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We investigate the axial-vector transition form factors of the lowest-lying singly heavy baryons within
the framework of the chiral quark-soliton model. We consider the linear m, corrections, dealing with the
strange current quark mass m, as a small perturbation. Since we have various relations between different
transitions because of isospin symmetry and flavor SU(3) symmetry breaking, only two axial-vector
transition form factors are independent. We present the numerical results for these form factors. The effects
of the flavor SU(3) symmetry breaking turn out tiny, so we neglect them. We also compute the decay rates
for several strong decays of the singly heavy baryons and compare the results with the experimental data

and those from other models. While the results for the X, — A} + 7 and X} — A} + 7 decays are slightly

=

overestimated in comparison with the corresponding experimental data, those for the ! — E. + x are in

remarkable agreement with the data.
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I. INTRODUCTION

The structure of singly heavy baryons has been much
less known than that of the light baryons, both experi-
mentally and theoretically. Even for the charmed baryons in
the ground states, we know only their masses and decay
widths [1]. Recently, the electromagnetic properties of the
singly heavy baryons have been investigated within lattice
QCD [2-5]. There have also been various theoretical works
on their electromagnetic structure. On the other hand, there
are very few works on the axial-vector properties of the
singly heavy baryons. Since the LHCb Collaborations have
continuously announced a series of new experimental data
on the heavy baryons [6—13], one may expect that future
experiments will reveal the axial-vector structure of the
heavy baryons.

A singly heavy baryon consists of a heavy quark and two
light quarks. In the limit of the infinitely heavy-quark mass
(mg — o0), the spin of the heavy quark S, is conserved,
which brings about the conservation of the spin of the light-
quark degrees of freedom: §;, =8 — S [14-16]. Itis called
the heavy-quark spin symmetry, which allows one to take
the total spin of the light quarks as a good quantum number.
Thus, we can classify the singly heavy charmed baryons in
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the ground states according to the representation of flavor
SU(3); symmetry: 3® 3 =3@ 6, where the baryon
antitriplet (3) has S; = 0 and S = 1/2, whereas the baryon
sextet (6) carries Sy = 1. Since the spin of the heavy quark
is coupled to S;, the baryon sextet have two degenerate
representations with § = 1/2 and S = 3/2, respectively, as
illustrated in Fig. 1. This degeneracy is removed by
introducing the color hyperfine interaction in order 1/m,.

In the limit my — oo, we regard the heavy quark inside a
heavy baryon as a static color source, so the light quarks
govern the structure of the singly heavy baryons. Some
years ago, Yang et al. [17] proposed a pion mean-field
approach to explain the masses of singly heavy baryons,
following the idea proposed by Ref. [18]. Witten showed in
his seminal papers [19,20] that in the limit of the large
number of colors (N, — oo0) a baryon arises as a bound
state of N, valence quarks in a pion mean field with a
hedgehog symmetry [21,22] that is a minimal extension of
spherical symmetry with the characteristics of the pions
considered. Since the quantum fluctuation around the
saddle point of the pion field is suppressed by 1/N,. factor,
one can ignore it. In this large N, limit, the presence of N,
valence quarks that constitute the lowest-lying baryons
causes the vacuum polarization, which creates the pion
mean field. This pion mean field makes self-consistently the
N, valence quarks bound. To keep the hedgehog symmetry
preserved in the case of flavor SU(3),, an SU(2) soliton is
embedded into the isospin corner of SU(3), [20].

The chiral quark-soliton model (yQSM) [23-25] was
constructed such that it realizes Witten’s idea. Note that in
the yQSM the right hypercharge Y = N./3 is constrained
by the N, valence quarks, which is distinguished from the

Published by the American Physical Society
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FIG. 1. Flavor SU(3); representation of the singly heavy charmed baryons.

Skyrme model where the Wess-Zumino-Witten term fixes
it. This indicates that the explicit valence quark degrees of
freedom determine properly the baryon representations in
the yQSM: This constrained right hypercharge selects
allowed representations of light baryons such as the baryon
octet (8), the decuplet (10), etc. The yQSM has a virtue
because it can extend directly to describe singly heavy
baryons. In the limit of my — oo, a heavy quark inside the
singly heavy baryon stays dormant but can play a role only
as a static color source so that a colored soliton consisting
of N, — 1 valence quarks emerges. The right hypercharge
Yr = (N.—1)/3 is constrained by the N.—1 valence
quarks, which picks the allowed representations of singly
heavy baryons such as the baryon antitriplet (3) and the
baryon sextet (6) as depicted in Fig. 1, and in addition the
baryon antidecapentaplet (15) [26,27]. This extended
xQSM have successfully applied in describing properties
of the singly heavy baryons such as the mass splittings
[17,28,29], isospin mass differences [30], magnetic
moments [31], magnetic transitions and radiative decays
[32], electromagnetic and radiative transition form factors
[33-36], and gravitational form factors [37].

In the present work, we investigate the axial-vector
transition form factors of the low-lying singly charmed
baryons, including both the strangeness-conserving
(AS = 0) and strangeness-changing (|AS| = 1) transitions.
While there have been no theoretical works on the axial-
vector transition form factors of singly heavy baryons,
many theoretical groups studied their decay widths: for
example, heavy hadron chiral perturbation theory (HHyPT)
[38—41], a quark model (QM) [42], the light-front quark
model (LFQM) [43], the relativistic three-quark model
(RTQM) [44], the nonrelativistic constituent quark models
(NRQM) [45,46], the 3P, strong decay model (*P,) [47],
light cone QCD sum rules (LQCDSR) [48] and lattice QCD
(LQCD) [49]. Since the heavy quark is not involved in the
present axial-vector transitions of the singly heavy quarks,
we can concentrate on the light quark degrees of freedom to
compute the axial-vector transition form factors of the

singly charmed baryons. We consider the rotational 1/N .
corrections and explicit breaking of SU(3); symmetry to
linear order [50]. Since we have already computed the
axial-vector transition form factors of the baryon decuplet
[51], we will focus on how the axial-vector transition form
factors of the singly charmed baryons with spin 3/2 behave
differently from those of the A isobar.

