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In this article, we present the result for the QCD corrections to the decay of the Higgs boson into two
photons in the large-β0 limit of QCD, providing the first two terms in the heavy-top expansion. From our
results, one can easily read off the exact leading-nf QCD contributions in analytic form to all orders in
the strong coupling, αs, where nf is the number of massless quarks, and identify the leading renormalon
singularities. We give explicit results for the leading-nf coefficients at six and seven loops and use the
large-β0 result to speculate about the size of yet unknown (but small) higher-order contributions to the
QCD series.
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I. INTRODUCTION

The Higgs decay into two photons played a central role,
ten years ago, in the discovery of the Higgs boson at the
Large Hadron Collider (LHC). This channel remains
crucial for precision studies of Higgs properties at the
LHC as well as at future colliders. Given the expected
increase in precision on the experimental side, the theo-
retical calculation of Higgs decays within the Standard
Model (SM) must be performed at higher orders in
perturbation theory.
Because the photon is massless, this decay is a loop-

induced process at leading order (LO) within the SM. Its
amplitude can be decomposed into a bosonic contribution,
stemming from the W boson and fermionic contributions.
Here we are concerned with the fermionic contribution
arising from the top quark, which dominates over the
subleading b quark and τ-lepton fermion loops (contribu-
tions from even lighter fermions are irrelevant).
The decay amplitude has been known at LO for many

years [1–4]. The next-to-leading order (NLO) result was

first obtained as an expansion in τt ¼ m2
H

4m2
t
≈ 0.13, with mH

and mt being the Higgs and the top-quark masses,
respectively, but later the full mt dependence of the
NLO result was obtained [5–12]. The NNLO QCD con-
tribution, which is a three-loop calculation, was obtained
about ten years ago, again as an asymptotic expansion in

the top mass; numerical results with full top-quark mass
dependence were obtained only much more recently
[13–15]. The NNNLO (four-loop),Oðα3sÞ, corrections were
first partially computed in Ref. [16] and later completed in
Ref. [17]. Partial results for the N4LO contributions where
both photons couple to a massive top-quark loop can also
be found in Ref. [16].
In this work we present, for the first time, the result for

the QCD corrections in the large-β0 limit of QCD within
the heavy-top limit. From our results, the exact leading-nf
QCD contributions, i.e., coefficients of terms proportional
to αnsnn−1f , with nf being the number of active (massless)
quark flavors, can be directly read off in analytic form to all
orders in the strong coupling. In our calculation, we are
concerned with nonsinglet diagrams only, i.e., diagrams in
which the Higgs boson and the two photons in the final
state couple to the same top-quark loop. Contributions from
the singlet diagrams are subleading in the large-β0 power
counting, and do not contribute to the terms Oðαnsnn−1f Þ.1
In the large-β0 limit of QCD [18], one considers first the

limit of large nf, keeping αsnf ∼Oð1Þ. The fermionic
corrections to the gluon propagator acquire a special
character since they count as Oð1Þ, and a dressed gluon
propagator, known to all orders in αs, can be obtained.
When no external gluons are present, such as in the case of
this work, the leading-nf contributions to a given process
can be obtained, to all orders, by replacing the gluon
propagator in the calculation of the OðαsÞ QCD correction
by the Borel transform of the dressed gluon propagator. The
large-β0 limit consists then in the replacement of thePublished by the American Physical Society under the terms of
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1These contributions are not small in full QCD and we
comment on singlet-diagram contributions in Sec. III.
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fermionic contribution to the QCD β function, β0f,
proportional to nf, by the complete one-loop QCD
beta-function coefficient, β0. This procedure, known as
naive non-Abelianization [19,20], effectively resums a set
of non-Abelian graphs related to the running of the
coupling, thereby restoring the non-Abelian character of
the results.
Our calculation is performed with a modified version

of the publicly available package MATAD [21], which
is written in FORM [22]. Working with the Borel-
transformed dressed gluon propagator in the large-β0
limit amounts, essentially, to a perturbative calculation
with an analytically regularized gluon propagator. This
requires that the exponent of the squared momentum in
the gluon propagator be generalized to a real number
[18]. This was implemented through modifications of the
original source code of MATAD, since this generalization
is not supported by the standard version.
The importance of calculations in the large-β0 limit

should not be overstated. Albeit realistic, it is a toy model
for higher orders, but one that can lead to insights about the
physics of renormalons, nonperturbative corrections, and
even, in some cases, allow for estimates of unknown
higher-order contributions. The fact that the leading-nf
terms are exactly obtained can also be useful as an
independent cross-check of future calculations.
We present, in analytical form, the Borel transform of

