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We estimate kinematical higher-twist (up to twist 4) corrections to the γ�ðq1Þγðq2Þ → Mðp1ÞM̄ðp2Þ
amplitudes at large Q2 ¼ −q21 and small s ¼ ðq1 þ q2Þ2, where M is a scalar or pseudoscalar meson. This
process is known to factorize at leading twist into a perturbatively calculable coefficient function and
generalized distribution amplitudes (GDAs). The kinematical higher-twist contributions of order s=Q2 and
m2=Q2 turn out to be important in the cross section, considering the kinematics accessible at Belle and
Belle II. We present numerical estimates for the cross section for γ�γ → π0π0 with the ππ GDA extracted
from Belle measurements and with the asymptotic ππ GDA as inputs to study the magnitude of the
kinematical corrections. To see how the target mass corrections of order m2=Q2 affect the cross section, we
also perform the calculation for γ�γ → ηη by using a model ηη GDA. In the range s > 1 GeV2, the
kinematical higher-twist corrections account for ∼15% of the total cross section, an effect which is not
negligible. Since ππ GDAs are the best way to access the pion energy-momentum tensor (EMT), our study
demonstrates that an accurate evaluation of EMT form factors requires the inclusion of kinematical higher-
twist contributions.
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I. INTRODUCTION

Generalized distribution amplitudes (GDAs) [1–3]—
sometimes called two-meson distribution amplitudes—are
hadronic matrix elements closely related to generalized
parton distributions (GPDs) [4–7]. They involve the same
bilocal quark (or gluon) operator on the light cone and
correspond to s − t crossed helicity matrix elements.
GDAs can be accessed in eðk1Þγ → e0ðk2ÞMðp1ÞM̄ðp2Þ
reactions in eþe− collisions, in the kinematical range
where Q2 ¼ −ðk1 − k2Þ2 is large but s ¼ ðp1 þ p2Þ2 is
much smaller than Q2. They have already been the subject
of careful studies at Belle [8] and were extracted in a
leading-twist analysis in Ref. [9]. They are also important
in the understanding of heavy meson three-body decays,
in particular in the quest for a precise determination
of Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements [10–13].

As the studies of GPDs allow us to perform nucleon
tomography through a Fourier transform in the transverse
coordinate space [14–16], GDAs open the way to an
impact-parameter picture [17] of the exclusive hadroniza-
tion process qq̄ → Mðp1ÞM̄ðp2Þ. The GPDs and GDAs are
also used to investigate the matrix elements of the energy-
momentum tensor (EMT) [3,18–20] for hadrons in the
spacelike and timelike regions, respectively. One can
extract mass, pressure and shear force distributions of
hadrons with the spacelike EMT form factors [21–28].
Since there is no experimental facility where pion GPDs
can be directly measured (see however Refs. [29–31]), the
studies of ππ GDAs are a necessary tool to access the pion
EMT. The spacelike pion EMT form factors can be
obtained from the timelike ones by using dispersion
relations, and in this process the ππ GDAs and pion
EMT form factors at s > 1 GeV2 should be included so
as to make the integrals convergent. Therefore, this goal
necessitates to extract GDAs in a sufficiently large s-range,
thus demanding a control as precise as possible of
kinematical higher-twist corrections to the amplitudes,
which are proportional to s=Q2 and m2=Q2, with m the
meson mass. While the contribution of one higher-twist
process has been previously discussed in Ref. [32], it only
matters in a very limited kinematical region, namely the
near forward or near backward regions. The phenomeno-
logical necessity of a sizeable (genuine) twist-4
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contribution to the γ�γ → ρρ amplitude has also been
pointed out [33]. A complete understanding of higher-
twist corrections to the process

γ�ðq1Þγðq2Þ → Mðp1ÞM̄ðp2Þ; ð1Þ

is however a difficult task which is far from being
achieved.
Meanwhile, a separation of kinematical and dynamical

contributions in the product of two electromagnetic currents
Tfjemμ ðz1xÞjemν ðz2xÞg was proven in Refs. [34–36] and
applied to the deeply-virtual Compton scattering (DVCS)
reaction [37]. The kinematical corrections come from two
types of operators, namely the subtraction of traces in the
leading-twist operators and the higher-twist operators which
can be reduced to the total derivatives of the leading-twist
ones. The subtraction of traces was applied in Ref. [38] to
the reaction of deep inelastic scattering (DIS), leading to
target mass corrections. The kinematical corrections in
DVCS can be considered as a generalization of these target
mass corrections. However, higher-twist operators which
can be reduced to the total derivatives of the leading-twist
ones will also contribute to the DVCS reaction, since
nonforward matrix elements are used. As pointed out in
Refs. [34–36], the distinction between two types of kin-
ematical corrections is not Lorentz invariant and has no
physical meaning. Both contributions should therefore better
always be added together. Since the same operator governs
the physics of the reaction (1), one may use the same
techniques to improve our understanding of the s-depend-
ence of its amplitude. We thus study here the kinematical
higher-twist corrections to the amplitude of the reaction (1),
in the kinematical domain suitable for a collinear QCD
factorization framework where the leading-twist amplitude
can be written as the convolution of a perturbatively
calculable coefficient function and GDAs [20].
In Sec. II, we describe the kinematics of the γ�γ → MM̄

process and recall the basic properties of GDAs. In Sec. III,
we recall the results of Refs. [34–36] and the definitions of
the higher-twist kinematical operators. In Sec. IV, we derive
the helicity amplitudes for the reaction (1), including the
kinematical higher-twist contributions. Section V shows our
numerical estimates of the kinematical higher-twist contri-
butions to the cross section for both ππ and ηη cases. We
briefly present our conclusions in Sec. VI. Appendices A
and B provide technical details for the calculation of
helicity amplitudes.

