBeq;iÞ

��
ωi

�
∂P
∂ε

�
−

p2
3

3ωi

�
∂lul þ pk

� ∇kP
εþ P

−
∇kT
T

�
−
pkpl

2ωi
Wkl

�

þ ginB−1eq;if
B
eq;i

Z
p0
3

τBi f
B
eq;ið1 − fBeq;iÞ

��
ω0
i

�
∂P
∂ε

�
−

p02
3

3ω0
i

�
∂lul þ p0k

� ∇kP
εþ P

−
∇kT
T

�
−
p0kp0l

2ω0
i
Wkl

�

: ð85Þ

Let us now understand the generic form of the tensorial
structure of πij in an external B⃗. The number of indepen-
dent tensorial combinations (coefficients of viscosity) gets
increased from two (in the absence of B⃗) to eight in the
presence of B⃗. However, the number becomes seven due to
the Onsager relation, out of which five are the coefficients
of shear term, one is bulk term, and the last one is due to a
cross term between the ordinary and volume viscosities. In
a medium (QGP), the cross term vanishes; moreover, in the
presence of strong B⃗, the nondiagonal terms will also be
absent due to the vanishing of transverse components of the
velocity (artifact of strong B⃗). Thus, the tensorial structure
gets reduced in a much simpler form, leaving the longi-
tudinal components of the tensor survived, as

πxx ¼ −η0
�
Vzz −

1

3
∇ · V

�
þ ζ0∇ · V; ð86Þ

πyy ¼ −η0
�
Vzz −

1

3
∇ · V

�
þ ζ0∇ · V; ð87Þ

πzz ¼ 2η0

�
Vzz −

1

3
∇ · V

�
þ ζ0∇ · V; ð88Þ

where η0 and ζ0 are known as the longitudinal viscosities
and the other symbols are given in [12].4

Similar to the case in the absence of magnetic field (53),
the above components are grouped into the traceless and
nonzero trace parts as

πxx ¼ πyy ¼ −
1

2
πzz ¼ −η0

�
Vzz −

1

3
∇ · Vjz

�
; ð89Þ

πxx ¼ πyy ¼ πzz ¼ ζ0∇ · Vjz; ð90Þ

respectively. Therefore, the spatial component of the
viscous tensor in strong B⃗ can be expressed in a form
(by relabeling η0 ≡ ηB and ζ0 ≡ ζB)

πijB;q ¼ −ηBWij − ζBδij∂lul: ð91Þ

Now, we can extract the coefficients ηB and ζB from the
coefficients of Wij and ∂lul in πij obtained from kinetic
theory (85). Since gluons are not directly affected by the
strong magnetic field, we will take the gluon contribution
(56) from Sec. III.1 (in the absence of the magnetic field).
Finally, the shear viscosity in the BGK collision term is
expressed in terms of RT contribution as

ηB ¼ ηRTB þ ηcorrB ; ð92Þ

where

ηRTB ¼ β

4π2
X
i

gijqiBj
Z

dp3

p4
3

ω2
i
τBi f

B
eq;ið1 − fBeq;iÞ

þ β

15
ggτg

Z
d3p
ð2πÞ3

p4

ω2
g
feq;gð1þ feq;gÞ ð93Þ

ηcorrB ¼ β

4π2
X
i

g2i jqiBjnB−1eq;i
Z

dp3

p2
3

ωiðp3Þ
fBeq;iðp3Þ

×
Z
p0
3

p02
3

ωiðp0
3Þ
τBi ðp0

3ÞfBeq;iðp0
3Þð1 − fBeq;iðp0

3ÞÞ

þ β

15
g2gn−1eq;gτg

Z
d3p
ð2πÞ3

p2

ωgðpÞ
feq;gðpÞ

×
Z
p0

p02

ωgðp0Þ feq;gðp
0Þð1þ feq;gðp0ÞÞ: ð94Þ

Wewill now depict how the strong B could modulate the
correspondence between the collision integrals and the
(momentum) transport coefficients in Fig. 2. For a thermal
medium in a strong-B environment, the dominant scale will