the decay amplitude in the large-β0 limit. The amplitude
is computed as an expansion in the heavy-top limit and
we provide the first two terms of the corresponding series
in τt. From this result, it is simple to extract in analytical
form the exact leading-nf contributions to the QCD series
to all orders in αs, with nf being the number of massless
quarks. We reproduce the known leading-nf results up to
five loops, and give for the first time the explicit
expression at six and seven loops. The large-β0 result
allows for a discussion of the different renormalon
singularities, and we show that the leading ultraviolet
(UV) renormalon is very prominent, leading to a sign
alternating perturbative series (for not-so-large renormal-
ization scale choices). The large-β0 series reproduces the
approximate magnitude of the known QCD perturbative
coefficients, although with incorrect signs. This allows
for a speculation about the size of yet unknown con-
tributions to the QCD series.
This work is organized as follows. In Sec. II we set up

the theoretical framework and the notation. Our main
results are given in Sec. III together with the discussion
of some of their potential implications. In Sec. IV we
present our conclusions. We relegate to Appendix A a brief
description of the modifications to MATAD that are required
to work in the large-β0 limit, while in Appendix B we
present the full results for the leading-nf coefficients, up to
OðτtÞ, at six and seven loops.

II. THEORETICAL FRAMEWORK

The decay width of the process H → γγ starts at one-
loop order in the SM and can be written in terms of bosonic
and fermionic contributions as

ΓðH → γγÞ ¼ M3
H

64π
jAWðτWÞ þ

X
f

AfðτfÞj2; ð1Þ

where the first amplitude, AW , is due toW boson diagrams,
while Af stems from the decay mediated by charged

fermions with mass mf [23]. In the above expression, τf ¼
M2

H
4m2

f
and τW ¼ M2

H
4M2

W
, where mW is the W-boson mass. The

fermionic contributions are strongly dominated by the top-
quark loop, with small subleading components due to the
bottom quark and the tau lepton. Here, we focus exclu-
sively on the top-quark contribution, At. We work in the
heavy-top limit and compute At as an expansion around
τt → 0, keeping the first two terms of the corresponding
series. We expect the heavy-top limit (i.e., the leading term)
to be sufficient to estimate effects due to higher orders in
perturbation theory, since the first τt correction is of about
10%. We compute the first subleading term to cross-check
this assumption.
We write the amplitude At as an expansion in powers of

the strong coupling, αs, as

At ¼ Ât

X∞
n¼0

AðnÞ
t

�
αs
π

�
n
; ð2Þ

where

Ât ¼ Nc
2Q2

t α

3πv
; ð3Þ

with α being the fine-structure constant, Qt is the electro-
magnetic top charge, Nc ¼ 3 is the number of colors, and

v ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
GF

q
is the vacuum expectation value of the

Higgs field with the Fermi constant as input. With this
convention (which is the same as Ref. [16], for example),
the leading order contribution to the amplitude At, Eq. (2),
reads, after the expansion in τt,

Að0Þ
t ¼ 1þ 7

30
τt þ

2

21
τ2t þ

26

525
τ3t þ

512

17325
τ4t þ

1216

63063
τ5t

þOðτ6t Þ: ð4Þ

Using expansion by regions (see for example Ref. [24]),
this series can be obtained from the computation of the loop
integrals in the hard region, which leads to so-called
massive tadpole integrals. This remains true at higher
orders for nonsinglet diagrams.
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The NLO term due to the top loop is obtained through
the exchange of a virtual gluon between the internal top
propagators [23]. The topology of the main diagrams for
the NLO process is shown in Fig. 1. There are a total of 12
diagrams at the two-loop level, and the final result for the
amplitude up to corrections of OðτtÞ is

Að1Þ
t ¼ CF

�
−
3

4
þ τt

�
19

90
−

7

20
lμ

�
þOðτ2t Þ

�

¼ −1þ τt

�
38

135
−

7

15
lμ

�
þOðτ2t Þ ð5Þ

with CF ¼ ðN2
c − 1Þ=ð2NcÞ ¼ 4=3, lμ ≡ lnðμ2m2

t
Þ, and mt ≡

mtðμÞ is the MS top-quark mass. Here, we have reproduced
the NLO calculation using QGRAF [25] and MATAD [21],
since this forms the basis for the computation in the large-
β0 limit, as we discuss further below. Analytical expres-

sions for higher-order corrections, Að2Þ
t and Að3Þ

t , up to four
loops, can be found in Refs. [16,17].
We turn now to the setup of the large-β0 limit calculation.

