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In this work, we study the lensing effect of the QCD critical point on hydrodynamic trajectories and
its consequences on the net-proton kurtosis κ4. Including critical behavior by means of the BEST
Collaboration equation of state (EoS), we first consider a scenario in equilibrium, then compare with
hydrodynamic 0þ 1D simulations with Bjorken expansion, including both shear and bulk viscous terms.
We find that, both in and out of equilibrium, the size and shape of the critical region directly affect if the
signal will survive through the dynamical evolution.
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I. INTRODUCTION

Understanding the phase structure of quantum chromo-
dynamic matter has been one of the major endeavors in
nuclear physics for the past several decades. While it is well
understood that a crossover transition from the quark gluon
plasma (QGP) into a hadron resonance gas exists at
vanishing baryon densities [1–5], it is conjectured that at
very large densities, a first-order phase transition should
appear [6]. In that case, a critical point would exist at the
boundary between the crossover and first-order phase
transitions. At the critical point, the transition would be
of second order.
Due to the fermion sign problem, it is not possible to

calculate the QCD equation of state directly at finite
baryon densities with lattice QCD simulations and thus,
locate the critical point [7,8]. Therefore, its existence and
location have not yet been confirmed. On the other hand, a
number of effective models that reproduce lattice QCD
results at low baryon densities predict a critical point at
large baryon chemical potentials [6,9–22]. The critical
point might be reachable within low-energy heavy-ion
collisions at accelerators such as the Relativistic Heavy-
Ion Collider (RHIC) as well as future facilities such as the
Facility for Antiproton and Ion Research (FAIR) [23].

At the moment, the primary signature of the critical point
is a peak in the kurtosis κ4 of measured net-proton
distributions [24,25]. From the theoretical point of view,
one defines the susceptibilities of baryon number as
χn ≡ ∂

nðp=T4Þ=∂ðμB=TÞn, where p is the QCD pressure.
It is possible to relate the kurtosis to the susceptibilities as
follows: κ4σ2 ¼ χ4=χ2, where σ2 is the variance of the net-
proton distribution. This relationship is not strictly exact,
since the measured kurtosis is for net protons, while
the theoretical quantity relates to the net-baryon number
[26–29]. Right at the critical point, one expects a divergence
in κ4, because it scales with the correlation length ξ as κ4 ∝
ξ7 [30]. The higher the order of the susceptibility, the larger
the power of ξ it scales with. For this reason, higher order
moments are the observables of choice for the detection of
the critical point, with the kurtosis being (currently) the best
compromise in terms of signal to noise ratio in experiments.
The qualitative features of the kurtosis κ4 have been

previously studied in the context of a mapping of critical
behavior in the 3D Ising model onto the QCD phase
diagram, both without [30] and with [31] the inclusion of
all subleading terms in the vicinity of the critical point. In
the latter case, it was shown that the specifics of the Ising-
to-QCD mapping have a strong influence on the resulting
shape of the critical region and in turn, on the height and
width of κ4 at freeze-out. The behavior of the net-baryon
kurtosis at finite density was also studied in other
approaches; see, e.g., [14,29,32,33].
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However, previous studies of the kurtosis focused on
equilibrium properties, whereas it is well-known that the
QGP is probed dynamically in heavy-ion collisions, flow-
ing like a relativistic viscous fluid [34–44]. In fact, some
studies suggest that the shear-viscosity-over-enthalpy ratio
ηT=w increases significantly at large baryon densities
[45–48] (although critical scaling for ηT=w appears to
be negligible [49]). Even more importantly, the bulk
viscosity ζ increases when the speed of sound c2s
approaches c2s → 0 (as it does at the critical point, where
this behavior is further affected by critical scaling [50]).
Thus, a peak in ζT=w at the critical point is expected [51],
which is also further enhanced due to criticality, as the bulk
viscosity itself scales with ζ ∝ ξ3 [49,51–53].
Recent studies have probed the applicability of hydro-

dynamics near the QCD critical point and potential
dynamical signatures of the critical point [49,51,53–60].
Critical points can deform ideal hydrodynamics trajecto-
ries, causing them to merge towards the critical point
[6,20,61–63]. This effect is known as critical lensing
[61,62,64]. However, it was found recently that far-from-
equilibrium effects at a critical point [51] or first-order
phase transition [65] can also dramatically alter the path
through the QCD phase diagram, a fact confirmed also by
later works [66,67]. Thus, it is not clear what interplay
exists between critical lensing and viscous effects.
Furthermore, a connection has not yet been made between
the size and shape of the critical region itself and potential
signatures of criticality. The question naturally arises: can
far-from-equilibrium hydrodynamics smear out any poten-
tial signs of the critical point?
Currently, a full, dynamical framework does not exist to

properly describe the evolution of a system in the vicinity
of the critical point. Realistically, one would require an
event-by-event analysis with 3þ 1D relativistic viscous
hydrodynamics with BSQ (baryon number, strangeness,
and electric charge) conserved charges and critical fluctua-
tions (see [59,68,69] for more details). While significant
efforts have been made in this direction [65,70–77], the
community is still a long way from reaching this milestone.
In the meantime, it is useful to obtain qualitative under-
standing from simplified models to guide experiments and
future theoretical studies, once dynamical models improve
over time.
In this work, we explore the lensing effect of the critical

point on evolution trajectories and its implications on the
kurtosis of net-proton number distributions. First, we do so
in an equilibrium scenario, by incorporating critical behav-
ior through the BEST Collaboration EoS [78]. Secondly,
we study the effect of out of equilibrium physics by means
of simple 0þ 1D hydrodynamic simulations with Bjorken
expansion, which include both shear and bulk viscosities
[51]. In both cases, we investigate how the nonuniversal
parameters of the Ising-to-QCD map of the BEST EoS,
which have been shown to determine the size and shape of

the critical region [31], also influence the lensing effect and
the resulting net-proton kurtosis.
We find that, in the cases where the critical region

extends predominantly in the temperature direction, critical
lensing is enhanced, via a clustering of evolution trajecto-
ries around the critical point, both in and out of equilibrium.
In contrast, when the critical region predominantly extends
in the μB direction, the effect is significantly weaker, and
very few hydrodynamic trajectories deviate towards the
critical point. In general, we find that both viscous effects
and the shape of the critical region are crucial to the
discussion of critical lensing. Due to the intriguing results
presented in this work, future plans are already underway to
explore these effects in higher dimensions and in a
framework that incorporates BSQ diffusion.

