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We consider heavy meson-antimeson pairs and their coupling to quarkonium in the context of
nonrelativistic effective field theories (EFTs) incorporating the adiabatic expansion. We work out all the
leading order couplings of quarkonium to heavy meson-antimeson pairs and obtain their contributions to
the masses and widths of quarkonia. We match the new potentials terms to nonrelativistic QCD. Using the
available lattice data for the coupled system of quarkonium and the lowest lying heavy meson-antimeson
pair, we extract the mixing potential and use it to compute numerically the contributions of DD̄ðBB̄Þ and
DsD̄sðBsB̄sÞ to the masses and widths of the charmonium (bottomonium) states for l ¼ 0, 1, 2 and up to
n ¼ 6 covering the states in threshold region. When a quarkonium state and a heavy meson-antimeson pair
are separated by small energy gaps, their interactions can be described by a threshold EFT with contact
interactions. Wework out the matching between the two EFTs obtaining the couplings of the threshold EFT
in terms of the mixing potential and quarkonium wave functions.
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I. INTRODUCTION

The discovery during the past two decades of several
dozen exotic hadrons, understood as those that cannot be
classified as mesons or baryons in the quark model picture,
has made evident an important gap in our understanding of
the QCD spectrum and therefore of its underlying dynam-
ics. Many of these states have been discovered in the
doubly heavy sector in experiments at B-factories (BABAR,
Belle, and CLEO), τ-charm facilities (CLEO-c and BESIII)
and hadron colliders (CDF, D0, LHCb, ATLAS, and CMS),
see Ref. [1] for a review on the experimental status. Since
the creation of heavy quarks pairs in hadrons is highly
suppressed due to their mass being much larger than ΛQCD,
the number of heavy quarks in a hadron can be identified by
the hadron mass while the light-quark and gluonic content
can be identified from other quantum numbers. Therefore,
the identification of an exotic state is more straightforward
in the heavy quark sectors. In the charmonium and
bottomonium sectors these exotic states are commonly
labeled as “XYZ” and appear in the mass region of the
heavy meson-antimeson pairs also known as heavy meson
thresholds.

A crucial tool in understanding the spectrum of doubly
heavy hadrons is the adiabatic expansion between the
dynamics of the heavy quarks and that of the light-degrees
of freedom, either light-quarks or gluons. In this picture the
doubly heavy hadrons are the heavy quark bound states
supported by the spectrum of static energies (also known as
adiabatic surfaces) associated to the light degrees of free-
dom. Therefore, the first step to elucidate the quarkonium
spectrum in the threshold region is to determine the
spectrum of static energies. These have been studied on
the lattice and the emerging picture, which we sketch in
Fig. 1, is as follows. The ground state corresponds to the
standard quarkonium potential, while the first excited static
state corresponds to a heavy meson-antimeson pair [2,3].
At higher energies additional static energies corresponding
to pairs of heavier heavy mesons should also appear. The
static energies of the heavy meson pairs appear as hori-
zontal lines at the energy corresponding to the heavy
meson-antimeson pair mass with some possible attractive
or repulsive behavior for short distances [2]. Beyond the
quarkonium sector, the static energies of heavy meson-
antimeson pairs have also been studied in the lattice for
I ¼ 1 in Refs. [2,4,5] and for heavy meson-meson in
Refs. [6–10]. Excited heavy-quark-antiquark static ener-
gies, corresponding to hybrid quarkonium states also
appear in the region above the first heavy meson threshold
[11–14]. These are repulsive in the short-distance due to the
heavy quarks being in a color octet state but in the long-
distance become a linear, confining potential, correspond-
ing to the string excitations of the standard quarkonium
potential. The spectrum of hybrid quarkonium static
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energies is formed by multiplets of static energies corre-
sponding to different gluonic states, refereed as glue-
lumps [15].
The standard and hybrid quarkonium spectra above the

first heavy meson threshold contains enough states to
account for all the observed neutral heavy exotic states
observed so far [16], however the specific assignation of
states to the observed states is not yet clear. One important
step to clarify the exotic spectrum is to incorporate the
mixing between the different static states. The mixing of
standard quarkonium with the lowest lying hybrid static
energies was considered in Ref. [16]. Due to the 1þ−

quantum numbers of the associated gluelump, the mixing is
through a heavy-quark spin dependent operator which is
1=mQ suppressed, with mQ being the heavy quark mass.
However, this is not the case for the next set of hybrid static
energies, associated to the 1−− gluelump, which can mix at
leading order with standard quarkonium.
We will focus on the mixing of standard quarkonium

with heavy meson pairs. As we will discuss, standard
quarkonium couples at leading order with the lowest lying
heavy meson pairs. Therefore, this coupling is the most
important effect of the threshold region degrees of freedom
on the quarkonium masses up to the energies where 1−−

gluelump hybrid states start to be relevant. This problem
has been studied in Refs. [17–21] using models based on an
extension of the Born-Oppenheimer approximation that
includes the mixing potentials between the heavy meson
pair and quarkonium, which is also refereed as the diabatic
approach. In Refs. [17–19] the potentials where extracted
from the lattice data of Ref. [2] and the coupled channel
scattering problem was solved numerically. From the poles
of the heavy meson t matrices for specific angular
momenta, the bottomonium spectrum was identified. In
the case of in Refs. [20,21], a model for the quarkonium

heavy meson pair mixing was used. To obtain the spectra a
mix approach was used in which the contributions to a
particular quarkonium state of the above-lying thresholds
are obtained solving the coupled channel Schrödinger
equations while the below-lying ones are obtained in
perturbation theory.
In this paper we examine the coupling of quarkonium to

the heavy meson pairs in the context of an effective field
theory (EFT) incorporating the heavy quark mass and
adiabatic expansions. The EFT incorporating these two
expansions for quarkonium is known as strongly coupled
potential nonrelativistic QCD (pNRQCD) [22,23] while its
extension to nontrivial light degrees of freedom content has
been called Born-Oppenheimer EFT (BOEFT) [24–26].
The content of this paper can be considered an extension of
either EFT, however for easy reference we will consider it
as part of the latter. At leading order in the heavy-quark
mass expansion the heavy mesons are characterized by the
spin, parity and flavor of the light-quark state [27].
Combining these for a heavy meson-antimeson pair one
arrives to the total spin, parity and charge conjugation of the
light-quarks which characterize the heavy meson-antime-
son state. We derive all the leading order couplings of
heavy-meson-antimeson states to quarkonium. Using these,
we compute the contribution of the heavy meson thresholds
to the quarkonium self-energy from which we obtain the
contributions to the quarkonium masses and decay widths.
We obtain the matching expression of the mixing potential
in NRQCD considering both the cases when the mixing can
be considered a perturbation and not. We compute numeri-
cally the quarkonium spectrum up toOð1=mQÞ for S, P and
D waves and up to the principal quantum number n ¼ 6
which covers the mass range for which exotic quarkonium
states have been discovered. To do so, we use a para-
metrization of the potentials that combines lattice data and

0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

2.0

FIG. 1. Sketch of the spectrum of static energies for a heavy quark-antiquark pair. The static energies corresponding to standard and
hybrid quarkonium states are labeled by their D∞h representation and in the latter case by the quantum numbers of the gluelump in
parenthesis. The shapes are obtained from a fit to the lattice data of Ref. [12]. The heavy meson-antimeson static energies are drawn as
constant lines at the energies given by the spin and isospin averages of the heavy meson and antimeson minus the heavy quark mass
corresponding to the sum of the Λ̄ parameter [defined in Eq. (4)] for each heavy meson. The three energy levels for the heavy meson-
antimeson pairs without and with closed strangeness correspond to the three blocks of static states of heavy meson pairs in Table I.
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fix order computations. For these states we compute the
contributions of the lowest lying heavy meson pairs without
and with closed strangeness, using the mixing potential
from the lattice data of Ref. [2]. Finally, we work out the
matching of BOEFT with a threshold EFT containing a
quarkonium state, a heavy meson and a heavy antimeson as
effective degrees of freedom with contact interactions, as
used for instance in Refs. [28–36]. We discuss what
expansion is involved and under what conditions it can
be implemented.
We organize the paper as follows. In Sec. II we show

how to incorporate heavy meson pairs into BOEFT and
compute their contribution to the masses and widths of
quarkonium states in perturbation theory. The matching of
the new potentials to NRQCD is discussed in Sec. III. In
Sec. IV we extract the form of the static potentials for
standard quarkonium and the mixing potential with the
lowest lying heavy meson pairs from lattice QCD together
with inputs from perturbation theory. Using these poten-
tials, in Sec. IV E we compute the contributions of the
lowest lying heavy meson thresholds to the quarkonium
masses and decay widths. The matching of BOEFT to the
threshold EFT is examined in Sec. V. Finally, we provide
our conclusions on Sec. VI.

II. HEAVY MESON PAIRS IN BOEFT

To construct the Lagrangian for BOEFT one first
identifies the quantum numbers of the light degrees of
freedom, chiefly the spin κ, parity p and charge conjugation
c, that generate the set of static energies we are interested
in. For the case of heavy meson-antimeson pairs this means
identifying the light-quark states. From the heavy meson
heavy-quark-spin multiplets we can identify the quantum
numbers of the light-quark states. The ground state corre-
sponds to κp ¼ ð1=2Þþ and is followed by two states of
similar mass with κp ¼ ð1=2Þ− and κp ¼ ð3=2Þ−. Each
heavy meson-antimeson pair is characterized by the spin
and parity of the light-quark states forming the two heavy
mesons, which we label as κp1

1 and κp2

2 . Combining the spin
and parity of the light quark and antiquark we arrive to the
allowed total spin, parity and charge conjugation, κpc, of
the light-quarks in Table I. Each of these combinations is
represented as a field in BOEFT.Wewill denote these fields
as Mκpcðt; r;RÞ, with r and R being the relative coordinate
and center of mass of the heavy quarks. One should keep in
mind that the fields Mκpc have spin indices corresponding
to the light-quarks (in the κ representation) and correspond-
ing to the heavy-quarks (in the ð1=2Þ� ⊗ ð1=2Þ represen-
tation). The field Mκpc carries the light-quark flavor
quantum numbers of the heavy meson-antimeson it corre-
sponds, this can be the individual light-quark flavors,
isospin or chiral symmetry representations. Note that in
the latter cases, the field Mκpc would correspond to a sum
of heavy meson-antimeson pairs. The light-quark flavor
quantum numbers do not affect the construction of the

Lagrangian, and to simplify the notation we will not track
them in this section. However, it should be keep it mind
that the parameters and potentials of the heavy meson-
antimeson pair field do depend on the light-quark flavor.
The quarkonium field will be denoted as Ψðt; r;RÞ. The
bilinear terms for both fields can read off Ref. [26], with
quarkonium corresponding to the κpc ¼ 0þþ case:

L ¼ Ψ†½i∂t − hΨ�Ψþ
X
κpc

M†
κpc ½i∂t − hκpc �Mκpc ; ð1Þ

The expansion of the Hamiltonian densities hΨ and hκp up
to 1=mQ is as follows

hx ¼
p2

mQ
þ P2

4mQ
þ Vð0Þ

x ðrÞ þ 1

mQ
Vð1Þ
x ðr; pÞ; x ¼ Ψ; κpc

ð2Þ

with p ¼ −i∇r and P ¼ −i∇R.
The symmetry group of two static heavy quarks is D∞h,

which is a cylindrical symmetry group for rotations along
the r̂ axis. The representations of D∞h are labeled as Λσ

η ,
where Λ is the absolute value of the projection into the
heavy quark-antiquark axis of the spin κ of the light degrees
of freedom and is labeled by capital Greek letters: Σ, Π,
Δ;… corresponding to Λ ¼ 0; 1; 2;…. η is the CP eigen-
value, denoted by g ¼ þ1 and u ¼ −1. Finally, for Λ ¼ 0,
there is a reflection symmetry with respect to a plane
passing through the r̂ axis. The eigenvalues of the corre-
sponding symmetry operator being labeled as σ ¼ �1.
The potential terms in Eq. (2) should be expanded in
representations of D∞h. For quarkonium there is only

TABLE I. Total spin, parity, charge conjugation, and D∞h
representations of the light quark-antiquark pair combinations of
the three lightest light-quark states forming heavy mesons. Each
block of states, separated by a single horizontal line, corresponds
to degenerate or nearly degenerate states.

