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Z boson radiative decays to a P-wave quarkonium
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In this work, we study the radiative decay of a Z boson to a P-wave quarkonium H in association with a
photon, where H can be y;, hg with Q = ¢, band J = 0, 1, 2. The helicity amplitudes and the unpolarized
decay widths are evaluated up to QCD next-to-next-to-leading order (NNLO) within the framework of
nonrelativistic QCD (NRQCD). For the first time, we check the NRQCD factorization for i, exclusive
production at two-loop order. The leading logarithms (LL) of m%/ m2Q in the leading-twist short-distance

coefficients, which may potentially ruin the perturbative convergence, are resummed to all orders of a, by
employing the light-cone factorization. We find the radiative corrections are considerable for y, and &

productions, while they are moderate or even minor for other channels. We also notice that the LL
resummation can change the leading-order predictions for decay widths by more than 25% for y ., and &,
productions, and by around 50% for y.; production. However, effects of the LL resummation on the next-
to-leading-order and NNLO predictions are notably mitigated. Some phenomenological explorations are

also performed.

DOI: 10.1103/PhysRevD.106.094023

I. INTRODUCTION

The radiative decay of a Z boson to a quarkonium serves
as an ideal platform to study the interplay of the perturba-
tive and nonperturbative nature of QCD. To date, exper-
imentalists have made many endeavors to search for such
processes [1-3], yet failed to find any signals. In recent
years, several high-luminosity lepton colliders are pro-
posed, such as ILC [4], FCC-ee [5], and CEPC [6], which
are planned to run at Z mass pole for a period of time.
Undoubtedly, tremendous Z bosons will be accumulated.
Thus it will provide more opportunities to probe these rare
decay processes.

The exclusive processes Z — quarkonium + y have been
extensively studied on the theoretical side. The computa-
tion on these processes can date back to the earlier 1980s by
the authors in Ref. [7]. In Ref. [8], these processes have also
been studied at the lowest order in a, and v? in both the
nonrelativisitic QCD (NRQCD) [9] and the light-cone (LC)
factorization formalisms [10,11], where v represents the
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typical velocity of the heavy quark in the quarkonium rest
frame. In Ref. [12], the analytic expressions of the
amplitudes for Z — quarkonium + y were obtained in
the leading-power LC approximation at next-to-leading
order (NLO) in «,. In Ref. [13], calculations of the rates for
Z — V +y, where V signifies a vector quarkonium J/y or
T, were presented. The calculations were accurate up to the
leading-power LC approximation at the NLO in a, and .
Shortly afterwards, the decay rates for Z — V 4+ y were
restudied in Ref. [14], where the resummation of the
leading logarithms (LL) of m3/mg, with m; and my
being the masses of the Z boson and heavy quark Q,
respectively, were carried out. In Ref. [15]. the authors have
further considered the resummation of logarithms of
m3/mg for the O(a) corrections as well as the O(v?)
corrections. Very recently, the decay rates for Z —
T(nS) + y have been calculated up to NLO in a, based
on the NRQCD, which are proposed to determine the Zbb
coupling [16]. As relevant studies, the cross sections of
ete™ — charmonium + y at Z factories have been com-
puted at LO and NLO in a; in Ref. [17] and in Ref. [18],
respectively, and the cross sections of ete™ —
bottomonium + y at Z factories have been studied in
Ref. [19].

In this work, we study the processes of Z boson radiative
decays to a P-wave quarkonium, i.e., Z - H + y, where H
canbe yg;, ho with Q = ¢, band J = 0, 1, 2. Based on the
NRQCD factorization and helicity formulas, we compute
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the various helicity amplitudes at next-to-next-to-leading
order (NNLO) in a, and leading order (LO) in ». Since the
two typical energy scales my and my involved in these
processes are widely separated, the NRQCD short-distance
coefficients (SDCs) receive contributions from large log-
arithms of m3/mg, which may potentially ruin the pertur-
bative convergence in «,. Fortunately, it was pointed out
[20] that the NRQCD SDCs can be refactorized in the
framework of LC formalism, in which the large logarithms
can be resummed by employing the celebrated Efremov-
Radyushkin-Brodsky-Lepage (ERBL) equation [10,21].
We will carry out the LL resummation for the leading-
twist helicity amplitudes. Thus our computation for Z —
H +y will be at NNLO in a, at fixed-order accuracy,
meanwhile at all orders in a, at LL accuracy.