II. KINEMATICS AND GENERALIZED
DISTRIBUTION AMPLITUDES

To describe the process (1), we define the lightlike
vectors n and ñ in a convenient way so that they can be
expressed by the momenta of the spacelike virtual photon
q1 and the real photon q2,

ñ ¼ q1 þ ð1 − τÞq2; n ¼ q2; ð2Þ

where τ ¼ s=ðQ2 þ sÞ, Q2 ¼ −q21, and s ¼ ðq1 þ q2Þ2 ¼
ðp1 þ p2Þ2. The polar angle of the meson (M) momenta θ
is illustrated in Fig. 1, and is defined as

cos θ ¼ 2q1 · ðp2 − p1Þ
β0ðQ2 þ sÞ ; β0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

s

r
; ð3Þ

where m is the meson mass. For convenience, a new
variable ζ0 ¼ −β0 cos θ is introduced instead of cos θ

ζ0 ¼
ðp2 − p1Þ · n
ðp2 þ p1Þ · n

; ð4Þ

but the final amplitudes will be expressed in terms of cos θ.
If the z-axis is chosen so that the t − z plane contains the
lightlike vectors n and ñ, then only Δ ¼ p2 − p1 has a
transverse momentum, Δ ¼ ζ0ðñ − τnÞ þ ΔT . Using the
on-shell condition, we obtain Δ2

T ¼ 4m2 − ð1 − ζ20Þs.
The amplitude for γ�γ → MM̄ is defined as

Aμν¼ i
Z

d4xe−ir·xhM̄ðp2ÞMðp1ÞjTfjemμ ðz1xÞjemν ðz2xÞgj0i;

ð5Þ

where r ¼ z1q1 þ z2q2, and the constraint z1 − z2 ¼ 1 is
imposed for real constants z1 and z2. Owing to the
electromagnetic gauge invariance, one can decompose this
amplitude as [37]

Aμν ¼ −Að0Þgμν⊥ þ Að1Þ Δαgαν⊥
Q

ðñμ þ ð1 − τÞnμÞ

þ 1

2
Að2ÞΔαΔβðgαμ⊥ gβν⊥ − ϵαμ⊥ ϵβν⊥ Þ þ Að3Þμnν ð6Þ

with gμν⊥ and ϵμν⊥ given by

gμν⊥ ¼ gμν −
nμñν þ nνñμ

n · ñ
; ϵμν⊥ ¼ ϵμναβ

ñαnβ
n · ñ

: ð7Þ

FIG. 1. Kinematics of the process γ�ðq1Þγðq2Þ → Mðp1ÞM̄ðp2Þ
in the center of mass of the meson pair; the virtual photon is
emitted by the electron with four-momentum q1 ¼ k1 − k2.
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The last term in Eq. (6) is of no interest since it does not
contribute to any observable, and the rest of them can be
expressed in terms of the GDAs if the factorization
conditions Q2 ≫ s;Λ2

QCD are satisfied. The leading-twist
amplitude was first presented in Ref. [20] with the help of a
twist-2 GDA Φqðz; ζ0; sÞ for an isoscalar meson pair,

hM̄ðp2ÞMðp1Þjq̄ðz1nÞ=nqðz2nÞj0i

¼ 2P · n
Z

dze2i½zz1þð1−zÞz2�P·nΦqðz; ζ0; sÞ; ð8Þ

where P ¼ ðp1 þ p2Þ=2, Φq is the GDA for the quark
flavor q, q̄ðz1nÞ=nqðz2nÞ is the leading-twist vector operator
(a lightlike Wilson line joining the points z1n and z2n is
implied), and z1 − z2 ¼ 1 is not a necessary condition. This
matrix element can alternatively be expressed in terms of
double distributions (DDs) as [39]

hM̄ðp2ÞMðp1Þjq̄ðz1nÞ=nqðz2nÞj0i

¼
Z

dβdα½fqðβ;αÞΔ · n − gqðβ; αÞ2P · n�e−ilz1z2 ·n ð9Þ

with fq and gq having support on the rhombus jαj þ jβj ≤ 1

and assumed to vanish at the boundary, and

lz1z2 ¼ ðz2 − z1Þ
�
β
Δ
2
− ðαþ 1ÞP

�
− 2z1P: ð10Þ

Then, one can easily relate the GDA to double distributions

Φqðz; ζ0; sÞ ¼ 2

Z
dβdαδðyþ α − βζ0Þ

× ½fqðβ; αÞζ0 − gqðβ; αÞ�; ð11Þ

where y ¼ 2z − 1. Since the meson pair is produced with
charge conjugation C ¼ þ1, one can obtain the relations

fqðβ;αÞ¼ fqðβ;−αÞ; gqðβ;αÞ¼−gqðβ;−αÞ;
fqðβ;αÞ¼−fqð−β;−αÞ; gqðβ;αÞ¼−gqð−β;−αÞ ð12Þ

from charge conjugation invariance. Assuming that the
DDs vanish at the boundaries, Eq. (9) can be put in the form

hM̄ðp2ÞMðp1Þjq̄ðz1nÞ=nqðz2nÞj0i

¼ 2i
z12

Z
dβ dαϕqðβ; αÞe−ilz1z2 ·n; ð13Þ

where the notation z12 ¼ z1 − z2 is used. A new distribution

ϕqðβ; αÞ ¼ ∂βfqðβ; αÞ þ ∂αgqðβ; αÞ ð14Þ

is introduced with symmetry ϕqðβ; αÞ ¼ ϕqðβ;−αÞ ¼
ϕqð−β;−αÞ, in order to simplify the calculation of the
amplitudes thanks to the property

Z
dβ dαϕqðβ; αÞ½aþ bαn þ cβm� ¼ 0; ð15Þ

where a, b and c are constants which are independent of α
and β, and the exponents n and m are odd numbers.
Although the intermediate calculations involve the DD
ϕqðα; βÞ, the final results will be presented in terms of
the GDA using

∂Φqðz; ζ0; sÞ
∂z

¼ 4

Z
dβ dαδðð2z − 1Þ þ α − βζ0Þϕqðβ; αÞ:

ð16Þ

III. OPERATOR PRODUCT EXPANSION
AND HELICITY AMPLITUDES

A separation of kinematical and dynamical contribu-
tions in the time-ordered product of two electromagnetic
currents iTfjemμ ðz1xÞjemν ðz2xÞg was recently proved in
Refs. [34–36]. The kinematical contributions only involve
the leading-twist distributions, whereas unrelated genuine
higher-twist distributions are necessary for the dynamical
contributions. One can thus improve the description of
reactions where two photons are involved by including the
kinematical corrections, without any knowledge of the
higher-twist distributions. A complete calculation of kin-
ematical corrections was performed up to the twist-4
accuracy for DVCS with a (pseudo)scalar target in
Ref. [37]. In this work we shall apply similar techniques
to calculate the kinematical higher-twist contributions
in the s − t crossed channel of DVCS, namely the
reaction γ�γ → MM̄. The kinematical contributions to
the operator iTfjemμ ðz1xÞjemν ðz2xÞg were given to twist-4
accuracy by [34,35,37],

Tμν ¼
−1

π2x4z312
fxα½SμανβVβ − iϵμανβWβ�

þ x2½ðxμ∂ν þ xν∂μÞXþ ðxμ∂ν − xν∂μÞY �g; ð17Þ
where the convention ϵ0123 ¼ 1 is adopted for the anti-
symmetric tensor and Sμανβ is defined as