κp1

1 ⊗ κp1

1 κpc D∞h

ð1=2Þþ ⊗ ð1=2Þþ 0−þ Σ−
u

1−− Σþ
g ;Πg

ð1=2Þþ ⊗ ð1=2Þ− 0þþ Σþ
g

1þ− Σ−
u ;Πu

ð1=2Þþ ⊗ ð3=2Þþ 1−− Σþ
g ;Πg

2−þ Σ−
u ;Πu;Δu

ð1=2Þ− ⊗ ð3=2Þþ 1þ− Σ−
u ;Πu

2þþ Σþ
g ;Πg;Δg

ð1=2Þ− ⊗ ð1=2Þ− 0−þ Σ−
u

1−− Σþ
g ;Πg

ð3=2Þþ ⊗ ð3=2Þþ 0−þ Σ−
u

1−− Σþ
g ;Πg

2−þ Σ−
u ;Πu;Δu

3−− Σþ
g ;Πg;Δg;Φg
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one possible projection, into the Σþ
g representation, and

therefore the corresponding projector is just an identity.
Furthermore, both the leading order and next-to-leading
order potentials are heavy-quark spin independent and
therefore consists of a single potential term.
For the heavy meson pairs all the possible projections for

each κpc state are listed in the third column in Table I. The
static potential between a heavy meson-antimeson pair has
been studied on the lattice in Refs. [2,4–10]. The results
show that the potentials are mostly flat lines at the energy
corresponding to the heavy meson masses except in some
cases in the short-distance limit where the potential is
attractive or repulsive depending on the specific heavy
meson pair. The hidden heavy flavor isospin I ¼ 0 case has
been studied in Refs. [2,3]. As we will discuss in detail in
Sec. IV B, once the mixing with quarkonium is taken into
account, the heavy meson-antimeson static potential is
completely flat for the range of data in Ref. [2]. Therefore,
for this work we will assume that the interaction between
the heavy mesons is negligible. Thus, we set the heavy
meson-antimeson static potential to be the sum of the heavy
meson masses at leading order in the heavy quark mass
expansion minus the origin of energies, which is set at the
heavy quark masses

Vð0Þ
κpcðrÞ ¼ ðΛ̄κpaa þ Λ̄κ

pb
b
Þ1κ; ð3Þ

with 1κ an identity in the light-quark spin-space, and Λ̄κpaa is
related to the heavy meson masses [27] as

mHκp
¼ mQ þ Λ̄κp þOð1=mQÞ: ð4Þ

Notice that, due to this identity all the projections into D∞h
representations of the field Mκpc have degenerate static

potentials. We assume that the subleading potential Vð1Þ
κpc

corresponds to the sum of the spin-dependent Oð1=mQÞ
operators in the Hamiltonian of each heavy meson corre-
sponding toMκpc . This is equivalent to assume that there is
no significant heavy meson-antimeson interaction at this
order either. These spin-dependent operators are the ones
that break the degeneracy between different total spin
heavy meson states.
The results of Table I are valid for any light-quark flavor

content, however, the Λ̄ value does depend on the light-
quark flavor of the heavy mesons and therefore so does the
position of the corresponding static energy on the spectrum
of static energies.
Now let us discuss the mixing terms between quarko-

nium and the heavy meson-antimeson pair. Since the
quarkonium field Ψ inherently belongs to a Λ ¼ 0 repre-
sentation, we should project the heavy meson pair field into
the same representation. This can be achieved with the
projection vector Pκ0 [24,26], which is defined by the
eigenvalue equation

ðr̂ · SκÞPκλ ¼ λPκλ; λ ¼ −κ;…; κ; ð5Þ

with Λ ¼ jλj and Sκ the spin operator for the κ representa-
tion. From textbooks, as for instance Ref. [37], one can find
that

ðPκ0Þα ¼ iκ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2κ þ 1

r
Yκαðr̂Þ; ð6Þ

where Yκαðr̂Þ is a spherical harmonic. Notice, that one can
think of Yκαðr̂Þ as rank κ irreducible tensor made out of
powers of r̂, with α acting as the spin index. For instance,
for κ ¼ 1 the projection vector is just ðP10Þα ¼ ir̂α. The
phase in Eq. (6) is arbitrary and is chosen so the projection
vector transforms under time reversal as a spin-κ irreducible
tensor, see Appendix.
The most general leading order operator containing Ψ

and Mκpc which is invariant under D∞h and Oð3Þ trans-
formations and discrete symmetries is as follows

Lmix ¼ −
Z

d3r
X
κ

Vκ
mixðrÞfðM†

κ��ÞαðPκ0ÞαΨ

þ Ψ†ðP�
κ0ÞαðMκ��Þαg: ð7Þ

Note that summation over repeated spin indices is implicit
throughout the paper. More details on the notation for the
spin indices can be found in Appendix. If we look at
Table I, we can see that there is at least one coupling of each
heavy meson-antimeson pair to quarkonium through the
operators in Eq. (7).
One can check that the Lagrangian in Eq. (7) is the most

general set of leading order mixing operators with the
following argument. The only objects one could add to the
mixing terms in Eq. (7) that do not add a heavy-quark mass
suppression are scalar matrices build out of r̂ and Sκ. As
was shown in Ref. [26] the projectors

ðPκΛÞαα0 ¼
X
λ¼�Λ

ðPκλÞαðP�
κλÞα

0
; ð8Þ

form a basis for these matrices, since

ðr̂ · SκÞ2n ¼
X
Λ
Λ2nPκΛ: ð9Þ

As the projection vectors Pκλ are orthogonal, the form of
Eq. (7) is not altered by adding the projectors PκΛ.
We can compare our operator for the mixing of quarko-

nium to the lowest lying heavy meson-antimeson pair, the
κpc ¼ 1−− term in Eq. (7), with the one in Refs. [17–21]. In
the case of Refs. [17–19] the operator coincides except for
an i factor needed for invariance under timer reversal.
However, the results for the masses and widths should not
be affected by this phase. In the case of Refs. [20,21] the

JAUME TARRÚS CASTELLÀ PHYS. REV. D 106, 094020 (2022)

094020-4



mixing operator does not seem to take into account the
light-quark spin state that couples with quarkonium.
The contribution of the heavy meson-antimeson pair on

the quarkonium masses and widths can be computed in
standard perturbation theory. First, let us define the
following states:

jn; li ¼
Z

dr3dR3ψnlðrÞΨ†ðr;RÞj0i; ð10Þ

with ψnl the wave function solution of the Schrödinger
equation

�
−
∇2
r

mQ
þ Vð0Þ

Ψ ðrÞ
�
ψnlðrÞ ¼ Eð0Þ

nl ψnlðrÞ; ð11Þ

ψnlðrÞ ¼ ϕnlðrÞYlml
ðr̂Þ; ð12Þ

where n is the principal quantum number and lðlþ 1Þ is the
eigenvalue of L2

QQ̄.
For the heavy meson-antimeson pair the wave functions

are plane waves labeled by the relative momentum k. The
partial wave decomposition of the plane wave is as follows:

e−ik·r ¼
X
l

4πi−ljlðkrÞYlml
ðr̂ÞY�

lml
ðk̂Þ; ð13Þ

where jl is a spherical Bessel function. Ignoring the heavy-
quark spin, the total angular momentum of the heavy
meson pair is L ¼ LQQ̄ þ Sκ and the eigenvalue of L2 is
lðlþ 1Þ. A heavy meson pair state with momentum k ¼
jkj and l total angular momentum is given by

jk;l; κi ¼
Z

dr3dR3
Xlþκ

l¼jl−κj
4πi−ljlðkrÞClml

lmlκ−αð−1Þκ−α

× Ylml
ðr̂ÞM†α

κpcðr;RÞj0i; ð14Þ

with C a Clebsch-Gordan coefficient. Recall that all
repeated spin indices are summed. In order for the state
in Eq. (14) to have definite parity the sum over l should be
understood to run only over even or odd values.
Let us compute the expected value of the mixing term

in the Lagrangian in Eq. (7) for the states in Eqs. (10)
and (14).

hn; lj
Z

dr3Ψ†Vκ
mixðP�

κ0ÞαMκαjk;l; κi

¼ 4πi−lδllδmlml

Xlþκ

l0¼jl−κj
aκl

0
nl ðkÞ; ð15Þ

with

aκl
0

nl ðkÞ≡ Cl0l00κ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0 þ 1Þ
ð2lþ 1Þ

s Z
drr2ϕnlðrÞVκ

mixðrÞjl0 ðkrÞ:

ð16Þ

Now, we compute the self-energy contributionZ
dtd3ReiEth0jTfΨðt; r;RÞΨ†ð0; r0;0Þgj0i

¼
X
nl

�
iψnlðrÞψ�

nlðr0Þ
E−Enl

þ iψnlðrÞ
E−Enl

iAnl
iψ�

nlðr0Þ
E−Enl

þ…

�
ð17Þ

where

iAnl ¼ −i
Xlþκ

l0¼jl−κj

4μ

π

Z
dkk2

ðaκl0nl ðkÞÞ2
k2d − k2

; ð18Þ

with k2d ¼ 2μðEn þ 2mQ −mTÞ and μ and mT being the
heavy meson-antimeson pair reduced and total masses,
respectively. The contribution to the quarkonium state mass
corresponds to the real part of Eq. (18)

Eκl0
nl ¼

4μ

π
P
Z

dkk2
ðaκl0nl ðkÞÞ2
k2d − k2

; ð19Þ

where P stands for Cauchy principal value. The contribu-
tion to the width of the quarkonium state is obtained from
the imaginary part of Eq. (18). We obtain

Γκl0
nl ¼ 4μkdðaκl0nl ðkdÞÞ2: ð20Þ

We note that a similar result has been obtained in Ref. [21].1

III. MATCHING TO NRQCD

In this section we obtain Vð0Þ
κpc and Vκ

mix as NRQCD
[38–40] correlators. For a more self-contained discussion
we also reproduce the result for the quarkonium static
potential which was obtained originally in Refs. [41–43].
The matching of the quarkonium 1=mQ suppressed poten-
tial can be found in Ref. [22].
Let us define the following NRQCD operators

OΨðt; r;RÞ ¼ χ†ðt; x2Þϕðt; x2; x1Þψðt; x1Þ; ð21Þ

Oκpcαðt; r;RÞ ¼ Cκακ2α2κ1−α1ð−1Þκ1þα1 ½χ†ðt;x2ÞðQκ
p2
2
ðt;x2ÞÞα2 �

× ½ðQ̄†
κ
p1
1

ðt;x1ÞÞα1ψðt;x1Þ�; ð22Þ

with ψ a Pauli spinor field that annihilates a heavy quark
and χ the one that creates a heavy antiquark. The operators

