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In this work, we study the spin density matrix element ρ00 of the ϕ in the decay J=ψ → ηπϕ. In previous
studies, a band around 1.4 GeV on the π0ϕ distribution in Dalitz plot was reported by the BESIII
Collaboration. This structure may be caused by the production of a resonance or the triangle singularity
mechanism. We find that the predictions of the spin density matrix elements of the final ϕ based on these
mechanisms show distinct features. Thus the measurement of the spin density matrix elements of the ϕ in
this reaction may offer an alternative way to study the triangle singularity and to clarify the reaction
mechanisms, i.e., resonance production or kinematic effects. This work also shows the potential of spin
observables in studying kinematic singularities.
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I. INTRODUCTION

The studies on the hadron spectrum offer the platform to
test our knowledge of quantum chromodynamics (QCD) in
the nonperturbative regime, which is important for under-
standing the strong interactions. In recent years, owing to a
large amount of new experimental results on particle
reactions and resonances there have been significant
progress in the study of the hadron spectrum. A large
number of new states were found, which usually show as
peaks or dips in the invariant mass spectrum of final
particles. While a peak in the invariant mass spectrum is
not necessarily caused by a resonance. It also can be
produced by kinematic effects. In fact, some of the new
states are interpreted as threshold cusps and/or triangle
singularities [1–9]. Since these kinematic effects may show
similar features as resonances, it is then important to find
some ways to distinguish the kinematic singularities from
genuine resonances.
Besides the interests in clarifying the nature of the

observed structures in experiments, triangle singularity
(TS) mechanism may also play an essential role in under-
standing some important puzzles. Some remarkable
examples can be found in relevant studies in J=ψ decays.
In 2012, BESIII Collaboration reported the observation
of abnormally large isospin-breaking effects in

J=ψ → γηð1405=1475Þ → γ þ 3π [10], which, however,
could be understood by considering the important roles
of the TS mechanism via the intermediate K�K̄ þ c:c:
rescatterings in this decay. Furthermore, it was also argued
that the TS mechanism could be crucial for understanding
the nature of η resonances [11,12] and the productions and
decays of light axial vector mesons [13] in J=ψ decays.
Even though the TS mechanism may play important roles
in the physical processes mentioned above, further exper-
imental evidences are still needed to identify its contribu-
tion. Up to now, most studies on the TS mechanism mainly
concentrate on its effects in the invariant mass spectrum. In
this work, we hope to show that the TS mechanism may
also cause significant spin effects and in some cases spin
observables are helpful for identifying its contributions.
Here we will concentrate on the reaction J=ψ → ηπϕ. In
Ref. [14], it was argued that if considering the contributions
from a set of K�KK̄ triangle diagrams [Fig. 1(a)] a peak
around 1.4 GeV in the π0ϕ invariant mass distribution
can be produced in the J=ψ → ηπϕ reaction, which fits
well with the recent measurement on this reaction by
BESIII Collaboration [15]. Of course, the peak observed
by experiment can also be interpreted by considering the
production of a resonance [Fig. 1(c)]. In Ref. [14], the
authors suggested that by checking whether the structure
around 1.4 GeV persists for the KþK− invariant mass away
from the ϕ mass region one could distinguish these two
models. Later, the authors in Ref. [13] argued that the
decay could also proceed with the production of h1ð1415Þ
at first and then h1ð1415Þ decaying to πϕ through the
same triangle diagram [Fig. 1(b)]. Both the models in
Refs. [13,14] concern the TS mechanism, and we call them
the TS models to distinguish from the resonance model
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where a resonance is produced and decays without sig-
nificant rescattering effects. In this work, we will show that
it is possible to distinguish these two kinds of models by
measuring the spin density matrix elements (SDMEs) of
the final ϕ.
This paper is organized as follows. In Sec. II, the

theoretical framework and ingredients are presented. In

Sec. III, the numerical results are presented with some
discussions. Finally, the paper ends with a short summary
in Sec. IV.