The rest of the paper is organized as follows. In Sec. II,
we employ the helicity amplitude formalism to analyze the
Z — H + y processes and build the polarized and unpo-
larized decay rates out of various helicity amplitudes. In
Sec. III, we factorize the helicity amplitudes by employing
the NRQCD factorization formalism and parametrize the
corresponding SDCs through NNLO in «a,. The key
technical ingredients of extracting the SDCs affiliated with
each helicity amplitude through o? are sketched, and values
of the SDCs at various perturbative levels are presented.
The corresponding details about constructions of all the
helicity projectors are presented in Appendix. We devote
Sec. IV to the LC factorization for the leading-twist helicity
SDCs. The resummation of the LL is formulated and
explicitly carried out. In Sec. V, a detailed phenomeno-
logical analysis is performed. Finally, we summarize in
Sec. VL

II. THE GENERAL FORMULA

It is convenient to employ the helicity amplitude for-
malism to analyze the hard exclusive production process.
The differential decay width of the Z boson with polari-
zation (along the z axis) S, into a quarkonium H and a
photon, the helicities of which are 4; and 4,, respectively,
can be expressed as [22,23]

dr
dcos®

(Z(S,) = H(4) +7(4))

|P|
= ~ 16am 2| S, zl—az< )| |Az zz

QY

where P denotes the spatial components of the H momen-
tum, Af ,, Tepresents the amplitude corresponding to the

helicity configuration (4, 4,), and d_, _, (0) is the Wigner

function. Here, 6 is the angle between the direction of P
and the z axis. Note that the constraint, ; — 4, <1, is
guaranteed by the angular momentum conservation.
The magnitude of the spatial momentum |P| is readily
determined via

122 2 2 _ 2
A (mz,mH,O):mZ—mH

Pl =
|P| m,

; (2)

Zmz

where my denotes the mass of the quarkonium H and the
Killen function is defined via A(x,y,z) = x*> + y*> + 7> —
2xy — 2xz — 2yz.

Integrating over the polar angle 6 and averaging over the
polarization of Z, we finally obtain the integrated decay
width of Z — H + y for the helicity configuration (4;,4,) as

P

2dxm 2 | Ao

N(Z = HW) +7(h)) = )

Thanks to the parity invariance [22], we have the following
relations:

Xor J AXoJ ho
Ay = (=1) A Ay = A—il —hy" (4)
Thus the number of independent helicity amplitudes for
X00» X01> X02» and hy production can be reduced to one,
two, three, and two, respectively.
In the limit of my > m,, the helicity amplitude Affl’ A
satisfies the asymptotic behavior

Al oA (5)

where r is defined via r = my/mz. One power of r in
Eq. (5) originates from the large momentum transfer that is
required for the heavy-quark pair to form the heavy
quarkonium with small relative momentum, and the other
powers arise from the helicity selection rule in perturbative
QCD [24,25].

In terms of the independent helicity amplitudes, the
unpolarized decay widths can be explicitly written as

11 12[P|

D(Z = xoo+7) = 55—~ — QAT (62)

11 12P ., !
M2 t01+1) =3 g e QA P24 ). (60
11 12P|
N(Z-xotv)= 32m, 8% m,
x 2|AS P+ 214G 2 +2|A5% ), (6¢)
11 12|P| )
D(Z—ho+y)= gmgm—(zm 2 +24051).  (6d)

The main task of this work remains to compute the
helicity amplitudes. The Z boson interacts with the quark-
antiquark pair through the tree-level weak interaction as
QJ/”(

l[’ZQQ = l gA?’S)QZW (7)
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where ¢ is the weak coupling in SU(2), x U(1)y electro-
weak gauge theory, gy = 1-8s2,/3 and g, = 1 for the up-
type quark, and gy = —1 + 4s%,/3 and g4, = —1 for the
down-type quark. Here we have defined sy, = sin 8y, and
cy = cos Oy, where 0y, signifies the Weinberg angle.

The Z boson can decay to yo; +y only through the
vectorial interaction, and it can decay to hy +y only
through the axial-vectorial interaction. Therefore, for sim-
plicity, it is convenient to explicitly extract the electroweak
coupling from the helicity amplitudes as

xor _ 99veeo  xo,
hde T T gey Tk (8a)
h ggaeeg . n

AAIQ,AZ = dey z,Q,zz- (Sb)

III. FRAMEWORK OF NRQCD COMPUTATION

A. NRQCD factorization

According to the NRQCD formalism [9], the helicity
amplitude A ; can be factorized into

o (0)
Aﬁ’b = 2mHCf]’/12 \/Z—N—QI,JWRQ’ (9)

where Cﬁ ,, signify the dimensionless SDCs, N. = 3 is the

number of the color, and the NRQCD long-distance matrix
elements (LDMEs) are defined via

(O)ye, =1 0slw KCp 20), (10a)

(O)n, = (holw'Kip 210), (10b)

where ' and y denote the Pauli spinor fields creating a
heavy quark and antiquark in NRQCD, respectively, and

1 i<
Ksp, 7 <_§D o-), (11a)
1 g
Ksp, 7 —EDXO' €10 (11b)
KCop, = —%B ig)el . (11c)
Ko, _—éﬁ-%, (11d)
with e, , €,,, and ¢, , representing the polarization vector/

tensor of y,, hg, and yg,, respectively. Exploiting the
heavy quark spin symmetry, we can make the following
approximations:

(0) 7 (0)y, ® (O, (12)

In Eq. (9), the factor \/2my appears on the right-hand
side because we adopt relativistic normalization for the
quarkonium H, but we use conventional nonrelativistic
normalization for the LDMEs. In this work, we will not
compute the relativistic corrections; therefore, it is reason-
able to take the approximation my ~ 2my.

Through Egs. (5) and (9), we can readily deduce the
helicity selection rule for the SDCs

200 ~ <O>/YQ1

Cﬂ./lz o rlhl (13)
by noting that (O), « mSQ/z.