1The expression of the width in Eq. (26) of Ref. [21] seems to
be missing a μ factor.
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Qκp contain the light-quark fields. For κp¼ð1=2Þþ;ð1=2Þ−,
and ð3=2Þþ light-quark states, suitable operators are as
follows:

Qð1=2Þþαðt; xÞ ¼ ½Pþqðt; xÞ�α; ð23Þ

Qð1=2Þ−αðt; xÞ ¼ ½Pþγ5qðt; xÞ�α; ð24Þ

Qð3=2Þ−αðt; xÞ ¼ C3=2α1m1=2β½ðe†m · DÞðPþγ5qðt; xÞÞβ�; ð25Þ

with qðt; xÞ a light-quark Dirac field. The Q̄κp operators are
obtained replacing Pþ by P− in Eqs. (23)–(25). Details on
the construction of irreducible tensor products, such as the
one in Eq. (22), can be found in Appendix. The Wilson line
ϕ is defined as

ϕðt; x; yÞ ¼ P
n
eig

R
1

0
dsðx−yÞ·Aðt;yþsðx−yÞÞ

o
; ð26Þ

where P is the path-ordering operator.
The operators in Eqs. (21) and (22) interpolate for the

quarkonium and heavy meson pair fields, respectively. The
matching condition from NRQCD to BOEFT reads as

OΨðt; r;RÞ ≅
ffiffiffiffiffiffi
ZΨ

p
Ψðt; r;RÞ; ð27Þ

Oκpcαðt; r;RÞ ≅
ffiffiffiffiffiffiffiffi
Zκpc

p
Mκpcαðt; r;RÞ: ð28Þ

The normalization factors are in general functions of
Z ¼ Zðr; pÞ. The light-quark flavor quantum numbers must
match in both sides of Eq. (28), thereforeMκpc corresponds
to a single heavy meson-antimeson pair. For Mκpc fields
belonging to isospin or chiral symmetry representations
one should just consider the appropriate sums over the
light-quark flavor in the left-hand side of Eq. (28).
Since quarkonium and heavy meson-antimeson pairs

mix at leading order one could argue that these states are
not the appropriate ones to describe the system and that one
should work with a basis of states that diagonalize the
Hamiltonian at leading order. However, we know from
experience that quarkonium and heavy meson-antimeson
pairs are useful states to describe the heavy quark-antiquark
spectrum. Therefore, there must be some regime of r in
which the mixing can be treated as a perturbation. Thus, let

us first assume that the strings in Eqs. (21) and (22) overlap
with well-separated NRQCD static eigenstates. Let us
match the NRQCD and BOEFT correlators:

h0jTfOΨðt=2; r;RÞO†
Ψð−t=2; r0;R0Þgj0i

¼
ffiffiffiffiffiffi
ZΨ

p
h0jTfΨðt=2; r;RÞΨ†ð−t=2; r0;R0Þgj0i

ffiffiffiffiffiffi
Z†
Ψ

q
; ð29Þ

h0jTfOκpcαðt=2; r;RÞO†α0
κpcð−t=2; r0;R0Þgj0i

¼
ffiffiffiffiffiffiffiffi
Zκpc

p
h0jTfMκpcαðt=2; r;RÞM†α0

κpcð−t=2; r0;R0Þgj0i

×
ffiffiffiffiffiffiffiffi
Z†
κpc

q
; ð30Þ

h0jTfOκpcαðt=2; r;RÞO†
Ψð−t=2; r0;R0Þgj0i

¼
ffiffiffiffiffiffiffiffi
Zκpc

p
h0jTfMκpcαðt=2; r;RÞΨ†ð−t=2; r0;R0Þgj0i

ffiffiffiffiffiffi
Z†
Ψ

q
:

ð31Þ

We contract the heavy-quark fields in the correlators of
the right-hand side of Eqs. (29)–(31) and define the
following objects

W□ ¼ hϕC1i; ð32Þ

ðWκ¼Þαα0 ¼Cκακ2α2κ1−α1ð−1Þκ1þα1Cκα
0

κ2α
0
2
κ1−α01

ð−1Þκ1þα0
1

×hðQ̄†
κ
p1
1

ðt=2;x1ÞÞα1ϕC2ðQ̄κ
p1
1
ð−t=2;x2ÞÞα0

1

×ðQ†
κ
p2
2

ð−t=2;x1ÞÞα02ϕC3ðQκ
p2
2
ðt=2;x1ÞÞα2i; ð33Þ

ðWκ⊏Þα ¼ Cκακ2α2κ1−α1ð−1Þκ1þα1hðQ̄†
κ
p1
1

ðt=2; x1ÞÞα1ϕC4

× ðQκ
p2
2
ðt=2; x2ÞÞα2i; ð34Þ

with ϕC being a Wilson line along the path C

ϕC ¼ Pfe−ig
R
C
dzμAμðzÞg; ð35Þ

with the paths Ci, i ¼ 1;…; 4 defined in Fig. 2. The right-
hand sides of Eqs. (32)–(34) are the traces of a product of
color matrices and Eq. (32) is a static Wilson loop.

FIG. 2. Wilson line paths appearing in Eqs. (32)–(34). The bold line represent the paths while the black dots stand for the light-quark
operators.
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The right-hand side of Eqs. (29)–(31) is computed from
the BOEFT Lagrangian in Eqs. (1) and (2) and together
with Eqs. (32)–(34) we arrive at

Vð0Þ
Ψ ¼ lim

t→∞

i
t
lnðW□Þ; ð36Þ

Vð0Þ
κpcΛ ¼ lim

t→∞

i
t
ln ðTr½PκΛWκ¼�Þ; ð37Þ

where the trace acts on the light-quark spin space and the
projectors PκΛ are defined in Eq. (8). The mixing potential
reads as

Vκ
mixðrÞ¼ lim

t→∞

i
t

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W□Tr½Pκ0Wκ¼�

p
×

lnð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W□=Tr½Pκ0Wκ¼�

p Þ
sinhðln ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W□=Tr½Pκ0Wκ¼�
p ÞðP

�
κ0ÞαðWκ⊏Þα: ð38Þ

Now we consider the case when the strings in Eqs. (21)
and (22) overlap with two static states of similar energy

OΨðr;RÞj0i ¼
X
i¼1;2

aΨi ðx1; x2Þji;Σþ
g ; x1; x2ið0Þ; ð39Þ

ðP�
κ0ÞαOκpcαðr;RÞj0i ¼

X
i¼1;2

aκ
pc

i ðx1; x2Þji;Σþ
g ; x1; x2ið0Þ;

ð40Þ

with ji;Σþ
g ; x1; x2ið0Þ being eigenstates2 of the NRQCD

Hamiltonian in the static limit, Hð0Þ, with energies Eð0Þ
iΣþ

g

Hð0Þji;Σþ
g ; x1; x2i ¼ Eð0Þ

iΣþ
g
ðrÞji;Σþ

g ; x1; x2i: ð41Þ

The coefficients axi ðx1; x2Þ, are the overlaps of the string
x ¼ Ψ; κpc with the static state i.
The BOEFT potentials for Ψ and ðP�

κ0ÞαMκpcα can be
arranged as matrix

V ¼
�
Vð0Þ
Ψ Vκ

mix

Vκ
mix Vð0Þ

κpc0

�
; ð42Þ

with Vð0Þ
κpc0 ¼ Tr½Pκ0V

ð0Þ
κpc �. The matrix

R ¼
�
cos θ − sin θ

sin θ cos θ

�
ð43Þ

diagonalizes the BOEFT potential matrix in terms of the
mixing angle θ ¼ θðrÞ

R†VR ¼
�V1Σþ

g
0

0 V2Σþ
g

�
: ð44Þ

The potentials from Eqs. (42) and (44) are related as
follows

Vð0Þ
Ψ ¼ cos θ2V1Σþ

g
þ sin θ2V2Σþ

g
; ð45Þ

Vð0Þ
κpc ¼ sin θ2V1Σþ

g
þ cos θ2V2Σþ

g
; ð46Þ

Vκ
mix ¼ sin θ cos θðV1Σþ

g
− V2Σþ

g
Þ: ð47Þ

Now we set the following matching condition

j1;Σþ
g i ≅ ðcos θΨþ sin θðP�

l0ÞαMκpcαÞj0i; ð48Þ

j2;Σþ
g i ≅ ð− sin θΨþ cos θðP�

l0ÞαMκpcαÞj0i; ð49Þ

i.e., we match the NRQCD static eigenstates to the BOEFT
eigenstates resulting from diagonalizing the potential
matrix in Eq. (44). From the matching condition in
Eqs. (48) and (49) follows that

Eð0Þ
1Σþ

g
¼ V1Σþ

g
; Eð0Þ

2Σþ
g
¼ V2Σþ

g
: ð50Þ

To obtain the NRQCD overlap factors axi in terms of
BOEFT quantities we bracket Eqs. (39) and (40) with the
static states on both sides of the equations. Then the
remaining bracket in the left-hand side is obtained using
Eqs. (48) and (49) and Eqs. (27) and (28). We find

aΨ1 ¼
ffiffiffiffiffiffi
ZΨ

p
cos θ; aΨ2 ¼ −

ffiffiffiffiffiffi
ZΨ

p
sin θ; ð51Þ

aκ
pc

1 ¼
ffiffiffiffiffiffiffiffi
Zκpc

p
sin θ; aκ

pc

2 ¼
ffiffiffiffiffiffiffiffi
Zκpc

p
cos θ: ð52Þ

Inserting the expansion into static eigenstates in
Eqs. (39) and (40) into the correlators in left-hand side
of Eqs. (29) and (31) and using Eqs. (50)–(52), we arrive at
the following expressions

W□ ¼ ZΨðcos θ2e
−itV

1Σþg þ sin θ2e
−itV

2Σþg Þ; ð53Þ

Tr½Pκ0Wκ¼� ¼ Zκpcðsin θ2e
−itV

1Σþg þ cos θ2e
−itV

2Σþg Þ ð54Þ

ðP�
l0ÞαðWl⊏Þα ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZΨZκpc

p
sin θ cos θðe−itV1Σþg − e

−itV
2Σþg Þ:
ð55Þ

If, using a nonperturbative technique, the left-hand side of
Eqs. (53)–(55) is computed, then one can use the para-
metrization of the right-hand side to fit the data and obtain
V1Σþ

g
, V2Σþ

g
, and θ as has been done in Ref. [2].2See Ref. [22] for detailed definitions.
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Finally, inverting Eqs. (45)–(47) we find

θ ¼ 1

2
arctan

2Vl
mix

Vð0Þ
Ψ − Vð0Þ

κpc

; ð56Þ

V1Σþ
g
¼ 1

2

�
Vð0Þ
Ψ þ Vð0Þ

κpc −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðVl

mixÞ2 þ ðVð0Þ
κpc − Vð0Þ

Ψ Þ2
q �

;

ð57Þ

V2Σþ
g
¼ 1

2

�
Vð0Þ
Ψ þ Vð0Þ

κpc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðVl

mixÞ2 þ ðVð0Þ
κpc − Vð0Þ

Ψ Þ2
q �

:

ð58Þ

If we expand Eqs. (56)–(58) for 2Vl
mix ≪ jVð0Þ

κpc − Vð0Þ
Ψ j and

use the result in Eqs. (53)–(55) we recover the matching
expression of the first part of this section in Eqs. (45)–(47)
for the case of well separated static energies. Therefore the
mixing can be considered as a perturbation for mixing
angles close to 0 or π=2, corresponding to the condi-

tion 2Vl
mix ≪ jVð0Þ

κpc − Vð0Þ
Ψ j.