II. MODEL AND FORMALISM

As mentioned in Sec. I, a peak structure being around
1.4 GeV in the πϕ invariant mass spectrum was found in the
reaction J=ψ → ηπϕ [15]. This peak may be caused by a
resonance (resonance model), e.g., C(1480) [16,17]/
h1ð1415Þ [18–20], or triangle diagrams involving K�KK̄
intermediate states (TS model) as discussed in Refs. [13,14].
The Feynman diagrams for the TS and resonance models can
be depicted in Fig. 1. To calculate these Feynman diagrams,
the Lagrangian densities for the involved vertices are needed.
For the triangle diagrams, we basically follow the formalism
in Ref. [14], where the triangle diagrams were calculated. As
shown in Ref. [14], the amplitudes for Fig. 1(a) can be
presented as

Mi ¼ igϵμJ=ψϵ
�ν
ϕ

Z
d4q
ð2πÞ4

½−gμλ þ ðqþ k1Þμðqþ k1Þλ=m2
K�

id
�ðqþ 2k2 − k1Þλð2qþ k2Þν

ðq2 −m2
Kid

þ iϵÞ½ðqþ k1Þ2 −m2
K�

id
þ iϵ�½ðqþ k2Þ2 −m2

Kid
þ iϵ�≡ igϵμJ=ψϵ

�ν
ϕ Mi

μν; ð1Þ

where the index i ¼ CðNÞ denotes the amplitudes corre-
sponding to the process with the charged (neutral) inter-
mediate particles and g is a constant. The concrete
expressions of Mi

μν and meanings of parameters can be
found in Ref. [14]. By summing the charged and neutral
loop amplitudes, with including the appropriate coeffi-
cients, the total amplitude can be presented as

M ¼ 2ðMC −MNÞ: ð2Þ

For the amplitude of Fig. 1(b), where h1ð1415Þ is
produced at first, the total amplitude can also be written
as Eq. (2) but with the Mi¼CðNÞ being replaced by [13,18]

Mi ≡ i
g0ϵJ=ψ ;ρð−gρμ þ kρ1k

μ
1=k

2
1Þϵ�νϕ Mi

μν

k21 −m2
h1
þ imh1Γh1

; ð3Þ

where the Mi
μν is defined in Eq. (1) and g0 represents the

coupling constant.
To calculate the tree diagram in the case of the C(1480)

production, we need to consider the process represented
by Fig. 1(c) with taking X as C(1480) (I ¼ 1, JPC ¼ 1−−)
[16,17]. The effective Lagrangians for the J=ψXη and Xπϕ
vertices are adopted as [21]

LVVP ¼ gVεμναβ∂μVν∂αVβP; ð4Þ

where V denotes the field of a vector meson (J=ψ or ϕ), and
P denotes the field of a pseudoscalar meson (η or π). Note
that isospin invariance needs not to be considered for the
J=ψXη or Xπϕ vertex depending on the isospin of X being
1 or 0, respectively, because isospin conservation is
violated in this decay. The amplitude for this tree diagram
can then be obtained as

−iMCð1480Þ ¼ gCεμναβp
μ
ϕϕ

�νpα
CG

βb
1 ðpCÞεabcdpa

Cp
c
ψψ

d;

ð5Þ

where gC represents the product of coupling constants in
this process, and the Gμν

1 is taken as

Gμν
1 ðpXÞ ¼

−gμν þ pμ
Xp

ν
X

p2
X

p2
X −m2

X þ imXΓX
: ð6Þ

For the mass and width of the C(1480), we adopt
mCð1480Þ ¼ 1480 and ΓCð1480Þ ¼ 130 MeV [16,17].
For the case that the intermediate state X is the h1ð1415Þ,

the Feynman diagram for the process can also be presented
by Fig. 1(c) with taking X as h1ð1415Þ. Since h1 has
quantum numbers I ¼ 0 and JPC ¼ 1þ−, the effective
Lagrangian for the J=ψh1η and h1ϕπ vertices can be
written as [22,23]

LAVP ¼ gAðLa cos θ þ Lb sin θÞ; ð7Þ

(a) (b)

(c) (d)

FIG. 1. Feynman diagrams for the J=ψ → ηπϕ reaction.
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La ¼ Aμð∂μVν − ∂νVμÞ∂νP; ð8Þ

Lb ¼ ∂
μAνð∂μVν − ∂νVμÞP; ð9Þ

where V denotes J=ψ or ϕ field, P denotes π or η field and
A represents h1 field. The gA and θ represent the coupling
constant and mixing angle.
Then the corresponding amplitude for Fig. 1(c) can be

obtained as

−iMh ¼ ghG
μa
1 ðph1Þ;

× ðpϕμϕν − pϕνϕμÞðpν
π cos θπ þ pν

h1
sin θπÞ;

× ðpψaψb − pψbψaÞðpb
η cos θη − pb

h1
sin θηÞ;

ð10Þ

where θη and θπ represent the mixing angles in the
Lagrangians of the J=ψh1η and h1ϕπ vertices, respectively.
The mass and width of h1 can be taken from PDG book
[19] as mh1 ¼ 1416 and Γh1 ¼ 90 MeV.