The SDCs are insensitive to the nonperturbative hadro-
nization effects; therefore, they can be determined with
the aid of the standard perturbative matching technique.
That is, by replacing the physical H meson with a fictitious
onium composed of a free QQ pair, carrying the quantum
number *P; for y,; and 'P; for hy, we compute both
sides of Eq. (9). After that, we are able to solve for the
desired SDCs. For more details, we refer the readers
to Ref. [26].

It is convenient to parametrize the SDCs in powers
of aj,

2 2
oo H0) | % aH) | U (Bo, B HHA(D) HA
“on = Cn [l T G T <z‘“m—gcﬂl~*2 i,

H,(2 H,(2
+ Creg(,i? Ay + Cnm(lrgg,/ll ,/12> :| + O(O{; ) ’ (14)

where pup and p, signify the renormalization scale and
factorization scale, respectively, and g, = (11/3)C, —
(4/3)Tgny is the one-loop coefficient of the QCD S
function, where n; is the number of active quark flavors.
The explicit In p% term is deduced from the renormalization-
group invariance. yy represent the anomalous dimensions
associated with the NRQCD bilinear currents carrying
the quantum numbers 3P, or 'P,, the expressions of which
read [27]

o= (A sy
Yip, = —7° (CA6CF + 136§%>’ (15¢)
yip, = —7° (CA6CF + %) (15d)
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FIG. 1.

The occurrence of Inu, is required by the NRQCD
factorization. According to the factorization, the p,
dependence in the SDCs should be thoroughly canceled
by that in the LDMESs. As illustrated in Fig. 1, we classify
the Feynman diagrams into a “regular” part and a

“nonregular” part at O(a?). Correspondingly, CZ‘g(j?Jz
and Cnonreg Id in Eq. (14) represent contributions from

the regular Feynman diagrams and the nonregular Feynman
diagrams, respectively.

B. SDCs through O(a?)

The quark-level Feynman diagrams and Feynman ampli-
tudes are generated using FeynArts [28]. Employing the color
and spin projectors followed by enforcing spin-orbit
coupling, we obtain the hadron-level amplitudes order
by order in a, with the aid of the packages FeynCalc [29]
and FormLink [30]. To evaluate the helicity amplitudes, we
employ the technique of helicity projection. The concrete
expressions of all the helicity projectors are presented in
Appendix.

It is well known that, in dimensional regularization, the
anticommutation relation {y#, 75} and the cyclicity of Dirac
trace cannot be satisfied simultaneously. In practical
computation, the naive-ys scheme [31], which keeps the
anticommutation relation {y#,ys}, is frequently applied. In
this scheme, spurious anomaly, which spoils chiral sym-
metry and hence gauge invariance, can be avoided. Because
of the lack of the cyclicity of the trace, one must fix a
reading point for a fermion loop with an odd number of y5.
In our work, we will select the vertex of the Z boson as the
reading point.

Then, it is straightforward to obtain the LO helicity
SDCs:

Some representative Feynman diagrams for the process Z — yo;(hg) + 7 up to O(a?).

2¢/2(1 = 1272)

100,(0) _
O = o (16a)
8v3 4+/3
cp® = BT o A3 g
’ 1 —4r ' 1—4r
CJ(Qz-(O) __ 161/612 C;(Qz,(o) _ 8/3r
21 1 —4r° L1 1 —4r
o0 _ 4
C0Q1 — _] —4]"2’ (]6C)
e —aver, e =-2v6. (16d)

Once beyond the LO, we adopt the standard shortcut to
directly extract the SDCs, i.e., compute the hard region in
the context of the strategy of the region [32]. Utilizing the
packages APART [33] and FIRE [34], we can further reduce
the loop integrals into linear combinations of master
integrals (Mls). Finally, we end up with 6 one-loop Mls,
which are computed using PACKAGE-X [35], and roughly
320 two-loop Mls, the evaluation of which is a challenging
work. Fortunately, a powerful new algorithm, dubbed
auxiliary mass flow (AMF), has recently been pioneered
by Liu and Ma [36-38]. Its main idea is to set up
differential equations with respect to an auxiliary mass
variable, with the vacuum bubble diagrams as the boundary
conditions. Remarkably, these differential equations can be
solved iteratively with very high numerical precision. In
this work, we utilize the newly released package AMFlow
[39] to compute all the two-loop MIs. After implementing
the on-shell renormalization scheme for the heavy quark
mass and field strength [40], and the MS renormalization
scheme for the QCD coupling, the UV poles are exactly
canceled, while an uncanceled single IR pole still remains.
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TABLE L

d 4,
the symbols f| = Z_“V — Sy
Jy

= 852
down-type quark, respectively.