In the large-β0 limit we deal with the perturbative series to
all orders in αs. As is well known, in QCD, series of this
type have coefficients that diverge factorially and the
perturbative series is, at best, asymptotic. In this context
it is convenient to work with the Borel transform of the
series, which suppresses the factorial divergence of the
coefficients and can have a finite radius of convergence. For
the perturbative expansion of a quantity R starting atOðαsÞ
(without any loss of generality),

R ∼
X∞
n¼0

rnαnþ1
s ; ð6Þ

we define its Borel transform in the following way [18]:

B½R�ðtÞ ¼
X∞
n¼0

rn
tn

n!
: ð7Þ

The Borel transform is the inverse Laplace transform of the
original series. The procedure can be inverted and a “true
value” of the asymptotic series can be assigned (in the
Borel sense) through the Laplace transform as

RðαsÞ ¼
Z

∞

0

dte−t=αsB½R�ðtÞ; ð8Þ

provided the integral exists. In the Borel t plane, singu-
larities known as renormalons appear. They arise from
infrared (IR) and UV regions in the loop subgraphs. The IR
renormalons are particularly important here, since they
appear on the right-hand side and obstruct the integration in
Eq. (8). Circumventing these singularities generates an
imaginary ambiguity in the Borel integral. This ambiguity
is related to nonperturbative terms from condensate
matrix elements in the operator product expansion. Here,
since the typical scale of the problem is quite high
compared with ΛQCD, these operator product expansion
corrections—and accordingly the imaginary ambiguities of
IR renormalons—are tiny and can, for all practical pur-
poses, be neglected.
Using the definition in Eq. (7), the dressed gluon

propagator with a four-momentum k obtained after resum-
ming the massless-quark bubble-loop corrections in Borel
space reads [18]

B½αsGμν�ðuÞ ¼
ð−iÞ
k2

�
gμν −

kμkν
k2

��
−
μ2

k2
e−C

�
u

þ ð−iÞξ kμkν
k4

; ð9Þ

where we introduced the variable u, defined as

u ¼ −β0;ft: ð10Þ

(We recall that β0f are the fermionic contributions to β0.) In
Eq. (9), μ2 is the renormalization scale and ξ is the gauge
parameter. The constant C sets the renormalization scheme:
in the MS scheme, C ¼ −5=3; whereas in the MS scheme,

FIG. 1. Sample of diagrams for the calculation of the leading-nf terms for the decay H → γγ. The internal dashed lines represent the
resummed gluon propagator, Eq. (9).
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for instance, C ¼ −5=3þ γE − ln 4π. Notice that, in the
definition of the transformation, Eq. (9), we multiplied the
gluon propagator by αs; thus, the lowest order term in the u
expansion corresponds already to the NLO QCD correc-
tion. In Eq. (9), the factor ð−μ2e−CÞu ensures scheme and
scale invariance of the Borel integral result, Eq. (8). We use
the following definition for the QCD β function and its
coefficients:

βðαsÞ ¼ β0α
2
s þ β1α

3
s þ � � � ¼ μ2

dαs
dμ2

; ð11Þ

with

β0 ¼ −
11CA

12π
þ nfTF

3π
; ð12Þ

where CA ¼ Nc ¼ 3, TF ¼ 1=2, and nf is the number of
massless-quark flavors. The second contribution on the
right-hand side of Eq. (12) is the fermionic contribu-
tion, β0;f ¼ nf=ð6πÞ.
Working in Landau gauge, with ξ ¼ 0, the Borel trans-

form of the dressed propagator is essentially the original

propagator with a modification in the exponent of the
denominator momentum, k2 → ðk2Þ1þu—which amounts
to working with an analytically regularized gluon
propagator. In our case, using Eq. (9) as the gluon
propagator in the NLO QCD calculation is sufficient to
generate the exact leading-nf terms to all orders in αs.
This is depicted in Fig. 1, where the main topologies
involved in the diagrammatic calculation are shown and
the dashed line represents the resummed, dressed, gluon
propagator. The calculation of the diagrams of Fig. 1
yields the main result of this paper. We implemented
this calculation in MATAD with suitable modifications to
the source code to account, essentially, for the new
gluon propagator. Some technical details of this imple-
mentation can be found in Appendix A. The source is
also publicly available on GitHub.2 In the next section
we discuss the final results.