4The term longitudinal signifies the direction of the velocity
with respect to the direction of magnetic field.
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now be the magnetic field (jqfBj > T2), unlike when the
temperature is the dominant scale in a thermal medium in
the absence of magnetic field (B ¼ 0).
We observe that similar to B ¼ 0 case, the shear

viscosity in a strong B with BGK collision term is still
larger (∼1.3 times) than the simple-minded RT term, which
is again evidenced by the fact that the correction term ηcorrB
is always positive. In addition, in the presence of strong B,
η in both collision terms gets enhanced. To be precise, the
enhancement with RT term is relatively larger than the
BGK term. In strong B, the shear viscosity gets enhanced in
BGK collision integral in comparison to RTA at a fixed B. η
also increases with the strength of the magnetic field in
BGK as well as RTA collision terms.
One important observation we notice in Fig. 2(a) is that η

with BGK collision term at lower (strong) B, say eB ¼
10m2

π , looks similar to η with RT term at higher (strong) B,
say eB ¼ 15m2

π. This leads to an ambiguity in the phe-
nomenological modeling while extracting the physical
parameters of the system by comparing the results from
theory to the experiments. It means that if one were to
extract the physical parameters from a comparison of
theory to experiment, one would deduce different values
for the strength of B whether one uses BGK or RTA. In
this case, it would be better to take results from BGK
collision integral to compute the physical parameters
since it shows an improvement over the naive RTA in
the sense that it conserves the particle number and charge
instantaneously.
Similarly, the bulk viscosity can be decomposed as

ζB ¼ ζRTB þ ζcorrB ; ð95Þ

where

ζRTB ¼ 1

2π2
X
i

gijqiBj
Z

dp3

p2
3

ωi
fBeq;ið1 − fBeq;iÞAB

i;1

þ 1

3
gg

Z
d3p
ð2πÞ3

p2

ωg
feq;gð1þ feq;gÞAg;1; ð96Þ

ζcorrB ¼ 1

2π2
X
i

g2i jqiBjnB−1eq;i
Z

dp3

p2
3

ωi
fBeq;iðp3Þ

×
Z
p0
3

fBeq;iðp0
3Þð1 − fBeq;iðp0

3ÞÞAB
i;2

þ 1

3
g2gn−1eq;g

Z
d3p
ð2πÞ3

p2

ωg
feq;gðpÞ

×
Z
p0
feq;gðp0Þð1þ feq;gðp0ÞÞAg;2; ð97Þ

where the factors AB
i;1 and AB

i;2 are

AB
i;1 ¼

τBi
3T

	
p2
3

ωi
− 3ωi

�
∂P
∂ε

�

; ð98Þ

AB
i;2 ¼

τBi
3T

	
p0
3
2

ωi
− 3ωi

�
∂P
∂ε

�

: ð99Þ

Applying the Landau-Lifshitz condition (i.e., π00B;q ¼ 0) and
following the similar steps as the B ¼ 0 case, we get the
final expression for the bulk viscosity of the strongly
magnetized thermal QCD medium (95) as

FIG. 2. Shear viscosity (a) and bulk viscosity (b) as a function of T in the presence of strong B.
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ζRTB ¼ β

6π2
X
i

gijqiBj
Z

dp3τ
B
i f

B
eq;ið1 − fBeq;iÞ

	
p2
3

ωi
− 3ωi

�
∂P
∂ε

�
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þ β
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Z
d3p
ð2πÞ3 feq;gð1þ feq;gÞ

	
p2

ωg
− 3ωg

�
∂P
∂ε

�

2

; ð100Þ

ζcorrB ¼ β

6π2
X
i

g2i jqiBjnB−1eq;i
Z

dp3

p2
3

ωi
fBeq;iðp3Þ

Z
p0
3

τBi ðp0
3ÞfBeq;iðp0
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Z
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Z
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feq;gðp0Þð1þ feq;gðp0ÞÞ

	
p02

ω0
g
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�
− b0gω0
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; ð101Þ