v—gl _ 6-1253,
- 3- 852’

rand f, = 7

NRQCD predictions to the various helicity SDCs defined in Eq. (14) for charmonium production. For simplicity, we define

where gy, and gv correspond to the values of gy for the up-type quark and the

1 2) 2
H (}'1?}'2) Cfll.)/lz Cﬁeg 1.4 Cr(lo)nreg./lljz
. —2.00 — 2.21i — (2.34 — 1.290)n, (6.43 = 7.29i)n, — (1.57 = 3.71i)f1n,,
—(1. — 1. i ne.— . — 1. i ny —+(9. — 0. i 2
Xe0 ©.1) 0.09 + 0431 1.12 - 1.28 0.58 —1.25 9.49 — 6.37
wn 11— 1690 —29.65 + 22.87i — (0.32 + 0.92i)n, —(3.01 = 1.60i)n, + (0.72 — 0.78i) f 1,
: : ' —(0.09 + 0.92i)n, — (0.03 + 0.931)n,, —(3.43 +0.04i) f,
el . 077 — 1681 —28.51 + 24.13i — (0.53 + 0.74i)n, —(3.67 = 2.73i)n, + (0.77 — 1.30i) 1 n,,
: : ' —(0.29 + 0.74i)n, — (0.23 + 0.76i)n,, —(4.66 — 0.89i)f,
~ . 240.12 — 37.67i + (0.06 + 1.67i)n, (181.76 — 21.31i)n, — (88.77 — 40.30i) £, n,
@D 6.83 +1.62i —(1.45 = 1.67i)n, — (2.93 — 1.68i)n,, +(173.42 = 2.68i) £,
~ . 10.19 — 53.70i — (0.22 — 2.43i)n, (3.35 = 0.65i)n, — (1.59 — 0.79) f,n,,
Xe2 (LD 844 +2.50i —(1.84 = 2.43i)n, — (3.52 — 2.43i)n, +(3.37 = 0.29) £,
. —6.96 — 8.92i — (0.84 — 1.30i)n, (5.23 = 2.15i)n, — (1.89 — 1.85i)fn,,
©.1) —H69 0430 60— 1290)n, — (2.40 — 1.251)m, +(5.10 = 1.31)f,
~ . 10.52 — 64.86i — (0.54 — 2.62i)n, )
. (1,1) 8.39 + 2.89i (185 — 2630, — (346 — 2 64i)n, 1.66 + 1.62i
0,1) —4.01 + 0.43i —(9.9847.770) = (1.20 = 1.290)m, 1.75 + 1.56i

—(1.57 = 1.29i)n, — (2.15 — 1.25i)n,,

This symptom is a common feature specific to the NRQCD
factorization, which has been encountered many times in
NNLO perturbative calculations involving quarkonium.
This IR pole can be factored into the NRQCD LDME,
so that the NRQCD SDCs become IR finite. We have
numerically verified that the coefficient of the remaining IR
pole is equal to one-quarter of the anomalous dimension in
Eq. (15) with high precision, as required by the NRQCD
factorization.

The analytic expressions of CZ;? can readily be
obtained. Instead of presenting the cumbersome expres-
sions, here we merely present their asymptotic expansions
inr—0:

2 2

1 1?2
e g(21112—1)111(—r2+ie)+HTJrslnz—%,
(17a)
22 2 2
cior () —(21n2 3)In(=r +ie) + - — 2T g
: 3 3 9
(17b)
cror() _ 1(21 2= 3)In(—r + )+ln22 n2 z2 7
—(2In n(—r? —_—
or =3 Wt 3Ty oy
(17¢)
2
e — g(zlnz—l)ln( r2+ie)+4h; 2
16102 47> 8
BT (174)

| n22 52 72
g =22+ n(=r2 4 ie) + 5= -2 -5
(17e)
1 In?2 2
¢V = (22— 1) In(—r 4 ie) + == —In2 - = 2,
, 3 3 9
(17f)
i) 4 212 82 222
Cii =3In2In(=r +ie) + ——+—— -1,
(17g)
1 In22 2 4
cpet =32In2—1)In(- 2+i6)+—n3 —1n2—%—§,
(17h)

where the real parts of the results in Eqgs. (17a)—(17f) are
consistent with those in Ref. [41],l and the results in
Egs. (17a), (17¢), (17f), and (17h) are consistent with those
in Ref. [12].

It is rather challenging for us to analytically compute
Cgf) so we turn to numerically evaluate their values. To
perform the numerical computation, we take my; =
91.1876 GeV from the latest Particle Data Group (PDG)
[42], and the pole masses of the charm quark and bottom
quark to be m,. = 1.69 GeV and m; = 4.80 GeV, which