II. MODEL

A. Equation of state

In this work, we incorporate the effect of a critical point
primarily through the equation of state. We use the
procedure and the notation, developed in Ref. [78], for
constructing a family of EoS with a critical point. By
construction, these EoSs match lattice QCD results at
μB ¼ 0 up to orderOðμ4BÞ and contain a critical point in the
3D Ising model universality class.
The procedure is based on a parametrization of the

3D Ising model EoS in the vicinity of the critical point
[61,79–81] and a subsequent mapping of 3D Ising vari-
ables [reduced temperature r ¼ ðT − TcÞ=Tc and magnetic
field h] to QCD variables, temperature T, and baryon
chemical potential μB. We follow Ref. [78], which imple-
ments a linear map [82],

T − TC

TC
¼ wðrρ sin α1 þ h sin α2Þ;

μB − μBC
TC

¼ wð−rρ cos α1 − h cos α2Þ; ð1Þ

where ðTC; μBCÞ indicate the location of the critical
point, and ðα1; α2Þ are the angles between the horizontal
ðT ¼ constÞ lines, and the h ¼ 0 and r ¼ 0 Ising model
axes, respectively. Finally, w, ρ are scaling parameters,
with w determining the global scaling of both r and h, and
ρ determining the relative scaling between the two.
While such a linear map contains six parameters, it is

possible to reduce them to four, as was done in [78], by
imposing that the critical point lies on the chiral transition
line predicted by lattice QCD [83],

T ¼ T0 þ κ2T0

�
μB
T0

�
2

þOðμ4BÞ; ð2Þ

from which one can obtain TC and α1, given a value of μBC.
As in the original formulation, we use κ2 ¼ −0.0149 from
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Ref. [83]. This value is consistent with more recent results,
which also predict the next-to-leading order coefficient to
vanish within error bars [3,5].
Exact matching to lattice QCD at μB ¼ 0 is imposed by

requiring that the Taylor coefficients used in the expansion
of the pressure obey

T4cLATn ðTÞ ¼ T4cNon-Isingn ðTÞ þ T4
Cc

Ising
n ðTÞ; ð3Þ

where cLATn are lattice Taylor QCD coefficients [84,85].
Here, the cIsingn determine the contribution to the lattice
coefficients due to the presence of the critical point, and the
cNon-Isingn are defined as the contribution at vanishing μB
from a noncritical background field, namely as the differ-
ence between the lattice and Ising coefficients.
The full pressure is reconstructed as

PðT;μBÞ¼T4
X
n

cNon-Isingn ðTÞ
�
μB
T

�
n
þPQCD

crit ðT;μBÞ; ð4Þ

where PQCD
crit ðT; μBÞ is the critical pressure mapped onto

QCD from the 3D Ising model, which has been sym-
metrized about μB ¼ 0. The full EoS is then derived from
Eq. (4) via standard thermodynamics relations.
With this procedure, each realization of the equation of

state varies based on the nonuniversal mapping of Eq. (1),
thus on the parameters μBC; w; ρ, and Δα ¼ α2 − α1. For
additional details, we refer the reader to Ref. [78]. This
scheme was recently expanded to include the correct charge
conservation constraints for ultrarelativistic heavy-ion colli-
sions (see Ref. [63]). In this work, we assume μS ¼ μQ ¼ 0,
as in the original framework.
Finally, the correlation length is also calculated within

the BEST Collaboration code as in Ref. [63]. It follows
Widom’s scaling form in terms of Ising model variables as
shown in Refs. [61,86,87],

ξ2ðr;MÞ ¼ f2jMj−2ν=βgðxÞ; ð5Þ

where f is a constant with the dimension of length, which
we set to 1 fm, ν ¼ 0.63 is the correlation length critical
exponent in the 3D Ising model, gðxÞ is the scaling
function, and the scaling parameter is x ¼ jrj

jMj1=β. For further
details, we refer the reader to Ref. [63].

B. Hydrodynamic setup

The correct relativistic hydrodynamic description of a
system in the vicinity of a critical point is still an open
question. As far as critical fluctuations of the critical mode
are concerned, progress has been made in recent years
[72,74,88–93]. However, a clear consensus has not yet
emerged. We do not include fluctuations of the critical
mode in this work. We also do not include effects from
Kibble-Zurek scaling [94,95], which also may be relevant

in the critical region during the transition [96]. Nonetheless,
we remain sensitive to critical behavior both through
the equation of state and through the critical scaling of
the bulk viscosity.
The hydrodynamic setup of the current work is the same

as that of Ref. [51], where more details can be found. In
order to qualitatively investigate the influence of out of
equilibrium initial conditions and different EoS on hydro-
dynamic trajectories in the QCD phase diagram, as well as
on potential observables, we employ the highly symmetric
Bjorken flow picture. While the symmetry constraints
of Bjorken flow are no longer understood to be good
approximations at lower beam energies, they can certainly
provide valuable intuition on the response of the hydro-
dynamic system to different EoS.
The equations of motion used in this work are based on

the idea that the dissipative currents, such as the shear-
stress tensor πμν and bulk scalar Π, evolve according to
relaxation equations that describe how such quantities
deviate from their relativistic Navier-Stokes values, which
is required for any relativistic viscous hydrodynamic
equations to ensure causality and stability. There are three
different methods for relativistic viscous fluids: phenom-
enological Israel-Stewart [97], DNMR [98], and BDNK
[99–102]. In [51], phenomenological Israel-Stewart and
DNMR equations of motion were compared at a critical
point, and it was found that DNMR are more well-behaved
numerically when traversing the critical region with a
critically scaled bulk viscosity. Due to the fact that the
BDNK equations of motion are more recent, they have yet
to be checked at this time for a nonconformal EOS (see
[103]). Thus, we will only focus on DNMR equations of
motion for this study. Using hyperbolic coordinates with
the metric gμν ¼ diagð1;−1;−1;−τ2Þ, the underlying sym-
metries of Bjorken flow imply that all dynamical quantities
depend only on the proper time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
, and the

equations reduce to [98,104]

_ε ¼ −
1

τ
½εþ pþ Π − πηη� ð6Þ

τπ _π
η
η þ πηη ¼ 1

τ

�
4η

3
− πηηðδππ þ τππÞ þ λπΠΠ

�
ð7Þ

τΠ _Πþ Π ¼ −
1

τ

�
ζ þ δΠΠΠþ 2

3
λΠππ

η
η

�
ð8Þ

_n ¼ −
n
τ
: ð9Þ

We note that, in Bjorken flow, the particle diffusion
contribution vanishes and, thus, the baryon density equa-
tion can be readily solved to give nðτÞ ¼ n0ðτ0=τÞ, where
n0 and τ0 are the initial baryon density and time, respec-
tively. The definitions of second order transport coefficients
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and the functional dependence of shear viscosity on T and
μB can be found in [48,51].
We would like to emphasize the importance of

Eqs. (7), (8) in our analysis. Since the shear and bulk
viscous terms are dynamical quantities, they require their
own initial conditions, which allows us to explore many
different hydrodynamic trajectories through the phase dia-
gram. After initializing the system at different densities with
different initial conditions in the shear and bulk sectors, we
select hydrodynamic trajectories that traverse the critical
region. In practice, we select trajectories that pass along
lines parallel to the chiral transition line and shifted down-
wards by an amount ΔT, within a width of 3.5 MeV on
either side of the ideal hydrodynamic trajectory (i.e., the
isentropic trajectory) that passes through the critical point.
This means that the trajectories we select populate a total
width of 7 MeV, with the isentrope at the center. The initial
conditions of the system are constrained by the weak energy
condition [51,105] which allows us to initialize the system
with

�
πηη

εþ p
;

Π
εþ p

�
0

≡ fχ;Ωg0 ∈ ½−0.5; 0.5�:

In this paper, when we plot hydrodynamic trajectories,
we will use a specific color scheme depending on their
respective initial conditions, which was explained in Fig. 2
from [51]. Notice that the purple, blue, and turquoise lines
indicate initial conditions that are consistent with those
typically found from heavy-ion collisions where Π < 0 and
πηη > 0. In contrast, the red and orange lines indicate initial
conditions where Π > 0 and πηη < 0, which are atypical for
heavy-ion collisions. Additional details will be discussed in
Sec. VA.
The bulk viscosity used in this work is also the same as

that in Ref. [51]. The expression for the critically scaled
bulk viscosity is

�
ζT
w

�
CS

¼ ζT
w

�
1þ

�
ξ

ξ0

�
3
�
; ð10Þ

as has been used in previous works [49,51–53]. This
ensures finite bulk viscosity outside the critical region,
which is relevant for our work, as it influences the system’s
approach to the critical point. The shear viscosity
ηT=wðT; μBÞ that we employ, comes from the phenom-
enological approach in Ref. [48], where a hadron resonance
gas model at low T was matched to a functional form for
the QGP. This model ensures that the minimum of
ηT=wðT; μBÞ will pass through the critical point and then
follow along the first-order line.