The structure of the current work is summarized as
follows: In Sec. II, we define the axial-vector transition
form factors from the baryon sextet to both the baryon
antitriplet and sextet, based on the transition matrix
elements of the axial-vector current. In Sec. III, we show
how to compute the axial-vector transition form factors of
the singly heavy baryons in the yQSM. In Sec. IV, we first
compare the present results with that of the A — p axial-
vector transition form factor. We then discuss the effects of
SU(3); symmetry breaking. The last section is devoted to
summary and conclusions of the present work.

II. AXTAL-VECTOR TRANSITION FORM
FACTORS BETWEEN THE SINGLY HEAVY
BARYONS

The axial-vector current of a singly heavy baryon
consists of the light-quark and heavy-quark parts:

X
AL = W (rrs 5w () + B0, (1)
where y(x) represents the light-quark field y = (u,d, s) in
flavor space and W(x) denotes the heavy-quark field
generically for the charm or bottom quark. The # denotes
the well-known SU(3); Gell-Mann matrices for which the
index y is determined by strangeness-conserving AS = 0
transitions (y = 1 + i2) and for |AS| = 1 ones (y = 4 £ i5),
respectively. Considering the Lorentz structure together
with spin, parity, time reversal, and charge conjugation,
we can parametrize the transition matrix elements of the
axial-vector current between the baryons with spin 1/2 in
terms of two different real form factors:
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(By(p".5)|45(0)|By(p. /3))

)2
_ = () Gy (q°) Vs
=u(p' I3 |G Wty =S| 3 4(p-T2). (2)

where G(f) and Gg) are the axial-vector transition and
pseudoscalar transition form factors of the corresponding
baryon sextet with spin 1/2, respectively. u(p,J3) and
u(p’,J%) stand for the Dirac spinors for the initial and final
baryon states, respectively. Mp and Mp designate the
corresponding masses, respectively. g, denotes the momen-
tum transfer and g? its square. The transition matrix elements
between the baryon with spin 3/2 and with spin 1/2 are
parametrized in terms of four real form factors [52]:

(Bi(P'.J5)|4(0)[By(p.T3))

CA(X) qz CA()r) qz
—u(p’,J’g)H 3M; )7”+ 4M2(/ )p”}(gaﬂg,w—ga,)gﬂy)qf’

B
CA(Z) ( q2)

+C‘§°{)(q2)gaﬂ+6M—zqaqﬂ] u*(p.J3), (3)
B/

where g,; represents the metric tensor g,z =

diag(1,—1,—1,—1). In the rest frame of a initial baryon,
|

MB’

) _
Gi 5y (09 = =2 Ep + My

= [ @riz(lalir) B (0 S)IY: @ A0 holBlp.52) |-

Since the form factor C?%l B

)
cs

Note that Gg{g_}B,(O) and C‘;‘%LB,(O) are related to the

strong coupling constants g,gp by the Goldberger-Treiman
relations.

III. A SINGLY HEAVY BARYON IN THE CHIRAL
QUARK-SOLITON MODEL

The yQSM has proved great merit by showing that it can
describe both the light and singly heavy baryons on the
same footing. Since we want to discuss the axial-vector
transition form factors of the singly heavy baryons in this

p%, u*(p,J3) is the Rarita-Schwinger spinor that describes a
baryon with spin 3/2, carrying the momentum p and J3,
which can be described by the combination of the polari-
zation vector and the Dirac spinor, u%(p,J3) =

3
Dois c €¥(p)uy(p). It satisfies the Dirac equation and

ltis L
the auxiliary equations p,u®(p,J3) = 0 and y,u*(p,J3) =
0 [53]. The momenta of the initial and final states p and p’,
and the momentum transfer are explicitly written as
p=(M0), (4)
where ¢?> = —Q” with Q? > 0. Thus, the three-vector

momentum and energy of the momentum transfer are
expressed by

p = (E'. —q), q = (0g4.9),

— M?

G = (M%+M2f+Q2>2
q - B

2M,
M2, — M3 + Q?
o, = (Me= Vet ), (5
2M,

The axial-vector transition form factor G%g_, »(0?%) can

be obtained in terms of the spatial parts of the axial-vector
current in the spherical tensor form

[ @rinlall B OB

(6)

(¢?) is the most dominant one, we concentrate on it. Its expression is very similar to Eq. (6)

2M
(0% =~ /M[ / & rjo(lalIr)B)(p', S5 A5o(r) By(p. 3))

—/d3rjz(|¢1||r|)<B;(p’,S%)l{Yz ® AT(r)}10/Bs(p. S3)) |-

(7)

|
work, we will first explain how a singly heavy baryon can
be formulated in the pion mean-field approach. Let us
define the normalization of the baryon state as
(B(p'.J5)|B(p. J3)) = 2poby,, (27)*6%) (p' —p). In the
large N, limit, this normalization is reduced to
(B(p'.J3)|B(p.J3)) = 2Mgd;,;, (2787 (p' —p),  where
My is a baryon mass. A singly heavy baryon consists of
the N, — 1 valence quarks and a static heavy quark, so the
corresponding state can be written in terms of the loffe-type
current of the N.— 1 valence quarks and a heavy-quark
field in Euclidean space as follows:
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B.p) = lim explipsx)N(p) [ dxexplip -x)(—¥)(x.x)r) e x)[0)

(B. p| —yliggoexp(—ip&m)/\/*(p’)/d3yeXp(—ip’-y)<0|JB(v’y4)‘Ph<y,y4), (8)

where AV (p)(N*(p’)) represents the normalization factor depending on the initial (final) momentum. Jz(x) and Jj(y) stand
for the loffe-type current consisting of the N. — 1 valence quarks [23] defined by

o f e
500 = gy S Cam im0 Yy (3):
1 N . .
Th) = meal---aN(_IF(f}TJ)‘(JlJ;yR)(—“l/T(Y)ﬂ)flal '"(—“//T()’)ﬂ)fm_l%_], )

where f - fy _j and a; - - - ay__; denote respectively the
spin-isospin and color indices. F(TT3y)< 175v,) correspond to
matrices with the quantum numbers (T75Y)(JJ3Yg) for a
given state. In the yQSM, right hypercharge Y is con-
strained by the number of the valence quarks while it is
fixed by the Wess-Zumino-Witten term in the Skyrme
model. It provides a distinct advantage for the yQSM, since
the right hypercharge Y, for singly heavy baryons is
determined by the N,—1 valence quarks: Yp =
(N, —1)/3. The right hypercharge Y, = 2/3 with N. = 3
grants the baryon antitriplet (3), sextet (6), antipentade-
caplet (15), and so on [17,26,27,54]. W f,q,(X) is the light-
quark field. ¥, (x) denotes the heavy-quark field, making
the singly heavy baryon a color singlet. In the limit of
mg — oo, the singly heavy baryon complies with the
|

1

(B(p',J5)[B(p. J3)) = =—N*(p)N(p) lim

heavy-quark flavor symmetry, so that the heavy-quark field
can be written as

W) (x) = exp(—imgv - x)¥),(x). (10)

Here W), (x) stands for a rescaled heavy-quark field almost
on mass-shell. It carries no information on the heavy-quark
mass in the leading-order approximation in the heavy-
quark expansion. » is the velocity of the heavy quark
[14,15] with the superselection rule [16].