where

b0i ¼
P

ig
2
i jqiBjnB−1eq;i

R
dp3ωifBeq;iðp3Þ

R
p0
3
fBeq;iðp0

3Þð1 − fBeq;iðp0
3ÞÞfp

0
3
2

ω0
i
− 3ω0

ið∂P∂εÞgP
ig

2
i jqiBjnB−1eq;i

R
dp3ωifBeq;iðp3Þ

R
p0
3
fBeq;iðp0

3Þð1 − fBeq;iðp0
3ÞÞω0

i
: ð102Þ

We have also now plotted bulk viscosity (ζ) as a function
of temperature in the presence of strong magnetic field in
the above Fig. 2 (right panel). It is found that the RT
collision term is still found to dominate over the BGK term
except at higher temperature, where their contributions are
almost the same. This observation is just opposite to the
observation in the absence of magnetic field (seen in
Fig. 1), where the merger happens to be in the small
temperature region.

C. Charge and heat transport coefficients
in thermal QCD medium

In this subsection, we will revisit our earlier work [43],
wherein we have calculated the electrical (σel) and thermal
(κ) conductivities of the hot QCD medium in both BGK
and RT collision integrals. Wewill use σel and κ to study the
relative competition between the various transport coef-
ficients in Sec. IV.

1. Electrical conductivity

The electrical conductivity σel, which manifests the ease
of electric current flow in the medium, has been calculated
in the kinetic theory framework using the BGK-type
collision integral. It can be decomposed into two parts
in a similar fashion like η and ζ in the absence of the
magnetic field as

σel ¼ σRTel þ σcorrel ; ð103Þ

where

σRTel ¼ 2β

3π2
X
i

q2i giτi

Z
dp

p4

ω2
i
feq;iðpÞð1 − feq;iðpÞÞ;

ð104Þ

σCorrel ¼ 2β

π2
X
i

q2i g
2
i τin

−1
eq;i

Z
dp

p3

ωi
feq;iðpÞ

×
Z
p0

p0

ω0
i
feq;iðp0Þð1 − feq;iðp0ÞÞ; ð105Þ

and in the strong magnetic field

σBel ¼ σB;RTel þ σB;correl ; ð106Þ
where

σB;RTel ¼ β

π2
X
i

q2i gijqiBj
Z

dp3

p2
3

ω2
i
τBi f

B
eq;ið1−fBeq;iÞ; ð107Þ

σB;Correl ¼ β

π2
X
i

q2i g
2
i jqiBjnBeq;i−1

�Z
dp3

p3

ωi
fBeq;iðp3Þ

×
Z
p0
3

p0
3

ω0
i
τBi ðp0

3ÞfBeq;iðp0
3Þð1 − fBeq;iðp0

3ÞÞ
�
: ð108Þ

2. Thermal conductivity

We have also calculated the heat transport coefficient,
namely thermal conductivity (κ), from the difference
between the energy diffusion and the enthalpy diffusion
using the BGK collision integral. It can be written in the
absence of the magnetic field as

κ ¼ κRT þ κCorr; ð109Þ

where

κRT ¼ β2

3π2
X
i

giτi

Z
dp

p4

ω2
i ðpÞ

ðωiðpÞ − hiÞ2

× feq;iðpÞð1 − feq;iðpÞÞ; ð110Þ
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κCorr ¼ β2

π2
X
i

g2i τin
−1
eq;i

Z
dp

p3

ωiðpÞ
ðωiðpÞ − hiÞfeq;iðpÞ

×
Z
p0

p0

ωiðp0Þ ðωiðp0Þ − hiÞfeq;iðp0Þð1 − feq;iðp0ÞÞ;

ð111Þ

and in the strong magnetic field as

κB ¼ κB;RT þ κB;Corr; ð112Þ

where

κB;RT ¼ β2

2π2
X
i

gijqiBj
Z

dp3

p2
3

ω2
i
τBi ðωi − hBi Þ2

× fBeq;ið1 − fBeq;iÞ; ð113Þ

κB;Corr ¼ β2

2π2
X
i

g2i jqiBjnBeq;i−1
Z

dp3

p3

ωi
ðωi − hBi ÞfBeq;iðp3Þ

×
Z
p0
3

p0
3

ω0
i
τBi ðp0

3Þðω0
i − hBi ÞfBeq;iðp0

3Þð1− fBeq;iðp0
3ÞÞ:

ð114Þ

IV. APPLICATIONS

In this section, we will study how the BGK collision
integral modifies the specific shear and bulk viscosities
needed to explore the fluidity and transition point of the
QCD phase. We will further check the relative behavior
among the momentum, heat, and charge diffusion in the
strongly magnetized QCD medium. These derived coef-
ficients, namely Prandtl number, Reynolds number, and γ
factor, characterize the various properties like degree of
sound attenuation in the medium, nature of the flow, etc. At
last, we see the relative competition between the shear and
bulk viscosities in terms of ratio ζ=η.

A. Specific shear (η=s) and bulk (ζ=s) viscosities

Wewill now focus on the ratios η=s and ζ=s, also known
as specific shear and specific bulk viscosities, respectively.
These ratios give an idea about the perfectness and
conformal nature of the fluid, respectively. The ratio η=s
has been calculated for the QGP using the parton transport
method [103] and was found to be very small, confirming
the strongly coupled nature of the QGP, which nullifies
the widespread belief that QGP happens to be a weakly
interacting gas of quarks and gluons. This is also in
agreement with the famous KSS bound of the AdS=CFT
correspondence [44]. The relativistic viscous hydrodynam-
ics [46] also uses very small value of η=s ratio (around 0.08
to 0.1) to reproduce the RHIC data [50] and also matches

well with lattice calculations [51]. The entropy density of
the hot QCD medium can be defined using the thermody-
namical relation

s ¼ ðεþ PÞ
T

; ð115Þ

where ε and P are the energy density and pressure,
respectively. First, we calculate ε and P for B ¼ 0 case as

ε ¼ 1

π2
X
i

gi

Z
dpp2ωifeq;i þ

gg
2π2

Z
dpp2ωgfeq;g;

ð116Þ

P ¼ 1

3π2
X
i

gi

Z
dp

p4

ωi
feq;i þ

gg
6π2

Z
dp

p4

ωg
feq;g; ð117Þ

respectively. In the strong magnetic field, we have

εB ¼ 1

2π2
X
i

gijqiBj
Z

dp3ωifBeq;i þ
gg
2π2

Z
dpp2ωgfeq;g;

ð118Þ

PB ¼ 1

2π2
X
i

gijqiBj
Z

dp3

p2
3

ωi
fBeq;i þ

gg
6π2

Z
dp

p4

ωg
feq;g:

ð119Þ

The entropy density in B ¼ 0 and B ≠ 0 cases can be
calculated from Eq. (115) as

s ¼ β

3π2
X
i

gi

Z
dpp2

�
p2

ωi
þ 3ωi

�
feq;i

þ β

6π2
gg

Z
dpp2

�
p2

ωg
þ 3ωi

�
feq;g; ð120Þ

sB ¼ β

2π2
X
i

gijqiBj
Z

dp3

�
p2
3

ωi
þ ωi

�
fBeq;i

þ β

6π2
gg

Z
dpp2

�
p2

ωg
þ 3ωi

�
feq;g; ð121Þ

respectively.
Figure 3 shows our estimates of the ratio η=s as a

function of temperature in the absence (left) and presence
of the strong B (right). The ratio η=s increases (decreases)
with T in the absence (presence) of the strong B. The
magnitude of η=s gets enhanced in the BGK collision
integral in both cases. It indicates that instantaneous
conservation of the particle number in the medium takes
the fluid away from its ideal nature. The η=s ratio gets
enhanced in strong B. Like the case of η in a strong B in
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Fig. 2(a), η=s ratio in the BGK collision term at eB ¼ 10m2
π

also looks similar to its counterpart with the RT term at
eB ¼ 15m2

π . As we mentioned earlier, this similarity leads
to an apparent ambiguity in extracting the physical param-
eters by comparing the theoretical predictions to the
experimental data. It would be better to prefer the BGK
collision term over RTA.
In Fig. 4, we have displayed the ratio ζ=s as a function of

temperature. We found that ζ=s decreases with T in B ¼ 0
(left) as well as in B ≠ 0 (right) case. The magnitude of
ζ=s gets reduced in the BGK collision term in comparison
to the RT in the B ¼ 0 scenario, while there in the presence
of strong B, both the collision integrals produce similar
results. It further increases as the strength of B grows,
which may indicate that the system moves away from the
conformal nature due to the presence of the strong
magnetic field.