III. OBSERVABLES

A. Kurtosis

The kurtosis of net-baryon number distributions is
currently, as mentioned, the most promising signature
for a potential experimental detection of the QCD critical
point in heavy-ion collisions. In practice, it can be directly
connected [26–28] to the fluctuations of the net-proton (Np)
distribution that appear on an event-by-event basis and can
be measured. Most experiments, including STAR [106],
HADES [107], and ALICE [108] measure the cumulants κn,
of the net-p distribution, which are defined as

mean M ¼ κ1 ¼ M1

variance σ2 ¼ κ2 ¼ M2

skewness S ¼ κ3 ¼ M3

kurtosis κ4 ¼ M4 − 3M2
2

;

where Mn is the nth moment of the distribution.
Note that these measurements are beholden to the

acceptance cuts of the detector. Significant amount of
effort has been made to increase the available rapidity
window, because this has been shown to push the kurtosis
measurements closer to the equilibrium values [109,110].
However, a careful reader might also realize that if all
particles were measured and used to calculate net-charge
fluctuations, the results would be trivial. For instance,
heavy-ion collisions must always have global strangeness
neutrality since strangeness is conserved and the initial ions
do not carry any net-S. Thus, for full acceptance net-S ¼ 0.
Similarly, for net-p and full acceptance, the only informa-
tion provided would be the number of baryons stopped in
the initial state and how that number fluctuates for a fixed
centrality class. Thus, there is an optimal window between
too small vs too large kinematic cuts that can yield the
actual fluctuations of a net charge that are sensitive to
long range correlations [111,112]. Other factors that might
impact the experimental measurements of fluctuations
include canonical ensemble effects [113–117], coordinate
vs momentum space [118,119], volume fluctuations
[120–123], interactions in the hadronic phase [124,125],
and nonequilibrium effects [126,127].
Keeping these caveats in mind, the cumulants defined

above can be related to the so-called susceptibilities of
baryon number:

χBn ¼ ∂
npðμB; TÞ=T4

∂ðμB=TÞn
ð11Þ

which can usually be calculated straightforwardly from
theory, as they require simple derivatives of the pressure. In
terms of the latter, the cumulants κn read

M ¼ χ1 ð12Þ
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σ2 ¼ χ2 ð13Þ

S ¼ χ3

χ3=22

ð14Þ

κ4 ¼
χ4
χ22

: ð15Þ

Since the susceptibilities are extensive variables that
depend—linearly, in a homogeneous system—on the vol-
ume of the system, it is common to define ratios whose
(leading) volume dependence is removed,

M
σ2

¼ χ1
χ2

ð16Þ

Sσ ¼ χ3
χ2

ð17Þ

Sσ3M−1 ¼ χ3
χ1

ð18Þ

κ4σ
2 ¼ χ4

χ2
: ð19Þ

Most commonly, experimental results are shown for the
ratios in Eqs. (16)–(19), because of the aforementioned
advantage of removing the leading volume dependence.
Hence, what is often referred to as “kurtosis,” e.g., in the
well-known plot from [106], is indeed κ4σ

2. Since net-
proton fluctuations are the most sensitive to criticality, we
consider only the baryon susceptibilities from now on and
assume that protons are a good proxy for net baryons. If one
is specifically interested in the interplay between all three
conserved charges, better proxies could be used [128].
However, in our current setup, we cannot distinguish
between protons and neutrons and, therefore, leave this
issue for a later work.
When comparing net-particle fluctuations from theory

and experiment with the aim of studying bulk thermody-
namic properties of the system, it is customary to focus on
central collisions, because they contain the largest number
of participants, and are then more likely to be close to
equilibrium.
It is now well-understood in the hydrodynamic commu-

nity that even central collisions in large systems initially
begin far from equilibrium [129–133]. While in idealized
systems (0þ 1D Bjoerken flow with only shear viscosity)
with a trivial EoS (ε ¼ 3p) it appears that universal
attractors appear [54,134–164], the use of a nontrivial
EoS and the inclusion of bulk viscosity significantly
complicate the picture [51,138,165].
In fact, near the QCD critical point, there may not be

enough time for a universal attractor to be reached [51], also
because the hydrodynamic phase appears to be significantly
shorter at lower beam energies [166]. This means that some

memory of the initial conditions is retained by the system
until the final stages, and far from equilibrium effects will be
crucial for understanding the influence of initial conditions
on kurtosis measurements.
Finally, an additional complication is the discrepancy

between the temperature and chemical potential at which
hadrons are formed (i.e., the critical temperature and
chemical potential fTC; μBCg) and the temperature and
chemical potential fTFO; μB;FOg at which chemical freeze-
out occurs. The chemical freeze-out is the stage in the
evolution of the system at which inelastic collisions
between hadrons cease, and particle multiplicities can
usually be well-described by a hadron resonance gas.
However, it is likely that fTFO; μB;FOg is not significantly
below fTC; μBCg because the hadron resonance gas pro-
duces many short-lived, heavy resonances that quickly
push the system into chemical equilibrium [167–176]. In
order to take this uncertainty into account, we will consider
three different scenarios in which ΔT ¼ TC − TFO ¼
1; 3; 5 MeV.

B. Critical lensing

An interesting question regarding the effect of a critical
point in the QCD phase diagram is to what extent it can
affect hydrodynamic evolution trajectories, as this would
have direct implications for measured quantities. If the
influence of a critical point is strong enough, hydrodynamic
trajectories can be modified substantially, both in and out of
equilibrium. In general, what happens (see, e.g., Ref. [78])
is that the critical point attracts such trajectories, causing
their clustering in its vicinity.
In Fig. 1, we show a schematic comparison between

trajectories with a weak or no critical point effect (left)
and others where the effect is pronounced (right). In the
latter case, the trajectories accumulate around the critical
region. In ideal hydrodynamics simulations, one would
anticipate that the system is then much more likely to pass
through the critical region when this effect is stronger. In
this work, we will connect the strength of this effect to the
size and shape of the critical region and later explore to
what extent it survives in the case of out of equilibrium
viscous hydrodynamic simulations with various initial
conditions.
One can try and quantify how much the hydrodynamic

trajectories are deformed by the presence of the critical
point by deriving s=n with respect to T or μB. The total
derivative of s=n reads

dðs=nÞ ¼ 1

n

�
∂s
∂T

dTþ ∂s
∂μB

dμB

�
−

s
n2

�
∂n
∂T

dTþ ∂n
∂μB

dμB

�
;