We now show the normalization factor N*(p')N (p) to
be 2Mj. The normalization of the baryon state can be
computed as follows:

lim exp (—iy4p}y + ixsps)

Zeff X4—>—00 y4—>00

X /d3xd3yexp(—ip’~y+ip‘x)/DUDy/Dy/TD‘i’hD‘i’Z
X Jp(0)¥5 () (=% (x)74) T (x)

X exp [/ (' (2)L(id + iMUTs + i) ; y(2) + ¥l (z)v - 0%,(2)}

b

= N*(p)N(p) lim lim exp (—iysp} + ixsps)

Zegr X470 Y4 =00

X /d3xd3y exp(=ip’ -y + ip - x) (T 5 ()W (y) (=¥} (2)74) T (%)), (11)

where Z; represents the low-energy effective QCD
partition function with the quark fields integrated out

Zegt = /DUGXP(—Seff)- (12)

(...)¢ in Eq. (11) designates the vacuum expectation value
of the baryon correlation function. S is known as the
effective chiral action (EyA) defined by

Seit = =N Trln [ig + iMU"s + i, (13)

which embraces the effective nonlocal interaction between
the quark and pseudo-Nambu-Goldstone (pNG) fields. M is
the dynamical quark mass that arises from the spontaneous
breakdown of chiral symmetry. The U’s stands for the
chiral field that is defined by
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1- 1
— 75 U(Z) + 75

Urs (Z) >

+ U'(z) (14)

with

U(z) = explin®(z)14], (15)
where 7°(z) represents the pNG fields and A* are the flavor
Gall-Mann matrices. 1 displays the mass matrix of current
quarks i = diag(m,, mq, m). We regard the strange cur-
rent quark mass mg as a small perturbation.

The Green’s function of a light quark in the yQSM [23]
is given by

1 .
G(0%) = Ol 3z 7))

=O(ys—x5) Y _ e B0y, (y)y(x)

E, >0

—O(xs —y4) Ze_E”(y“_x“)ll/n 0)wa(x),

E,<0

(16)

where ©(y, — x,) is the Heaviside step function. i denotes
the average mass of the up and down current quarks: m =
(my, 4+ mg)/2 that constitutes an essential part in producing
the correct Yukawa tail of the soliton profile function. E,
corresponds to the energy eigenvalue of the single-quark
eigenstate given by
Hl//n(x) = Ean('x)’ (17)
where H is the one-body Dirac Hamiltonian in the presence
of the pNG boson fields, defined by
H = 7,7:0; + 7aMU” + yyiml. (18)
The Green’s function for the heavy quark in the limit of

mg — oo is given by the Heaviside step function and Dirac
delta function

1

Gu(y.x) = (| % |x) = O(yy — x4)8%) (y — x).

(19)
which is the natural form of the heavy-quark propagator in
the my — oo limit. Using these Green’s functions for the
light and heavy quarks and taking the limit of
V4 — x4 =T — oo, we arrive at expression for the baryon
correlation function (J(y)¥, (y)(=i¥] (x)y4)J5(x))e [36]:

(5 () () (=¥}, (x)74) T (2))
~ eXp [_{(NL - 1)Eval + Esea + mQ}T]

= exp[—-MpT]. (20)
Since the result for the correlation function given in Eq. (20)
is canceled with the term exp(—iy,p} + ixgpy) =
exp[MpT| in the large N, limit, i.e., —ip) = —ip, =
Mp = O(N,). Thus, the normalization factor is reduced
to the mass of a singly heavy baryon: N™* (p" )\ (p) = 2Mj.
Combining Eq. (20) with the normalization constant, we find
that the classical mass of the singly heavy baryon is given by
the sum of the N, — 1 soliton and the heavy-quark masses

My = (Nc_ l)Eval+Esea+va (21)
which was already derived in a previous work [28]. The
classical mass given in Eq. (21) comes into critical play,
when we derive the axial-vector transition form factors of the
singly heavy baryons, which will be mentioned in Sec. V.

IV. AXIAL-VECTOR TRANSITION FORM
FACTORS IN THE CHIRAL QUARK-SOLITON
MODEL

We now show how to compute the transition matrix
elements of the axial-vector current (2), using the func-
tional integral. Since the heavy quark is not involved, we
will only consider the light quark degrees of freedom

1 T T
(B(p', 13)|A5(0)|B(p, J3)) = Z lim exp (ip4§ —ip} 5) /d3xd3y exp(—ip' -y + ip - x)

a

2

/ Dr* / Dy / Dy J (y, T/Z)W*(O)w,,ysl—w@)ﬁ;(}ﬁ -T/2)

enp| [ sty )G + U + i) 2.

In the large-N . limit, we use the saddle-point approxima-
tion to get the classical soliton. However, we have to take
into account the zero modes that do not change the energy
of the soliton. The angular velocity of the soliton.