III. THE SPIN DENSITY MATRIX ELEMENTS

With the amplitudes given above, the spin density
matrix elements of the final ϕ in the J=ψ → ϕηπ reaction
can be calculated. Since the initial J=ψ considered in this
work is produced in eþe− collisions, we choose the
polarization axis of J=ψ along z axis, which is defined
as the beam direction of eþ or e−. In this case, the
magnetic quantum numbers of the J=ψ only takes the
values m ¼ �1 [24]. For the final ϕ, we shall consider its
helicity states, i.e., choosing its polarization axis along its
momentum direction, in the c.m. frame of the π0ϕ system.
The spin density matrix element ρ00 of the ϕ (denoted as
ρϕ00) as a function of the π0ϕ invariant mass in the π0ϕ rest
frame is defined as

ρϕ00ðmπ0ϕÞ ¼
R
dΩηdΩπ0

P
mMm;λ¼0M�

m;λ0¼0R
dΩηdΩπ0

P
m;λ00 jMm;λ00 j2

; ð11Þ

where mð¼ �1Þ represents the z component of the total
angular momentum of J=ψ and λ, λ0 and λ00 are the
helicities of the final ϕ. The ρϕ00 can be extracted
from the angular distribution of K or K̄ in ϕ → KK̄
through [25–27]

Wðcos θÞ ∼ 3

2

�
ρϕ00cos

2θ þ 1

2
ð1 − ρϕ00Þsin2θ

�
; ð12Þ

where θ is defined in the conventions of the helicity
system.

IV. RESULT AND DISCUSSION

As we know, both the kinematic singularity and genuine
resonance state can result in a structure in the invariant
mass spectrum. Therefore, it is interesting and important to
find some other observables to distinguish these two
mechanisms. In this section, we shall study the dependence
of the SDME ρϕ00 on the invariant mass spectrum mπϕ

considering different mechanisms, and then discuss the
possibility of distinguishing various mechanisms using
this observable. For the purpose of this work, it is helpful
to firstly study the features of the ρϕ00 induced by the
mechanisms shown in Fig. 1 individually. In doing so, the
coupling constants are irrelevant. Therefore, we just set all
the coupling constants as 1, and the possible effects from
background contribution will be discussed later. For read-
er’s convenience, the parameters for the resonance models
are collected and listed in Table I.
In the case of the resonance production process with

taking X ¼ Cð1480Þ (Model I), the SDME ρϕ00 is 0 as
shown by the black dotted line in Fig. 2. This means that
the final ϕ meson can only be in the helicity states
with λ ¼ �1. This results from the properties of the
Cπϕ (V-V-P coupling) vertex, which is discussed in detail
in Appendix B.
In the case that X is the h1ð1415Þ, to calculate the

amplitude we have to fix the values of the mixing angles θη
and θπ in the Lagrangians first. In general, the mixing

TABLE I. Parameters for resonance models.

Model Resonance JPC Mass(GeV) Width(GeV) θπ

I Cð1480Þ 1−− 1.480 0.13 � � �
IIA h1ð1415Þ 1þ− 1.416 0.09 π=4
IIB h1ð1415Þ 1þ− 1.416 0.09 3π=4

FIG. 2. The obtained ρϕ00 for the tree diagrams. The dotted
(black), short-dash-dotted (magenta), and short-dashed (green)
lines represent the results of the Cð1480Þ production (Model I),
h1ð1415Þ production with taking θπ ¼ π=4 (Model IIA) and
θπ ¼ 3π=4 (Model IIB), respectively.
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angles should be determined by fitting the experimental
data. Unfortunately, up to now the information about these
angles is still absent. In our calculations, we find that the
value of the ρϕ00 is independent of the θη. On the other hand,

the value of θπ is relevant to the ρϕ00. If we take θπ ¼ π=4
(Model IIA), which leads to a mixing of S-wave and
D-wave couplings, the value of the ρϕ00 is about 0.30
(the magenta short-dash-dotted line in Fig. 2). If we take
θπ ¼ 3π=4 (Model IIB), the Lh1ϕπ describes the S-wave