Sμανβ ¼ gμαgνβ − gμνgαβ þ gμβgνα: ð18Þ
In Eq. (17), Vμ and Wμ contain contributions of twist 2,
twist 3 and twist 4, whereas X and Y are purely twist 4, see
Appendix A for the detailed expressions. In practice, the
spinor formalism [40,41] is used to calculate the ampli-
tudes, since the expression of Tμν becomes more compact
and it is easier to figure out the twist of each term in the
corresponding matrix elements.
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In order to calculate the helicity amplitudes of Eq. (6),
the photon polarization vectors are required. Choosing the
momentum of the virtual photon along the z-axis, as shown
in Fig. 1, its polarization vectors read [20]

ϵμ0 ¼
1

Q
ðjq31j; 0; 0; q01Þ; ϵμ� ¼ 1ffiffiffi

2
p ð0;∓ 1;−i; 0Þ; ð19Þ

where the lower indices � and 0 indicate the helicities of
the photon. The polarization vectors ϵ̃ of the real photon
only have the transverse components, and they are related
to the ones of the virtual photon as ϵ̃� ¼ −ϵ∓. In the
reaction γ�γ → MM̄, the helicity amplitudes are defined as

Aij ¼ ϵμi ϵ̃
ν
jAμν; ð20Þ

and there are only three independent helicity amplitudes
owing to parity invariance, as one can check from Eq. (6).
Here we choose the independent helicity amplitudes as
Aþþ, A0þ, and A−þ, then one obtains

Aþþ ¼ A−− ¼ Að0Þ; A0þ ¼ −Að1ÞðΔ · ϵ−Þ;
A−þ ¼ −Að2ÞðΔ · ϵ−Þ2: ð21Þ

At leading twist, the operator product expansion of
iTfjemμ ðz1xÞjemν ðz2xÞg leads to the nonlocal operator

Oþþðz1n; z2nÞ ¼
X
q

e2qq̄ðz1nÞ=nqðz2nÞ ð22Þ

with a lightlike separation. Since we are interested in the
reaction γ�γ → MM̄ with a charge conjugation even final
state, one can safely neglect the contribution of the strange
quark in the case of a π meson pair,

Oþþðz1n;z2nÞ¼ e2uūðz1nÞ=nuðz2nÞþe2dd̄ðz1nÞ=ndðz2nÞ
¼ χ½ūðz1nÞ=nuðz2nÞþ d̄ðz1nÞ=ndðz2nÞ�; ð23Þ

where χ ¼ 5e2=18 is obtained thanks to the isospin
symmetry.1 One needs however to add e2s s̄ðz1nÞ=nsðz2nÞ
to the operatorOþþðz1n; z2nÞ in the case of aK meson pair.
The kinematical higher-twist contributions in the operator
product expansion of iTfjemμ ðz1xÞjemν ðz2xÞg are related to
the operatorOt¼2þþðz1; z2Þ, where the separation x is now not
necessarily lightlike. We thus need to use the leading-twist
projector Πðx; nÞ defined in Refs. [34–36],

hM̄ðp2ÞMðp1ÞjOt¼2þþðz1; z2Þj0i
¼ Πðx; nÞhM̄ðp2ÞMðp1ÞjOþþðz1n; z2nÞj0i: ð24Þ

Since the dependence on n is always carried by a function
of the type e−il·n in Eq. (13), the action of the leading-twist
projector is simply given by

½Πe−il·n�ðxÞ ¼ e−il·x þ x2l2

4

Z
1

0

dv ve−ivl·x þOðx4Þ: ð25Þ

Up to 1=Q2-accuracy, one obtains

hM̄ðp2ÞMðp1ÞjOt¼2þþðz1;z2Þj0i

¼ χ
2i
z12

Z
dβdαϕðβ;αÞ

�
e−ilz1z2 ·xþx2l2z1z2

4

Z
1

0

dvve−ivlz1z2 ·x
�
;

ð26Þ

where ϕ ¼ ϕu þ ϕd and the second term provides a twist-4
contribution. In addition to the leading-twist operator
Ot¼2þþðz1x; z2xÞ, there are also the higher-twist operators

O1ðz1; z2Þ ¼ ½iPμ; ½iPμ;Ot¼2þþðz1; z2Þ��;

O2ðz1; z2Þ ¼
�
iPμ;

∂

∂xμ
Ot¼2þþðz1; z2Þ

�
; ð27Þ

which contribute to kinematical higher-twist corrections.
Using Eq. (26), the matrix elements of O1 and O2 can be
expressed up to 1=Q2-accuracy as

hM̄ðp2ÞMðp1ÞjO1ðz1; z2Þj0i

¼ −χ
2i
z12

s
Z

dβ dαϕðβ; αÞe−ilz1z2 ·x;

hM̄ðp2ÞMðp1ÞjO2ðz1; z2Þj0i

¼ χ
2i
z12

Z
dβ dαϕðβ; αÞ

�
2P · lz1z2e

−ilz1z2 ·x

þ iP · xl2z1z2

Z
1

0

dv ve−ivlz1z2 ·x
�
: ð28Þ

Since the operators O1 and O2 contain total derivatives,
their matrix elements vanish in the forward limit and need
not be considered in DIS. They provide however correc-
tions of order m2=Q2 and s=Q2 in the reaction γ�γ → MM̄.

IV. HELICITY AMPLITUDES IN TERMS OF GDAS

In the following we will calculate the helicity amplitudes
of γ�γ → MM̄, adopting similar techniques to the ones used
for DVCS in Ref. [37]. There are three independent helicity
amplitudes, which can be expressed in terms of DDs,

1The amplitudes associated with ūðz1nÞ=nuðz2nÞ and
d̄ðz1nÞ=ndðz2nÞ are the same for an isosinglet ππ state.
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A0þ ¼ 2χ
Δ · ϵ−
Q

Z
dβ dαϕðβ;αÞβ lnðFÞ

F − 1
;

A−þ ¼ −χ
ðΔ · ϵ−Þ2
2n · ñ

Z
dβ dαϕðβ; αÞβ2∂F

�
1 − 2F
F − 1

lnðFÞ
�
;

Aþþ ¼ χ

Z
dβ dαϕðβ; αÞ

�
2 lnðFÞ þ

�
s

n · ñ
ðF − αÞ þ β2Δ2

T

4n · ñ
∂F

�
1

F − 1

�
lnðFÞ
2

− Li2ð1Þ þ Li2ðFÞ
��

; ð29Þ

where Δ2
T ¼ gμν⊥ΔμΔν and iϵ is omitted in the functions of

ln and Li2 since it will not contribute to the amplitudes.
Details of the calculations can be found in Appendix B.
A0þ and A−þ are proportional to Δ · ϵ− and ðΔ · ϵ−Þ2 as
indicated by Eq. (21), respectively, and the amplitudes do
not depend on z1 and z2 which indicates that the translation
invariance is recovered in the physical amplitudes. The
function Fðα; βÞ is defined as

Fðα; βÞ ¼ α − βζ0 þ 1

2
; ð30Þ

where F ¼ 0 and F ¼ 1 correspond to the quark momen-
tum fractions z ¼ 1 and z ¼ 0 of the GDAs, respectively.