Since the angular velocities of the soliton are of order
1/N., we can deal with the angular velocities as a

(22)

I
perturbative parameter. The integral over the translational
zero modes in the leading order provides naturally the
Fourier transform, which means that the baryon state has the
proper translational symmetry. Thus, the functional integral
over the pNG field is reduced to ordinary integrals over the
zero modes. We also regard the strange current quark mass
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mg as a perturbation. Having performed the zero-mode
quantization, we obtain the collective Hamiltonian as
follows:

Heon = Hsym + Hg,, (23)
where
7
Hsym: cl+ ZJZ ZJZ,
2 p=4
Hy = aD® + gy + L Z pYj.. (24)
Eh=

where /| and [ 3 are the moments of inertia for the classical
soliton and D® o 18 the SU(3) Wigner D function. The inertial
parameters a, # and y, which break flavor SU(3) symmetry
explicitly, are written in terms of the moments of inertia 7
and /,, and the anomalous moments of inertia K| and K,

_ iﬂN
=\ 3w

(25)

where X,y is related to the pion-nucleon X term:
E.n = (N, —1)N:'Z_y. As mentioned previously, the right
hypercharge Y is fixed by the number of valence quarks, i.e.,
Yr = (N.—1)/3 =2/3. Diagonalizing the collective
Hamiltonian, we derive the collective wave functions of
the singly heavy baryon

( : (/. J5:A) Z CJQm3u3\/dim(l?"])(_l)_gw3
my==+1/2
(R)*
XDy 117, J,—J;)(A))(ms’ (26)

where C;Zi} 1., denotes the Clebsch-Gordan coefficient for
the coupling between the collective light-quark wave func-
tion and the heavy-quark spinor y,,,. dim(p, g) represents
the dimension of the (p, ¢) representation

|

dim(p,q) = (p+1)(q + 1)(1 +pT+q> (27)

In the presence of the flavor SU(3) symmetry breaking
term H,, the collective wave functions of the baryon sextet
should be mixed with those in higher representations. Thus,
the collective wave functions for the baryon antitriplet and
sextet are obtained respectively as

|B3,) = |30, B) + pZ |15, B), (28)
|Bs,) = 161.B) + ¢%[15,.B) + ¢%,[24,. B)  (29)
with the mixing coefficients
5 —V15/10
P==DP1s s
15 -3v/5/20
V5/5 —/10/10
q%qusl\/ﬁ/m], 4%, = a5 | —V15/10 |,  (30)
0 -V/15/10

respectively, in the basis of [Af,Z.] for the baryon
antitriplet and [Z.(X}),ZL(E2), QY(Q:%)] for the baryon
sextet. The parameters pys, g5 and g7 are given in terms
of the inertia parameters « and y

3
4v3

1 2
S="7 (06+§7/)Iz,

4 1
w=——|a—=y |
by 5 /—10< 37> 2

It is straightforward to compute the transition matrix
elements of the collective states, which will be expressed by
the SU(3) Clebsch-Gordan coefficients. So, we arrive at the
final expressions for the axial-vector transition form factors
of the singly heavy baryon with spin 1/2 and 3/2,
respectively

Pis = al,,

(31)

) ip® / ,
G4 = V2 P (g (2) - g (o)) - ) (opr () - DA )

3 | P+ k0l Dl |8 (00 - 1P 00

dpgs (8) 2my (8) B—B’ B—B' ()2

%2 (0l + 2 o0l (e (@) - et ()

2 (D) ~ (DY D) M7 (%) = 5= (0)) — 20 (D) DI (TE7'(0%) - 757 (%))
2my (8) BB BB

- DEDITE (07) - 77 () €3
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(®)

i (8)
C?%_}B,(QZ) = ﬂ[@ {Ag_’B/(QZ) — A?*B’(Q2)} _ <D—03

ous) (D" (0*) - D"(0*)}

1 . 2m, L L
s | PR+ k0l Dl |8 (00 - 1T 0
+ %2 [0 + 27 0D (e (@) - et ()
312 P \/g P~ 8q 2
2 S —B B
5" (D) = (DFDEN MG~ (0%) - M= (0)}
2 / /
- S5 (DEDETE" (0%) - 747 (%)}
2 S B —B'
- s DYDITE (€)= 787 (@), €8

where (- - -) designate the transition baryonic matrix elements of given collective operators. The explicit expressions for the
quark densities A ,, By, Cp2» Do 2, Hoos Lo2, and T, can be found in Appendix A. Note that the corrections from flavor
SU(3) symmetry breaking are originated from two different sources: that from the effective chiral action and that from the

collective wave functions, which we denote them respectively as (G%g_) B,)(OP) and (G(XL_, B,)<Wf)

Gy (0%) = (G p (0M) ™™ + (G, (0) ) + (G (02)™ (34)

We decompose v » in the same manner

5,B—
% (0% = (LY (@)™ +(C2%) L(02) ) + (CAY (%)™, (35)

where the detailed expressions for the SU(3)-symmetric part and symmetry-breaking parts can be found in Appendix B.
Scrutinizing Eqgs. (B1)—(B6), we find isospin relations between different axial-vector transition form factors,

(B =8 = ~(E0 > E) = = (2 > B = - (2 - =)

(55— Ab) = (557 = AD) = (22 = AY)

(B = A7) = (&1 = A)
(5 = E) = (20— B) = V(5! — E) = Va(s! ~ )

(@~ E7) = (@) ~ )

(B = ) = ~(E0 = X)) = = ) = (5 — B = ~(E - 5) = (30 )

(B~ E) = —(E0 ~ BY) = (B~ B) = — (& — =)

(B = B) = ~(E > B9 = (817 = 3) = = (5 = BF) = (& > %)

= (T~ B = - (20— B = (B0 20)
v V2

(@~ B = ~(EF — ) = (@ — Z) = ~(= - Q) (36)

the SU(3) symmetric relations

(ZF = Af) = =28 - Ef) = ~(ZF - B) = V2(80 —» Af) = (@) - )
(B > ) = 2B 5 B = (B > ) = (@ - E), (37)

and the various sum rules as follows
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(£ ) =

(B - Q) + (B - Z) -

V2(Er" - E)

(2 2 =L@ - AN ¢ ﬁaﬁ ~ =)+~
+ 4\1/6(:§+ I \/_(:H — =)
(&% = A = @0 A - S & - )+ 2 (& o)
+ ?(Ef* N i?('—wﬂr 20)
(O > ) = —5 = (B0 = A) +3 (B = =) 2@
P 2@ - n -~ a, )

These relations indicate that not all form factors are
independent. As we will show soon, we will only have
two different form factors, from which all other form
factors can be easily obtained when flavor SU(3) symmetry
is imposed.