B. Prandtl number

The ratio of the momentum diffusivity to the thermal
diffusivity in a given medium is quantified in terms of the
Prandtl number (Pr),

Pr ¼ η=ρ
κ=Cp

; ð122Þ

where ρ is the mass density, CP denotes the specific heat at
constant pressure, and κ refers to the thermal conductivity
of the medium under consideration. Pr gives an idea about
the roles of the shear viscosity and thermal conductivity on
the sound attenuation in a system. The smaller value of the
Pr number (Pr ≪ 1) corresponds to the dominance of the
thermal diffusion while higher value (Pr ≫ 1) to that of
momentum diffusion. The specific heat CP can be calcu-
lated from the thermodynamic relation

FIG. 3. Shear viscosity to entropy density ratio (η=s) as a function of T in absence (a) and in presence (b) of the strong B.

FIG. 4. Bulk viscosity to entropy density ratio (ζ=s) as a function of T in absence (a) and in presence (b) of the strong B.
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Cp ¼ ∂

∂T
ðεþ PÞ; ð123Þ

where ε and P are the energy density and pressure,
respectively, and have been calculated in the absence
[Eqs. (116) and (117)] as well as in the presence of strong
B [Eqs. (118) and (119)]. The specific heat CP can be
evaluated in the absence and in presence of the SMF as

Cp ¼ β2

3π2
X

gi

Z
dpp2ðp2 þ 3ω2

i Þfeq;ið1 − feq;iÞ

þ β2

6π2
gg

Z
dpp2ðp2 þ 3ω2

gÞfeq;gð1þ feq;gÞ; ð124Þ

and

CB
p ¼ β2

2π2
X
i

gijqiBj
Z

dp3ðp2
3 þ ω2

i ÞfBeq;ið1 − fBeq;iÞ

þ β2

6π2
gg

Z
dpp2ðp2 þ 3ω2

gÞfeq;gð1þ feq;gÞ; ð125Þ

respectively. Another quantity that we need to study the Pr
number is the mass density (ρ). In our case, the mass
density is defined as

ρ ¼ 2
X
i

mini þmgng; ð126Þ

where miðmgÞ are the quasiparticle masses of the quarks
(gluons), generated due to the presence of the thermal
medium. Apart from it, neq;i and neq;g are the number
densities of the quarks and gluons, respectively, which can
be calculated using the phase-space distribution functions
[Eqs. (39) and (41)]. The mass density in the absence of the
magnetic field reads

ρ ¼ 1

π2
X
i

migi

Z
dpp2feq;i þ

1

2π2
mggg

Z
dpp2feq;g;

ð127Þ

and for a strongly magnetized medium, it is

ρB¼ 1

2π2
X
i

migijqiBj
Z

dp3fBeq;iþ
1

2π2
mggg

Z
dpp2feq;g:

ð128Þ

Now, we will focus on our results of the Prandtl number. In
the left panel of Fig. 5, we have shown the Pr number as a
function of the temperature in the absence of B. It is found
to be increasing monotonically with T in both BGK and
RT collision integrals. The magnitude is greater than 1 in
both the collision terms, which means that in a medium
consisting of quarks and gluons, the rate of momentum
diffusion dominates over that of thermal diffusion. The
magnitude gets reduced in the BGK collision integral. The
reduction in the Pr number may lead to the conclusion
that instantaneous conservation of the particle number
enforces less-pronounced momentum transport. We carry
out similar investigations in the presence of the strong B in
the right panel of Fig. 5 and observe similar trends with the
temperature. There is an enhancement in the magnitude of
the Pr number, but its behavior with the collision integrals
is similar, i.e., RT collision integral dominates over the
BGK. It decreases with the magnetic field. Pr number has
been evaluated earlier for many systems such as dilute
atomic Fermi gas [65] and has been reported to be around 2

3

at high temperature. In case of nonrelativistic conformal
holographic fluid [64] it has been found to be around 1.0
and for strongly coupled liquid helium, 2.5. [63].