We notice that there are three types of integrals expressed
by DDs in the obtained amplitudes, namely

I1 ¼
Z

dβ dαϕðβ; αÞYðFÞ;

I2 ¼
Z

dβ dαϕðβ; αÞβYðFÞ;

I3 ¼
Z

dβ dαϕðβ; αÞβ2∂FYðFÞ; ð31Þ

where YðFÞ is some function of F. Inserting the identityR
dy δðβζ0 − y − αÞ ¼ 1 into the integrals above, one can

reexpress the integrals in terms of GDAs by using Eq. (16),

I1 ¼ −
1

2

Z
1

0

dzΦðz; ζ0; sÞ∂zYð1 − zÞ;

I2 ¼ −
∂

∂ζ0

Z
1

0

dzΦðz; ζ0; sÞYð1 − zÞ;

I3 ¼ 2
∂
2

∂ζ20

Z
1

0

dzΦðz; ζ0; sÞYð1 − zÞ; ð32Þ

where y ¼ 2z − 1 and ζ0 ¼ −β0 cos θ as defined in Eq. (3). Therefore, we can write the helicity amplitudes as

Að0Þ ¼ χ

��
1 −

s
2Q2

�Z
1

0

dz
Φðz; η; sÞ
1 − z

−
s
Q2

Z
1

0

dz
Φðz; η; sÞ

z
lnð1 − zÞ

−
�
2s
Q2

ηþ Δ2
T

β20Q
2

∂

∂η

�
∂

∂η

Z
1

0

dz
Φðz; η; sÞ

z

�
lnð1 − zÞ

2
þ Li2ð1 − zÞ − Li2ð1Þ

��
;

Að1Þ ¼ 2χ

β0Q
∂

∂η

Z
1

0

dzΦðz; η; sÞ lnð1 − zÞ
z

;

Að2Þ ¼ −
2χ

β20Q
2

∂
2

∂η2

Z
1

0

dzΦðz; η; sÞ 2z − 1

z
lnð1 − zÞ; ð33Þ

where η ¼ cos θ and Φ ¼ Φu þΦd. The GDA for s quarks is also required in some reactions such as γ�γ → K0K̄0 with a
charge conjugation-even K meson pair, and we just need to replace χΦwith e2uΦu þ e2dΦd þ e2sΦs in the above amplitudes.
One can clearly see the Oðs=Q2Þ corrections in the amplitudes, and the target mass correction of order Oðm2=Q2Þ is
implicit since it appears in the term Δ2

T=Q
2 by considering Δ2

T ¼ 4m2 − ð1 − ζ20Þs. In general, charge conjugation-even
GDAs can be expanded as [20]

Φðz; cos θ; sÞ ¼ 6zð1 − zÞ
X∞
n¼1
n odd

Xnþ1

l¼0
l even

B̃nlðsÞCð3=2Þ
n ð2z − 1ÞPlðcos θÞ; ð34Þ
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where Cð3=2Þ
n ðxÞ are Gegenbauer polynomials and PlðxÞ are

Legendre polynomials. Due to this general expression for
GDAs, the singularities of 1

z,
1

1−z and ln ð1 − zÞ in the
helicity amplitudes will be compensated by the GDA
when z → 0 and z → 1. As a consequence, the amplitudes
have no endpoint singularities. In the asymptotic limit
(Q2 → ∞), only the terms with n ¼ 1 survive,

Φðz; cos θ; sÞ ¼ 18zð1 − zÞð2z − 1Þ
× ½B̃10ðsÞ þ B̃12ðsÞP2ðcos θÞ�; ð35Þ

where the first and second terms correspond to the S-wave
and D-wave production of a meson pair, respectively.
The nonvanishing helicity-flip amplitudes A−þðAð2ÞÞ and
A0þðAð1ÞÞ indicate the existence of a D-wave GDA.

V. NUMERICAL ESTIMATES OF THE HIGHER-
TWIST KINEMATICAL CONTRIBUTIONS

A. ππ GDA extracted from Belle measurements

The process γ�γ → MM̄ can be measured in
eþe− collisions, which are accessible at KEKB and
SuperKEKB. In Ref. [20], the differential cross section
for eγ → eMM̄ is expressed as

dσ
dQ2ds dðcos θÞdφ ¼ α3emβ0

16πs2eγ

1

Q2ð1 − ϵÞ
h
jAþþj2 þ jA−þj2

þ 2ϵjA0þj2 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1þ ϵÞ

p
× cosφReðA�þþA0þ − A�

−þA0þÞ
− 2ϵ cosð2φÞReðA�þþA−þÞ

i
; ð36Þ

FIG. 2. Differential cross section for eγ → eπ0π0 calculated with ππ GDA extracted from Belle measurements through a leading-twist
analysis [9]. Dashed curves show the twist-2 results, while solid curves include the kinematical higher-twist contributions. The selected
values are seγ ¼ 30 GeV2, Q2 ¼ 9ð16; 25Þ GeV2 and cos θ ¼ 0.2ð0.4; 0.6; 0.8Þ as indicated on the different panels.
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where φ is the azimuthal angle of the meson pair as
illustrated in Fig. 1 and seγ is the center-of-mass squared
energy of eγ:ϵ is defined as usual by

ϵ ¼ 1 − y
1 − yþ y2=2

with y ¼ Q2 þ s
seγ

: ð37Þ

In the reaction eγ → eππ, there are two types of
contributions to the cross section. The final πþπ− with
negative charge conjugation couples to a virtual photon,
and its contribution is expressed in terms of the pion
electromagnetic form factor. When the charge conjugation
of ππ is positive, the pion pair can be π0π0 or πþπ−. Using
factorization, this type of contribution is determined by
GDAs, which we are interested in. The πþπ− GDA is equal
to the one of π0π0 due to the isospin symmetry. However,
since π0π0 are identical bosons, cos θ will be restricted to
0 ≤ cos θ ≤ 1 in Eq. (36). After integration over θ and φ,
the cross section for C-even πþπ− production is then twice
as large as the one for π0π0.
In 2016, the Belle Collaboration released the measure-

ments of differential cross section for γ� þ γ → π0 þ π0

[8]. Since the final state is π0π0, there is no contribution
from the pion electromagnetic form factor. The twist-2ππ
GDA was extracted by using the leading-twist amplitude
[9]. We use this pion GDA to estimate the cross section
for eγ → eππ where the integral over φ is performed in
Eq. (36),