While there are no experimental information on the
axial-vector transition form factors of the singly heavy
baryons, their strong decay widths are experimentally
known. In particular, the Belle Collaboration has recently
reported those for the =} — A} + 7% and =it — Af 4 2°
decays [55]. Thus, we will also compute all possible strong
decay widths for the singly heavy baryons, using the
following formulas

L g M;
FB]/zﬁBl/zmn = gf_z ] (GA.B—>B’(0))2’
|¢I|3Mf
Ug, 81 0m, 1—2;zf_2_(c5 sop (0% (39)
where the pion momentum |g| is given by
a1 =337/ M3 = O+ 2) 3= (M3 =) (40

M;, M s are the initial and final baryon masses, respectively.
m,, represents the mass of the pion and f, stands for the
pion decay constant. The mass ratio M;/M; in Eq. (39)
arises from the recoil effect [41,56]. Since the velocities of
B; and By are the same to order O(1/mg) in effective
heavy quark theory, the recoil effects can be given by the
mass ratio.

V. RESULTS AND DISCUSSION

We now show the results for the axial-vector transition
form factors of the singly heavy baryons and discuss them.

|

We first explain how the model parameters are fixed. In the
¥QSM, four different parameters need to be determined:
the dynamical quark mass M, the cutoff mass A in the
regularization functions, the strange current quark mass m,
and the average of the up and down current quarks 7, as
mentioned in Sec. III. /7 is determined by reproducing the
physical value of the charged pion mass, m, = 140 MeV.
As explained in Refs. [50,57], The strange current quark
mass is usually fixed by the kaon mass, myx = 495 MeV
and obtained to be around my, = 150 MeV. However, we
use m, = 180 MeV, because it reproduces the mass spectra
of the baryon octet and decuplet [50,57] very well. This
value is larger than that in QCD [1] (mg = 93.41@?‘2 MeV).
The present value of mg should be taken to be an effective
one. We consider the linear mg corrections. Higher-order
corrections may be included as done in Ref. [58] within the
framework of the SU(3) Skyrme model. There is a caveat in
dealing with these corrections. Since the current quark
mass term in the effective chiral action give in Eq. (13) is
introduced such that the low-energy theorems are satisfied.
Note that this action is a model one. This means that the
m2-order term may be also included. However, there is no
theoretical constraint to determine its form. Thus, the
present scheme in dealing with the linear mg corrections
is a theoretically consistent. Moreover, as will be shown
soon, the effects of the explicit SU(3) symmetry breaking
are tiny. Thus, even though we take the value of mg in QCD,
the conclusion of the current work is not changed. The
cutoff mass A is fixed by the pion decay constant
[z =93 MeV. The dynamical quark mass M is regarded
as a free parameter in the yQSM. Nevertheless, we use
M = 420 MeV because one can produce various exper-
imental data such as the radius of the proton [59], the
magnetic dipole moments [60], and semileptonic decays of
hyperons [61,62]. Note that the values of all the parameters
are the same as in the previous works [28,33,34,51].
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Since we use the 1/N, and 1/m expansion as a guiding
principle, we have to maintain consistency in dealing with
its expansion within the theoretical framework. So, we can
ignore the mass difference in the momentum transfer. It
indicates that momentum transfer in Eq. (4) can be
approximated to be g ~ —Q?. The expressions for G
and C? @) contain the masses of the singly heavy baryons.
Keeping the 1/N, expansion in mind, we approximate M;
and M, by M, + m,. The baryon masses in the yQSM also
include the rotational 1/N, and m, corrections. If we turn
off all the corrections, the singly heavy baryon mass
becomes the classical N, — 1 soliton mass M plus the
charm quark mass. To be theoretically more consistent,
hence, we will take M + m_ instead of a antitriplet and
sextet baryon masses. In effect, the numerical results are
improved by considering M, + m,, in place of M5 and M
by around 10%. Similar approximations were performed in
the case of the baryon octet and decuplet [51,63,64].

Concerning the 1/m,, corrections, we need them only for
the removal of degeneracy in the baryon sextet, as done in
Ref. [17]. Since the charm quark mass is around 1.2 GeV,
one may consider the 1/m, corrections to other observ-
ables. Possible 1/m, corrections to the isospin mass
splittings of the singly heavy baryons were examined
[30], they are negligibly small. So, we ignore the 1/m,
corrections to the transition axial-vector form factors.

As shown in Egs. (36) and (37), we have only two
independent axial-vector transition form factors when the
flavor SU(3) symmetry is considered. We will present the
results for these two form factors. In left panel of Fig. 2, we
draw the results for the axial-vector transition form factors
for the X7 — A/ transition. All other form factors for the
axial-vector transitions By, — B} Jp are related to that for
the X — A transition. So, we take the X — A} tran-
sition form factor as a prototype one. The dashed curve
represents that in the flavor SU(3) symmetric case, while
the solid one depicts that with linear mg corrections. The
effects of SU(3) symmetry breaking are tiny. This can be
understood by examining Eqgs. (B1)-(B3). The prefactors in
Egs. (B2) and (B3) are much smaller than that in the
leading-order contribution given in Eq. (B1). In addition,
the first term in the bracket of Eq. (B1) is the most
dominant one. In the right panel of Fig. 2, we depict the
results for the axial-vector transition form factors from
S*T belonging to the baryon sextet with spin 3/2 to "
in the sextet with spin 1/2. Note that the expression for the
leading-order contribution to C% ,_ ., (Q?) is distinguished
from that for G4 z_ 5 (Q?) by the last term in Eq. (B4),
which is proportional to B5~% and B5~F. They provide
about 9% corrections to C5 ,_ . (0?). The effects of the
flavor SU(3) symmetry breaking turn out very small. Thus,
we will neglect them in the discussion of other observables
related to the axial-vector transition form factors.

It is of great interest to compare the Q” dependence of
the result for C?.zz**-&ﬁ(Qz) to that for Cg" A+_}p(Qz),

since both form factors describe the axial-vector transitions
from the spin-3/2 baryon to the spin-1/2 baryon. To
compare more closely, we normalize them by the corre-
sponding values of the form factors at Q%> = 0. As shown in
Fig. 3, the axial-vector form factor for the ™ — X1+
transition starts to fall off more fast than that for the A* —
p transition. It indicates that the mean square radius for the
XAt — BT transition is larger than that for the A* — p
one. We want to emphasize that the pion mean field for the
singly heavy baryons is different from that for the light
baryons. This makes main difference between the T+ —
T and AT — p transition form factors, as exhibited
in Fig. 3.