IV. COMPUTATION OF THE QUARKONIUM
SPECTRA

In this section we compute the charmonium and botto-
monium spectra and wave functions and use these results
to compute the contribution of the lowest lying heavy
meson-antimeson pair, corresponding to the κpc ¼ 1−−

state in Table I, without and with closed strangeness to
the quarkonium states masses and widths. For these two
heavy meson-antimeson pairs there is available lattice data
for the mixing potential from Ref. [2]. To improve the
overall accuracy in the determination of the quarkonium
spectra in the threshold region and since the heavy meson
threshold contributions are sensitive to the energy gap
between a quarkonium state and the threshold we compute
it up to Oð1=mQÞ accuracy.

A. RS’ scheme

The quarkonium spectrum at leading order is obtained by
solving the Schrödinger equation in Eq. (11), for which a
heavy-quark (pole) mass, mQ, value must be specified. The
second input for the Schrödinger equation is the static

potential, Vð0Þ
Ψ . Both these objects suffer from renormalon

ambiguities when computed in perturbation theory [44].
The total energy of a quarkonium system is a physical
observable and therefore must be free of these ambiguities.
At leading order the total energy is given by E ¼
2mQ þ Vð0Þ

Ψ , hence the renormalon ambiguities of the
heavy quark mass and the static potential cancel each
other. Therefore, it is convenient to work in a scheme in
which the renormalons are subtracted from these two
quantities. We use the modified renormalon subtraction

scheme (RS’) of Ref. [45]. The subtracted heavy-quark
mass and the static potential are defined as follows:

mQ ¼ mRS0
Q ðνfÞ þ δmRS0

Q ðνfÞ; ð59Þ

Vð0Þ
Ψðp:tÞ ¼ Vð0Þ

RS0 ðνfÞ − 2δmRS0
Q ðνfÞ: ð60Þ

All the quantities must be computed to the same order in αs
and at the same renormalon subtraction scale νf. We use the
expressions up to Oðα4sÞ that can be found in Ref. [46]. We
work with νf ¼ 0.7 GeV and take the heavy quark mass
valuesmRS0

c ¼ 1.592ð41Þ GeV andmRS0
b ¼ 4.949ð41Þ GeV

determined in Ref. [47] and the normalization of the
renormalon Nm ¼ 0.5626ð260Þ from Ref. [48]. The values
of αs in the MS scheme are obtained using RunDec at
4-loop accuracy [49,50].

B. Static potentials

In Ref. [2] the static energies of the heavy quark-
antiquark pair coupled to a heavy meson-antimeson pair
were studied using lattice QCD. The lattice computation
was done with nf ¼ 2 degenerate light quarks with masses
corresponding to an unphysical pion mass ≈640 MeV and
a lattice spacing a−1 ≈ 2.37 GeV. Using the data for the
ground and first excited states as well as the mixing angle in
Eqs. (45)–(46) one can obtain the lattice determination of
the quarkonium static potential and the quarkonium-heavy-
meson pair mixing potential. Similarly in Ref. [3] the static
energies were studied in nf ¼ 2þ 1 light-quarks and in
addition to the states of Ref. [2] the first strange heavy
meson-antimeson-pair was included. Unfortunately, in
Ref. [3] the mixing angles are not available and the static
potentials cannot be extracted without heavy modeling. We
show the original data of Ref. [2] in Fig. 3 and data
transformed with Eqs. (45) and (46) in Fig. 4. It is
interesting to note that the small bump in the first excited
state (yellow triangles in Fig. 3), which in the range of r
where the bump occurs is dominated by the heavy meson-
antimeson component, disappears in the transformed data
for the heavy meson-antimeson static potential (yellow
triangles in Fig. 4). This seems to indicate that the short-
distance heavy meson-antimeson interaction is a result of
the mixing with quarkonium. Therefore, since the trans-
formed data for the heavy meson-antimeson static potential
is completely flat, our choice for the heavy meson-
antimeson static potential in Eq. (3) is consistent with
the lattice data. Furthermore, the plot of the data for the
mixing angle in the right-hand side of Fig. 3 shows that the
mixing angle is close to 0 or π=2 except for a narrow region
between r ∼ 1.2–1.3 fm around the string breaking dis-
tance. Therefore, the mixing potential can be considered a
perturbation for most of the range of r.
In the following we focus on finding a parametrization of

the quarkonium static potential. The quarkonium potential
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to be used in the Schrödinger equation is constructed
combining the short-distance perturbative expression with
the long-distance lattice data. For distances r ≤ 1 GeV−1

the static potential is set to the perturbative expression in
the RS’ scheme. The convergence of the r-dependence of
the perturbative potential is poor at short distances if the
renormalization scale is fixed [51] due to the presence of
large logarithms. If we set ν ∼ 1=r the large logarithms
associated with the soft scale are resummed into the
running of αsðνÞ and the convergence is improved.
Specifically, we set ν ¼ 2=r.

For distances r > 1 GeV−1 the static potential is set to a
fit of the lattice data. We parametrize the lattice data with
the following function:

Vð0Þ
L ðrÞ ¼ b1

r
þ b2r
b3rþ 1

þ b4 þ σr; ð61Þ

where the linear coefficient is fixed to σ ¼ 0.21 GeV2 to
reproduce the long-range behavior found in Ref. [52]. We
constrain the parameters so that the slope at the matching
point rm ¼ 1 GeV−1 is equal to that of the perturbative
potential. The rest of parameters are obtained by fitting the
lattice data, we find

b1 ¼ 0.619; ð62Þ

b2 ¼ −1.774 GeV2; ð63Þ

b3 ¼ 1.546 GeV; ð64Þ

b4 ¼ −0.183 GeV: ð65Þ

Due to possible powerlike divergences in the lattice
computations the normalization of the lattice data is

unknown. This ambiguity is removed by shifting Vð0Þ
L by

a constant chosen to ensure that at the matching point
the shifted lattice parametrization is continuous with the
perturbative potential. Finally, the static potential we use in
the Schrödinger equation reads as

Vð0Þ
Ψ ðrÞ ¼ Vð0Þ

RS0 ðνf ¼ 0.7; ν ¼ 2=r; rÞθðrm − rÞ
þ ðVð0Þ

L ðrÞ þ δEoffsetÞθðr − rmÞ; ð66Þ

with δEoffset ¼ 0.741 GeV. We plot Eq. (66) in Fig. 4.
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FIG. 3. Plot of the lattice data of Ref. [2]. In the left-hand side we plot the data for the ground and first excited static energies in the
quarkonium sector. The open blue circles and the open yellow triangles correspond to the ground and first excited states respectively.
Note that, in Ref. [2] the origin of energies is set at the energy of the heavy meson pair for the largest r computed. In the right-hand side
we plot the data for the mixing angle.
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FIG. 4. Plot of the static potentials. The blue open circles and
the yellow triangles correspond to the lattice data of Ref. [2]
transformed into the quarkonium and heavy meson static poten-
tials using Eqs. (45) and (46), respectively. The lines correspond
to our parametrization of the quarkonium static potential. The
dashed orange line is the perturbative potential, shifted by δEoffset
to match the scale of the lattice data, plotted up to the matching
point rm. The continuous red line is the expression in Eq. (61)
fitted to the lattice data plotted from the matching point onward.
The full potential formed by the orange and red lines corresponds
to Eq. (66). Note that, in Ref. [2] the origin of energies is set at the
energy of the heavy meson pair for the largest r computed.
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C. Mixing potential

The lattice determination of the mixing potential is
obtained using Eq. (47) and the data of Ref. [2]. Since
the mixing potential is proportional to the difference
between the ground and first excited states it is not affected
by the ambiguity in the normalization of the energies of the
lattice computation.
To parametrize the mixing potential we use a function

that interpolates between the short- and long-distance
behaviors as introduced in Ref. [53]. For distances r ≪
1=ΛQCD the relative momentum between the heavy quarks
can be integrated out and the quarkonium-heavy-meson
pair mixing can be studied in weakly coupled pNRQCD
[54,55]. In this regime the heavy-quark fields can be
decomposed into color-singlet and color-octet fields. At
leading order in the multipole expansion the quarkonium
states overlap with the singlet field while the heavy
meson pair states can in principle overlap with both.
The transition between the quarkonium state and the octet
piece of the heavy meson pair is generated at leading order
by a chromoelectric dipolar operator. The r factor in
this operator provides the correct dependence on r̂ of the
mixing operator for κpc ¼ 1−− in Eq. (7) and produces a
linear dependence of the mixing potential at leading order.
Furthermore, the chromoelectric operator has the right
quantum numbers to create the light-quark content of the
heavy-meson pair. The second contribution corresponds
to the overlap of the quarkonium state with the singlet piece
of the heavy-meson pair. In this case the leading order
transition is generated by three dipolar operators, therefore
this contribution to the mixing potential has a r3 depend-
ence at leading order. This second contribution is in
principle suppressed respect to the first one in the multipole
expansion, however the size of the overlaps of the heavy
meson pair state with the singlet and octet fields are
unknown. For this reason we keep both contributions in
our short-distance description of the mixing potential

Vðs:d:Þ
mix ðrÞ ¼ c1rþ c2r3: ð67Þ

For distances r ≫ 1=ΛQCD the mixing potential can be
expanded in powers of 1=ðΛQCDrÞn. If we assume that the
mixing potential vanishes in the r → ∞ limit then only
n ≥ 0 is allowed. By fitting the data with r > 1 fm we find
that the long-distance part is well described by

Vðl:d:Þ
mix ðrÞ ¼ c3

r3
: ð68Þ

We construct the interpolation by summing the short- and
long-distance descriptions multiplied by interpolating func-
tions depending on r and a new r0 parameter. The
interpolating functions are ws ¼ ðr0=ðrþ r0ÞÞn and wl ¼
ðr=ðrþ r0ÞÞn for the short- and long-distance pieces,
respectively. The r0 parameter determines the value of r

where both interpolating functions are equal. We pick r0 ¼
0.25 fm as it is a reasonable point for the breakdown of
the multipole expansion. The full parametrization of the
potential is as follows

VL
mixðrÞ ¼ wsðrÞVðs:d:Þ

mix ðrÞ þ wlðrÞVðl:d:Þ
mix ðrÞ: ð69Þ

The value of n is set to the smallest value that the short- and
long-distance potentials dominate in their respective limits,
which in this case is n ¼ 7. The rest of the parameters are
fitted to the lattice data, we find

c1 ¼ −0.723 GeV2; ð70Þ

c2 ¼ −15.251 GeV4; ð71Þ

c3 ¼ −13.991 GeV−2: ð72Þ

It is interesting that the value of c2 is not as suppressed with
respect to the one of c1 as one would expect from the
pNRQCD counting which might indicate that the heavy
meson pair has a larger overlap with the singlet field than
the octet one in the short-distance regime. This is consistent
with the slightly attractive behavior of the first excited static
state (in yellow triangles in Fig. 3) in the first few short-
distance data points.3 In Fig. 5 we plot the lattice data for
the mixing potential and the parametrization in Eq. (69).
The normalization of the mixing operator in Ref. [2] and

ours in the Lagrangian in Eq. (7) for κ ¼ 1 coincide,
however the heavy meson-antimeson pair interpolating
operator is isospin I ¼ 0 unlike ours, in Eq. (22), which
corresponds to a single light-quark flavor. In other words,
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FIG. 5. Quarkonium-heavy meson pair mixing potential. The
blue open circles correspond to the lattice data of Ref. [2]
transformed into the mixing potential using Eq. (47). The red
line corresponds to the parametrization in Eq. (69) fitted to
the lattice data.