dσ
dQ2ds dðcos θÞ ¼

α3emβ0
8s2eγ

1

Q2ð1 − ϵÞ
×
h
jAþþj2 þ jA−þj2 þ 2ϵjA0þj2

i
: ð38Þ

In order to show the size of the higher-twist kinematical
contributions, Eqs. (33) and (38) are used to calculate the
cross section, and the results are depicted as the solid lines
in Fig. 2. The dashed lines represent the leading-twist cross
sections. Considering the kinematics of Belle measure-
ments, we choose the values Q2 ¼ 9; 16; 25 GeV2,
s ∈ ð0.25; 4Þ GeV2, and we set seγ ¼ 30 GeV2 which is
the typical value at Belle. In Fig. 2, black lines denote
cos θ ¼ 0.2 and orange lines correspond to cos θ ¼ 0.4,
while cos θ ¼ 0.6 and cos θ ¼ 0.8 are depicted as red and
blue, respectively. As Q2 increases, kinematical contribu-
tions become less important, which is consistent with the
fact that the kinematical contributions are suppressed by
1=Q or 1=Q2. The kinematical contributions cannot be
neglected in the region where

ffiffiffi
s

p
≥ 1 GeV. The helicity-

flip amplitudes A−þ and A0þ receive only contributions
from the D-wave GDA, and a large difference between two
types of cross sections is displayed around the D-wave
resonance region of f2ð1270Þ in Fig. 2. Hence, the study
of the amplitudes A−þ and A0þ will be important for the
investigation of this resonance region. The kinematical
higher-twist corrections contribute ∼15% to the cross

FIG. 3. Ratio dσð2þ 3þ 4Þ=dσð2Þ with the ππ GDA extracted from Belle measurements, same conventions as in Fig. 2.
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section on average, if one restricts the process eγ → eππ to
the kinematics of Belle measurements.
In Fig. 3, we also present the ratio dσð2þ 3þ 4Þ=dσð2Þ

where dσðiÞ (i ¼ 2, 3, 4) is the twist-i contribution to the
cross section, and the colors of the lines indicate different
values of cos θ as in Fig. 2. In this figure, the contributions
of the kinematical higher-twist corrections are quite clear,
so we can infer that the kinematical corrections cannot
be neglected when

ffiffiffi
s

p
> 1 GeV. Around

ffiffiffi
s

p
∼ 1.5 GeV,

the kinematical corrections are dominant in the cross
section with cos θ ¼ 0.8; this appears because the twist-2
cross section is quite tiny when calculated with the GDA
extracted from Belle measurements; this GDA may how-
ever not be accurate in this region since the uncertainties
of Belle measurements are quite large there; this ratio
may thus not reflect the real physics aroundffiffiffi
s

p
∼ 1.5 GeV.

As we have seen, the kinematical corrections are not
negligible in the region

ffiffiffi
s

p
> 1 GeV, which turns out to be

important for the studies of the pion EMT form factors.
Indeed, since pion GPDs cannot easily be measured in
experiments, GDAs offer a way to investigate the timelike
EMT form factors of pions. The spacelike EMT form
factors can then be obtained from the timelike ones by
using dispersion relations, in which case the timelike EMT
form factors of

ffiffiffi
s

p
> 1 GeV are needed to be included

numerically. As a consequence, it is important to use the
most accurate description of the cross section with the
inclusion of kinematical contributions.
As pointed out above, the uncertainties of Belle mea-

surements [8] are quite large, and the statistical errors are
dominant. However, this situation will be improved sub-
stantially soon, since the Belle II collaboration just started
taking data at the SuperKEKB with a much higher

FIG. 4. Differential cross section for eγ → eπ0π0 with the asymptotic ππ GDA described in the text, same conventions as in Fig. 2.
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luminosity. Precise measurements of γ� þ γ → M þ M̄ are
expected in the near future, and an accurate description of
the amplitudes for the study of GDAs requires the inclusion
of kinematical contributions up to twist 4.

B. Asymptotic ππ GDA

The asymptotic pion GDA used in our calculation is
taken from Eq. (68) of Ref. [2],

Φðz; cos θ; sÞ ¼ 20zð1 − zÞð2z − 1ÞRπ

×

�
−3þ β20

2
eiδ0 þ β20e

iδ2P2ðcos θÞ
�
; ð39Þ

where δ0 and δ2 are ππ elastic scattering phase shifts in the
isospin 0 channel [42–44]. Rπ ¼ 0.5 represents the momen-
tum fraction carried by quarks in the pion meson. In this
asymptotic GDA, we do not include the contribution of the
f2 resonance. However, we believe it is reasonable to use
this GDA here, since our purpose is not to predict the cross
section for eγ → eπ0π0 precisely, but to estimate the
magnitude of kinematical higher-twist contributions and
determine whether one can neglect them or not in the cross
section.
In Fig. 4, we show the cross section for eγ → eπ0π0

with fixed Q2 and cos θ, the dashed lines are the twist-2
cross sections, while the solid ones indicate the cross

sections with kinematical contributions included. The
colors of the lines denote different values of cos θ as
indicated on the different panels of the figure. Similarly
to the case of the extracted ππ GDA, the kinematical
corrections are important to describe the cross section in
the region of

ffiffiffi
s

p
> 1 GeV. As Q2 increases, the kin-

ematical contributions become less important. Compared
with Fig. 2, the magnitude of the cross sections are similar
at different Q2, even though the asymptotic GDA is very
different from the extracted GDA from Belle measure-
ments. We also present the ratio of dσð2þ 3þ 4Þ=dσð2Þ
in Fig. 5, where the colors of the lines indicate different
values of cos θ as in Fig. 4. In this figure, we can see that
the kinematical contributions can account up to about 40%
of the cross section, which is of course not negligible.
Compared with Fig. 3, the magnitude of the ratios are
slightly smaller than the ones obtained from extracted
GDA from Belle measurements.