In Table I, we list the values of the G, 5+ ,+(0) and
C’;Zjﬁ_}z‘ﬂ (0) at 0? = 0. These values will be used for
determining the decay widths for the strong decays of the
singly heavy baryons. The axial-vector transition form
factor G,y+_;:(Q?) presented in Fig. 2 can be para-
metrized by the dipole-type parametrization

G4(0)

ST w

where M, is called the axial mass. We can parametrize
A 2 . .
C SErtoyit (Q ) in the same manner. The numerical results

for M 4 are given in the third row in Table I, which indicates
that the Q? dependence of the Z} — A} and T+ — T4
form factors are similar. The results for the mean square
radii are listed in the last row of Table L.

In Table II, we compare the current results for the strong
decay widths of the singly heavy baryons, of which the
experimental data are available. Thus, we consider the
strong decays of X., X%, and E!. The third column of
Table II are the experimental data taken from the PDG [1].
In the fourth, fifth, and sixth columns of Table II, we list the
experimental data taken from the FOCUS Collaboration
[65], the CLEO Collaboration [66], and the Belle
Collaboration [55,67,68], respectively. Though the current
results for the strong decay of X. seem overestimated,
compared with the PDG data [1], they are very close to the
CLEO II data [66]. On the other hand, the results for the X
decay are larger than the experimental data. Note that the X
baryon is a spin 3/2 one and has a larger decay width than
2. It reminds us of the strong decay of the A isobar. The
result for the A strong decay from the yQSM is also
deviated from the experimental data [69]. Since the A
isobar appears as a resonance from zN scattering, the pion-
loop corrections come into significant play. Similarly, they
may contribute to the X} decay. The results for the =
decays are in good agreement with the data. In Tables III
and IV, we compare the current results with those from
other works. We find that the results from the present work
are consistent with those from Refs. [44,45].
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FIG. 2. The axial-vector transition form factor G

AQ3)

®3) 2
AZESAL (Q ) (CS.Z?' S M

~0.40 | —— =0 MeV
—0.45 1 —— m, =180 MeV
0.0 0.2 0.4 0.6 0.8 1.0

Q?[CeV?)

(Qz)) for the transitions from the baryon sextet with spin-

1/2 (3/2) to the baryon antitriplet. In the left panel, the form factors for the X — A/ transition are drawn, whereas in the right panel,
those for the Zit* — X1 are depicted. The solid and dashed curves represent the total results with the effects of the flavor SU(3)
symmetry breaking and those in the SU(3) symmetric case, respectively.

VI. SUMMARY AND CONCLUSION

We investigated the axial-vector transition form factors of
the baryon sextet within the framework of the chiral quark-
soliton model. Assuming that the heavy-quark mass is
infinitely heavy, the N. — 1 light valence quarks govern
the quark dynamics inside a singly heavy baryon. In
contrast, the singly heavy quark is merely a static color
source, making singly heavy baryons the color singlet. The
presence of the N. — 1 valence quarks creates the pion mean
field, so that they are also influenced by it self-consistently.
The N, — 1 valence quarks also constrain the right hyper-
charge Y = (N, —1)/3 = 2/3, allowing the flavor SU(3)
representations such as the baryon antitriplet, baryon sextet,
and higher representations. Based on this framework, we
studied the axial-vector transitions from the baryon sextet

1.0 — Sttt
\ -—- At —p

0.81
S
T 0.6/
P
[S
T 0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

Q[GeV?]

FIG. 3. Comparison of O dependence of C% ;... ..(Q%) to
C? A+AP(Q2). The solid curve represents the result for

c4 (Q?), whereas the dashed one depicts Cf . (0°).

st ont

with spin 1/2 and 3/2 to the baryon sextet with spin 1 /2 and
antitriplet, considering the rotational 1/N, and linear m
corrections. We presented the results for the £ — Al and
Tt — T form factors. These are the first results for the
axial-vector transition form factors of the singly heavy
baryons. Those for all other decay channels are related
either by isospin symmetry or by flavor SU(3) symmetry.
We found that the effects of the flavor SU(3) symmetry
breaking were tiny. Thus, we neglected them to compute
other observables. We also obtained the corresponding axial
masses employing the dipole-type parametrizations for the
form factors. We derived the axial-transition mean square
radii. Using the values of the form factors at Q> = 0, we got
the decay rates for the strong decays of X, %, and E}. The
decay rates of X. and X} decays are overestimated in
comparison with the data but those of the Z} decays are
in good agreement with the data.
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TABLE 1. Numerical results for the axial-vector transition
constants G y+_+(0)(CA (0)), and the corresponding

. 53T
axial masses and mean square radii.

> AL TEAE o B
M, [GeV] 0.759 0.728
(r3) [fm?] 0.812 0.882

094028-10



AXIAL-VECTOR TRANSITION FORM FACTORS OF THE ...

PHYS. REV. D 106, 094028 (2022)

TABLE II. Numerical results for the strong decay widths in comparison with the experimental data.

r Experimental FOCUS CLEO II Belle experiment
Decay modes MeV) data [1] Collaboration [65] experiment [66] [55,67,68]
it s AL 4ot 2.80 1.8979% 2.057 94 23+£02403 1.84 £ 0.0470%
SEo A+ A 3.39 <4.6 e e 23+03+03
205 A 4 2.76 1.83%05 1.55703) 25402403 1.76 £ 0.0470%
Tt S A+t 210 14.7810:30 14.77 £ 0.257038
Tt - A+ a0 22.1 <17 17.2723434
=0 S AF 4 21.0 15.3704 1541 £041503)
Bt >E. 4+ 2.12 2.14£0.19 26+02+04
Y 2.30 235+0.22 e

TABLE III. Numerical results for the strong decay widths in comparison with those from various works.
Yan Huang Pirjol Tawfiq Ivanov
Decay modes I' MeV) etal [38] etal [39] Rosner [42] et al [40] et al [43] et al. [44]
Tt s A 4ot 2.80 25 1.32£0.04  2.025%)557 1.64 2.85+0.19
S A+ 3.39 e 32 1.32+£0.04 e 1.70 3.63 £0.27
20— Af 47 2.76 2.45.4.35 2.4 1.32+£0.04 19397434 1.57 2.65+0.19
T S AT + AT 21.0 e 25 20 e 12.84 21.99 +£0.87
s AL+ A° 22.1 25 20
05 Af 7 21.0 25 20 12.40 21.21 £0.81
Bt > E .+ 2.12 23+0.1 1.12 1.78 £ 0.33
B0 5B 41 2.30 23+0.1 1.16 2.11+0.29
APPENDIX A: COMPONENTS OF THE AB—»B’(QZ) VMp /d3 o(lallr)
e ——— r r
AXIAL-VECTOR TRANSITION FORM FACTORS 0 VEg + My Jo\1q

In this appendix, the expressions for the axial-vector
transition form factors in Eqgs. (32) and (33) will be given

explicitly

x [<NL- )iy () whalr)

SN ORAE)|. (A1)

TABLE IV. Numerical results for the strong decay widths in comparison with those from various works.