III. RESULTS

The Borel transform of the amplitude At in the large-β0
limit, up to OðτtÞ, denoted B½At;large−β0 �, in closed form,
reads

B½At;large−β0 � ¼ Ât
3CF

4π

�
μ2

m2
t

�
u e5u=3ðu2 − 1ÞΓð1 − uÞΓð1þ uÞ3

ð1þ 2uÞΓð1þ 2uÞ

×

�
1þ τt

�
PðuÞ

90uð3þ 2uÞ þ
14ð1þ 2uÞΓð1 − 2uÞΓð1þ 2uÞ

15ðu2 − 1Þð2 − uÞuΓð1 − uÞ2Γð1þ uÞ2
��

þ Ât
3CF

4π

�
−

7

45

�
τt

��
μ2

m2
t

�
u

e5u=3
6ð1 − uÞΓðuÞΓð1 − 2uÞ

Γð3 − uÞ þ G̃0ðuÞ
u

�
; ð13Þ

where Ât is defined in Eq. (3) and PðuÞ ¼ 126þ 155uþ
180u2 þ 100u3 þ 9u4. The last line in Eq. (13) stems from
the relation between the MS and pole mass in the large-β0
limit [26,27]. Removing this line effectively converts the
mass scheme from the former to the latter. The function G̃0

is defined as a power series in u with coefficients gn=n!,
where the gn are obtained from the generating function

G0ðuÞ ¼ −
ð3þ 2uÞΓð4þ 2uÞ

3Γð1 − uÞΓð2þ uÞ2Γð3þ uÞ :

The expression in Eq. (13) exhibits the renormalon singu-
larities arising from UV and IR regions of loop subgraphs,
which are encoded in the Γ functions. In the leading term,
corresponding to an infinitely heavy-top quark, the UV
renormalons, which are located at negative integer values
of the variable u, are all double poles, with the sole

exception of the leading UV pole at u ¼ −1, which is
simple. This happens due to a partial cancellation with the
ðu2 − 1Þ=Γð1þ 2uÞ term. Note also that there is no
singularity at u ¼ −1=2 and the function is regular at this
point, as expected. The IR renormalons, on the other hand,
are all simple poles with the leading singularity at u ¼ 2
being a quartic IR sensitivity, connected with dimension
four corrections in the operator product expansion. Re-
garding the dominant renormalon singularities, another
observation is that the residue of the leading UV pole
and that of the leading IR pole are of the same order. Their
ratio being of order 1 implies that the UV renormalon,
being the closest to the origin, should take over rather
earlier and lead to a sign alternating series. This, however,
depends on the renormalization scale that is chosen: larger
values of μ enhance the IR poles and suppress the UV
contributions, which postpones the dominance of the UV
renormalon, reducing its residue, and consequently delays
the sign alternation. The structure of the term proportional
to τt is similar. The main difference here is the appearance
of a term without the prefactor μ2ue5u=3, which ensures

2The source files can be found in the following link: https://
github.com/g-neves/hgg-large-beta0/tree/master/c_hgagalargeb0/
hgagalargeb0.
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scheme and scale invariance of the Borel integral. This
happens because the last term in Eq. (13) is a consequence
of the renormalization scheme (and scale) dependence of
the quark mass. Finally, we note that the expression is
regular at u ¼ 0.
From the Taylor expansion of Eq. (13) one recovers the

perturbative expansion in αs in the large-β0 limit. Of
course, the leading term must correspond to the exact

NLO QCD result, and it does lead to Að1Þ
t of Eq. (5), as

expected. Then, further expanding in u and performing the
substitution u ¼ −β0;ft, one can reobtain the leading-nf
contributions, i.e., the coefficients of terms proportional to

αnsnn−1f , that we denote AðnÞ
t;nn−1f

of the exactly known QCD

corrections in perturbation theory up to OðτtÞ. At three and
four loops we get

Að2Þ
t;nf ¼ −CFTFnf

�
1

12
−
lμ

4
− τt

�
1213

4320
þ 29lμ

1080
þ 7l2

μ

120

��
;

ð14Þ

Að3Þ
t;n2f

¼ −CFT2
Fn

2
f

�
19

108
−
lμ

18
þ l2

μ

12

þ τt

�
−

8657

38880
þ 49ζ3

270
þ 121lμ

810
þ 29l2

μ

3240
þ 7l3

μ

540

��
;

ð15Þ

where ζi is the Riemann Zeta function evaluated at i and we

recall that lμ ≡ lnðμ2m2
t
Þ. These results are in agreement with

Refs. [14,16]. At five loops, we reproduce the result for the
leading-nf term in the heavy-top limit [16] and obtain for
the first time the leading-nf terms of theOðτtÞ correction as