coupling, and the value of ρϕ00 is about 0.35 (the green short-
dashed line in Fig. 2). In a general case, the mixing angles
can be arbitrary and control the relative importance of the
S-wave and D-wave couplings. However, we find that the
D-wave contribution is suppressed compared to the S-wave
contribution, and the mixing angle only has minor effects
on the value of the ρϕ00 except for taking θπ at some special
value.1 Therefore, in the h1ð1415Þ production case we
conclude that the ρϕ00 tends to be a relatively small value.
In Refs. [13,14], the authors have analyzed the

J=ψ → ηπ0ϕ reaction by considering the triangle diagrams
Fig. 1(a) (Model III) [14] or Fig. 1(b) (Model IV) [13] and
shown that those diagrams can cause a peak around
1.4 GeV in the π0ϕ invariant mass distribution. In fact,
there are two kinds of singularities which are relevant [28].
One is the normal two-body threshold cusp (TBTC), and
the other is the triangle singularity. Using the parameters
of the particles from the PDG book [19], the TBTC and TS
for the diagrams with the charged intermediate states are
located at 1.3853 and 1.3857 GeV, respectively. And for
diagrams with the neutral intermediate states they are
located at 1.3931 and 1.3952 GeV, respectively. The

SDME ρϕ00 for the triangle diagrams (Model III and IV)
near the TS has been studied with or without considering
the width of the K� in the loop in Fig. 3. In all TS models,
the ρϕ00 is always larger than 0.75. When neglecting the K�

width, there are two peaks in the distribution of ρϕ00 versus
the π0ϕ invariant mass. At the peaks, the ρϕ00 approaches 1.
After including the K� width effects, the distribution of ρϕ00
only has one relatively wide peak. At the same time, the
value of ρϕ00 will decline to 0.77–0.88.
The relatively large value of ρϕ00 induced by the triangle

diagrams may be ascribed to the properties of the KK̄ϕ
vertex. Taking Fig. 1(a) as an example, if the three-
momenta of K and ϕ are collinear, a large value of ρϕ00
will be obtained as discussed in Appendix B. Since the
considered invariant mass mπϕ in Fig. 3 is near the K̄K�

threshold, the magnitude of the three momentum of the K̄
is close to zero when the intermediate states K� and K̄ in
the loop are on shell. In this case, the three-momenta of K
and ϕ are approximately collinear. Since it is expected that
when the intermediate states are on shell the amplitude
will get a relatively large value, the case discussed above
gives the main contribution in the loop integral [18]. Thus
the density matrix element ρϕ00 tends to have a large value.
This property also leads to the cusp at TBTC (see the inset
plot in Fig. 3). Based on the same logic, without consid-
ering the K�’s width the ρϕ00 should approach 1 at TS,
where the three intermediate particles are on shell and
moving collinearly [28].
On the other hand, when the value of mπϕ moves away

from the K̄K� threshold, the collinear condition does not
hold anymore. Therefore, the value of ρϕ00 decreases as mπϕ

departing from the locations of TS and TBTC. In Fig. 4, we
show the SDME ρϕ00 in a wider range of mπϕ. No matter

whether the width of K� is considered, the ρϕ00 distribution
shows a wide peak, which is peaked at around

FIG. 3. The obtained ρϕ00 for Model III and Model IV near the
TS with and without considering the width of K�.

FIG. 4. The obtained ρϕ00 for Model III and Model IV in a wider
range of mπϕ with and without considering the width of K�. The
results for background contribution is also shown for comparison.

1In fact, we find that when the h1πϕ coupling has the form
hμ1∂μϕν∂

νπ the ρϕ00 can approach 1. But this only happens in a very
small parameter space of the θπ , otherwise the dependence of the
ρϕ00 on the θπ is rather weak. So in this work we ignore the
possibility that the h1πϕ vertex has this special coupling, which
can certainly be verified by future studies on the h1πϕ coupling.
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mπϕ ¼ 1.39 GeV. Comparing with the results of the

resonance models in Fig. 2, it is clear that the ρϕ00 show
distinct features for the various models which all can
explain the peak at around 1.4 GeV in the π0ϕ invariant
mass distribution. Therefore, the ρϕ00 has the potential to
clarify whether the structure in the invariant mass
spectrum is caused by genuine resonance or by the TS
mechanism.
Concerning the ρϕ00 focused in this work, the main

discrepancies between Models III and IV appear at higher
mπϕ. In fact, if one looks at the structures of the amplitudes
of the two models, the main difference originates from the
term pμpν

p2 in the propagator of h1 in Model IV [see Eq. (3)].