C. Model for ηη GDA

As mentioned in the Introduction, the kinematical con-
tributions are expected to be proportional to m2=Q2 and
s=Q2. Since the mass of π is quite small compared to theQ2

values of Belle measurements, it is interesting to check the
kinematical contributions for the production of a pair of
slightly heavier mesons, such as K or η mesons. On the one
hand, this helps understand how the target mass corrections

FIG. 5. Ratio dσð2þ 3þ 4Þ=dσð2Þ with the asymptotic π0π0 GDA described in the text, same conventions as in Fig. 2.
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of order Oðm2=Q2Þ affect the cross section. On the other
hand, the KK̄ and ηη GDAs can also be measured by Belle
and Belle II experiments; the Belle Collaboration indeed
released the cross section for γ� þ γ → K0 þ K̄0 in 2018
[45]. It will therefore be necessary to investigate the
kinematical corrections for the production of K and η
meson pairs. Unfortunately, there is almost no information
on these GDAs at present. Here, we just simply replace the
mass of π with the one of η in Eq. (39) and keep other
parameters unchanged, then use this GDA to estimate
the cross section and the ratio of various twist contributions
for eγ → eηη with seγ ¼ 30 GeV2. The differential cross
section for eγ → eηη is shown in Fig. 6, and the ratio of
dσð2þ 3þ 4Þ=dσð2Þ is presented in Fig. 7. The values
of Q2 are chosen as Q2 ¼ 9; 16 and 25 GeV2 together
with 1.2 GeV ≤

ffiffiffi
s

p
≤ 2.2 GeV, and the black (orange,

red, blue) lines in Figs. 6 and 7. represent cos θ ¼ 0.2
(0.4, 0.6, 0.8). The kinematical contributions account for
somewhat less than 40% of the cross section, which cannot
be neglected either. The kinematical higher-twist contribu-
tions have a significant impact on the cross section even in
the region (

ffiffiffi
s

p
∼ 1.2 GeV) which is close to the ηη thresh-

old. Compared with the ratios of Figs. 3 and 5, the
kinematical higher-twist contributions are always negative,
and those negative contributions can only come from the
amplitude of Aþþ, since Aþ− and A0− always contribute to
the cross section positively as indicated by Eqs. (33) and
(38). The importance of the kinematical contributions does
diminish as m increases from the pion mass to the η mass,
simply because the negative kinematical higher-twist con-
tributions from Aþþ are compensated by the positive ones
from A0− and Aþ−.

FIG. 6. Differential cross section for eγ → eηη with the model ηη GDA described in the text, same conventions as in Fig. 2.
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VI. SUMMARY

In this paper we presented a complete calculation of
kinematical higher-twist corrections for the helicity ampli-
tudes of the reaction γ� þ γ → M þ M̄ up to twist 4, where
only the leading-twist GDA is involved in the description of
the cross section. In case of ππ production, we use two types
of GDAs to estimate the kinematical higer-twist contribu-
tions in the cross section, namely the ππ GDA extracted
from the Belle measurements and the asymptotic ππ GDA.
Even though those two GDAs are very different, both of
them lead to kinematical corrections which cannot be
neglected for γ� þ γ → ππ considering the kinematics
accessible at Belle and Belle II. Moreover, the relative
magnitude of the higher-twist corrections is also comparable
for the two types of ππ GDAs at different values of Q2, as
seen from Figs. 3 and 5.
Due to the small pion mass, only kinematical corrections

of the type Oðs=Q2Þ contribute to the cross section for
γ� þ γ → ππ. The production of a pair of slightly heavier
mesons is needed to check how the target mass corrections
m2=Q2 affect the cross section. Since the ηη GDA is an
unknown quantity at present, we calculate this effect with
a model GDA identical to the asymptotic ππ GDA except
that the mass of η is used. This calculation indicates that
kinematical corrections are also not negligible in this case.
Furthermore, the negative kinematical corrections from
the amplitude Aþþ are dominant over the higher-twist

contributions from Aþ− and A0−, and the kinematical
corrections are always negative in the cross section, which
is different from the ππ case where kinematical corrections
can go both ways.
In conclusion, let us stress that while the uncertainties of

present Belle measurements [8] are too large for our study
to invalidate the conclusions of [9], the situation should
change substantially in a near future since Belle II
collaboration just started taking data at the SuperKEKB
with a much higher luminosity. Since our estimates show
that kinematical corrections are sizable for any choice of
model GDAs we considered, an accurate enough descrip-
tion of the amplitudes in terms of GDAs necessitates to
include their contributions. The extraction of GDAs from
experimental data may then be performed by using a
flexible enough model for GDAs [for instance depending
on a few parameters describing the s-behavior of the B̃nlðsÞ
functions in Eq. (34)], and comparing the predicted differ-
ential cross section in Eq. (36) to experimental data. Note
also that precise measurements of γ� þ γ → M þ M̄ for
various mesons will be of utmost importance to address the
questions of the pion EMT form factors and of the impact-
parameter representation of GDAs [17].
In the future, this work can be extended to the produc-

tion of other meson pairs, for example the γ�γ → πη
channel which should help unraveling the quark and gluon
structure of hybrid meson (JPC ¼ 1−þ) [46]. The scattering

FIG. 7. Ratio dσð2þ 3þ 4Þ=dσð2Þ with the model ηη GDA described in the text, same conventions as in Fig. 2.
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amplitude is likely to be sensitive to sizeable kinematical
higher twist contributions. This channel has recently been
advocated [47] to be related to shear viscosity of quarks in
hadronic matter. The production of a pair of vector mesons
should also be discussed, opening the way to a meaningful
extraction of the EMT form factors for ρ or ω mesons.
Similar relations apply to the timelike process amplitude

γ� → MM̄γ which opens another access to GDAs [48]
through the interference with the initial-state radiation
amplitude in the process eþe− → MM̄γ, as experimentally
proven by the BABAR collaboration [49]. The extension of
our work to the process γ� þ γ → N þ N̄ will also be
needed if Belle II detector is able to detect this channel.
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APPENDIX A: EXPRESSIONS
FOR THE T-PRODUCT OF TWO
ELECTROMAGNETIC CURRENTS

Here we give the detailed expressions of Vμ, Wμ, X
and Y [35,36], which are used in the T-product of two
electromagnetic currents in Eq. (17).

Vμðz1; z2Þ ¼ Bμðz1; z2Þ −Bμðz2; z1Þ þ xμΔAðz1; z2Þ;
Wμðz1; z2Þ ¼ −Bμðz1; z2Þ −Bμðz2; z1Þ;
Xðz1; z2Þ ¼ Cðz1; z2Þ − Cðz2; z1Þ;
Y ðz1; z2Þ ¼ −Cðz1; z2Þ − Cðz2; z1Þ; ðA1Þ

where ΔAðz1; z2Þ ¼ Aðz1; z2Þ −Aðz2; z1Þ is a pure twist-4
operator,

Aðz1; z2Þ ¼
1

4

Z
1

0

du

�
u2 ln u z1z2O1ðz1u; z2uÞ þ

��
z2∂z2 −

z1
z12

− ln uz2∂2z2z12

�
Rðuz1; uz2Þ − ð1 ↔ 2Þ

��
: ðA2Þ

The function Rðz1; z2Þ is related to the total derivative operators O1 and O2 through

Rðz1; z2Þ ¼ z12

Z
z1

z2

dw
z12

Z
w

z2

dw1

z12

w1 − z2
z1 − w1

�
1

2
SþO1ðw;w1Þ − ðS0 − 1ÞO2ðw;w1Þ

�
; ðA3Þ

where Sþ and S0 are differential operators of w and w1,

Sþ ¼ w2
∂w þ 2wþ w2

1∂w1
þ 2w1;