ð20Þ

from which one can easily see that
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�
∂μB

∂ðs=nÞ
�				

T
¼ n

∂s
∂μB

j
T
− s

n χ2
; ð21Þ

and

�
∂T

∂ðs=nÞ
�				

μB

¼ n
∂s
∂T jμB − s

n
∂n
∂T jμB

: ð22Þ

Near the critical point along the crossover (h ¼ 0), the
critical pressure can be written as

Pcrit ¼ Arβδþβ; ð23Þ

where A is a constant, and h ∼ rβδ [80]. The scaling of
the pressure as r → 0 can be used to estimate how each
thermodynamic quantity behaves at the critical point
(details in Appendix A). Both s and n scale with rβ,
whereas the second-order derivatives diverge as 1=rβδ−β.
Substituting each term in Eqs. (21) and (22) with its full
expression in terms of EoS parameters and r yields

�
∂μB

∂ðs=nÞ
�				

T
∼ r;

�
∂T

∂ðs=nÞ
�				

μB

∼ r; ð24Þ

and we can conclude that the separation in T and μB
between isentropes goes to zero when the system exhibits
criticality. Given the same set of initial conditions, there
will be a larger density of trajectories in the critical circular
region of Fig. 1 (right) when compared to the noncritical
one (left). This is precisely the lensing effect we discuss in
this work, which we have also observed in Ref. [51].

IV. RESULTS: EQUILIBRIUM

A. Kurtosis and speed of sound

In this section, we will investigate how different
realizations of the BEST Collaboration equation of state
(i.e., different parameters in the Ising-to-QCD map) will
influence the kurtosis and the critical lensing effect.
Because of the numerous complications in studying the
physics of heavy-ion collisions in the vicinity of the critical
point, it is crucial to understand the interplay between the
features of the equation of state in the critical region, the
evolution trajectories of hydrodynamic simulations, and
observables such as net-proton fluctuations. A particularly
important role is played by the speed of sound, which is
expected to vanish at the critical point. Although the
scaling behavior of how c2s → 0 is known, subleading
contributions might have an important role and thus,
modify the speed of sound over a sizeable portion of
the system evolution. Relativistic hydrodynamics is quite
sensitive to this change in c2s when the trajectory goes
through the critical region, due to the connection between
c2s and ζT=w [51].
In Fig. 2, we show the kurtosis across the fT; μBg plane

for different parameters sets of the EoS. We fix in all cases:
(i) TC ¼ 138 MeV
(ii) μBC ¼ 420 MeV
(iii) α1 ¼ 4.6°
(iv) α2 ¼ 94.6°

and consider all possible combinations of w ¼ 0.5, 1.0, 2.0
and ρ ¼ 0.5, 1.0, 2.0. The same parameters were studied in
Ref. [31] (Fig. 2) and were chosen to produce varying
critical regions that extend across the transition line (i.e.,
across the μB direction of the phase diagram),
perpendicular to the transition line (i.e., across the T
direction of the phase diagram), or a combination of both.
Following Ref. [31], we use the magnitude of χB4 to
categorize the size and shape of the critical region. The

FIG. 1. Schematic visualization of critical lensing, through a comparison of isentropic trajectories with (right) and without (left)
criticality. Both circular regions are centered around the same value and are the same size. It can be shown (see main text) that the
spacing between curves, ðΔT;ΔμBÞ, is smaller in the critical case. This leads to a larger density of trajectories crossing through the same
region, given the same set of initial conditions.
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region where the critical contribution to χB4 is sizeable; i.e.,
the critical region is shown in white (large and positive) or
black (large and negative). The gray regions indicate a
negligible critical contribution, where the effect of the
critical point is absent. Some of us in Ref. [31] described
the connection between the size of the critical region and
the parameters w and ρ. We found its extent in the
temperature direction, at constant μB to be Δcrit

T ∼ w−3=7,
and in the chemical potential direction, along the transition
line Δcrit

μB ∼ ρw1=7.

The concept of critical region arises when considering
where, around the critical point, its influence can reach.
For example, using the common separation of the free
energy in a critical and a regular parts f ¼ freg þ fcrit, one
could define the critical region as where freg ∼ fcrit,
meaning the critical effects are as large as the regular,
underlining physics. However, similar considerations
could be made for different observables, and different
critical regions would be found. Alternatively, one can
relate the critical region to the ability to extract particular
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FIG. 2. Top three rows: contour plots of the fourth baryon number susceptibility χB4 , with isentropic trajectories (solid red, green and
blue lines) crossing the critical point. In all cases, we have TC ¼ 138 MeV, μBC ¼ 420 MeV, α1 ¼ 4.6°, α2 − α1 ¼ 90°. From top to
bottom, left to right, we have w ¼ 0.5, 1.0, 2.0, and ρ ¼ 0.5, 1.0, 2.0. The QCD transition line is represented by a solid orange line,
while the critical point is represented by dots with the same color scheme as the isentropes. In the black regions χB4 < 0, in the white
regions χB4 > 0, and in the gray regions χB4 ≃ 0. Bottom row: speed of sound along the three isentropes in each column, with the same
color scheme.
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critical exponents or where scaling functions are rigor-
ously applicable [177–180]. In the case of this work, we
found it more meaningful to adopt the aforementioned
convention for the size and shape of the critical region.
This is because of its connection to experimental observ-
ables as discussed in Sec. III A.
In Fig. 2, we also show the isentropic trajectory that

passes through the critical point, in either red, green, or
blue. Isentropic trajectories are characterized by having a
constant entropy-to-baryon-number ratio s=n, which is a
conserved quantity in ideal hydrodynamics. If a collision
could be well-described without viscous hydrodynamics,
then the initial condition would only be a point in the
fT; μBg plane, after which the system would expand and
cool along the specific isentropic trajectory defined by the
initial condition.
Near the critical point along the crossover, we can use the

scaling behavior of the critical contribution to the pressure
Pcrit ∼ rβδþβ and the map between Ising and QCD variables
to determine that the separation between isentropes along
the μB direction scales with the EoS parameters w and ρ as
(detailed derivation shown in Appendix B)

dðs=nÞ
dμB

∼
1

ðwρÞr ; ð25Þ

Since dðs=nÞ=dμB diverges with 1=r as r → 0 with an
overall factor directly proportional to ðwρÞ−1, we expect
EoS generated from smaller w and ρ values to display a
more dramatic lensing effect.
By comparing our choice of parameters with the shape

of the isentropic trajectory, we can confirm our predictions
for the strength of the lensing effect. We find that critical

regions that extend farther along the T direction (corre-
sponding to smaller w and ρ) generally have a more
pronounced kink near the critical point. This is not the
case when the critical region extends mostly along the μB
direction (larger w and ρ). We plot all these isentropic
trajectories together in Fig. 3, where the effect is made even
more evident. This shows that the critical lensing effect is
not only affected by the size of the critical region, but also
by its shape. This is because, in ideal hydrodynamics, it is
the speed of sound that determines the evolution of the
system.
In the bottom row of Fig. 2, we show the speed of sound

c2s along the different isentropes for fixed ρ, while varying
w. In all cases, it is apparent that larger values of w lead to
narrower dips in c2s . The value of ρ seems to affect the low-
T region (below the critical point) only. This is in line with
the fact that, as observed, the extent of the critical region in
the temperature direction is Δcrit