Note that the denominator of the h1 propagator is canceled
in the calculations of the ρϕ00 [see Eq. (11)]. The presence of
the pμpν

p2 term guarantees that the total angular momentum of

the πϕ system is 1. While, at lower mπϕ the dominance
of the S-wave component of the final πϕ and intermediate
K̄K� systems automatically enforce that the total angular
momentum of the πϕ system is 1. Therefore, the two
models give similar results. At higher mπϕ, the

pμpν

p2 term

starts to play a more important role, and the difference
between the two models become evident. Numerically, if
one calculates the contributions from the −gμν and pμpν

p2

terms individually, it can be found that the −gμν term gives
the dominant contribution at lower mπϕ. At the region
above the peak, the contribution of the −gμν term decreases
more quickly than that of the pμpν

p2 term, and then the pμpν

p2

term becomes more important at higher mπϕ. It is also
interesting to note that because of the destructive effects
between these two terms the ρϕ00 drops faster in Model IV
than in Model III. In particular, in Model IV with taking
into account the K�’s width the ρϕ00 may approach 0 at
about mπϕ ¼ 1.50 GeV.
Finally, to compare with experimental data, it is also

necessary to estimate possible effects from the background
contributions. Possible resonance contributions in the π0η
channel, such as the a0ð980Þ’s contribution, are not consid-
ered, since they can, in principle, be eliminated by a kinematic
cut on the π0η invariant mass. In this work, the background
contribution is modeled by a contact term [Fig. 1(d)], for
which we adopt the Lagrangian density [14,29],

LΨηπϕ ¼ gctΨμϕμπη: ð13Þ

Since the relative strength of the background contribution is
not presented in the experimental paper, here we adjust the
coupling constant gct to make the background contribution
have the samemagnitude as that of the resonance contribution
or the triangle diagrams at the peak position in the invariant

mass spectrum. In this way, the ρϕ00 with including

background contribution is calculated for various models
and shown inFig. 5.2 In the regionwhere thebackground term
dominates the reaction, the value of ρϕ00 approaches 0.33
corresponding to the purebackgroundcontribution (see short-
dotted line in Fig. 4) for all models. At the peak position, the
resonance or triangle diagram contribution has a similar
strength as the background contribution as we suppose.
For TS models, we find the ρϕ00 is slightly reduced. For the
h1ð1415Þ production process (Model II), since the resonance
production contribution and background term individually
leads to a similar ρϕ00, we find the inclusion of the background
contribution does not significantly change the ρϕ00. While for
theC(1480) production process (Model I), thevalue of the ρϕ00
is determined by a mix of the background and resonance
contribution. In this case the ρϕ00 always lies in a range
between the values determined by the C(1480) contribution
and background contribution solely, i.e., in a range from 0 to
0.33. Therefore, we find that although the inclusion of the
background contribution could change the line shapes of ρϕ00
for different models, the main difference between the TS
models and resonance models remains and can be used to
distinguish various mechanisms. In particular, the discrep-
ancies between Model III and IVat highermπϕ still exist and
may offer the opportunity to distinguish these two models.
However, since the contributions due to the TS mechanism
become smaller at higher mπϕ, it may be challenging to
capture such discrepancies.

FIG. 5. The calculated ρϕ00 for various models with including
the background contribution. For Model III and Model IV, the
finite width of K� has been taken into account.

2In Fig. 5, we only show the results corresponding to the
constructive interference case. For the triangle diagrams, we do
not consider the destructive interference case, since in this case
we cannot get a peak structure in the invariant mass spectrum,
which is conflict with the experimental observation. For the
resonance production process, we find the interference effects are
insignificant and the results are similar in both constructive and
destructive cases.
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V. SUMMARY