are converted from the MS masses . (7.) = 1.28 GeV

'In Ref. [41], only the cross sections of eTe™ — y.; +y are
presented, where the imaginary parts of the amplitudes are ignored.
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TABLE II. NRQCD predictions to the various helicity SDCs for bottomonium production. For simplicity, we define the symbols
o gy 3-88% - _ 24 —2gv _ 12-245%
fl:ﬁ__s—ztsz’f = T 348
1 2 2
H (/11’/12) CEI],)/IZ Clge;,/ll./lz Cr(m)nreg.ﬂl,ﬂz
. —4.41 — 6.16i — (1.47 — 1.15i)n, —(8.02 = 11.05i) fn. + (1.83 — 5.06i)n,
A0 .1 0.35 4 0.8 —(0.35 = 1.14i)n, — (0.22 = 1.10i)n, +(5.06 — 4.40i) f,
(L 007 — 1.65i —18.06 + 10.67i — (0.75 + 0.28i)n, +(4.83 - 0.96i) f1n, — (1.81 = 1.75i)n,
’ ' ' —(0.17 4 0.28i)n, — (0.50 + 0.29i)n, —(2.28 - 0.140) f,
Ab1 .1 040 — 161 —16.52 4+ 10.33i — (0.83 + 0.10i)n, +(5.54 = 2.50i) fn, — (1.76 — 2.47i)n,,
’ ' ' —(0.25 4 0.10i)n, — (0.57 + 0.13i)n, —(2.85 - 0.75i)f,
: 8.69 — 27.65i + (0.98 + 1.12i)n, —(47.72 — 8.15i) fn. + (23.15 — 11.58i)n,
2,1 -5. 1. ¢ 2
@D 3774 1.63i +(0.72 + 1.12i)n, — (0.54 — 1.13i)n, +(22.90 — 1.73i) f,
. —20.19 = 37.37i + (1.11 + 1.55i)n, —(3.88 = 0.97i)f n, + (1.88 = 0.71i)n,
(e 4D 677+ 2.30i +(0.83 + 1.55i)n, — (0.51 — 1.55i)n,, +(1.89 - 0.23))F,
: —13.91 — 13.04i + (0.02 + 1.20i)n, —(4.56 — 1.86i)fn. + (2.20 — 1.47i)n,
.1 4.0 +0.571 +(0.11 + 1.194)n, — (0.73 — 1.15i)n, +(2.14 - 0.70) f,
B : —(25.69 + 42.26i) + (0.87 + 1.59i)n, 1 e
. 1,1) 6.43 + 2.85i (078 + 1.590)m, — (045 — 1.60i)n, 1.71 = 1.60i
b : —(16.35 + 11.34i) — (0.35 — 1.17i)n, .
(0,1) —3.78 + 0.54i (0,03 — 117, — (0.69 — 1.131)m, —-1.76 — 1.54i

and my,(m;) = 4.18 GeV [42] at the two-loop level by the
use of the package RunDec [43].

We tabulate the results of the SDCs C*" A /1 , Czﬁ? Ay and
H.(2)

nonreg,A,,
Table II for bottomonium productlon For the sake of
reference, we explicitly keep the n;, n., and n;, dependence
in the SDCs, where n; denotes the number of the light
quarks, and n, = 1 and n;, = 1 signify the numbers of the
charm quark and bottom quark, respectively.

A in Table I for charmonium productlon and in

IV. LC FACTORIZATION FOR THE
LEADING-TWIST SDCS

A. The LC factorization

Besides the NRQCD factorization formalism, we can
also employ the LC factorization framework to calculate
the decay amplitude for Z — H + y at the leading twist. By
following the spirit of Ref. [20], the LC factorization
formula for the SDCs is written as

1 ~
CH (s iy mgy) = CEHL0 / AT (e )i (o) + O(2),

(18)

where Cg{ 'ILLO represents the asymptotic expansion of CoH,i(0>
in r — 0, and the hard-kernel 7' and the leading-twist LC

2Since weak interaction in the Standard Model (SM) is a chiral
gauge theory, the gauge anomaly should be avoided for physical
processes. To satisfy the condition of anomaly free, when

evaluating Cmmeé 1.4, Which corresponds to the contribution

from Fig. 1(d), we have included all six flavor quark loops.

distribution amplitude (LCDA) ¢y, are perturbatively cal-
culable around the scale m; and m, respectively. At LO in
a,, we have

Ty(x,p=my) = Tg)) (x)

(19)

Pu(eu=mg) =iy (x)
{—%5/()('— 1/2), fOI'H:hQ,)(QO al’ld)(Qz,
5(x—1/2).

fOI'H:){Ql .
(20)

We can reproduce the asymptotic expansions of the SDCs

Cg'l(l) in Eq. (17) exactly with the corresponding NLO

corrections to 7'y and (;5 y that have been calculated in [12].
More importantly, we can employ the LC factorization to
resum the LL terms (a;Inr?)" in Cff,

B. Resummation of the LL with the ERBL equation

The leading twist LCDAs $ 1 obey the celebrated ERBL
equation [21,44]

d
—2

b (x; ) = %CF/)IV(XJ)&H(%#), (21)

with the Brodsky-Lepage (BL) kernel
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Vixy) = [i :; (1 —|—$>9(x—y)

+§<1 +y%x)9(y—X)L’ (22)

where the subscript “+” implies the familiar “plus”
prescription.