S0 ¼ w∂w þ w1∂w1
þ 2: ðA4Þ

The operator Bμðz1; z2Þ contains all twists starting from twist 2,

Bμðz1; z2Þ ¼ Bt¼2
μ ðz1; z2Þ þBt¼3

μ ðz1; z2Þ þBt¼4
μ ðz1; z2Þ: ðA5Þ

The twist-2 and twist-3 parts are defined as

Bt¼2
μ ðz1; z2Þ ¼

1

2
∂μ

Z
1

0

duOt¼2þþðuz1; uz2Þ;

Bt¼3
μ ðz1; z2Þ ¼

1

4

Z
1

0

duu
Z

z1

z2

dw
z12

f½iPν; Kανβμðxα∂βÞz1Ot¼2þþðz1u; wuÞ þ Kμανβðxα∂βÞz2Ot¼2þþðwu; z2uÞ�

þ lnðuÞ∂μx2∂ν½iPν; z1Ot¼2þþðz1u; wuÞ þ z2Ot¼2þþðwu; z2uÞ�g; ðA6Þ

where

Kμανβ ¼ ðgμαgνβ − gμνgαβ þ gμβgναÞ − iϵμανβ: ðA7Þ

The twist-4 part Bt¼4
μ ðz1; z2Þ is more complex than the twist-2 and twist-3 ones,
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Bt¼4
μ ðz1; z2Þ ¼

x2

8
∂μ

Z
1

0

du
u2

�
u2ð1 − u2 þ u2 ln uÞz1z2O1ðz1u; z2uÞ

−
��

ð1 − u2Þ
�
z2∂z2 −

z1
z12

�
þ ð1 − u2 þ u2 ln uÞz2∂2z2z12

�
Rðuz1; uz2Þ − ð1 ↔ 2Þ

��
: ðA8Þ

Cðz1; z2Þ is pure twist 4 and can be expressed as

Cðz1; z2Þ ¼ −
1

4

Z
1

0

du
u2

Rðuz1; uz2Þ: ðA9Þ

APPENDIX B: CALCULATION TECHNIQUES FOR HELICITY AMPLITUDES

There are two helicity-flip amplitudes A0þ and A−þ in Eq. (21). Angular momentum conservation implies that they are
proportional to a given power of the transverse momentum transfer as A0þ ∝ Δ · ϵ− and A−þ ∝ ðΔ · ϵ−Þ2. Therefore, the
twist-4 part of Eq. (17) will be beyond the accuracy of this work due to the additional factor of Δ · ϵ−,

A0þ ¼ At¼2
0þ þ At¼3

0þ ; A−þ ¼ At¼2
−þ þ At¼3

−þ ; ðB1Þ

We consider the matrix element of the twist-2 part of T0þ ¼ Tμνϵ
μ
0ϵ̃

νþ and substitute it into Eq. (5),

At¼2
0þ ¼

Z
d4xe−ir·xhM̄ðp2ÞMðp1ÞjTt¼2

0þ j0i

¼ −χ
Δ · ϵ−
Q

Z
dβ dαϕðβ; αÞβ

Z
1

0

du
4n · ñ

ðrþ ulz1z2Þ2 þ iϵ

¼ 2χ
Δ · ϵ−
Q

Z
dβ dαϕðβ;αÞβ lnðF − iϵÞ − lnðz1Þ

F − z1
; ðB2Þ

where ðrþ ulz1z2Þ2 ¼ −2n · ñðuF þ ð1 − uÞz1Þ is obtained by neglecting the terms of order Oðs;m2Þ since they will not
contribute at the 1=Q2 accuracy. Let us mention that iϵ can be omitted in lnðF − iϵÞ since F is always positive (0 ≤ F ≤ 1)
and there is no branch cut. Indeed, lnðFÞ is divergent when F ¼ 0 (z ¼ 1), but the GDA vanishes at z ¼ 1. Similarly, the
twist-3 part is obtained,

At¼3
0þ ¼

Z
d4x e−ir·xhM̄ðp2ÞMðp1ÞjTt¼3

0þ j0i

¼ 2χ
Δ · ϵ−
Q

z2

Z
dβ dαϕðβ; αÞβ

Z
1

0

du u
Z

z1

z2

dw
ð2n · ñÞ2

½ðrþ ulwz2Þ2 þ iϵ�2

¼ 2χ
Δ · ϵ−
Q

Z
dβ dαϕðβ; αÞβ −z2

F − z1

�
lnðF − iϵÞ
F − 1

−
lnðz1Þ
z2

�
ðB3Þ

with

ðrþ ulwz2Þ2 ¼ −2n · ñ½z1 − uwþ ðw − z2ÞF�: ðB4Þ

We note that although the twist-2 and twist-3 amplitudes depend on z1 and z2, this dependence disappears in their sum,

A0þ ¼ 2χ
Δ · ϵ−
Q

Z
dβ dαϕðβ; αÞβ lnðFÞ

F − 1
; ðB5Þ

which indicates that translation invariance is recovered in the physical amplitudes. Once again iϵ is omitted in lnðF − iϵÞ
as well.
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The calculation of A−þ is quite similar to the one of A0þ,

At¼2
−þ ¼ −2χðΔ · ϵ−Þ2

Z
dβ dαϕðβ; αÞβ2

Z
1

0

du u
1

ðrþ ulz1z2Þ2 þ iϵ

¼ χ
ðΔ · ϵ−Þ2
n · ñ

Z
dβ dαϕðβ; αÞβ2∂F

�
F lnðF − iϵÞ

F − z1
−
z1 lnðz1Þ
F − z1

�
;

At¼3
−þ ¼ −2χðΔ · ϵ−Þ2n · ñ

Z
dβ dαϕðβ; αÞβ2

Z
1

0

du u2
Z

z1

z2

dw

�
z1ðw − z1Þ

½ðrþ ulz1wÞ2 þ iϵ�2 þ
z2ðz2 − wÞ

½ðrþ ulwz2Þ2 þ iϵ�2
�

¼ −χ
ðΔ · ϵ−Þ2
2n · ñ

Z
dβ dαϕðβ; αÞβ2∂F

�
− lnðF − iϵÞ

F − 1
þ 2z1 lnðF − iϵÞ

F − z1
−
2z1 lnðz1Þ
F − z1

�
: ðB6Þ

For the sum, one gets

A−þ ¼ −χ
ðΔ · ϵ−Þ2
2n · ñ

Z
d βdαϕðβ; αÞβ2∂F

�
1 − 2F
F − 1

lnðFÞ
�
; ðB7Þ

which does not depend on z1 and z2, and which is proportional to ðΔ · ϵ−Þ2 as shown in Eq. (21).
The calculation of Aþþ is more lengthy than the ones of helicity-flip amplitudes, since it contains the contributions of

twist 2, twist 3, and twist 4.