Að4Þ
t;n3f

¼ −CFT3
Fn

3
f

�
487

972
−
ζ3
3
−

19

108
lμ þ

l2
μ

36
−
l3
μ

36

þ τt

�
−
2873063

8398080
þ 7π4

2592
−
89ζ3
2160

þ lμ

�
673

3240
−
7ζ3
45

�
−
121l2

μ

1620
−
29l3

μ

9720
−

7l4
μ

2160

��
:

ð16Þ

A new result of this work is the leading-nf terms to all
orders in perturbation theory. As an example, in the heavy-

top limit, the N5LO leading-nf coefficient, Að5Þ
t;n4f

, reads

Að5Þ
t;n4f

¼ −CFT4
Fn

4
f

�
9613

8748
−

π4

135
−
4ζ3
27

þ lμ

�
4ζ3
9

−
487

729

�

þ 19

162
l2
μ −

l3
μ

81
þ l4

μ

108

�
; ð17Þ

while the N6LO leading-nf coefficient, Að6Þ
t;n5f

, is

Að6Þ
t;n5f

¼−CFT5
Fn

5
f

�
307765

78732
−

π4

243
−
190

243
ζ3−

20

9
ζ5

þlμ

�
−
48065

26244
þ π4

81
þ 20

81
ζ3

�
þl2

μ

�
2435

4374
−
10

27
ζ3

�

−
95

1458
l3
μþ

5

972
l4
μ−

1

324
l5
μ

�
: ð18Þ

The corresponding OðτtÞ corrections are lengthy and are
given in Appendix B. The higher-order coefficients can be
easily generated from Eq. (13) following the procedure
outlined above.

(a) (b)

FIG. 2. (a) Perturbative series, Eq. (2), in the large-β0 limit for four different values of the renormalization scale μ, order by order. The
Borel sum of the series (see text) is shown as the horizontal dashed line. (b) Perturbative series as a function of the renormalization scale
up to N5LO [or Oðα5sÞ]. The scale variation range 50 GeV ≤ μ ≤ 350 GeV contains the interval mH=2 ≤ μ ≤ 2mt.
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Let us now discuss the series in the large-β0 limit, after
naive non-Abelianization, with the replacement β0f → β0.
This transformation preserves the leading-nf coefficients

AðnÞ
t;nn−1f

and generates approximate results for all subleading

powers of nf. The perturbative series thus obtained is, at
best, a good qualitative approximation to the full QCD
results. With this caveat in mind, we show in Fig. 2(a)
the perturbative series for four different choices of the
renormalization scale μ, order by order in perturbation
theory. The horizontal line is the Borel sum of the series,
given by the integral of Eq. (8).3 In Fig. 2(b) we display the
scale dependence of the result, order by order, varying
the renormalization scale μ in the logarithms lμ [see

Eqs. (14)–(18)] and in α
ðnf¼5Þ
s ðμÞ. The running of

α
ðnf¼5Þ
s ðμÞ is performed at one loop, for consistency with

the large-β0 limit, using as input α
ðnf¼5Þ
s ðmZÞ ¼ 0.1179

while for the top mass the value ofmtðmtÞ ¼ 163.643 GeV
[28] is kept fixed, since the MS quark-mass running is of
order 1=β0 itself, which would then generate 1=β20 terms not
included in the perturbative coefficients [29,30]. The
stabilization with respect to scale variations is clearly
observed when the order is increased, starting from
N4LO, or Oðα4sÞ, with the N5LO result being extremely
stable and in excellent agreement with the Borel sum.
Before comparing with the QCD calculation, an obser-

vation regarding the singlet diagrams is in order. In
Ref. [16], it is shown that with the scale choice μ ¼
mtðmtÞ (which resums the logarithms lμ) at the three-loop
level the singlet diagrams are approximately of the same
magnitude as the nonsinglet diagrams, while at a lower
scale, μ ¼ mH, the singlet contribution is significantly
enhanced and is approximately three times larger than
the nonsinglet contribution. It is argued that one might
expect the same to happen at four- and five-loop orders. We
have checked that this is generally the case at the four-loop
level for the singlet diagrams where both photons couple to
massless quarks, using the result from Ref. [17]. However,
here the singlet contribution is suppressed at μ ¼ mtðmtÞ,
before dominating around μ ≈ 270 GeV (due to the non-
singlet contribution becoming zero) and becoming relatively
smaller again at even higher scales. Thus, if the large-β0 limit
represents well quantitatively the nonsinglet diagrams in full
QCD, at higher values of μ, the difference between the result
inQCDand in largeβ0 should decrease.Below, the resultswe