Chen Azizi Cheng Nagahiro Can
Decay modes [ (MeV)  Albertus et al. [45] et al [47]  etal [48] etal [41] et al [46] et al. [49]
it o AF 47t 2.80 2.41 +£0.07 £0.02 1.24 2.16 £0.85 427-433  1.65+£0.28+£0.30
T A+ A0 3.39 2.79 £ 0.08 & 0.02 1.40 216085 237 1.65 £ 0.28 £ 0.30
X AF 2.76 2.37 £0.07 £ 0.02 1.24 216085  1.970) . 1.65 +£0.28 £ 0.30
Tt S Al ot 21.0 17.52£0.74 £ 0.12 11.9 145593 30.3-31.6
Tt - AF + a0 22.1 17.31 £0.73 £0.12 12.1 15.270¢
0 s AF + 1 21.0 16.90 £ 0.71 £ 0.12 11.9 14.7108
st >EB. 47 2.12 1.84 £ 0.06 & 0.01 0.64 2410
20 5B 47 2.30 2.07 £0.07 £ 0.01 0.54 25107
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Do g2y = VM d3rj2<|q||r|>[<Nc—1>ZM PP (VIRYs ® o}y x o (F)

\/W nval Eval_En
+%NCZ¢Z<r>{mY2 ® a1 x Tho(r)- (R (B, )| (A1)
, 1
(@) = L [ @il |- S EE 0 (o @ 0 et
1
FINS VIR @ o), -r¢m<r><m|y°|n>7zz<En,Em>], (A12)
55 (Q?) = [ @ritatd v =03 ST g (Vaar, @ 011
e | Pt &t BB, 2@ ohtn
1
F NS BV  01)ilr) - On o) Rl ) (A13)
y Mp . 1
T8 Q) = ds”z“"”"){w””n;mm B VIRV, @ 01}, -2, (1)
FNSBUVIY © 01}, 1)l ) Rl )| (A14)
where the regularization functions are defined by
_En o du CuE
Ri(E,) = 32 |7 #w e, (AL5)
d E uEm_E —uF?
RalEn 2[/ L; eE Ee ’ (A16)
1 [o 1 o oo (1 —@)E, —aE,
_ auE; —(1-a)uE;
R4(E,, En,)—zﬂA duqﬁ(u)A dae=®En=(1=auE i (A17)

Ru(,. ) — SEM(ES) = sen(Ey)

NE—F) (A18)

Here, |val) and |n) represent the state of the valence and sea quarks with the corresponding eigenenergies E.,; and E,, of the
one-body Dirac Hamiltonian A(U), respectively.

APPENDIX B: DETAILED EXPRESSIONS FOR THE TRANSITION AXIAL-VECTOR FORM FACTORS

Having computed the transition matrix elements of the D functions in Egs. (32) and (33), we obtain the following results
respectively for GX(B_)B,(QZ) “m) and G B_,B,(Qz) °p) and G(X{L_)B,(Qz) (wf)

V2
_\/§T3 (TB—B (N2\ _ DHB—B (N2
AB—>B’(Q2) ym) = —\3/—5 2 { 2{ AB=B'(Q2) — AB=F (Q?)} — i{Dy~" (0 )11 D775 (0%)}
1
-2
_ {Cg*B%Qz)I—zcg*B’(QZ)}] | o
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V2

Vam, [ 22y

540

vi| e |{S e - e - e - T @)
-3
0

A B—»B (Qz) op)

2V/2
—2V/2T; «
LW v {,—j{cgﬂBKQ%—c%*B’(QZ)}—{J3*3’<Q2>—Jf*B’(QZ)}}
1
V3
7V2
—10V/2T}5
| s {HM’(QZ)—H@*B’(QZ)}], (B2)
9
—12V2

2
5T, |
2 , , {DB—B 2
Oha( @) =~ o] fz{z{Ag*B(Qz)—A%B(Q%}—’{ )
_3\/§
3

I

- DE*B’(QZ)}}

L4 1Gm 0% - C?*B/(Qz)}]

I
4
=T - (TYB—B' (N2 B—B' (N2
ﬁ)qw[ g {z{Ag*BKQz)—Ag*B’(QZ)}—’{D° o) -Prle )}}
_3\/§ :
0
42
—\ﬁT3 B—B' B—B' (2
2| |E@-C (Q)}} (B3)
-3
0

in the basis of [2* > AFEL S B S ERED 5 AL Q) - 59, and  respectively  for C‘; %_}B (Q?)sym),
SB—>B (QZ) op) and C (QZ) (wf)
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T
1 T , ; ; DB—>B' 2 _DB—>B’ 2
i@ =55 | 3{2{A§*B(Q2)—Aé“B(QZ)}—l{ R ”}
LACE7(07) - CEP (@) 1B (Q) - BZB*B’<Q2>}] | -
I I
AT,
2V2 T , , y y
Colw(Q)) =~ Sfl(’)"s {ﬂ . {’f—;{sgﬁB<Q2>—B§ﬂB<Q2>}—{I€*B<Q2>—I§ﬂB<Q2>}}
-3
1075
1475 B—B' BB ( N2 B—B' ()2 B—B' (N2
+v2 5 {C (0%) =3~ (0*)} = {T5~P (%) - T3P (0%)}
-3
14+/2T;
16v/2 , )
1;(/? {Hg*B(QZ)—Hg*B(Qz)}} (B5)
21
87,
4T : : i {DB=B' (02 — DB~B' ()2
Caplp (@) = 90%5{2\[ . {2{A€*B(Q2)—A§ﬁB(Q2)}—’{ e )11 e )}}
-3
8T} 61/6T5
STy | {CB~P(Q%) - CB~F(QY)} | 1575 | {BE~* (0% - BE#(0%)}
5 -2
S| s 2 5y/15 I
3 3V15
0
5 0 ) : [ DB—~B (02 _ DB~B' ()2
m*goqg[ﬂ X {Z{AE*B(QZ)—A?B(QZ)}—I{ g b <Q)}}
-1
0 0
Lsva| O | 1@ ey |0 {B€*B<Q2>—B§*B(Q2)}} 56
1 I, 1 I,
0 0

. . — —_  — —_ / 7 / /

in the basis of [} — X, B —» EL, Eit — I+ Q10 — EIF). The explicit expressions for A=, BB=B CB=B DE=B
/ / . .