FIG. 5. Prandtl number as a function of T in the absence (a) and in the presence (b) of the strong B.
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C. Reynolds number

From a hydrodynamic point of view, the Reynolds
number has an essential significance in determining the
nature of the flow pattern of a fluid. The small value of the
Reynolds number indicates the laminar flow, while a large
one tells about the turbulence. It is defined as

RI ¼ Lv
η=ρ

; ð129Þ

where L refers to the characteristic length while v to the
relative velocity of the fluid, respectively. The magnitude of
the RI gives an idea about the kinematic viscosity η=ρ of the
fluid in comparison to the characteristic length and the
relative speed. The large value (in case of turbulent flow)
of the RI corresponds to the small magnitude of η=ρ in
comparison to the quantity Lv of the system. To study the
impact of the BGK collision term on the nature of the flow
of the thermal QCD medium, we plot Reynolds number in
the left panel of Fig. 6 with T in the absence of the magnetic
field. RI increases with the temperature and its magnitude
gets lowered in the BGK-type collision integral in com-
parison to the RT, which indicates that instantaneous
conservation of particle number promotes the laminar
nature of the flow. The value of the RI is found to be
around 8–10 for BGK and 14–18 for RT in the temperature
range 160 < T < 400 MeV. In a (3þ 1)-dimensional fluid
dynamical model, the value of the RI is estimated in the
range 3–10 for initial QGP with η=s ¼ 0.1 [66]. The
holographic model reports its upper bound as 20 [67]. In
the right panel, we perform similar studies in the presence
of strong magnetic field. The trends are similar to the B ¼ 0
case, i.e., it increases with T and its magnitude gets reduced
in the BGK term. However, RI shows decreasing trends
with increasing B. The value of the RI is roughly in the
range of 1–8 as T is varied from 160 to 400 MeV for the

two strengths of the magnetic field, i.e., eB ¼ 15m2
π and

eB ¼ 10m2
π . We have observed that the RI is reduced in the

presence of strong B as compared to B ¼ 0 case and this
reduction is more pronounced in the low-T region around
the QCD transition point.
As seen earlier, the temperature dependence of η and η=s

with BGK collision term at eB ¼ 10m2
π shows a similar

behavior with its counterpart with the RT collision term at
eB ¼ 15m2

π in Fig. 2(a) and Fig. 3(b), respectively. Apart
from the size of the system (L) and the relative velocity (v),
Reynolds number is obtained from the inverse of kinematic
viscosity (η=ρ), so RI also shows a similarity between BGK
predictions at eB ¼ 10m2

π and RT predictions at eB ¼
15m2

π . This similarity leads to an ambiguity in the phe-
nomenological modeling. The BGK collision term should
be preferred over RTA for the extraction of phenomeno-
logically relevant quantities from experimental data.

D. Momentum diffusion vs charge diffusion

The relative competition between the momentum dif-
fusion and charge diffusion can be better understood
through a dimensionless ratio:

γ ¼ η=s
σel=T

; ð130Þ

where σel is the electrical conductivity. The quarks, unlike
gluons, are electrically charged particles, and hence con-
tribute to σel, while both quarks and gluons contribute to
the momentum transport, and hence contribute to the shear
viscosity. The ratio γ gives an idea about the relative
significance of the matter and gluon sector contributions to
the momentum and charge diffusion in the hot QCD
medium. In Fig. 7, we have shown the dimensionless ratio
γ calculated in Eq. (130) as a function of T in the absence of