Solving the ERBL equation, we can obtain the SDCs
with all the LL terms (a,In7?)" resummed. Formally,
we have

with
1 A
KW = A dxTHO) (x) exp (kCpV*)PY (x),  (24)
where
2
) (as mg )
Bo (mg
ay(mz) = a3 (myz)
= In? 2 , (25
o +ﬂo (4r)? + - (25)
with “x” standing for the convolution

Vadl(x) = / Ly )d(). (26)

0

It is well known that the BL kernel has the eigensystem
that

| V6)6,0) = =126, @7)
where
1 n+1 1 1
yn:§+2;;—m, (28)

and the eigenfunctions
G,(x)=x(1- x)CSf/z)(Zx -1), (29)

with €5/ 2)( — 1) being order 3/2 Gegenbauer polyno-
mials. We can decompose the LCDA (27;(,)) (x) in the basis
of G,:

0

=" $iGal). (30)

n=0

where

W= gy | e -0, G
0

(n+1)(n+2

Hence, we can get

© s =27,Cr/Po
exp (kCrV*)g ; (as mz)> G, (x).
(32)
Employing
JRERICECIE (33)
| x—Gy(x) = 5
and the decompositions
© 2(4n+3) 2n+ 1)1
x—1/2)= )'————G ,
/2) Z(on+1 n+1)( N TR
(34a)
= 4n +5)
——5/ ~1/2)
(x=172) Z )(2n+3)
) (2n +3)!
x (=1) W 2nt1(X), (34b)
we get
1S 2(4n + 3)
L _
K T4 2t (1)
2Cry2u /P
% (=1)" (2n+ 1).. <as(mz)) 72 0, (35)
2n)!! \ag(mgp)
for H = y¢;, and
I~ 204n+5)
Kif == ———7+———
4;(2n+3)(n+ 1)
2 il 2Cryan1 /P
y (_1)”( n+3) (as(mz)) 2 0, (36)
2n)!t \a(mg)

for H = y 00,102, and hy.
With the explicit expansion of the formal solution in
Eq. (24) in « and the formulas

/lle( Y A (37a)
— = — |—= n a
0 yy P2 ok
1 11
[z [Ty vinvo
1{9 3-2x 7
_x[4+ - Inx+In x—|—L12(1—x)—€} (37b)
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we can obtain the expansion of K& in a,

KH=1- i )CFl n723=21n2]

Oy (mZ) 9 ﬂz
+ (4n)? In?r? [C%7 <5 —8In2+1n%2 - “

+Crpy @ “In 2)} +0d), (38)
for H = y¢;, and

K =1- El-n’ )Cplnr 2[1 —2In2]
(15( z) 2,2 2 7 2 7
—1 Cil—z+2In2+In"2 ——
+ (47 )2 2—|- n2+lIn G

for H :){Qo,)(Qz, and hQ

C. SDCs by combining the fixed-order results
and the LL resummation

In the following, we will improve the leading-twist SDCs
by combining the NRQCD fixed-order results given in
Sec. III and the LL resummation sketched in Sec. IV A and
Sec. IV B.

To avoid double counting, it is necessary to subtract the
terms of O(a? In" r) from the fixed-order SDCs. Formally,
we have

CH LO+LL CH Lo _ Cé{ 1LLo + CH LL’ (40a)
Cg,]NLO+LL _ Cg,]NLO _ CgiLLl + CH LL’ (40b)
CH JNNLO+LL CgiNNLO CH Lo CH LL’ (40c)

where the superscripts “LO,” “NLO,” and “NNLO” denote
the fixed-order SDCs accurate up to O(a?), O(a!l), and
O(a?), respectively, and the superscripts “LL,,” “LL;,”
and “LL,” signify the C{/;"" truncated at O(a?), O(a!), and

O(a?), respectively, which have been explicitly computed
in Sec. IV B.

In Table III, we present the theoretical predictions on the
squared leading-twist SDCs |C}/,|* at various levels of
accuracy. In the table, we also enumerate the values of IC];,L,
which are computed by applying Egs. (35) and (36) with
ag(mz) = 0.1181, taken from the PDG, and a,(m,) =
0.3240 and a,(m;) = 0.2151, evaluated through the
renormalization group running at two-loop with the aid
of the package RunDec. It is worth noting that, in order to
accelerate the convergence, we have used the so-called
Abel-Padé method [45] to sum the series in Eqgs. (35)
and (36).

From Table III, we have several observations. First, we
find the fixed-order predictions for charmonium production
are close to these for bottomonium production; however,
the LL resummation can give rise to some differences.
Second, we notice that the effect of the LL resummation
can considerably change the LO results, especially for
charmonium production, for instance, it can change the LO
results by more than 25% for y ., and &, production, and
by around 50% for y.; production. The magnitude of the
LL resummation for bottomium production is roughly half
of that for charmonium case. Finally, it is worth noting that
the effects of the LL resummation on the NLO and NNLO
predictions are continuously becoming milder. It can be
explained by the fact that some of the LL resummations
have been included in the radiative corrections. Concretely,
the O(a,In r) contribution has been included in the NLO
prediction, while both the O(a,Inr) and the O(a?In?r)
contributions have been included in the NNLO prediction.
As a consequence, the remaining contribution from the LL
resummation can correspondingly reduce its effect on the
NLO and NNLO predictions.