3In Ref. [2] the attractive nature of the short-distance data of
the first excited static state was already linked with a dominating
overlap with a heavy quark-antiquark singlet state.
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the heavy meson-antimeson pair operator in Ref. [2]
interpolates for a field in BOEFT corresponding to the
normalized sum of the charged and neutral heavy meson-
antimeson pairs. Since the two lattice light quarks are
degenerate we have

V1
mixðrÞ ¼

1ffiffiffi
2

p VL
mixðrÞ: ð73Þ

We will use this mixing potential for all three light-quark
flavors, which is an approximation. However, the light-
quark mass used in Ref. [2] is in fact closer to the strange
mass than the up or down masses, therefore it can be
expected that the approximation produces more accurate
results for pairs of heavy mesons with strangeness.
In Ref. [3] the static energy spectrum of quarkonium

coupled to heavy meson pairs without and with strangeness
was obtained in lattice QCD for distances between r ∼
0.25 fm and r ∼ 1.6 fm. Since the mixing angles were
not given the mixing potentials can only be extracted
by assuming specific forms of the quarkonium and heavy
meson pair static potentials. Assuming a Cornell type
potential for the former and a constant for the latter one
can fit the mixing potential. Since only the long-distance
regime is available we fitted mixing potentials ∼r−1, ∼r−3
and a constant, the latter being the choice in Ref. [3]
analysis. In all three cases the fits were of similar quality.
Therefore, we conclude that a reliable estimation of the
mixing potentials from the data of Ref. [3] is not possible.
The mixing potential has been extracted from the lattice

data of Ref. [2] in Refs. [17–19]. However a different
procedure was followed. It was argued that the heavy-
meson pair to heavy-meson pair correlator of Ref. [2],
interpolates not only for the Σþ

g representation but also for
Πg and Σ−

u representations. As a result the authors of
Refs. [17–19] argue that lattice data should be fitted with a
parametrization that takes into account these extra states in
the meson pair to meson pair correlator. Lets us note, that
fits to the correlators with extra states where also consid-
ered in Ref. [2] but where found not to describe the data
well. Since the original data on the correlators of Ref. [2] is
not available, the authors of Refs. [17–19] resample the
lattice correlators using the original parametrization and
then fit this resampled data with their parametrization
containing the extra states. While we agree on the initial
point about the extra states in the meson pair to meson pair
correlator, we do not think the resampled data can contain
information on these extra states as it was produced from
the original parametrization. The quarkonium static poten-
tial obtained from the resampled data can be found in Fig. 3
of Ref. [17]. If we compare it to the one we obtain, in Fig. 4,
it can be observed that the shapes are notably different. In
our determination, the shape of the static potential is closer
to previous lattice determinations of the static potential that
did not include the mixing with the threshold, which is the

behavior expected away from the string breaking distance
as we discussed at the end of Sec. III. A possible
explanation for the extra states in the meson pair to meson
pair correlator of Ref. [2] not showing up in their fits is that
the extra states are degenerate with the Σþ

g one, as we do in
the Lagrangian in Eq. (3). Therefore, in our opinion the
most appropriate way of extracting the static and mixing
potentials is to use the two state parametrizations of the
lattice correlators. We hope that in the future new lattice
studies clarify this issue.
In Refs. [20,21] a model for the mixing potential is

used. This consists of a Gaussian shape with the maximum
at the string breaking distance, i.e., the value of r when

Vð0Þ
Ψ ðrs:b:Þ ¼ Vð0Þ

1−−0ðrs:b:Þ. Comparing with the mixing
potential extracted from the lattice data in Fig. 5 we can
see that the model misses important features. The maxi-
mum of the mixing potential occurs at r ∼ 0.25 fm instead
of the string breaking distance and as a result the overall
shape is different. Moreover, as the value of the mixing
potential at the string breaking distance must be equal to
half the avoided crossing separation,4 the maximum value
of the model mixing potential of Refs. [20,21] is much
smaller than the one of the potential extracted from the
lattice data.

D. 1=mQ quarkonium potential

To improve the accuracy in the determination of the
quarkonium spectrum we compute the contribution of the
1=mQ suppressed potential [22] using standard time inde-
pendent perturbation theory. To obtain an expression for
this potential we follow an analogous approach to the one
in Sec. IV B for the static potential. We construct the
potential by combining the short-distance perturbative
expression with the available lattice data for long-distances.
We use the leading order perturbative result from Ref. [56].
It reads as

Vð1Þ
p:t:ðrÞ ¼ −

α2sðνÞCACF

4r2
: ð74Þ

Notice, that the form of the potential depends on the
matching scheme. We use the expression for the Wilson
loop matching scheme in accordance with the rest of the
paper. As in the static potential, we resumme large soft logs
by setting ν ¼ 2=r.
The 1=mQ suppressed quarkonium potential has been

studied in the lattice in Refs. [57–59]. We use two datasets
with simulation parameters β ¼ 5.85, a ¼ 0.123 fm and
β ¼ 6.00, a ¼ 0.093 fm in the quenched approximation.
The lattice data is plotted in Fig. 6. To parametrize the
lattice data we use the following function

4The avoided crossing distance is ðVð0Þ
2Σþ

g
ðrs:b:Þ − Vð0Þ

1Σþ
g
ðrs:b:ÞÞ.
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Vð1Þ
L ¼ −

d1
r2

þ d2r
d3rþ 1

þ d4 þ σ1 log r; ð75Þ

which interpolates between the dependence on r−2 from the
perturbative expression in Eq. (74) and the log r depend-
ence obtained from effective string theory [52,53,60–64].5
The parameters of Eq. (75) are constrained to reproduce
the slope of the perturbative potential at the matching point
rm ¼ 1 GeV−1, the rest of the parameters are fitted to the
lattice data. The values we obtained are as follows:

d1 ¼ 0.114; ð76Þ

d2 ¼ −7.704 GeV3; ð77Þ

d3 ¼ 5.823 GeV; ð78Þ

d4 ¼ 1.149 GeV2; ð79Þ

σ1 ¼ 0.129 GeV2: ð80Þ

The ambiguity in the normalization of the lattice data is

removed by shifting Vð1Þ
L so that the value at the matching

point is equal to that of the perturbative expression in Eq. (74).
The full expression of the 1=mQ suppressed potential is

Vð1Þ
Ψ ðrÞ ¼ Vð1Þ

p:t:ðrÞθðrm − rÞ þ ðVð1Þ
L ðrÞ þ δEð1Þ

offsetÞθðr− rmÞ;
ð81Þ

with δEð1Þ
offset ¼ −0.088 GeV. In Fig. 6 we plot the potential in

Eq. (81). We should note that the value of δEð1Þ
offset depends

noticeably on the specific matching point rm and the order at
which we take the perturbative potential in Eq. (74). This is a
result of the lack of lattice data at shorter distances and the

possible existence of renormalon ambiguities in Vð1Þ
p:t:ðrÞ.

E. Numerical results

We solve numerically the Schrödinger equation for the
quarkonium static potential in Eq. (66)

	
−
∇2

mQ
þ Vð0Þ

Ψ ðrÞ


ΨnlðrÞ ¼ Eð0Þ

nl ΨnlðrÞ; ð82Þ

obtaining the wave functions Ψnl and eigenenergies Eð0Þ
nl ,

with n and l the principal and angular quantum numbers of
the quarkonium state, respectively. Using the wave func-
tions we compute the contribution of the 1=mQ suppressed
potential in Eq. (81) in standard quantum mechanical
perturbation theory.

Eð1Þ
nl ¼

Z
d3rΨ�

nlðrÞVð1Þ
Ψ ðrÞΨnlðrÞ ð83Þ

The results for Eð0Þ
nl and Eð1Þ

nl can be found in Tables II–IV
for bottomonium states and Tables V–VII for charmonium
states. The uncertainties in these two quantities are esti-
mated by their difference when changing the matching
point between the perturbative expressions and the lattice
data fits from rm ¼ 1 GeV−1 to rm ¼ 0.66 GeV−1.
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0.20
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FIG. 6. Plot of the 1=mQ-suppressed quarkonium potential
given in Eq. (81) with parameters fitted as described in the text.
The orange dashed line corresponds to the perturbative part in
Eq. (74) while the red continuous line corresponds to the
parametrization of the lattice data in Eq. (75). The blue circles
and green triangles corresponds to the lattice data with lattice
coupling β ¼ 5.85 and β ¼ 6.00, respectively, from Refs. [57,58].

TABLE II. Spectrum of S-wave bottomonium states. All entries
in MeV.

n Eð0Þ
nS Eð1Þ

nS EqP
nS EsP

nS MnS

1 −291ð7Þ −54ð1Þ −42ð2Þ −19ð1Þ 9491(90)
2 168(7) −28ð2Þ −27ð2Þ −11ð1Þ 9999(90)
3 492(8) −20ð2Þ −21ð2Þ −8ð1Þ 10341(90)
4 767(9) −15ð1Þ −19ð6Þ −7ð1Þ 10623(90)
5 1015(11) −11ð1Þ −15ð3Þ −6ð1Þ 10881(90)
6 1244(12) −8ð1Þ −15ð5Þ −5ð1Þ 11114(90)

TABLE III. Spectrum of P-wave bottomonium states. All
entries in MeV.

n Eð0Þ
nP Eð1Þ

nP EqS
nP EsS

nP EqD
nP EqD

nP MnP

1 59(10) −21ð2Þ −22ð2Þ −9ð1Þ −27ð2Þ −12ð1Þ 9867(90)
2 389(8) −14ð2Þ −15ð2Þ −6ð1Þ −16ð2Þ −6.8ð5Þ 10229(90)
3 671(9) −10ð2Þ −13ð4Þ −5ð1Þ −14ð3Þ −5.1ð4Þ 10522(90)
4 924(10) −7ð1Þ −10ð4Þ −5ð1Þ −9ð2Þ −5ð1Þ 10786(90)
5 1156(11) −4ð2Þ −10ð3Þ −3ð1Þ −8ð2Þ −3.1ð5Þ 11026(90)
6 1375(13) −2ð1Þ −10ð2Þ −3ð1Þ −8ð2Þ −2.9ð4Þ 11246(90)

5Effective string theory is successful dynamical model for the
long-distance regime (i.e., r ≫ 1=ΛQCD) and provides expres-
sions for the quarkonium potentials in powers of ΛQCD=r in
accordance to our argument for the mixing potential in Sec. IV C.
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At the order we are working, isospin and heavy-quark
spin contributions can be neglected, thus we use heavy
meson masses reflecting these approximations. The values
of the heavy meson masses are obtained by first computing
the average of the neutral and charge states, when both
are available, and then the spin average of the scalar and
vector states. For strange heavy mesons only the last step is
necessary. The masses of the physical heavy meson states
are taken from the PDG [65]. We find

mD ¼ 1.97322 GeV; ð84Þ

mB ¼ 5.3134 GeV; ð85Þ

mDs
¼ 2.0762 GeV; ð86Þ

mBs
¼ 5.4033 GeV: ð87Þ

The heavy meson-antimeson pair contributions to the
quarkonium masses are computed using Eq. (19). For this
computation we take the quarkonium binding energy up to
next-to-leading order. Since the results in this section are all
for heavy meson-antimeson pairs with κpc ¼ 1−− we will
drop this label. On the other hand, since we will compute the
contributions for heavy mesons without and with strange-
ness we will add a label f indicating the light-quark flavor.
We use f ¼ q to denote the sum of the neutral and charged
heavy meson-antimeson pair contributions. These two con-
tributions are equal in the isospin limit. To denote the
contributions of heavy mesons pairs with closed strangeness
we use f ¼ s. The vertex form factor al