Aþþ ¼ At¼2þþ þ At¼3þþ þ At¼4þþ ; Aþþ ¼ ϵμþϵ̃νþAμν: ðB8Þ

Taking the trace of Eq. (6), one obtains [37]

Aþþ ¼ −
1

2
Aμ

μ þ Aμν
ðnμñν − ñμnνÞ

2n · ñ
: ðB9Þ

We simplify the operator expansion of Tþþ in Eq. (17) by using Eq. (B9), and we take the matrix elements of Tþþ to obtain
the contribution of each twist to Aþþ [37],

At¼2þþ ¼ −
Z

d4x
π2

e−ir·x

x4
hM̄ðp2ÞMðp1ÞjOt¼2þþðz1; z2Þj0i;

At¼3þþ ¼ 2

Z
d4x
π2

e−ir·x

x4
ðx · ϵþÞϵμ−hM̄ðp2ÞMðp1ÞjBt¼3

μ ðz1; z2Þ þBt¼3
μ ðz2; z1Þj0i;

At¼4þþ ¼ −
1

4

Z
d4x
π2

e−ir·x

x2

Z
1

0

duhM̄ðp2ÞMðp1Þjfz1z2u2O1ðz1u; z2uÞ

−½z2∂22z12Rðz1u; z2uÞ − ð1 ↔ 2Þ� − 2Rðz2; z1Þgj0i; ðB10Þ

where the expressions for Bt¼3
μ ðz1; z2Þ and Rðz2; z1Þ can be found in Appendix A.

The calculation of At¼2þþ is rather straightforward with the help of Eq. (26),

At¼2þþ ¼ 2χ

Z
dβ dαϕðβ; αÞ

�
lnððrþ ulz1z2Þ2 þ iϵÞ − l2z1z2

Z
1

0

du u
1

ðrþ ulz1z2Þ2 þ iϵ

�

¼ 2χ

Z
dβ dαϕðβ; αÞ

�
lnðF − iϵÞ þ β2Δ2

T

8n · ñ
∂F

�
z1
lnðF − iϵÞ − lnðz1Þ

F − z1

�

þ s
2n · ñ

½z1z2 þ ðF − z1Þαþ ð1 − FÞF�∂F
�
F lnðF − iϵÞ

F − z1
−
z1 lnðz1Þ
F − z1

��
; ðB11Þ

where Eq. (15) is used to eliminate the irrelevant terms, and the first term in Eq. (B11) is actually the twist-2 amplitude given
by Ref. [2]. The twist-3 contribution is expressed as
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At¼3þþ ¼ χ

n · ñ

Z
dβ dαϕðβ; αÞβ

�
ζ0s −

Δ2
T

4
β∂F

�
lnðF − iϵÞ
F − 1

; ðB12Þ

and is independent of z1 and z2. There are several terms contributing to the amplitude of At¼4þþ in Eq. (B10), which we
denote as

At¼4þþ ¼ At¼4
ð1Þ þ At¼4

ð2þ3Þ þ At¼4
ð4Þ : ðB13Þ

At¼4
ð1Þ is calculated by using Eq. (28),

At¼4
ð1Þ ¼ −χ

z1z2s
n · ñ

Z
dβ dαϕðβ; αÞ∂F

�
F lnðF − iϵÞ

F − z1
−
z1 lnðz1Þ
F − z1

�
: ðB14Þ

When calculating the other terms in At¼4þþ , one finds divergences in At¼4
ð2Þ and At¼4

ð3Þ associated with the real (onshell) photon.
Here, the photon is set as an offshell one so as to regularize the divergences,

q2 → q2 þ ðξ − z1Þðq1 þ q2Þ;
r ¼ z1q1 þ z2q2 → r ¼ −q2 þ ξðq1 þ q2Þ; ðB15Þ

and we take ξ ¼ z1 at the end of the calculations to obtain the final results. As shown in Eq. (B10), the operatorRðz1; z2Þ is
involved in the remaining terms in Aþþ

t¼4. First, we simplify the matrix element of Rðz1; z2Þ,

hM̄ðp2ÞMðp1ÞjRðz1; z2Þj0i ¼ −2iχ
Z

z1

z2

dw
Z

w

z2

dw1

z12

w1 − z2
z1 − w1

Z
dβ dαϕðβ; αÞ

×

�
s
2
Sþ þ 2ðS0 − 1ÞP · lww1

þ iP · xl2ww1

�
e−ilww1 ·x

w − w1

; ðB16Þ

where z12 is kept so that z12 ¼ 1 is not a necessary condition. One can make the replacements z1 → uz1 and z2 → uz2 to
obtain Rðz1u; z2uÞ. We substitute the matrix elements Rðz1u; z2uÞ and Rðz2u; z1uÞ into Eq. (B10) and we take ξ ¼ z1,

At¼4
ð2þ3Þ ¼

χ

2

Z
dβ dαϕðβ;αÞ

�
s

n · ñ
½αþ ðF − 1ÞF∂F� −

β2Δ2
T

4n · ñ
∂F

�
1

F − 1

×

�
z2

�
F lnðF − iϵÞ

F − z1
−
z1
z2

F − 1

F − z1
lnðz1Þ

�
þ z1

�ðF − 1Þ lnð1 − F − iϵÞ
F þ z2

þ 1 − F
F þ z2

lnðz1Þ
��

; ðB17Þ

Similarly, the last contribution to At¼4þþ is given by

At¼4
ð4Þ ¼ χ

Z
dβ dαϕðβ; αÞ

�
s

n · ñ
½αþ ðF − 1ÞF∂F� −

β2Δ2
T

4n · ñ
∂F

�
1

1 − F
½lnðF − iϵÞ − Li2ð1Þ þ Li2ðF þ iϵÞ�; ðB18Þ

where the replacements α → −α, β → −β and F → 1 − F are used to simplify the amplitude.
Summing over all contributions leads finally to

Aþþ ¼ At¼2þþ þ At¼3þþ þ At¼4
ð1Þ þ At¼4

ð2þ3Þ þ At¼4
ð4Þ

¼ χ

Z
dβ dαϕðβ; αÞ

�
2 lnðFÞ þ

�
s

n · ñ
ðF − αÞ þ β2Δ2

T

4n · ñ
∂F

�
1

F − 1

�
lnðFÞ
2

− Li2ð1Þ þ Li2ðFÞ
��

; ðB19Þ

where the z1 and z2 dependences disappear as expected, and where iϵ is omitted in the functions of lnðF − iϵÞ
and Li2ðF − iϵÞ.
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