V. PHENOMENOLOGY

To make concrete phenomenological predictions, we
need to fix the various input parameters. We take m, =
91.1876 GeV from PDG, and the heavy quark pole masses
m,. = 1.69 GeV and m;, = 4.80 GeV, as mentioned, which
are converted from their MS masses. We take the running
QED coupling constant evaluated at the mass of m; as

TABLEIII. Squared leading-twist SDCs \C{;’ 1 |? at various levels of accuracy. We take yz = my and i, = 1 GeV.
H KL LO LO+LL NLO NLO +LL NNLO NNLO + LL
Xeo 0.859 7.96 5.87 8.01 6.47 8.85 7.90
Xel 1.222 48.13 71.88 51.15 57.38 47.07 50.63
Xe2 0.859 16.04 11.86 10.89 8.37 8.87 7.54
h. 0.859 24.00 17.73 17.31 13.41 13.51 11.50
Xbo 0.930 7.65 6.59 7.85 7.21 8.87 8.58
b 1.145 49.08 64.25 47.72 50.31 45.52 46.78
X2 0.930 16.36 14.18 11.30 10.23 9.90 9.47
hy 0.930 24.00 20.77 17.68 16.02 15.26 14.61
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a(myz) = 1/128.943 [46]. We take the NRQCD factoriza-
tion scale py =1 GeV. The NRQCD LDMEs for y,
and hg are approximated by the first derivative of the
Schrodinger radial wave function at origin through

, 3N 3N

(O), PO P25 R b (0)F =75 =x0.075 GeV?,
(41a)

3N, 3N,
(O}, PRI(O), PR E IR, 5 (0)F =€ x 1417 GeV,
(41b)

where the 1P radial wave functions at origin, evaluated in
the Buchmiiller-Tye (BT) potential model, are taken from
Ref. [47]. In addition, we take S%V = 0.231, and the value of
the total decay width of the Z boson I'; = 2.4952 GeV
from the PDG [42].

With all ingredients in hand, we can compute the decay
widths of Z — H + y. The unpolarized decay widths at
various levels of accuracy for charmonium production and
bottomonium production are separately tabulated in
Tables IV and V. In the tables, we have included the
uncertainties from the ambiguity of the renormalization
scale and QCD higher-order corrections. We should
emphasize that the values of the Schrodinger wave func-
tions may largely affect the theoretical predictions on the
decay rates; ie., |R|p..(0)]* can range from 0.07 to

2.07 GeV? in Refs. [47,48], which may change the central
values of the decay rates of quarkonium production by
roughly a factor of 2.

It is interesting to note that both the O(a;) and the O(a?)
corrections to Z — yg»/hg +y are sizable and negative.
The LL resummation turns out to further decrease the decay
widths. Incorporating all the perturbative corrections and
LL resummation reduces the LO prediction by roughly half
of the magnitude. In contrast, both the O(a;) and the O(a?)
corrections are moderate or even minor for other channels.
The situation is quite similar to the case in Ref. [26], where
the radiative corrections are significant for eTe™ — y., + ¥
at B factory, however inconsiderable for e*e™ — y.o1 + 7.

It is enlightening to compare the strengths of the decay
widths for different quarkonium production. For charmoi-
num production, we find that s, 4 y production has the
biggest branching fraction, followed by y.; + y production.
Although the branching fraction of y., + y is 2 times larger
than that of y. + y at LO, their branching fractions are
nearly the same at NNLO 4 LL accuracy. For bottomo-
nium production, we notice that the branching fractions of
Xp1t TV hy+7, ¥+, and yy0 +y make the most,
second, third, and last strengths.

It is worth noting that, for the same quantum number of
quarkonium, the branching fraction of charmonium pro-
duction is larger than that of bottomium production.
Finally, we estimate the number of the quarkonium
production at the proposed super Z factories, such as the
Z-factory mode in CEPC, where the Z boson yield will

0.13 GeV>, and |R’

2 can range from 0.93 to

reach 7 x 10'! [6]. Thus it is expected that there will be

TABLE IV. Unpolarized (total) decay widths for Z — charmonium + y at various levels of accuracy. The

predictions are obtained by setting yx = m;/+/2. The first error at accuracy of NNLO and NNLO + LL is estimated
by varying up from my/2 to my, while the second error is from the QCD higher-order corrections, which are

estimated through a3 ~ 0.002.

Channel Order Tt (€V) Br(x107)
LO 0.939 0.376
, NLO 0.946 0.379
- Xeo 7 NNLO 1.056f§;§,:%f02‘02€% 0.423:2;(3(35?%2%1
NNLO + LL 0944:)01 ijo,i)OZ 0-3741L():005:r().'()()1
LO 5.687 2.279
7 n NLO 6.066 2.431
= Xe1 7 0.033+0.0 0.013+0.00
X . . —+0.
NNLO + LL 5-9471_0,0421—0_011 2'3831).017—0.004
LO 1.901 0.762
. n NLO 1.259 0.504
N
X+ NNLO 0'997t§'§§§j°2§€2§ 0-399f§:60)%_+§§0211
NNLO + LL 0~844f0:054j0,b02 0'338t0.'022:r0.t)01
LO 19.231 7.707
Zh NLO 13.597 5.449
= het+y NNLO 10.261%8525257 j()giglg 4.1 12i§§?§%§€
51340, ) S
NNLO + LL 8.70020 3737 0o 348715530 0.008
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TABLE V. Unpolarized (total) decay widths for Z — bottomonium + y at various levels of accuracy. The source
of the theoretical uncertainties is the same as that in Table IV.