T ∼ w−3=7, thus independent
of ρ.
To better visualize the critical lensing effect, in Fig. 4, we

plot different isentropic trajectories at fixed intervals of
s=nB, for the same parameter choices we previously
showed in Fig. 2.
A picture consistent with that of Fig. 2 emerges, in which

the cases where the trajectories are more deformed coincide
with those where they are also more evidently amassed, i.e.,
smaller values of w and ρ.
An interesting point that can be seen from the figures is

that the critical lensing effect exists both on the first-order
and crossover sides of the critical point. We will see in
Sec. VA that this is still the case when including out of
equilibrium effects. Though other works have investigated
critical lensing in equilibrium, they mostly have done so in
the case of first-order phase transitions [6,61,62,64]. In
Ref. [61], the lensing effect is shown for trajectories that
start both on the crossover side and first-order side, but in
the end, almost always pass through either the critical point
or first-order side of the transition region (see, e.g., Fig. 4 in
that paper). The authors of Ref. [62] study the effects of
turning on or off the critical point, while using a single
realization of the model of Ref. [61]. We aim at gaining a
comprehensive picture by considering a large number of
trajectories also on the crossover side. In fact, we find that,
depending on the parametrization, the effect may be more
pronounced on the crossover side (e.g., top-left panel
of Fig. 4).
Here, we also differ from previous works by giving a

quantitative thermodynamic argument for why this phe-
nomenon applies for any dynamical system in which the
EoS is physically relevant and the evolved densities take
the system through the critical region (as was discussed in
Sec. III B).

FIG. 3. The isentropes from all EoS’s in Fig. 2, on a single plot.
The solid, dotted, dashed lines correspond to w ¼ 0.5, 1.0, 2.0,
respectively. The black, green, magenta lines correspond to
ρ ¼ 0.5, 1.0, 2.0, respectively.
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V. RESULTS: OUT OF EQUILIBRIUM

A. Critical lensing

In Sec. III B, we discussed the critical lensing effect in
equilibrium. The natural question is whether this effect
can survive when the system is potentially far from
equilibrium. At large μB, the QGP evolution is influenced
by multiple transport coefficients such as shear and
bulk viscosity, as well as by conserved charge (BSQ)
diffusion. Currently, the far from equilibrium initial
conditions at the beam energy scan are not known.
Thus, it is hard to know how much guidance one can
receive from equilibrium trajectories. For this reason, in
this section, we explore the possibility of an out of
equilibrium critical lensing effect.
All our hydrodynamic simulations use the same

ηT=wðT; μBÞ, the only variability coming from the choice
of equation of state, which in turn affects the bulk viscosity.
The effect of the equation of state on ζT=w is twofold:

(1) A minimum in c2s appears at the critical point1

(see Fig. 2), which in turn generates a peak in ζT=w;
(2) The bulk viscosity scales with ξ3 near the critical

point, which further enhances ζT=w; see Eq. (10).
Because of these two separate contributions, one antici-
pates a large enhancement in ζT=w near the critical point.
We show in Fig. 5 the bulk viscosity along the critical
isentrope, for the three parameter choices in Fig. 6. Exactly
at the critical point, universality forces the peaks to be
identical. However, farther away from it, subleading con-
tributions are such that a slightly larger ζT=w is realized
when ρ is smaller, i.e., when the critical region extends
more along the T direction.

FIG. 4. Same as the top three rows of Fig. 2, with additional isentropes corresponding to s=nB ¼ ð23.1; 21.2; 19.5; 18.0; 16.7;
15.6; 14.7; 14.0Þ (purple solid lines). The isentropes crossing the critical point are shown in the same color scheme as in Fig. 2.

1At the time of finishing this paper, an orthogonal study on
out of equilibrium c2s at a critical point in holography was
released [181].
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Next, we consider three of the parameter choices shown
in Figs. 2, 4, namely w ¼ 0.5 with ρ ¼ 0.5, 1, 2 (top row in
both figures). This is because, as we saw, the largest effect
is given by the direction in which the critical region
extends. This way, we can study three cases where some
lensing is observed, but the cardinal orientation of the
critical region varies from T to μB.
In these three cases, we are able to investigate out of

equilibrium effects with our simple hydrodynamic model.
As discussed in Sec. II B, we run the simulations with a
variety of initial conditions, in order to find trajectories that
cross through a certain freeze-out window. As defined in
Sec. II B, this window corresponds to 3.5 MeV on either
side of the critical isentrope, measured on a line parallel to
the QCD transition line, and shifted downwards by ΔT ¼
1; 3; 5 MeV in order to account for some uncertainty in the
freeze-out temperature, as mentioned earlier.
Our initial conditions consist of an initial energy density,

baryon density, shear stress, and bulk pressure, i.e.
fε; nB; πηη;Πg0. The equation of state maps trajectories
in fε; nBg to trajectories in fT; μBg. We initialize the
baryon density nB with values ranging between
nB0

¼ ½0.4; 1.0� fm−3, with steps of 0.01 fm−3, and the
energy density is kept at ε0 ¼ 1.5 GeV=fm−3. We initialize
the dimensionless quantity πηη=ðεþ pÞ with values ranging
between πηη=ðεþ pÞ ¼ ½−0.5; 0.5� with steps of 0.2.
Similarly, we initialize the dimensionless quantity Π=ðεþ
pÞ with values ranging between Π=ðεþ pÞ ¼ ½−0.5; 0.5�
with steps of 0.2. Combining all choices independently, we
have a multidimensional grid of 61 × 6 × 6 × 1 ¼ 2196
initial conditions for each equation of state. These initial
conditions are chosen such that they allow us to scan the
entire fT; μBg plane available within the limitations of the
BEST EoS (the BEST EoS can become acausal/thermo-
dynamically unstable beyond μB ≳ 600 MeV, due to the
limited number of susceptibilities χBn available from lattice
simulations).

We show our hydrodynamic trajectories in Fig. 6, for the
three values of ρ (top to bottom), and the three values ofΔT
(left to right). The freeze-out line is shown as a dashed
curve shifted downwards by ΔT from the transition line,
and the freeze-out window is denoted by two solid lines
perpendicular to the freeze-out line. Only trajectories that
pass through such freeze-out window for a specific ΔT
are shown.
Notably, from Fig. 6, it seems evident that the value of ρ

is much more important than that ofΔT. When ρ is smaller,
a significantly larger number of trajectories pass within the
freeze-out window, regardless of the definition of freeze-
out temperature. Note we also explore the possibility of a
freeze-out window that sits directly between the critical
point in Appendix C, and this effects remains robust.
Comparing with Fig. 4, we find a consistent picture. The
same effect seen in equilibrium survives even when far-
from equilibrium initial conditions are used: essentially, we
are observing something we can call dynamical critical
lensing.
This dynamical critical lensing provides an exciting

possibility. Even though heavy-ion collisions may initially
be far from equilibrium, given a critical point with a critical
region as we have just described, an attractor may exist that
pushes their evolution trajectories towards the critical point.
It would be extremely interesting to explore this effect in
more realistic hydrodynamic simulations, in 2þ 1D or
3þ 1D, since higher dimensions would allow for the
incorporation of BSQ diffusion, flow effects, and the
rapidity dependence of baryon density.
There is, of course, the possibility that the scenario

realized in nature is the opposite, namely that the critical
region extends mostly along the μB direction. In such a
case, very few trajectories would converge towards the
critical point, making its detection much more challenging.
We have checked the qualitative features we just discussed
on many more parameter choices than we could present and
can confirm the general trend that critical lensing is
enhanced when the critical region extends along the
temperature direction.