discuss are for μ ¼ mtðmtÞ, which reduces the singlet
contributions.
After naive non-Abelianization, our result for At;large−β0

at the scale μ ¼ mtðmtÞ reads [as ≡ αsðmtðmtÞÞ=π]
At;large−β0

Ât

¼ 1þ 0.0342τt − ð1 − 0.0412τtÞas
þ ð0.6389 − 0.3153τtÞa2s
− ð7.755 − 0.0291τtÞa3s þ ð25.43 − 4.773τtÞa4s
− ð290.4 − 16.78τtÞa5s
þ ð2212: − 277.8τtÞa6s þ � � � : ð19Þ

This result shows that in the large-β0 limit the pattern
of sign alternation is already present, systematically, start-
ing at Oðα2sÞ. This is a consequence of the dominant
behavior of the leading UV singularity. (This pattern
disappears if even larger values of μ are used. For example,
for μ ¼ 280 GeV the coefficients have fixed signs, as can
be seen in Fig. 2(a) for the leading term in τt.) As expected,
we find that the subleading terms in τt are generally about
an order of magnitude smaller than the leading ones [the
Oðα2sÞ coefficient is an exception].
We can now compare our result for the leading term in τt

with results from Refs. [16,17]. In the same conventions,

and again for μ ¼ mtðmtÞ and as ¼ α
ðnf¼5Þ
s ðmtðmtÞÞ=π,

using mH ¼ 125.25 GeV, we find for the QCD result

At

Ât

¼ 1 − as − ð1.167þ ð1.020 − 1.440iÞsiÞa2s
þ ð6.669þ ð0.7716þ 16.49iÞsiÞa3s
− ð22.31þ c4Þa4s þ � � � : ð20Þ

At Oða4sÞ only the contributions where the photons couple
to a massive top-quark loop are known from Ref. [16] (we
have reexpressed the result of Ref. [16] in terms of

as ¼ α
ðnf¼5Þ
s =π) and the constant c4 has yet to be calcu-

lated. But these contributions do dominate the real part of
the Oðα3sÞ coefficient, as can be seen comparing the results
of Refs. [16,17]. The singlet contributions where the
photons couple to massless quarks at Oða2sÞ and Oða3sÞ
are indicated by “si”. The imaginary part in the singlet
contributions is required by unitarity. In the decay width,
however, the first contribution arising from an imaginary

part, namely, from ImðAð2Þ
t Þ, starts at Oðα4sÞ and can be

expected to be suppressed, since it competes with the real
parts from higher-order coefficients, which tend to be
significantly larger, as seen in the QCD result. We therefore
compare the real parts of the coefficients of Eqs. (19) and
(20). From these results we see that the magnitude of the
coefficients obtained in the large-β0 limit are not too far
from the magnitude of the known QCD coefficients, but the
sign is wrong in all cases. In QCD, the systematic sign

3The series, strictly speaking, is not Borel summable due to the
IR renormalons, which obstruct the integration. A prescription to
circumvent them must be chosen, which generates an imaginary
ambiguity which scales as e−p=αs (where p > 0), related to the
size of nonperturbative corrections. However, these contributions,
at the Higgs mass scale, are very small, which leads to only a tiny
ambiguity which is not visible in our plots and can be ignored
here.
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alternation is not yet established at order Oðα2sÞ although
the signs do alternate starting from Oðα3sÞ for the known
terms. This is an indication that the UV renormalon in QCD
should be less prominent than in the large-β0 limit, in
agreement with other processes where the large-β0 result is
known [30–32].
Based on the observation that the large-β0 result roughly

reproduces the size (but not the sign) of the QCD
contributions, we can speculate that the α5s nonsinglet
coefficient would have the same magnitude as the one
shown in Eq. (19). Given the important contribution of the
singlet diagrams, it is safer to attach a 100% uncertainty to
this result, which leads to the following estimate for the
Oða5sÞ contribution to At for μ ¼ mtðmtÞ:

Að5Þ
t ≈ 300� 300: ð21Þ

Using this value and the QCD series of Eq. (20), in the
decay width, this implies a correction of

ΓðH → γγÞjα5s − ΓðH → γγÞjα4s ≈ −0.00014 keV;