0
nlðkÞ is computed

numerically from the expression in Eq. (16) using the wave
functions form solving Eq. (82) and the mixing potential in
Eq. (73). We sample it for a range of k from 0 GeV to 6 GeV
at 10 MeV intervals. A linear interpolation of this data is then
used to compute the mass contribution in Eq. (19). The

uncertainty of Efl0
nl is estimated as follows. The uncertainty of

k2d is obtained by combining in quadrature the uncertainties of

Eð0Þ
nl , E

ð1Þ
nl , m

RS0
Q and the size of higher order contributions

OðΛ2
QCD=m

2
cÞ ∼ 40 MeV, OðΛ2

QCD=m
2
bÞ ∼ 4 MeV. The

mass contribution is computed for a randomGaussian sample
of k2d with the standard deviation set to its uncertainty. The

average and standard deviation of the set of results forEfl0
nl are

taken as our central value and its uncertainty, respectively.
The contributions of the heavy meson pairs to the quarko-
nium spectrum is displayed in Tables II–IV for bottomonium
and Tables V–VII for charmonium.
The total masses of the quarkonium states are obtained as

Mnl ¼ 2mðRS0Þ
Q þ Eð0Þ

nl þ Eð1Þ
nl þ

X
f¼q;s

Xlþ1

l0¼jl−1j
Efl0
nl : ð88Þ

The uncertainty ofMnl is obtained by adding in quadrature
the uncertainties of each term in Eq. (88).
Our result show the contribution of these two thresholds

to the quarkonium masses is comparable to that of the
1=mQ suppressed potential. Contrary to what it could be
expected intuitively, the contribution of the thresholds is
larger for the lower lying quarkonium states that the excited
ones. The underlying reason is in the shape on the mixing
potential (see Fig. 5) which peaks, in absolute value, at
r ∼ 0.25 fm, while the excited states wave functions extend
to far longer ranges.

TABLE IV. Spectrum of D-wave bottomonium states. All
entries in MeV.

n Eð0Þ
nD Eð1Þ

nD EqP
nD EsP

nD MnD

1 274(8) −14ð2Þ −18ð2Þ −7ð1Þ 10133(90)
2 565(9) −10ð1Þ −17ð3Þ −6ð1Þ 1043(90)
3 824(10) −6ð2Þ −15ð5Þ −5ð1Þ 10696(90)
4 1062(12) −3ð2Þ −15ð4Þ −5ð1Þ 10937(90)
5 1284(13) −1ð2Þ −15ð3Þ −5ð1Þ 11161(90)
6 1494(14) 0(0) −14ð2Þ −5ð1Þ 11374(91)

TABLE V. Spectrum of S-wave charmonium states. All entries
in MeV.

n Eð0Þ
nS Eð1Þ

nS EqP
nS EsP

nS MnS

1 44(9) −79ð5Þ −31ð2Þ −14ð1Þ 3104(90)
2 606(8) −42ð4Þ −17ð3Þ −7ð1Þ 3726(90)
3 1051(11) −22ð5Þ −12ð3Þ −5ð1Þ 4195(90)
4 1440(13) −8ð5Þ −4ð3Þ −5ð1Þ 4607(91)
5 1793(15) 3(6) −1ð1Þ −2ð1Þ 4979(91)
6 2122(17) 12(6) −0.1ð4Þ −0.4ð6Þ 5318(91)

TABLE VI. Spectrum of P-wave charmonium states. All
entries in MeV.

n Eð0Þ
nP Eð1Þ

nP EqS
nP EsS

nP EqD
nP EsD

nP MnP

1 415(8) −36ð6Þ −15ð3Þ −5ð1Þ −13ð1Þ −5.5ð4Þ 3525(90)
2 880(11) −17ð5Þ −24ð5Þ −7ð2Þ −10ð2Þ −4ð1Þ 4003(90)
3 1282(13) −3ð6Þ −4ð5Þ −7ð1Þ −5.3ð4Þ −3.1ð3Þ 4444(91)
4 1645(14) 7(6) 3(2) −1ð1Þ −4ð1Þ −2.1ð1Þ 4832(91)
5 1982(17) 16(6) 4(1) 1(1) −4ð1Þ −1.8ð2Þ 5181(91)
6 2298(19) 23(6) 4.3(4) 1.6(5) −4ð1Þ −1.6ð2Þ 5505(92)

TABLE VII. Spectrum of D-wave charmonium states. All
entries in MeV.

n Eð0Þ
nD Eð1Þ

nD EqP
nD EsP

nD MnD

1 696(8) −20ð5Þ −16ð7Þ −4ð1Þ 3840(90)
2 1115(11) −5ð6Þ −10ð6Þ −7ð2Þ 4276(91)
3 1490(14) 6(6) 0.1(3.4) −4ð2Þ 4675(91)
4 1835(16) 15(7) 3(2) −0.4ð1.5Þ 5037(91)
5 2158(18) 22(6) 4(1) 1(1) 5369(91)
6 2463(19) 29(7) 4.2(4) 1.7(4) 5682(92)
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The uncertainty of our results for the quarkonium masses
in Tables II–VII is dominated by the uncertainty in the
determination of the of the heavy quark masses in the RS’
scheme. This source of uncertainty cancels out in mass
differences which are consequently much more accurate.
Furthermore, we can reconstruct the spectrum by adding to
the experimental mass of given state our mass differences
with respect to the same state. Since our computation does
not include spin-dependent contributions it is convenient to
consider as a reference an S-wave state, since the spin-
averages of these are independent of such contributions.
Additionally, we expect the spin-independent Oð1=m2

QÞ
contributions to be smaller for higher excited states, in a
similar way as the spin-independentOð1=mQÞ contribution
we have computed. Therefore, we choose as experimental
reference state the 2S doublet, since this is the higher laying
S-wave doublet which has been measured for both char-
monium and bottomonium. In Table VIII we show the
bottomonium and charmonium spectra shifted so the 2S
state mass matches the spin-average of the corresponding
experimental masses. Both shifts are within the uncertainty
of the heavy quark masses. In Figs. 7 and 8 we show all
the experimental bottomonium and charmonium states listed
in the PDG with definite JPC [65] compared to the shifted
spectra. We also display the hybrid quarkonium states
expected to appear in the energy range of the figures and
with JPC matching those allowed for S, P and D wave
quarkonium. However, one should keep in mind that
exotic JPC are possible for quarkonium hybrids, including,
for instance, heavy-quark spin partners of the states dis-
played. The mass values of the hybrid quarkonium are taken

from Ref. [66] and also shifted to match the experimental
value of spin-average mass of the 2S doublet. To do this, we
obtain the 2S state mass for the Σþ

g static energy from the
lattice data of Ref. [12], which is the same source as for the
Πu − Σ−

u static energy data, used in Ref. [66] to obtain the
hybrid spectra. It should be kept in mind that the hybrid
quarkonium states displayed in Figs. 7 and 8 are not
computed to the same accuracy as the conventional quarko-
nium ones, since they do not include Oð1=mQÞ corrections6
nor heavy meson-antimeson pair contributions.

TABLE VIII. Bottomonium (top) and charmonium (bottom)
spectra with the origin of energies adjusted to the experimental
value of the spin average of the respective 2S states. The
experimental spin-average mass is marked by (e) and taken from
the PDG [65].

l

n 0 1 2

1 9.509(8) 9.885(11) 10.151(9)
2 10.017ðeÞ 10.248(10) 10.448(10)
3 10.359(9) 10.540(11) 10.714(12)
4 10.641(12) 10.804(12) 10.955(13)
5 10.899(12) 11.044(12) 11.179(14)
6 11.132(14) 11.264(14) 11.392(15)

l

n 0 1 2

1 3.052(38) 3.473(38) 3.788(39)
2 3.67395ðeÞ 3.951(39) 4.224(39)
3 4.143(39) 4.392(40) 4.623(40)
4 4.555(40) 4.780(40) 4.985(41)
5 4.927(40) 5.129(41) 5.317(42)
6 5.266(41) 5.453(42) 5.630(42)

FIG. 7. Comparison of the experimental bottomonium spec-
trum (black dots) with the spectrum we have obtained (red lines).
We also include the hybrid bottomonium states (blue lines) from
Ref. [66] in the mass range and JPC of the figure. Both
conventional and hybrid bottomonium spectra are shifted so
the 2S state mass matches the experimental spin average one.

FIG. 8. Comparison of the experimental charmonium spectrum
(black dots) with the spectrum we have obtained (red lines). We
also include the hybrid charmonium states (blue lines) from
Ref. [66] in the mass range and JPC of the figure. Both
conventional and hybrid charmonium spectra are shifted so the
2S state mass matches the experimental spin average one.

6Spin-dependent contributions appear at order Oð1=mQÞ for
hybrid quarkonium [67].
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The widths are computed according to Eq. (20). We take
Eq. (88) as the input mass. As in the mass computation, we
compute the uncertainty k2d adding up in quadrature the
uncertainties of each term and the size of higher order
contributions. We create a random Gaussian sample of k2d
values and compute the decay widths for each value in the
set. The average and standard deviation of these compu-
tations are assigned as the central value and uncertainty of
the widths. The notation for the widths follows the one for
the energy contributions, in particular recall that f ¼ q
corresponds to the sum of the widths for the neutral and
charged heavy meson pairs. The results for the widths are
shown in Tables IX–XI for bottomonium states and
Tables XII–XIV for charmonium states. We find values
of about 5–10 MeV for bottomonium and 10–50 MeV for
charmonium. The threshold contributions to the mass and
width of P-wave quarkonia turn out to be slightly larger
than S and D wave quarkonia due to it coupling to the
heavy meson-antimeson pairs in two partial wave channels
instead of one. As it can be seem from these results the
uncertainties are large, particularly in comparison to the
uncertainties in the mass contributions. This is a result on a
strong dependence of the widths on the value of k2d. To
illustrate this we plot the value of width as a function of the
difference between the quarkonium and the heavy meson
pair mass for two specific cases in Fig. 9. We can see that a
large range of values of the widths can be produced within
the uncertainty of the mass difference.