B. Deviations from isentropes and entropy production

We saw in the last section that the hydrodynamic
trajectories never seem to converge to the isentropic ones.
One might ask why that is. What would happen if the initial
conditions were chosen at equilibrium? The trajectories
would not match the isentropes even in this case, because
the QGP (and thus our setup) has nonvanishing shear and
bulk viscosities, so that the magnitude of the shear stress
tensor and bulk pressure grow over time; i.e., entropy is
produced. The evolution trajectories would resemble the
isentropes only if the initial conditions were chosen at
equilibrium, and the viscosities vanished (i.e., ideal hydro-
dynamics in equilibrium). Moreover, because we do know
that ηT=w may grow further at large μB, and that the bulk

FIG. 5. ζT=w along isentropes that pass through the critical
point for the three EoS shown in Fig. 6.
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viscosity is sensitive to critical scaling, it is all more
important to employ relativistic viscous hydrodynamic
simulations.
When viscosity is included within a hydrodynamic

framework, entropy is no longer conserved, but rather it
is produced. The amount of entropy production is depen-
dent on how far from equilibrium the fluid is throughout its
evolution. In heavy-ion collisions, it is often assumed that
entropy production is small because both ηT=w and ζT=w
are small. However, in short-lived systems that may begin
far from equilibrium, that might not be the case.
Additionally, it is not guaranteed that ηT=w and ζT=w
are small also at large chemical potential. One should then
consider the possibility that a large amount of entropy is
produced.
Calculating the amount of entropy production in hydro-

dynamic simulations is quite challenging, because it
receives contributions from both thermal entropy and out

of equilibrium entropy. In our setup, we cannot estimate the
out of equilibrium entropy and can only calculate the
thermal entropy from the equation of state. This means that
our results can demonstrate that thermal entropy is pro-
duced, but additional contributions from out of equilibrium
entropy might exist, which we are unable to track. We
should emphasize that the semi-positive-definiteness of the
entropy change applies to the total entropy; thus, it is
possible that this change is negative when the thermal
entropy alone is considered.
With this caveat in mind, we show in Fig. 7 the thermal

contribution to the ratio s=nB, for the same paramemetri-
zations of the equation of state shown in Fig. 6, along the
trajectories obtained with ΔT ¼ 1 MeV. We find that an
enormous amount of entropy is produced from early times
until freeze-out, which explains the substantial difference
between equilibrium and out of equilibrium trajectories we
have previously observed.

FIG. 6. Hydrodynamic trajectories for three different EoS with fixed w ¼ 0.5 and ρ ¼ f0.5; 1.0; 2.0g (top to bottom). Each column
shows trajectories that pass within �3.5 MeV plane from the critical isentrope, measured on a line parallel to the transition line, and
shifted downwards by ΔT ¼ f1; 3; 5g MeV (left to right). An extremely large number of initial conditions were run for each EoS, and
only the trajectories that pass through our freeze-out window are shown.
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We also observe that, for τ ≲ 2 fm, some trajectories
move downwards, which implies a negative change in
thermal entropy. This is not necessarily an issue, because—
as already mentioned—the semi-positive-definiteness of
entropy applies to the total entropy. However, it is also
possible that some trajectories do violate certain causality
conditions (see Refs. [132,133,161]). At this time, we have
only checked the weak energy [51,105] condition, which is
not as stringent as the nonlinear causality constraints.
Another possibility it that, in these regimes, the system
exhibits nonhydrodynamic behavior such as cavitation
[182–184]. Should that be the case, it is possible to extend
the model to account for these effects in a way that
guarantees stability [185,186]. However, this is beyond
the scope of this work.
The trajectories that experience this behavior are shown

in red and orange colors, which indicate initial conditions
with Π > 0 and πηη < 0, atypical for heavy-ion collisions.
However, you do achieve Π > 0 in heavy-ion collision
simulations when you match a conformal initial condition
to the nonconformal hydrodynamic simulations due to the
mismatch in EoS [162]. In contrast, the purple, blue, and
turquoise lines correspond to values typically found in
heavy-ion collisions.
Previous attempts have been made to compare lines of

s=nB from heavy-ion collisions (from ideal hydrodynam-
ics) to neutron star mergers [187]. Our findings suggest that
very large deviations should be anticipated due to entropy
production. Thus, one truly requires a solid understanding
of the dissipative effects at large densities in order to make a
comparison between these two systems. Moreover, because
we cannot take into account BSQ diffusion effects in our
framework, we anticipate even larger deviations from
isentropes would occur when such effects are incorporated
in full 3þ 1 relativistic viscous hydrodynamic simulations.

C. Out of equilibrium effects on kurtosis

Early works argued that, besides the peak in the net-
baryon number kurtosis, a dip was to be expected at
larger collision energies, as a sign of the QCD critical

point [30,188]. However, not all effective models predict-
ing a critical point exhibit such a dip (see, e.g., [14,20],
where χ4 monotonically increases approaching the critical
point). Furthermore, it was recently discovered that, when
including subleading effects due to the mapping between
Ising model and QCD phase diagram (not considered in
the earlier works), such a dip appears not to be a robust
feature of the dependence of the kurtosis on the collision
energy [31].
We have seen that nonequilibrium effects play a signifi-

cant role in the evolution of the system, and in this section,
we will investigate how these effects influence the kurtosis,
by looking at all different trajectories that fall within our
previously defined freeze-out windows. In Fig. 8, we show
χ4 as a function of μB.
We consider the same three EoS, and the same trajectories

shown in Fig. 6, with the same layout: w ¼ 0.5 always,
ρ ¼ 0.5, 1, 2 (top to bottom), ΔT ¼ 1; 3; 5 MeV (left to
right). We highlight the freeze-out windows with solid,
colored lines, and the point where the isentrope intersects
the freeze-out line with a colored dot. Below each of these
plots, we show the histogram of the outcomes of χ4 from all
the trajectories. The resulting measured χ4 would be a
convolution of such histograms. Though not extremely
apparent, a couple of trends can be observed from these
plots. As we already knew, the total number of entries
decreases when ρ increases, due to the reduced lensing
effect on the trajectories. On the other hand, when increas-
ing ΔT, the peakedness of the distribution decreases,
because having a later freeze-out allows for selecting
trajectories that span a larger set of chemical potentials.
Overall, the resulting χ4 is predominantly positive, which is
encouraging in view of actual measurements, which, like in
our simplified setup, will be forced to effectively “integrate”
over a range of chemical potentials, due to the finite width of
rapidity bins in the analysis.
In Fig. 9, we show an “averaged” χ4, obtained by

integrating over the probability distributions shown in
Fig. 8. We show this for the same ρ, w, ΔT combinations
as previously shown. The value of the isentrope that passes
exactly through the critical point is shown in X whereas the

FIG. 7. Thermal entropy over baryon number (s=nB) for the same hydrodynamic trajectories shown in the left column of Fig. 6
(w ¼ 0.5 fixed and ρ ¼ f0.5; 1.0; 2.0g, ΔT ¼ 1 MeV).