FIG. 6. Reynolds number as function of T in absence (a) and in presence (b) of the strong B.
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B (in the left panel) and have found that γ decreases slowly
with temperature near the crossover point ð∼160Þ MeV and
then almost remains constant at higher temperatures. The
magnitude of the γ factor gets reduced in the BGK collision
integral, which indicates that conservation of particle
number enhances the charge transport in the medium at
a greater rate in comparison to momentum transport. In the
right panel of Fig. 7, we have displayed the ratio γ with
temperature in the presence of the strong B and have
observed the reduction of γ in the BGK collision term like
the B ¼ 0 case. The γ factor first decreases with T and then
increases. Its magnitude is higher when the strength of the
magnetic field is eB ¼ 15m2

π in comparison to eB ¼ 10m2
π .

E. Bulk viscosity vs shear viscosity

The relative competition between the shear viscous and
bulk viscous nature of the fluid can be understood in terms

of the ratio ζ=η. This ratio has been calculated for a variety
of systems in the different frameworks. In the case of
interacting scalar field [70], ζ=η has been found to be
around 15ð1

3
− c2sÞ2 (where cs refers to the speed of sound

in the medium). For hot QCD medium using the pertur-
bation theory, it is nearly equal to 15ð1

3
− c2sÞ2 [60], and for

strongly coupled gauge plasma, 2ð1
3
− c2sÞ2 [104]. In

holographic model [71], the ratio ζ=η is found to be less
than 0.5 at high temperatures and it is around 0.6 in the
phase transition region. In another attempt [72], the
authors notice that ζ is smaller than η at high temperatures
but acquires higher values around critical temperature (Tc)
of the phase transition. In the case of quasigluon plasma
[73], the ratio ζ=η behaves like that found using the
perturbative QCD at higher temperatures (above 1.5Tc)
but for T around 1.02Tc, nonperturbative effects become
significant.

FIG. 7. Dimensionless ratio γ as a function of T in absence (a) and in presence (b) of the strong B.

FIG. 8. Bulk to shear viscosity (ζ=η) ratio as a function of T in absence (a) and in presence (b) of the strong B.

SALMAN AHAMAD KHAN and BINOY KRISHNA PATRA PHYS. REV. D 106, 094033 (2022)

094033-18



Now, we will explore the ratio ζ=η for our case. In Fig. 8,
the variation of the ratio ζ=η with temperature has been
shown. It decreases with T and gets reduced in the BGK
collision term in the absence [Fig. 8(a)] as well as in the
presence of strong B [Fig. 8(b)]. In the absence of B,
the magnitude of the ratio ζ=η remains less than 1 in the
temperature range 160–400 MeV that corresponds to the
dominance of η over ζ. In SMF, the ratio ζ=η gets enhanced
slightly, but the magnitude is still less than 1 and the RT
collision term dominates over BGK.

V. CONCLUSION

To conclude, we have examined the relative behavior of
the transport coefficients of the thermal QCD medium in
BGK and RT collision integrals. This study helps us in
probing the various salient features of the collision integrals
and their impact on the transport phenomenon. For that
purpose, we have evaluated shear and bulk viscosities using
the relativistic Boltzmann transport equation where colli-
sional aspects of the medium have been incorporated with
the help of BGK-type collision integral, which exhibits an
improvement over RT enforcing the conservation of par-
ticles in the medium. Then, using η and ζ, we have studied
the ratios η=s and ζ=s to get an idea about the ideal and
conformal nature of the fluid. We further explored the
relative significance of the various transport coefficients
through Prandtl number, Reynolds number, factor γ, and
ratio ζ=η. Both η and ζ have been found to be increasingwith
the temperature in both the collision integrals but the
magnitude of η (ζ) gets enhanced (reduced) in the BGK
collision term in comparison to RT. As a result, η=s gets
enhanced whereas ζ=s reduces. The magnitude of other
derived coefficients Pr, RI, γ, and ratio ζ=η also gets reduced.
Apart from it, the ratio η=s (ζ=s) is minimum (maximum)
near Tc. Further, we studied the impact of strong B on the
collision integral and subsequently on the momentum
transport in the medium where quark dynamics is restricted
in only 1D, i.e., along the direction of the B. The above-
mentioned transport coefficients show similar trends with
respect to the collision integral asB ¼ 0 case except for ratio
ζ=s, which is almost identical in both the collision integrals.
The strongB flips the T dependence of ζ and η=swhich now
shows decreasing trends. The ratio η=s (ζ=s) becomes
smaller (larger). We also see enhancement of Pr, γ, and
ζ=η. Enhancement of Pr number leads to the conclusion that
in a strongB, the sound attenuation ismostly controlled by η.
In strong B, RI gets reduced, which indicates that strong B
adds to the laminar nature of the flow. We see that different
collision integral gives different values of the transport
coefficients which are experimentally measurable quan-
tities. Thus, using this one-to-one correspondence, we can
sense the collision integral responsible for the equilibration
of the medium. In this study, the hot QCD medium effects
have been incorporated via dispersion relations wherein the
masses of the quasipartons are parametrized according to a