V. THRESHOLD EFT

Let us consider an EFT for a quarkonium state ψnl close
to a heavy meson-antimeson pair threshold as the one
considered in Refs. [28–36]. The heavy meson fields will
be represented by Hκ with κ the spin of the light-quark
state. The fields Hκ carry two spin indices, the first one
corresponding to the antiquark and the second one to the
quark with the order being reversed for the Hermitian
conjugates. Therefore, one should read expressions as
Tr½Hð1=2ÞσH̄ð1=2Þ� ¼ ðHð1=2ÞÞβα1σα1α2ðH̄ð1=2ÞÞα2β where α
and β indices correspond to the light-quark and heavy
quark spin, respectively. The spin indices will be in the
spherical basis unless stated otherwise. Since we work in
the nonrelativistic regime, we treat the antiparticle fields
(denoted with a bar) as independent fields from the particle
fields. The bilinear terms in the EFT read as

LtEFT ¼ ψ†
nlði∂0 − EnlÞψnl þ Tr½H†

κ1ði∂0 − Λκ1ÞHκ1 �
þ Tr½H̄†

κ2ði∂0 − Λκ2ÞH̄κ2 �: ð89Þ

The quarkonium-heavy meson pair couplings at leading
order in the heavy quark mass expansion have the follow-
ing general from

TABLE IX. Widths of S-wave bottomonium states. All entries
in MeV units.

n Γtotal
nS ΓqP

nS ΓsP
nS

5 6(6) 3(3) 3(3)
6 4(7) 2(6) 1(1)

TABLE X. Widths of P-wave bottomonium states. All entries
in MeV units. a.t. stands for above threshold.

n Γtotal
nP ΓqS

nP ΓsS
nP ΓqD

nP ΓsD
nP

4 6(7) 3(4) a.t. 3(3) a.t.
5 6(5) 2(2) 2(1) 1(1) 1(1)
6 7(7) 4(4) 1(1) 2(2) 0.4(3)

TABLE XI. Widths of D-wave bottomonium states. All entries
in MeV units. a.t. stands for above threshold.

n Γtotal
nD ΓqP

nD ΓsP
nD

3 3(5) 3(5) a.t.
4 4(5) 2(4) 1(1)
5 7(8) 6(7) 1(1)
6 13(11) 12(10) 1(1)

TABLE XII. Widths of S-wave charmonium states. All entries
in MeV units.

n Γtotal
nS ΓqP

nS ΓsP
nS

3 16(10) 15(8) 1(2)
4 22(5) 16(2) 6(3)
5 15(4) 9(3) 6(1)
6 9(3) 4(2) 4(1)

TABLE XIII. Widths of P-wave charmonium states. All entries
in MeV units. a.t. stands for above threshold.

n Γtotal
nP ΓqS

nP ΓsS
nP ΓqD

nP ΓsD
nP

2 22(24) 17(20) a.t. 5(4) a.t.
3 54(12) 38(4) 12(6) 3(1) 1(1)
4 41(6) 25(3) 14(1) 1(1) 1.2(4)
5 27(4) 16(2) 10(1) 0.3(4) 0.5(4)
6 18(3) 10(2) 7(1) 0.4(4) 0.2(2)

TABLE XIV. Widths ofD-wave charmonium states. All entries
in MeV units.

n Γtotal
nD ΓqP

nD ΓqP
nD

2 36(14) 32(9) 4(5)
3 42(5) 29(2) 13(3)
4 34(3) 21(2) 12.5(5)
5 24(3) 15(2) 9(1)
6 17(3) 10(2) 7(1)
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LtEFT
nl;κpc ¼

X
l0d

gðl
0;dÞ

nl

n
ð−iÞlTr

h
ψ†ml
nl Clml

l0m0
lκα
Cκ1α1κ2α2καHκ1α1

× Yl0m0
l
ðξ̂Þjξjl0þ2dH̄α2

κ2

i
þ H:c:

o
; ð90Þ

with ξ ¼ −i∇↔ ¼ −ið∇⃗ − ∇⃗Þ and ξ̂ ¼ ξ=jξj. To match the
common choice in the literature, the quarkonium field ψnl
is chosen to transform under time reversal as a spherical
harmonic under complex conjugation. Therefore, a factor il

is needed to match the time reversal transformation of
a spin l field and for the whole operator to be invariant
under this symmetry.7 To conserve parity only the angular
momentum that fulfill pð−1Þlþl0 ¼ 1 are allowed. Likewise
requiring charge conjugation invariance leads to the con-
straint cð−1Þlþl0 ¼ ð−1Þlþl0þκ ¼ 1.
The couplings of quarkonium with l ¼ S, P, D to the

lowest lying heavy meson-antimeson pairs (κp1

1 ¼ κp2

2 ¼
ð1=2Þþ and κpc ¼ 1−−) up to two derivatives read as

LtEFT
nS;ð1−−Þ ¼

igðP;0ÞnSffiffiffiffiffiffiffiffi
12π

p Tr
h
ψ†
nSHσ · ∇↔ H̄

i
; ð91Þ

LtEFT
nP;ð1−−Þ ¼ i

gðS;0ÞnPffiffiffiffiffiffiffiffi
12π

p Tr
h
ψ†
nP · ðHσH̄Þ

i

þ i
gðS;1Þn1ffiffiffiffiffiffiffiffi
12π

p Tr
h
ψ†
n1 ·

�
Hσ∇↔2

H̄
�i

þ igðD;0Þ
n1

ffiffiffiffiffiffi
3

8π

r
Tr

	
ψ†i
n1Hσj

�
∇↔i∇↔j

−
δij

3
∇↔2

�
H̄



;

ð92Þ

LtEFT
nD;ð1−−Þ ¼ i

gðP;0ÞnDffiffiffiffiffiffi
4π

p Tr
h
ψ†ij
nD

�
Hσj∇↔i

H̄
�i

: ð93Þ

The spin indices in Eqs. (91)–(93), explicit or implicit, are
in the Cartesian basis. The first two terms can be found in
Refs. [28–31] with different normalizations for the cou-
plings. The equivalence with Refs. [28,31] is

g1 ¼
gðS;0Þ11ffiffiffiffiffiffi
3π

p ; g2 ¼
gðP;0Þ10ffiffiffiffiffiffi
3π

p ; ð94Þ

for Refs. [29,30] an extra minus sign is needed to account

for a different definition of ∇↔.
Now we match the threshold EFT to BOEFT. At the tree

level the matching can be obtained expanding the fields in
eigenstates of the relative motion Hamiltonian. For the
quarkonium field for instance

Ψðt;R; rÞ ¼
X
nl

ðΨnlðt;RÞÞmlðψnlðrÞÞml
; ð95Þ

with ψnl defined in Eq. (12). In the same way we expand
the heavy meson-antimeson pair field. Since in this case the
eigenfunctions are plane waves we have

Mκαðt;R; rÞ ¼
Z

d3k
ð2πÞ3 ðMκkðt;RÞÞαe−ik·r: ð96Þ

Introducing the partial wave expansion of Eq. (13) to
Eq. (96) and after some manipulations we obtain

Mκαðt;R; rÞ ¼
X
l

Xlþκ

l¼jl−κj

Z
d3k
ð2πÞ3 ððMκkðt;RÞÞα0Ym0

l
l ðk̂ÞÞ

× Clml
lm0

lκα
0C

lml
lmlκ−αðð−1Þκ−α4πi−ljlðkrÞYlml

ðr̂ÞÞ:
ð97Þ

FIG. 9. Plots of the decay width dependence with the mass difference between the quarkonium and the two meson masses. In the left
we plot the width of the 5S bottomonium state decaying to BB̄. In the right we plot the width of the 1D bottomonium state decaying to
DD̄. From the plots we can see that for variations of the mass difference of the order of its uncertainty the values of the widths can change
by large amounts.

7Notice, that ðYlml
ðξ̂ÞÞ� ¼ ð−1Þl−mlYl−ml

ðξ̂Þ.
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So far we have made no approximation. Now, we note that
in the case a quarkonium state mass is close to that of a
heavy meson-antimeson pair then the relative momentum
between the heavy quarks in the quarkonium state ∼1=r is
larger than the relative momentum between the heavy
mesons k. Therefore, we can expand the spherical
Bessel function for kr ≪ 1:

4πjlðkrÞ ¼
X
d

bdl ðkrÞ2dþl; ð98Þ

bdl ¼
4πð−1Þd2lðdþ lÞ!
d!ð2dþ 2lþ 1Þ! : ð99Þ

Using this expansion in Eq. (97) all the dependence on r
factorizes. After a few more manipulations we arrive at

ð97Þ ¼
X
l

Xlþκ

l¼jl−κj

X
d

ðClml
lml κ−αð−1Þκ−αbdl rlþ2dYlml

ðr̂ÞÞ

×

�
ð−1Þlþml

Z
d3k
ð2πÞ3 C

l−ml
lm0

lκα
0 ðMκkðt;RÞÞα0

× Ylm0
l
ðk̂Þjkjlþ2d

�
: ð100Þ

We set the following matching condition

Z
d3k
ð2πÞ3 ððMκkÞα0 ðt;RÞYlm0

l
ðk̂Þjkjlþ2dÞ

≅ Cκ1α1κ2α2κα
0Hκ1α1ðt;RÞYlm0

l
ðξ̂Þjξjlþ2dH̄α2

κ2 ðt;RÞ: ð101Þ

We can now apply these field expansions into the
BOEFT couplings and obtain the tree level matching of
the couplings of quarkonium to heavy meson pairs in the

threshold EFT. The matching is shown diagrammatically in
Fig. 10. We arrive atZ

dr3Ψ†Vκ
mixðP�

κ0ÞαMκα

≅
X
l

Xlþκ

l0¼jl−κj

X
d

gðl
0;dÞ

nl ð−iÞlψ†ml
nl

× Clml
l0m0

lκα
Cκ1α1κ2α2καHκ1α1Yl0m0

l
ðξ̂Þjξjl0þ2dH̄α2

κ2 ; ð102Þ

with

gðl
0;dÞ

nl ¼ Cl0l00κ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0 þ 1Þ
ð2lþ 1Þ

s
bdl0

Z
drr2þl0þ2dϕnlðrÞVκ

mixðrÞ:

ð103Þ

It is interesting to consider also the matching of the
quarkonium bilinear. At tree level these can be easily
obtained using the expansion in Eq. (95). However, in this
case one should also consider the self-energy contribution
which appears at one loop. The matching is shown
diagrammatically in Fig. 11. The key point is to identify
the momentum region in the loop diagram in the BOEFT
side (left) that matches the heavy meson loop in the
threshold EFT side (right). The BOEFT diagram is given
in Eq. (18) and contains two momentum scales k ∼ kd and
k ∼ 1=r. The contribution of the first one matches the heavy
meson loop, while the latter gives a contribution to the
residual mass of the quarkonium state in the Lagrangian
in Eq. (89)

Enl ¼ Enl þ
Xlþ1

l0¼jl−1j
Eκl0
nl ; ð104Þ

FIG. 10. Matching of the quarkonium-heavy meson pair vertex between BOEFT (left) and the threshold EFT (right). The double
continuous lines represent the quarkonium state, the double dashed line represents the heavy meson pair field in BOEFT and the single
dashed lines correspond to the heavy mesons in the threshold EFT. The dots in the right-hand side stand for the vertices with extra
derivatives.

FIG. 11. Matching of the quarkonium two-point function between BOEFT (left) and the threshold EFT (right). The double continuous
lines represent the quarkonium, the double dashed line represent the heavy meson pair field in BOEFT while the single dashed lines
correspond to the heavy mesons in the threshold EFT.
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where Enl is the energy of the quarkonium state computed
in BOEFT including the heavy meson-antimeson pair
contributions except the one of the nearby heavy meson-
antimeson pair considered explicitly in the threshold
EFT and

Eκl0
nl ¼

4μ

π

Z
∞

0

dk½aκl0nl ðkÞ�2: ð105Þ

To determine if the threshold expansion can be carried
out, we compare the values of the jkdj momentum scale of
the mesons with the value of h1=ri for the quarkonium
states in Table XV. The computation of jkdj is carried out
for the transitions between quarkonium and the lowest
lying heavy meson pair thresholds without and with closed
strangeness. The value of h1=ri is computed including
Oð1=mQÞ corrections to the quarkonium wave function and
considering intermediate states up to n ¼ 8. In principle,
these corrections could be sizable for charmonium states
since ΛQCD=mc ∼ 18%. However, we find that only the
ground states get contributions comparable to this para-
metric estimate. In practice, for excited states the contri-
butions from lower lying intermediate states almost cancel
with those of higher laying states leading to very small
contributions. Therefore, we expect the parametric estimate
of Oð1=m2

QÞ contributions to h1=ri, i.e., ðΛQCD=mcÞ ∼
3.5% and ðΛQCD=mbÞ ∼ 0.4%, to be significantly larger
than actual contributions. The computation of jkdj on the
other hand involves uncertainties inherited from the uncer-
tainty in the determination of the quarkonium masses.
Unfortunately, the effect is naturally more significant
for states close to threshold. Therefore, at the present
accuracy in the determination of the quarkonium masses,
we can only rule out the threshold expansion validity for
certain states while in no case it can be completely
confirmed as a good approximation. For the latter cases
we compute the values of the quarkonium-heavy-meson-
pair couplings, which we collect in Table XVI. The value
of these couplings only depend on the quarkonium
bound state through the wave function, and therefore
we expect our values to be reliable despite the uncertainty
on the quarkonium masses. Nevertheless, due to possible
Oð1=mQÞ contributions to the mixing potential, the
accuracy of the couplings is limited to corrections
OðΛQCD=mQÞ, which is reflected in the uncertainty.
Next, we compute the contribution to the residual mass
of the quarkonium field in the threshold EFT, Eκl0

nl defined in
Eq. (105). This quantity also only depends on the quarko-
nium state through the wave function and its uncertainty is
assessed as of the size of corrections OðΛQCD=mQÞ. The
values of Eκl0

nl can be found in Table XVI for bottomonium
and charmonium.