Channel Order o (€V) Br(x107)

NLO 0.615 0.246

NNLO 0.7041§;§i§f§;§§11 0.282%‘}'%%?%'(2%:

NNLO + LL 0.681+3012+0.001 0.2731 0 0020001
Z =y +7 LO 3.882 1.556
NLO 3.771 1.511

NNLO 3.578i50);§2§§5‘j§'0(‘}§;7: 1-434f§5§{ gf%g%:

NNLO + LL 3.676 1002510007 14732000 20008
Z = +7 LO 1.323 0.530
NLO 0.888 0.356

NNLO 0.762f§;§§f§b§§€ 0.305t§;§g_+§§02§

NNLO + LL 0.729f0:0§5j0,k)0| 0-292i0:014j—0.'001
Z—hy+y LO 3.964 1.589
NLO 2.860 1.146

NNLO 2.419j§;£§%_+§025§ 0.969i§;§§22_+§§0222

NNLO + LL 2.3140:00140.002 0.927 5002 0000

several hundreds and thousands of charmonia and botto- ACKNOWLEDGMENTS

monia production through Z — H + y. The signal for Z —
X o + v production can be measured by probing y; with a
recoiling hard photon, where y; can be reconstructed from
their transition to y +J/w (y + 1) with J/yw(Y) - ¢¢.
Because of the low multiplicative branching ratio, and extra
event-selection rules to suppress the backgrounds, it will be
rather difficult to measure Z — yo; +y in experiment.
Alternatively, the y,; may be reconstructed through its
hadronic decays; however, the experimental measurements
on yo; +y are still challenging. The condition for Z —
hg + v is even worse.

VI. SUMMARY

In summary, we study the exclusive decay processes of
Z = ygs/hg +y in the NRQCD framework. The ampli-
tudes of all the helicity configurations and the unpolarized
decay widths are evaluated up to O(a?). It is the first time
that the NRQCD factorization for s exclusive production
at two-loop is verified explicitly. The LL of m3/my, in the
leading-twist SDCs are resummed to all orders of « by
employing the LC factorization. We find the radiative
corrections are considerable for y,, and h, productions,
while they are moderate or even minor for other channels.
We also notice that the LL resummation can change the LO
results by more than 25% for y.y, and h, production, and
by around 50% for y,; production. However, effects of the
LL resummation on the NLO and NNLO predictions are
notably mitigated. We expect that several hundreds and
thousands of charmonia and bottomonia will be produced
through Z — H + y at the proposed super-Z factories.
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APPENDIX: CONSTRUCTION
OF HELICITY PROJECTORS

In this appendix, we present the helicity projectors Pﬁlﬁz,
which have been used to compute the helicity amplitudes
for Z - H(4;) +y(4,) in Sec. III. We apply the similar
technique applied in Refs. [49,50].

For the sake of convenience, we introduce an auxiliary
transverse metric tensor and two auxiliary longitudinal
vectors,

PiPY Q-P
v g — = (P*Q" + Q"P"), (Al
1 Q-P
L=— (P” - Q”), (Alb)
Z P my
1 [/ P- m
Lyo =151 QO pu_ o gu), (Alc)
¢ |P| mZm;(QJ mgz
LY L(P'Q Pﬂ_%Qﬂ>’ (A1d)
¢ [P| \mzmy, my
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where P and Q denote the momenta of the H meson and the
Z boson, respectively. It is obvious that the transverse
metric tensor satisfies

gJ_m/P” = gJ_;wQﬂ =0, (AZ&)
Sfiﬂ =2, (A2b)
gl;tag(j_y = glﬂag‘w = g’j_ﬂ, (A2C)
and the longitudinal vectors satisfy L/, 70, = ){QJ P, =
LZQ P,=0.
We enumerate all the eight helicity projectors
1
e = =2t (A3a)
(IQI Hra -1 H _vapc
= L5e"r°Q P, A3b
P sz|P‘ Z€ Q/) o ( )
P(ZQI Hra L% e;prQ , (A3C)
2 Z|P| Xl p-o
vay 1 v a a v va
P = (gl - gl - #lg). (A30)
pired = L sgens, + #01e) (A3e)
2\/5 91 Lo 91 X02/°

(x vaf - aff a

P Q2” 2\/»%( /+2L}(Q2 )(Qz) (A3f)
ho)uva
PhO = gL, (A3g)
ho)uva 1 o

LY = —S gL, (A3h)

If we express the decay amplitudes of Z — H(4,) +

r(42) as

Abre) = A e (Ada)
Alrer) = Aol hewvera (A4b)
Alrer) = AV sl (Adc)
Alhe) = Alo) eherert, (A4d)

where €, and €, represent the polarization vectors of the Z
boson and the photon, respectively, the helicity amplitude
can be computed through

o) _ plrool glkeo) (AS5a)
Ao — plravme gla), (A5b)
Alrol) — pradee 4o, (A5c)
A = prmed plres) (A5d)
AV = piromad gle) (A5e)
AGe) = plagd glre) (AS)
Ayt = Phe g, (ASg)
Al — plloe 4io) (ASh)
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