thermodynamically consistent quasiparticle model. We
calculate the medium-generated thermal masses of the
partons by taking the poles of the resummed propagators
calculated under the framework of perturbative thermal
QCD with a strong B in the background.
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APPENDIX A: DERIVATION OF THE
LEFT-HAND SIDE IN EQ. (43)

The BGK collision term (right-hand side) of (36) is
given as

C½f� ¼ −pμuμνiðfi − nin−1eq;ifeq;iÞ;

¼ −pμuμνi

�
fi −

gi
R
pðfeq;i þ δfiÞ

neq;i
feq;i

�
;

¼ −pμuμνi

�
fi −

ðgi
R
p feq;i þ gi

R
p δfiÞ

neq;i
feq;i

�
;

¼ −pμuμνi

�
δfi − gin−1eq;ifeq;i

Z
p
δfi

�
: ðA1Þ

APPENDIX B: QUARK SELF-ENERGY IN
IMAGINARY TIME FORMALISM

We can approximate the exponential factor in (10) as
e−k⊥=jqiBj ≈ 1, since the transverse component of the quark
momentum is almost negligible, i.e., k⊥ ≈ 0. The quark
self-energy (7) takes the form

ΣðpkÞ

¼ 2g2

3π2
jqiBjT

X
n

Z
dkz

½ð1þ γ0γ3γ5Þðγ0k0 − γ3kzÞ − 2mi�
½k20 − ω2

k�½ðp0 − k0Þ2 − ω2
pk�

¼ 2g2jqiBj
3π2

Z
dkz½ðγ0 þ γ3γ5ÞL1 − ðγ3 þ γ0γ5ÞkzL2�;

ðB1Þ

where ω2
k ¼ k2z þm2

i , ω
2
pk ¼ ðpz − kzÞ2 and L1 and L2 are

the frequency sums needed to evaluate the self-energy,
which can be written as

L1 ¼ T
X
n

k0
1

½k20 − ω2
k�

1

½ðp0 − k0Þ2 − ω2
pk�

; ðB2Þ

and

L2 ¼ T
X
n

1

½k20 − ω2
k�

1

½ðp0 − k0Þ2 − ω2
pk�

; ðB3Þ

TRANSPORT COEFFICIENTS IN THERMAL QCD: A PROBE TO … PHYS. REV. D 106, 094033 (2022)

094033-19



respectively. After performing the frequency sums, the self-
energy (B1) takes the form

ΣðpkÞ ¼
g2jqiBj
3π2

Z
dkz
ωk

�
1

eβωk − 1
þ 1

eβωk þ 1

�

×

�
γ0p0

p2
k

þ γ3pz

p2
k

þ γ0γ5pz

p2
k

þ γ3γ5p0

p2
k

�
; ðB4Þ

which can further be simplified after integration over kz as

ΣðpkÞ ¼
g2jqiBj
3π2

�
πT
2mi

− lnð2Þ
�

×

�
γ0p0

p2
k

þ γ3pz

p2
k

þ γ0γ5pz

p2
k

þ γ3γ5p0

p2
k

�
: ðB5Þ
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