In this work, we study the spin density matrix element ρϕ00
of the ϕ in the reaction J=ψ → ηπϕ. We find that the ρϕ00
shows distinct features when considering different reaction
mechanisms, i.e., the production of a resonance or TS
mechanism. According to our calculation results, it is found
that the special kinematic conditions required by kinematic
singularities and the properties of the involved vertex
functions in the loop results in an enhancement of the ρϕ00
near the TS. If the TS mechanism indeed plays an important
role, we expect that the ρϕ00 should take a relatively large
value and have a peak versus the invariant massmπϕ near the
TS, which is absent for the resonance models. Therefore, by
exploring the ρϕ00 in this reaction it is possible to distinguish
the various models and offer an alternative way to study the
triangle singularity. Until now there is still no clear exper-
imental evidence identifying the contribution of triangle
singularity, it is then helpful to develop some newmethods to
distinguish various mechanisms. Although in this work we
concentrate on the J=ψ → ηπϕ reaction, it should be noted
that the spin effects caused by the TS mechanism are general
and can be exploited in other processes where the TS
mechanism plays an important role and the spin states of
final particles can be measured.
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APPENDIX A: POLARIZATION VECTORS OF
VECTOR MESON

Taking the polarization axis along the z axis, the
polarization vectors for vector meson at rest are

εþ1ðp⃗ ¼ 0Þ ¼ −1ffiffiffi
2

p

0
BBB@

0

1

i

0

1
CCCA; ε−1ðp⃗ ¼ 0Þ ¼ 1ffiffiffi

2
p

0
BBB@

0

1

−i
0

1
CCCA;

ε0ðp⃗ ¼ 0Þ ¼

0
BBB@

0

0

0

1

1
CCCA: ðA1Þ

For vector meson polarized along the direction with
spherical angles (θ;ϕ) in its rest frame, the polarization
vectors are obtained through

ε0λðθ;ϕÞ ¼
X
M

DMλðϕ; θ;−ϕÞεM

¼ e−iϕ·1d11λðθÞeiϕ·λε1 þ e−iϕ·0d10λðθÞeiϕ·λε0
þ e−iϕ·ð−1Þd1−1λðθÞeiϕ·λε−1: ðA2Þ

Then we can get

ε0þ1ðp⃗ ¼ 0Þ ¼ −1ffiffiffi
2

p

0
BBBBB@

0

cos2 θ
2
− e2iϕsin2 θ

2

i
�
cos2 θ

2
þ e2iϕsin2 θ

2

�
−eiϕ sin θ

1
CCCCCA; ðA3Þ

ε0−1ðp⃗ ¼ 0Þ ¼ −1ffiffiffi
2

p

0
BBBBB@

0

−cos2 θ
2
þ e−2iϕsin2 θ

2

i
�
cos2 θ

2
þ e−2iϕsin2 θ

2

�
e−iϕ sin θ

1
CCCCCA; ðA4Þ

ε00ðp⃗ ¼ 0Þ ¼

0
BBB@

0

sin θ cosϕ

sin θ sinϕ

cos θ

1
CCCA: ðA5Þ

For taking a vector meson from rest to momentum p, the
corresponding lorentz transformation matrix is defined as

�
p0

pj

�
¼ 1

MV

 
p0 pi

pj pjpi

p0þMV
þ δjiMV

!�
MV

0

�
; ðA6Þ

whereMV represents the mass of the vector meson. So for a
vector meson moving at the momentum p and polarized
along ðθ;ϕÞ, the polarization vectors are

ελðpÞ ¼
1

MV

 
p⃗ · ε!0

λ

p⃗ p⃗· ε!0
λ

p0þMV
þMV ε!0

λ

!
: ðA7Þ

If the polarization axis of vector meson is taken along
the direction of its three-momentum p⃗, i.e., the helicity
state, it is clear that ε!0

0 is parallel with p⃗. So we can
get ε!0

0 × p⃗ ¼ 0. Furthermore, due to the relation
ε!0

λ · ε
!0

λ0 ¼ δλλ0 , we also have ε!0�1 · p⃗ ¼ 0. And then
the helicity state of the vector meson can be rewritten as

ε�1 ¼
�

0

ϵ!0�1

�
; ε0 ¼

1

MV

� jp⃗j
p0 ϵ!0

0

�
: ðA8Þ
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APPENDIX B: PROPERTIES OF THE VPP
AND VVP VERTICES

For the VPP vertex, we have the interaction Lagrangian

LVPP ¼ gVPPVμðP1∂
μP2 − P2∂

μP1Þ; ðB1Þ
and the corresponding vertex function is

−itV→PP ¼ gVPPεμðp1 − p2Þμ
¼ gVPPεμ½p1 − ðpV − p1Þ�μ
¼ 2gVPPε · p1; ðB2Þ

where p1, p2, and pV represent momenta of the two
pseudoscalar mesons and the vector meson V. If p⃗1 and
p⃗V are collinear in some reference frame, according to
Eq. (A8) the helicity states of the vector meson have the
property