TRAVIS DORE et al. PHYS. REV. D 106, 094024 (2022)

094024-12



average χ4 over all trajectories at that ΔT is shown in the
filled in colored circle. In addition, one can find one
standard deviation away from the average χ4 with the
lines. We generally find that, indeed, small ρ and w lead to
a large, positive χ4. In contrast, increasing ρ significantly
suppresses χ4. For larger separations between the hadro-
nization and freeze-out temperatures ΔT, χ4 is somewhat
suppressed, but this effect is significantly smaller than that
of the choice of ρ, w. We have also checked effects of the
freeze-out window choice on the χ4. Even with a larger
window, we still see the same effect with preferences for
trajectories to hit low and high points in the χ4. In fact, if
the window includes both the peak and dip, the effect of
trajectories being pulled towards the max or min value of
χ4 is even more robust. Obviously, though, an extremely
large window will allow for more fluctuations in χ4
as well.

FIG. 9. Average χ4 across all hydrodynamic trajectories shown
in Fig. 8 for various temperatures differences, ΔT, between the
hadronization and freeze-out temperatures.

FIG. 8. Fourth baryon susceptibility as a function of the chemical potential for the same parametrizations of the equation of state as in
Fig. 6, with fixed w ¼ 0.5 and ρ ¼ f0.5; 1.0; 2.0g (top to bottom), and ΔT ¼ f1; 3; 5g MeV (left to right). The dot on each line is where
the isentrope intersects the freeze-out line, and the vertical line signal the freeze-out window. Below each plot is the histogram for the
values of χ4 obtained from out of equilibrium trajectories.
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One complication that can arise from a larger window is
capturing both the peak and dip of χ4 symmetrically. In this
case, it is possible for the average χ4 seen by the
trajectories to go to zero. In line with this, what is
interesting to note, is that for small ρ and w the deviation
between the equilibrium χ4 (along the isentrope) versus the
average χ4 is larger. This is not surprising because small ρ
and w also experience more out of equilibrium critical
lensing effects. Thus, this suppression of average χ4 is a
consequence of critical lensing. However, for these smaller
freeze-out windows, even with the out of equilibrium
smearing of the average χ4 for small ρ and w the central
values remain consistently larger than w ¼ 0.5, ρ ¼ 1.0. If
we then look at 1 standard deviation away from the central
value it is clear that there is a skewed towards larger values
of χ4 but there is some change of extremely small values
(or negative values) as well. Already for w ¼ 0.5, ρ ¼ 1.0
the critical lensing effect is small enough that there is
almost no difference between the equilibrium value of χ4
and the out of equilibrium average χ4, even when one
considers 1 standard deviation from the mean. In contrast,
for w ¼ 0.5, ρ ¼ 0.5, there is a large standard deviation
which is a consequence of the rapid change in χ4 in the
freeze-out window.
It is worth mentioning a caveat in comparing this

averaged χ4 to what is actually measured in experiment.
In this work, we have access to each individual “event” and
are therefore able to select on the specific trajectories that
pass through a given freeze-out window. In an experiment,
this is not possible. Instead, the experimentally measured
freeze-out temperature and chemical potential are extracted
for a given beam energy over a large ensemble of events.
Thus, subtle difference exist due the simplicity of our toy
model. However, even with these differences, works such
as this one and Ref. [51] clearly indicate a nontrivial
relation between the initial state and final freeze-out. In
fact, recent studies show that these far from equilibrium
effects may be enhanced for increased chemical potential
[189]. Motivated by these results, we will directly connect
to experimental data using realistic 2þ 1 and 3þ 1
relativistic hydrodynamic viscous models in future work.

VI. CONCLUSIONS

In this work, we explored the effect of different para-
metrizations of the BEST Collaboration equation of state,
which affect the shape and size of the critical region around
the QCD critical point, on the net-baryon number kurtosis,
and on critical lensing. We found that the direction along
which the critical region extends is also a relevant factor,
besides its size. The lensing effect was observed both in
equilibrium, as well as in out of equilibrium simulations. In
both cases, critical regions that further extend along the T
direction were shown to induce the largest critical lensing
effect, even when the system was initialized far from
equilibrium.

Because of this, many more evolution trajectories passed
through the vicinity of the critical point, which would make
its detection more likely in an experimental setting.
While in ideal hydrodynamics entropy is conserved,

meaning that isentropes serve as good proxies for the
hydrodynamic trajectories through the QCD phase dia-
gram, the presence of viscosity induces a generous entropy
production, which makes isentropes a poor guide for
realistic scenarios. This was found to be the case regardless
of the equation of state used. As confirmation, we showed
clear evidence for the large thermal production of entropy
during the whole system’s evolution. Additionally, ours is
likely a conservative estimate, considering that we could
not estimate the contribution from out of equilibrium
entropy production, and that additional effects (e.g.,
BSQ diffusion) are expected to play a role, especially in
higher dimensions.
Finally, we investigated the spread in the kurtosis at

freeze-out, using our hydrodynamic trajectories with differ-
ent equations of state, taking into account the uncertainty
on the freeze-out temperature. We found that the critical
lensing induces a nontrivial distribution in χ4 at freeze-out,
which becomes more evident, the closer the freeze-out
point is from the transition line.
This is quite a nontrivial effect, because it would have a

significant impact on the experimentally measured kurtosis.
In addition, a critical region extending along the T

direction produces much larger fluctuations in χ4, such
that large positive or large negative values of χ4 are possible
at freeze-out (this is due to the sharpness in the peak of χ4
and nonmonotonic behavior at μB > μBC). Critical regions
that extend further along the T direction, which produce a
stronger lensing effect, were also previously found to be
preferred by lattice results at μB ¼ 0 [190]. In contrast, for a
critical region extending further along the μB direction, χ4 is
significantly smaller and less likely to present a clear signal.
However, even with large fluctuations for critical regions
along the T axis, the average χ4 ends up being large and
clearly positive, whereas it is clear that critical regions along
the μB direction have orders of magnitude smaller average
χ4. We find that the difference between the hadronization
temperature and freeze-out temperature plays a smaller role
than the difference in the EoS themselves.
To our knowledge, this is the first study wherein different

type of critical regions were compared, while coupling to
full viscous hydrodynamics. Certainly, a number of effects
remain to be explored. The most obvious next step is to
move to higher-dimensions in the equations of motion, i.e.,
with 1þ 1D [77] or 3þ 1D setups [74,75,191]. Already at
1þ 1D, diffusion can be considered, which is expected to
be suppressed at the critical point [67]. Furthermore, a
nontrivial coupling between BSQ conserved currents exists
[192], and diffusion currents also couple to shear and
bulk viscosity at the level of the equations of motion
[98,193,194]. It remains to be seen whether these effects
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are even further enhanced in more realistic simulations. At
this point, we are still quite far from studies that can make
direct comparisons to experimental data, because this
would require a freeze-out procedure that conserves
BSQ charges followed by hadronic transport [195,196].
Thus, we cannot comment, e.g., on the effects of kinematic
cuts at this time. However, it has been shown that the anti-
proton-to-proton ratio p̄=p may be sensitive to deforma-
tions in the trajectories [62]. It is unclear how strong out of
equilibrium effects at freeze-out would change this, since
these corrections may affect this ratio. Finally, memory
effects may play a significant role in these types of
simulations [96], which would be interesting to study in
a future work.
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APPENDIX A: CRITICAL SCALING
OF THERMODYNAMIC VARIABLES