½μ ¼ mtðmtÞ�; ð22Þ
which is about as large as the contribution from the partial α4s
correction calculated in Ref. [16], which amounted to a mere
0.02‰ of the total decay width. (For this estimate we have
added the LOW contribution and top-mass corrections in the
one- and two-loop QCD results—see, e.g., the expressions
given in Ref. [14].) If significantly lower renormalization
scales are used one finds, for μ ¼ mH=2 for example,

ΓðH → γγÞjα5s − ΓðH → γγÞjα4s ≈ −0.00029 keV;

½μ ¼ mH=2�; ð23Þ
which is, at this scale, 2.5 times smaller than the (partial) α4s
correction. In all cases, we find that theOðα5sÞ correction is at
most as large as the Oðα4sÞ contribution, which means that
estimating the truncation error from the last included term is
safe. This clearly indicates that the QCD contributions are
under very good control here, with an uncertainty from the
truncation which is an order of magnitude smaller than the
uncertainty arising parametrically from the value of αs itself,
for example, andmuch smaller than the uncertainty frommH
which amounts to about 0.04 keV.

IV. CONCLUSIONS

In this work we presented the result for the QCD
corrections to H → γγ in the large-β0 limit, providing
the first two terms in the heavy-top expansion. The
analytical result was obtained with a modified version of
MATAD [21]. From the Borel-transformed amplitude, upon
reexpanding in the Borel variable, we can reconstruct the
perturbative series to all orders in αs in the large-β0 limit. In
particular, the exact analytical results for the leading-nf

contribution at each order can be extracted and, apart from
reproducing the known results, we have given explicit
expressions for the previously unknown contributions at six
and seven loops, in Eqs. (17) and (18). The higher-order
leading-nf coefficients can easily be extracted from the
analytical result for the Borel-transformed amplitude,
Eq. (13). These results can serve as a partial cross-check
for future calculations, should the full QCD corrections be
independently calculated by other groups.
Furthermore, the exact knowledge of the Borel transform

in the large-β0 limit allows for a study of the renormalon
singularities. We find the usual and expected towers of UV
and IR renormalons: the leading UV renormalon, located at
u ¼ −1 in the Borel plane, is the closest to the origin and
dominates the series at high orders, while the leading IR
renormalon is related to a quartic IR sensitivity, and appears
at u ¼ 2. In the large-β0 limit, the UV renormalon has a
somewhat large residue and it dominates the series for
values of the renormalization scale below 200 GeV or so.
The perturbative series has a systematic sign alternation
which is not observed in QCD. In QCD, the coefficients can
have different signs but no systematic alternation is
observed, which indicates a weaker UV renormalon, as
observed in other processes [30–32], and a more compli-
cated interplay between UV and IR contributions.
The perturbative series in the large-β0 limit has coef-

ficients of roughly the same order of magnitude as in full
QCD up to Oðα3sÞ, or even Oðα4sÞ if we compare with the
partial results of Ref. [16], although the signs of the
coefficients are opposite. Assuming this observation sur-
vives at even higher orders, we estimate the six-loop

coefficient to be Að5Þ
t ≈ 300� 300, for μ ¼ mtðmtÞ. This,

in turn, leads to a contribution to the decay width of at most
0.00015 keV, which is significantly below the parametric
uncertainty induced by mH and αs and much smaller than
the available estimates of the Oðα4sÞ contribution [16].
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APPENDIX A: MODIFICATIONS TO MATAD’s
SOURCE CODE

In this appendix we briefly describe the technical imple-
mentation in MATAD of the calculation of the diagrams of
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Fig. 1. The implementationof the large-β0 limit calculation in
MATAD requires some modifications to the source code. The
first modification deals with the Borel-transformed dressed
gluon propagator, where the variable u of Eq. (9), which is
not supported in the original package, must be included. This
basically generalizes the exponent of the k2 term in the
denominator of the gluon propagator to the real domain.
The second modification takes into account the inclusion of
the variable u into the two-loop tadpole integrals, where the
modified gluon propagator enters the calculation.
The first modification is to the gluon propagator to

account for Eq. (9). We arranged the diagrams such that the
gluon propagators always carried momentum p3, without
any external momenta. With this, the modification is rather
simple, and we only need to multiply the original propa-
gator by a new function that we call Denu, which accounts
for the factors of u in the modified propagator. In standard
FORM notation, this amounts to

id Dg(?x) = Dg(?x)*Denu(u);