I8-8 75-F and HP~F can be found in Appendix A. The matrix elements of the collective operators are given in

Appendix C in detail.

094028-15



JUNG-MIN SUH and HYUN-CHUL KIM PHYS. REV. D 106, 094028 (2022)

APPENDIX C: MATRIX ELEMENTS OF THE SU3) WIGNER D FUNCTION

In the following we list the results for the matrix elements of the relevant collective operators for the axial-vector
transition form factors of the singly heavy baryons in Tables V-XII.

TABLE V. The matrix elements of the single and double Wigner D function operators when a = 3.

B— B oA BB oA EoSE XoX EoE Q0o
wI0l15) S O
(B'|DS73|B) 0 0 0 0 el sl 0
(B \de%J 1B) W TwEl TaA wAl wals sl 0
(B|D DY |B) “»5 W wmA Al “BDL —mah 0
#D3D318) -4 0 % 0 =g gl 0
(B ‘db<3D8c 3h |B> _101—\/5 ﬁﬁn 1 ~1 75 _ﬁn _45L\/€T3 0

TABLE VI. The transition matrix elements of the single Wigner D function operators coming from the 15-plet component of the
baryon wave functions when a = 3.

B— B TE s AL 2l - &, i s AL B E, T X, =B Q0 - QY
1 F 1 _V3 1 __5_
(Bi|DSY|B) ey XE v s 15 5313 5313 0
<B/—\D(3§;)J3|B> 0 0 0 0 -wuls —omls 0
(B3 \damD Jh|B> 430 Ty Wi 23 1853 18\/% 3
1 1 1 1 5
(B |D |B 5) TS 6\/T6 T3 V30 BV BENE _9¢" 0
(B'DS; mB 5) 0 0 0 0 EEVHE gr 0
1 1 1 1 1
(B |dah3D3a Jy|Biz) NV EVIRE 230 ~nvils T 18\/‘ Ts 0

TABLE VII. The transition matrix elements of the single Wigner D function operators coming from the 24-plet
component of the baryon wave functions when a = 3.

B - B Eo X, i HL Q0 - QY
(ByIDY|B) 57T ~wils 0
(B IDJ5|B) EvAE 75 0
(BL|d43DY) 15 |B) by 2k ~wAls 0
(B'|DS|B3y) —W ~5va T 0
<B/‘D(3§z)f3\3ﬂ> 15\/_ 5713 0
(B| 3D 1| Bsg) ~Bvi ! R EE 0
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TABLE VIII. The matrix elements of the single and double Wigner D function operators when a = 4 + i5.

B — B T o B Yttt g
(B D |Bs) NG ~3
(B3| D)7, Bg) 0 0
<Bj|dbc3Dphfc|Bs> _4_\1/6 41_\/5
(B3| D DY |By) ~ %G B3
(Bs| Dy DY) Bg) ~ Ve B3
(B3 |dbc3D§§?D§;8b) |B1o) 201\/5 ey

TABLE IX. The transition matrix elements of the single Wigner D function operators coming from the 15-plet
component of the baryon wave functions when a = 4 + i5.

B— B > 2F Sitt > 5

1 1
< ‘D[)S |B> lsm _WE
< ‘D178J3|B> O 0

1 1
(B \dabsD 2 J|B) 12/10 125

1 1
< ‘D1)3|B > _m \/T_O
(B'|DJ5|B5s) 0 0

__1 .

(B \daszpan|Bls> W15 2/30

TABLE X. The matrix elements of the single and double Wigner D function operators when a = 4 — i5.

B - B B0 AF Q) - =F =0 5 A Q0 - 5f CREEED M Q0 =+
1 1 1 1 1 1
(B'|DY;|B) ~W NG G ~3i w3 e
(BID23 1) | " " | o o
8) % 1 — 1 — 1 1
(B'|dy DS, .| B) 83 ™3 v Wi 1073 1073
"1p® pB®) v3 0 —vo 0 _1_ 1
<B ‘Dgs DE*8|B> 401 ' 140 . 901\/5 %ol\/i
<B/‘D£§88)D.(38*)3 |B) - 410\/§ - 101\/6 20\/16 101\/5 907\/5 %ol\/i
8 8 L _1 —_1 L I _1
(B'|dys DY) DY, |B) 40 2013 2012 20 90V6 3076

TABLE XI. The transition matrix elements of the single Wigner D function operators coming from the 15-plet
component of the baryon wave functions when a = 4 — i5.

B—> B B0 5 AF QY — =F 20 5 AF Q0 - =F it o Xt Q0 - g+
(Br|DL|B) W o 5w G 5 Ve
(BrDE 8Jz|B> 0 0 0 0 W Wi
(B \de «Jv|B) #ﬁ v _43% 47\1/5 53 ﬁ
(B \D»3|B ) ~wA 0 2T 0 5 0

(B \D»ghwla 0 0 0 0 ST 0
(B'|dusDS) J,|Bys) ~%v3 0 v 0 TV 0
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TABLE XII. The transition matrix elements of the single Wigner D function operators coming from the 24-plet
component of the baryon wave functions when a = 4 — i5.
B - B it o Xt Q0 - g+
V2 1
(B |DLs |B) 5 W00
2V2 1
(B DL 3|B) " s
2V2 1
<B/2_4‘dub3DS’)a‘]b|B> 45 15V3
1 1
(B'|DL;|B3y) = T
2 1
(B'|DS 15| B3g) s =
(B|d3 DY, 7, B3;) 53 TS5
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