We can rearrange the map between Ising and QCD
variables to write

hðT; μBÞ ¼
tanðα1ÞðμB − μBCÞ þ ðT − TCÞ

TCwðsinðα2Þ − cosðα2Þ tanðα1ÞÞ
ðA1Þ

rðT; μBÞ ¼
tanðα2ÞðμB − μBCÞ þ ðT − TCÞ
ρwTCðsinðα1Þ − cosðα1Þ tanðα2ÞÞ

; ðA2Þ

and define the differential operations,

∂T ¼ hT∂h þ rT∂r ðA3Þ

∂μB ¼ hμB∂h þ rμB∂r; ðA4Þ

where the subscripts correspond to partial derivatives
(e.g., hT ¼ ∂h

∂T jμB) and

∂h ∼
r1−βδ

βδ
∂r: ðA5Þ

We obtain the critical scaling of different thermodynamic
variables by applying the operations in Eqs. (A3) and (A4)
to the pressure as defined in Eq. (23),

s ∼ ∂TPcrit ¼ S0
rβ

TCwðsinðα2Þ − cosðα2Þ tanðα1ÞÞ

þ S1
rβδþβ−1

TCρwðsinðα1Þ − cosðα1Þ tanðα2ÞÞ
ðA6Þ

nB∼∂μBP
crit¼N0

tanðα1Þrβ
TCwðsinðα2Þ−cosðα2Þtanðα1ÞÞ

þN1

tanðα2Þrβδþβ−1

TCρwðsinðα1Þ−cosðα1Þ tanðα2ÞÞ
; ðA7Þ

where Si and Ni are constants which depend only on β
and δ. The expressions for second-order derivatives are
significantly longer and are shown below only up to leading
order in r,

�
∂s
∂T

�
μB

∼ ð∂TÞ2Pcrit

∼
1

rβδ−βT2
Cwðsinðα2Þ − cosðα2Þ tanðα1ÞÞ2

; ðA8Þ

χB2 ∼ ð∂μBÞ2Pcrit ∼
sin2ðα1Þ csc2 ðα1 − α2Þ

rβδ−βT2
Cw

2
; ðA9Þ

�
∂s
∂μB

�
T
¼

�
∂nB
∂T

�
μB

∼ ∂T∂μBP
crit

∼
sin ð2α1Þ csc2 ðα1 − α2Þ

rβδ−βT2
Cw

2
: ðA10Þ

We obtain the scaling behavior of the T and μB separation
between isentropes by substituting the full expression for
each quantity into Eqs. (21) and (22), resulting in Eq. (24).
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APPENDIX B: SCALING OF THE SEPARATION BETWEEN ISENTROPES
AS A FUNCTION OF EQUATION OF STATE PARAMETERS

At the crossover line, T is a function of μB, as specified by Eq. (2), so Eq. (21) becomes

dðs=nÞ
dμB

¼ 1

n

�
∂s
∂T

∂T
∂μB

þ ∂s
∂μB

�
−

s
n2

�
∂n
∂T

∂T
∂μB

þ ∂n
∂μB

�
: ðB1Þ

Near the critical point, we can write

dðs=nÞ
dμB

∼ ð∂μBPcritÞ−1
�
∂TPcrit ∂T

∂μB
þ ∂μB∂TP

crit

�
−

∂TPcrit

ð∂μBPcritÞ2
�
∂T∂μBP

crit ∂T
∂μB

þ ∂μB∂μBP
crit

�
; ðB2Þ

and by using the operations defined in Eqs. (A3), (A4), obtain the behavior of dðs=nÞ=dμB along the crossover line, near the
critical point, as a function of the Ising variable r and the EoS input parameters,

dðs=nÞ
dμB

∼
ðβδ − 1Þð2βδκ2μB cosðα2Þrβδ þ βδT0 sinðα2Þrβδ − 2κ2μBρr cosðα1Þ − ρrT0 sinðα1ÞÞ

T0TCwðρr sinðα1Þ − βδ sinðα2ÞrβδÞ2
: ðB3Þ

Using both the approximation for the exact values of the 3D Ising exponents, β ¼ 1=3, δ ¼ 5, and the mean-field values
β ¼ 1=2, δ ¼ 3, the leading terms are the same up to an overall constant A�,

dðs=nÞ
dμB

∼ A� cscðα1Þð2κ2μB cotðα1Þ þ T0Þ
wρrT0TC

þ… ðB4Þ

APPENDIX C: SHIFTING
THE FREEZE-OUT WINDOW

For completeness, in this section, we include results for a
shifted freeze-out window. In this case, instead of centering
the freeze-out window on the isentrope, we hold the central
μB fixed at 420 MeV and just vary ΔT alone. We include
results for ΔT ∈ f1; 3; 5g MeV in Fig. 10 and results for
ΔT ¼ 0 in Fig. 11 for all three different EoS that were
previously shown in Fig. 6. Due to the shifted freeze-out
window, the limitations of our EoS range begin to have a
larger affect. Although, we can still obtain a number of
reasonable trajectories.
Because the trajectories bend back towards μB → 0 after

the phase transition (at least initially), a shifted freeze-out
window underneath the critical point implies that the
trajectories do not, generally, pass across the critical point
(unless ΔT ≲ 1 MeV is quite small). Rather, these trajec-
tories pass across the first-order phase transition line and
then bend back towards smaller μB, passing underneath the

critical point at the freeze-out window. Thus, qualitatively,
they are different types of trajectories than what we
previously saw. Despite this subtle difference, the results
are still consistent with Fig. 6 in that critical regions that are
stretched across the T axis experience the most critical
lensing.
One can also check how the average χ4 values have

changed in the shifted case in comparison to the main
portion of the text. We show these results in Fig. 12. The
averages no longer are near their isentropic values, and the
average values have fallen orders of magnitude in com-
parison to Fig. 9. One should also note that caution should
be used in interpreting the results for the isentropic χ4 value
for ΔT ¼ 0 since exactly at the critical point, this value
should diverge and must be regulated in the EoS table.
Additionally, the isentrope that passes exactly through the
critical point typically no longer passes through the shifted
freeze-out window, therefore, it is not comparing the same
point in the phase diagram.
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FIG. 11. Same as Fig. 10, but for ΔT ¼ 0.

FIG. 10. Hydrodynamic trajectories for three different EoS with fixed w ¼ 0.5 and ρ ¼ f0.5; 1.0; 2.0g (top to bottom). Each column
shows trajectories that pass within �3.5 MeV plane from μB ¼ 420 MeV, measured on a line parallel to the transition line, and shifted
downwards by ΔT ¼ f1; 3; 5g MeV (left to right). An extremely large number of initial conditions were run for each EoS, and only the
trajectories that pass through our freeze-out window are shown.
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