In the next step, one identifies the powers in the quark
and gluon propagators and unifies the scalar integrals into a
single function with the relevant coefficients in order to
make contact with the analytic calculation of the relevant
two-loop integrals. As discussed previously, p3 was
reserved for the gluon propagator; the momenta p1 and
p2 were assigned to the top propagators. In the following
expression, s1m and s2m represent the quark propagators
with momentum p1 and p2, respectively. In FORM code, the
unification of the scalar integrals into a function with the
relevant coefficients reads

id s1m^a1?*s2m^a2?/p3.p3^a3? = f(a1,a2,a3);

After this, we simply exclude the scaleless integrals which
integrate to zero in dimensional regularization.
Sincewe are interested in the expansion in τt for nonsinglet

diagrams, we need to consider only the hard region of the
loop integrals. In this region the integrals become massive
tadpoles.We can then perform the corresponding scalar loop
integrals using the well-known formula

Z
dDkdDl

ð−k2 þm2Þa1ð−l2 þm2Þa2 ½−ðkþ lÞ2�a3
¼ ðiπD=2Þ2

×
Γða1 þ a3 þ ε − 2ÞΓða2 þ a3 þ ε − 2ÞΓð2 − ε − a3Þ

Γða1ÞΓða2ÞΓð2 − εÞ

×
Γða1 þ a2 þ a3 þ 2ε − 4Þ
Γða1 þ a2 þ 2a3 þ 2ε − 4Þ ðm

−2Þa1þa2þa3þ2ε−4:

ðA1Þ

The u variable is attached to the massless propagator;
i.e., in our case it appears together with the a3 variable.
We implement this with the following id statement:

id f(a1?,a2?,a3?)*Denu(u?) = eMu(u) * M^(2*(4–
a1-a2-a3))

* Gam(a1+a3-2,1,u)*Gam(a2+a3-2,1,u)*Gam(2-
a3,-1,-u)

* iGam(a1,0,0)*iGam(a2,0,0)*iGam(2,-1,0)
* Gam(a1+a2+a3-4,2,u)*iGam(a1+a2+2*a3-
4,2,2*u);

.sort

On the rhs of the equality sign, eMu is the function
containing the additional factors of the Borel-transformed
gluon propagator in Eq. (9), that is,

eMuðuÞ≡
�
−
μ2

m2
t
e−C

�
u
:

The functions Gam and iGam (iGam≡ 1=Gam) are the Γ
function and its inverse using the following notation:

Γðaþ bϵþ cuÞ≡ Gamða;b;cÞ; ðA2Þ

and analogously for the inverse of the Γ function.

APPENDIX B: LEADING TOP-MASS
CORRECTIONS IN THE

LARGE-β0 LIMIT

Here we provide the explicit results for the leading-nf
terms up to OðτtÞ at six and seven loops, which were
omitted in Eqs. (17) and (18) for the sake of brevity. The
complete expressions are given below:

Að5Þ
t;n4f

¼ −CFT4
Fn

4
f

�
9613

8748
−

π4

135
−
4ζ3
27

þ lμ

�
4ζ3
9

−
487

729

�

þ 19

162
l2
μ −

l3
μ

81
þ l4

μ

108

þ τt

�
−
70933639

62985600
þ 11567ζ3

29160
þ 847ζ5

1350
−

239π4

291600

þ lμ

�
177263

393660
−

7π4

2025
þ 58ζ3
1215

�

þ l2
μ

�
−

673

4860
þ 14ζ3

135

�
þ 121l3

μ

3645

þ 29l4
μ

29160
þ 7l5

μ

8100

��
; ðB1Þ
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Að6Þ
t;n5f

¼ −CFT5
Fn

5
f

�
307765

78732
−

π4

243
−
190

243
ζ3 −

20

9
ζ5 þ lμ

�
−
48065

26244
þ π4

81
þ 20

81
ζ3

�

þ l2
μ

�
2435

4374
−
10

27
ζ3

�
−

95

1458
l3
μ þ

5

972
l4
μ −

1

324
l5
μ

þ τt

�
−
4660780709

1360488960
þ 69647π4

6298560
þ 721π6

393660
þ 968539ζ3

1049760
−
5033ζ23
14580

−
1399ζ5
5832

þ lμ

�
885605

472392
þ 29π4

21870
−
484ζ3
729

−
28ζ5
27

�
þ l2

μ

�
−
177263

472392
þ 7π4

2430
−
29ζ3
729

�

þ l3
μ

�
673

8748
−
14ζ3
243

�
−
121l4

μ

8748
−

29l5
μ

87480
−

7l6
μ

29160

��
: ðB2Þ
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