ε�1 · p1 ¼ 0 · p0
1 − ϵ!0�1 · p1

	! ¼ 0: ðB3Þ
Therefore in the reference frame where the three momenta
p1 and pV are parallel, the VPP vertex has the property
that the produced V meson can only be in the helicity state
with λ ¼ 0, which is a result of angular momentum
conservation.
For the VVP vertex, the Lagrangian is written as

LVVP ¼ gVVPεμναβ∂μV1ν∂αV2β: ðB4Þ

The corresponding vertex function is

−itV1→V2P ¼ gVVPεμναβpμεν1q
αε�β2 ; ðB5Þ

with p and q denoting the momentum of the vector
mesons V1 and V2. ε1 and ε2 represent their corresponding
polarization vectors. We can rewrite the vertex function in
the following form:

−itV1→V2P ¼ gVVP½p0ðε⃗1 × q⃗Þ · ε⃗�2 − ε01ðp⃗ × q⃗Þ · ε⃗�2
þ q0ðp⃗ × ε⃗1Þ · ε⃗�2 − ε�02 ðp⃗ × ε⃗1Þ · q⃗�: ðB6Þ

This expression shows that, if the three-momenta of the
three particles are collinear and the helicity of V2 is 0, the
vertex function should vanish due to the equations p⃗ × q⃗ ¼
ε⃗2;λ¼0 × q⃗ ¼ ε⃗2;λ¼0 × p⃗ ¼ 0 (see Appendix A). It means
only the helicity states with λ ¼ �1 contribute, and the
produced vector meson V2 should have ρ00 ¼ 0. When
the vector meson V1 has a vanishing momentum or the
calculation is performed in its rest frame, similar arguments
also hold. This property can be understood in the following
way. Let us consider the process V1 decaying to V2 and P.
In this case, due to the conservation of parity and angular
momentum, the orbital angular momentum of the final two
particles can only be 1. If we choose the z axis along the
momentum of V2 in the V1’s rest frame, the magnetic
quantum number of the initial state V1 (denoted as m) can
only have the same value as the helicity of the V2 (denoted
as λ2) due to the conservation of z-component of total
angular momentum. In this case λ2 ¼ 0 is forbidden,
because the coupling of the spin states of V1 and V2

(j1; 0i and j1; 0i) with orbital angular momentum state
j1; 0i is vanishing due to the Clebsch-Gordan coefficient
h10; 10j10i ¼ 0.

[1] M. Mikhasenko, B. Ketzer, and A. Sarantsev, Phys. Rev. D
91, 094015 (2015).

[2] G. D. Alexeev et al. (COMPASS Collaboration), Phys. Rev.
Lett. 127, 082501 (2021).

[3] J. J. Xie, L. S. Geng, and E. Oset, Phys. Rev. D 95, 034004
(2017).

[4] S. X. Nakamura, Phys. Rev. D 102, 074004 (2020).
[5] E. Wang, J. J. Xie, W. H. Liang, F. K. Guo, and E. Oset,

Phys. Rev. C 95, 015205 (2017).
[6] X. H. Liu, G. Li, J. J. Xie, and Q. Zhao, Phys. Rev. D 100,

054006 (2019).
[7] S. X. Nakamura, Phys. Rev. D 103, L111503 (2021).
[8] F. K. Guo, C. Hanhart, Ulf-G. Meißner, Q. Wang, Q. Zhao,

and B. S. Zou, Rev. Mod. Phys. 90, 015004 (2018).
[9] F. K. Guo, X. H. Liu, and S. Sakai, Prog. Part. Nucl. Phys.

112, 103757 (2020).
[10] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.

108, 182001 (2012).
[11] M. C. Du and Q. Zhao, Phys. Rev. D 100, 036005 (2019).

[12] Y. Cheng and Q. Zhao, Phys. Rev. D 105, 076023
(2022).

[13] M. C. Du and Q. Zhao, Phys. Rev. D 104, 036008
(2021).

[14] Hao-Jie Jing, Shuntaro Sakai, Feng-Kun Guo, and Bing-
Song Zou, Phys. Rev. D 100, 114010 (2019).

[15] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.
121, 022001 (2018).

[16] S. I. Bityukov et al., Phys. Lett. B 188, 383 (1987).
[17] L. G. Landsberg, Sov. J. Nucl. Phys. 55, 1051 (1992).
[18] M. C. Du, Y. Cheng, and Q. Zhao, Phys. Rev. D 106,

054019 (2022).
[19] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018) and 2019 update.
[20] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 98,

072005 (2018).
[21] U.-G. Meissner, Phys. Rep. 161, 213 (1988).
[22] L. Roca, E. Oset, and J. Singh, Phys. Rev. D 72, 014002

(2005).

STUDYING TRIANGLE SINGULARITY THROUGH SPIN … PHYS. REV. D 106, 094032 (2022)

094032-7

https://doi.org/10.1103/PhysRevD.91.094015
https://doi.org/10.1103/PhysRevD.91.094015
https://doi.org/10.1103/PhysRevLett.127.082501
https://doi.org/10.1103/PhysRevLett.127.082501
https://doi.org/10.1103/PhysRevD.95.034004
https://doi.org/10.1103/PhysRevD.95.034004
https://doi.org/10.1103/PhysRevD.102.074004
https://doi.org/10.1103/PhysRevC.95.015205
https://doi.org/10.1103/PhysRevD.100.054006
https://doi.org/10.1103/PhysRevD.100.054006
https://doi.org/10.1103/PhysRevD.103.L111503
https://doi.org/10.1103/RevModPhys.90.015004
https://doi.org/10.1016/j.ppnp.2020.103757
https://doi.org/10.1016/j.ppnp.2020.103757
https://doi.org/10.1103/PhysRevLett.108.182001
https://doi.org/10.1103/PhysRevLett.108.182001
https://doi.org/10.1103/PhysRevD.100.036005
https://doi.org/10.1103/PhysRevD.105.076023
https://doi.org/10.1103/PhysRevD.105.076023
https://doi.org/10.1103/PhysRevD.104.036008
https://doi.org/10.1103/PhysRevD.104.036008
https://doi.org/10.1103/PhysRevD.100.114010
https://doi.org/10.1103/PhysRevLett.121.022001
https://doi.org/10.1103/PhysRevLett.121.022001
https://doi.org/10.1016/0370-2693(87)91402-X
https://doi.org/10.1103/PhysRevD.106.054019
https://doi.org/10.1103/PhysRevD.106.054019
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.072005
https://doi.org/10.1103/PhysRevD.98.072005
https://doi.org/10.1016/0370-1573(88)90090-7
https://doi.org/10.1103/PhysRevD.72.014002
https://doi.org/10.1103/PhysRevD.72.014002


[23] P. Lichard and J. Juráň, Phys. Rev. D 76, 094030 (2007).
[24] F. Murgia and M. Melis, Phys. Rev. D 51, 3487 (1995).
[25] M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404

(1959).
[26] K. Schilling, P. Seyboth, and G. E. Wolf, Nucl. Phys. B15,

397 (1970).

[27] S. H. Kim, Y. Oh, and A. I. Titov, Phys. Rev. C 95, 055206
(2017).

[28] M. Bayar, F. Aceti, F. K. Guo, and E. Oset, Phys. Rev. D 94,
074039 (2016).

[29] U. G. Meissner and J. A. Oller, Nucl. Phys. A679, 671
(2001).

KE WANG, SHAO-FEI CHEN, and BO-CHAO LIU PHYS. REV. D 106, 094032 (2022)

094032-8

https://doi.org/10.1103/PhysRevD.76.094030
https://doi.org/10.1103/PhysRevD.51.3487
https://doi.org/10.1016/0003-4916(59)90051-X
https://doi.org/10.1016/0003-4916(59)90051-X
https://doi.org/10.1016/0550-3213(70)90070-2
https://doi.org/10.1016/0550-3213(70)90070-2
https://doi.org/10.1103/PhysRevC.95.055206
https://doi.org/10.1103/PhysRevC.95.055206
https://doi.org/10.1103/PhysRevD.94.074039
https://doi.org/10.1103/PhysRevD.94.074039
https://doi.org/10.1016/S0375-9474(00)00367-5
https://doi.org/10.1016/S0375-9474(00)00367-5