TABLE XV. The expected value h1=ri and the on-shell
momentum jkdj for bottomonium (top) and charmonium (bottom)
states with angular and principal quantum numbers l and n. The
value jkdj corresponds to the momentum of the heavy mesons in
the transition from a quarkonium state to the heavy meson pair.
The expected value h1=ri is computed up to contributions of
Oð1=mQÞ to the wave function. The superindex and subindex of
the jkdj values indicate the difference between the maximum and
minimum values, respectively, within the uncertainty of the
quarkonium state mass. The threshold expansion is only valid
when jkdj ≪ h1=ri. All quantities are in GeV units.

l n h1=ri jkdjðBB̄Þ jkdjðBsB̄sÞ
0 1 1.311 2.389þ87

−91 2.604þ82
−84

0 2 0.672 1.768þ116
−125 2.038þ103

−109

0 3 0.503 1.168þ170
−199 1.536þ135

−148

0 4 0.408 0.353þ389
−353 0.920þ211

−277

0 5 0.343 1.210þ165
−191 0.718þ255

−429

0 6 0.292 1.642þ125
−135 1.330þ154

−174

1 1 0.589 1.916þ108
−114 2.169þ97

−102

1 2 0.447 1.371þ147
−165 1.698þ123

−132

1 3 0.372 0.599þ286
−599 1.157þ174

−205
1 4 0.321 1.001þ194

−242 0.214þ478
−214

1 5 0.280 1.502þ135
−149 1.149þ175

−207

1 6 0.251 1.850þ111
−119 1.584þ131

−143

2 1 0.415 1.578þ129
−141 1.872þ112

−119

2 2 0.348 0.960þ200
−255 1.382þ148

−166

2 3 0.304 0.689þ260
−466 0.699þ260

−461

2 4 0.271 1.323þ152
−172 0.899þ215

−286
2 5 0.244 1.716þ120

−129 1.422þ145
−161

2 6 0.219 2.018þ103
−108 1.780þ118

−126

l n h1=ri jkdjðDD̄Þ jkdjðDsD̄sÞ
0 1 0.724 1.254þ61

−65 1.443þ56
−59

0 2 0.447 0.624þ116
−143 0.915þ87

−96

0 3 0.347 0.725þ102
−119 0.354þ186

−354
0 4 0.290 1.149þ67

−71 0.981þ81
−89

0 5 0.250 1.429þ54
−56 1.312þ62

−65
0 6 0.218 1.645þ47

−49 1.556þ53
−54

1 1 0.380 0.870þ86
−96 1.106þ73

−78

1 2 0.300 0.445þ151
−244 0.468þ153

−238

1 3 0.255 1.010þ75
−81 0.803þ98

−111

1 4 0.225 1.326þ58
−61 1.192þ68

−72

1 5 0.201 1.561þ50
−51 1.462þ56

−58
1 6 0.183 1.754þ44

−46 1.676þ49
−50

2 1 0.279 0.413þ160
−300 0.779þ100

−115
2 2 0.237 0.827þ90

−102 0.540þ137
−186

2 3 0.210 1.202þ64
−68 1.046þ77

−83

2 4 0.190 1.465þ53
−55 1.353þ60

−63

2 5 0.174 1.672þ47
−48 1.586þ52

−53
2 6 0.161 1.847þ42

−43 1.779þ46
−47
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VI. CONCLUSIONS

The first excited state in the spectrum of static energies
in the quarkonium sector corresponds to a heavy meson-
antimeson pair [2,3]. Pairs composed of heavier heavy
mesons appear as subsequent excited states, along with
quarkonium hybrid static energies. The heavy meson-
antimeson static energies are characterized by the total
spin of the light quarks and its projection onto the heavy
quark-antiquark axis, thus each heavy meson-antimeson
pair is associated with more than one static state. EFTs have
been built to describe the heavy quark-antiquark bound
states supported by the spectrum of static energies. These
EFTs incorporate the heavy quark mass expansion and the
adiabatic expansion between the heavy and light degrees of
freedom. For standard quarkonium the EFT is known as
strongly coupled potential NRQCD [22,23], and its exten-
sion to nontrivial light degrees of freedom is called Born-
Oppenheimer EFT (BOEFT) [16,24–26,66].
In this paper we have shown how to incorporate into

BOEFT the heavy meson-antimeson pairs and have obtained
all the leading order operators coupling them to quarkonium.
The Lagrangian containing these couplings can be found
in Eq. (7). Using these couplings, we have obtained the
expressions for the contribution of heavy meson-antimeson
pairs to the quarkonium masses and decay widths in
perturbation theory. These formulas, in Eqs. (19), (20),
and (16), depend on the total spin of the light-quarks in
the threshold state that couples to quarkonium, the mixing
potential accompanying the coupling operator, the mass gap
between the threshold and the quarkonium state and the
wave function of the quarkonium state.

In Sec. III we have discussed the matching of the new
potentials, in particular of the mixing one, to NRQCD. The
matching has been obtained for both when the mixing
potentials can be considered a perturbation and when not.
We have also shown that the second case reduces to the first
when the separation between the static potentials of the
quarkonium and the heavy meson-antimeson pair is larger
than the mixing potential, which is the case for most of
the range of r except for a small region around the string
breaking distance. In Ref. [2] the ground and first excited
states for the coupled system of quarkonium with the
lowest lying heavy meson-antimeson pair were obtained in
lattice QCD. Using this data and Eqs. (45)–(47), the
quarkonium and heavy meson pair static potentials as well
as the mixing potential can be obtained. It is interesting that
the small bump in the excited state at short distances,
see Fig. 3, which could be interpreted as a heavy meson-
antimeson interaction, disappears completely in the heavy
meson-antimeson static potential in Fig. 4. This highlights
the importance of taking into account the mixing with
heavy quark-(anti)quark states when studying the heavy
meson-(anti)meson interactions.
We computed the contribution of the lowest lying heavy

meson-antimeson pairs without and with closed strange-
ness to the masses and widths of the bottomonium and
charmonium states with l ¼ S, P, D and n ¼ 1;…; 6
covering the mass range where exotic quarkonium states
have been discovered. The quarkonium static potential is
obtained combining fix order results in the RS’ scheme for
the short-distance part of the potential and a fit to lattice
data for the medium and long-ranges. To increase the
accuracy in the determination of the quarkonium spectrum
in the threshold region we compute the quarkonium
spectra up toOð1=mQÞ. The quarkonium 1=mQ suppressed
potential is also parametrized using perturbation theory
for the short-distance part and a fit to lattice data
[57,58] for the remaining range of r. Our results for the
quarkonium masses and the contribution of the lowest lying
thresholds are shown in Tables II–IV for bottomonium and
Tables V–VII for charmonium. Our result show the con-
tribution of these two thresholds to the quarkonium masses
is comparable to that of the 1=mQ suppressed potential.
The uncertainty associated to the heavy quark mass can be
eliminated by shifting the bottomonium and charmonium
spectra to match the experimental mass of a given reference
state at the price of not giving a prediction for this reference
state. In Table VIII we show such spectra taking as a
reference the spin-average of the 2S doublet. The resulting
spectra is compared to experimental values in Figs. 7 and 8.
For the widths we find values of about 5–10 MeV for
bottomonium, in Tables IX–XI, and 10–50 MeV, in
Tables XII–XIV, for charmonium.
Unfortunately, the contributions of the thresholds to a

quarkonium state mass and width become very imprecise
when the mass gap between them is similar to the

TABLE XVI. Couplings gðl0;dÞ of the bottomonium (top) and
charmonium (bottom) states with quantum numbers ðl; nÞ to
heavy mesons in the l0 partial wave. We display only the cases for
which jkdj < h1=ri within uncertainty as displayed in Table XV.
All dimension-full entries are in GeV unless indicated otherwise.
Note that the couplings for BB̄ andDD̄ pairs apply to both neutral
and charged meson pair cases.

l n MM̄ l0 gðl
0;0Þ

nl gðl
0;1Þ

nl El0
nl [MeV]

0 4 BB̄ P −4.2ð3Þ 15(1) −27ð2Þ
0 5 BsB̄s P 3.6(2) −21ð1Þ −8.2ð5Þ
1 3 BB̄ S −1.4ð7Þ 7.1(4) −35ð2Þ
1 3 BB̄ D 4.0(2) −10.1ð6Þ −17ð1Þ
1 4 BsB̄s S 0.82(5) −7.9ð5Þ −7.2ð4Þ
1 4 BsB̄s D −4.5ð3Þ 16(1) −5.2ð3Þ
2 3 BB̄ P −2.7ð1Þ 10.9(6) −17ð1Þ
2 3 BsB̄s P −2.7ð2Þ 10.9(7) −8.5ð5Þ
l n MM̄ l0 gðl

0;0Þ
nl gðl

0;1Þ
nl El0

nl [MeV]

0 3 DsD̄s P 4.5(9) −29ð5Þ −6ð1Þ
1 2 DD̄ S 0.4(1) −11ð2Þ −17ð3Þ
1 2 DD̄ D −6ð1Þ 19(4) −10ð2Þ
2 1 DD̄ P −5ð1Þ 11(2) −23ð4Þ
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uncertainty in the quarkonium mass determination. To
improve the accuracy of the threshold contributions, the
heavy-quark spin dependent contributions should be taken
into account. These can be split between the ones affecting
the heavy meson masses, which are of Oð1=mQÞ, and the
ones to the quarkoniummasses which areOð1=m2

QÞ. For an
accuracy of a few MeV the former ones should be enough
in the bottomonium sector but both would be necessary for
charmonium states.
In Sec. V, we have discussed the matching of BOEFT

with heavy meson-antimeson degrees of freedom to a
threshold EFT containing as explicit degrees of freedom
a quarkonium state and the heavy mesons of a nearby
threshold interacting through contact operators. This is
possible when the relative momentum of the heavy mesons
is smaller than the inverse of the size of the quarkonium
state. The latter being a measure of the relative momentum
between the heavy quarks in the quarkonium state. We
obtained the matching expression, in terms of the mixing
potential and the quarkonium wave function, of the series
of couplings with increasing derivatives of a quarkonium
state to the heavy meson-antimeson pair, which can be
found in Eq. (103). At the current level of accuracy we are
only able to rule out for which states and heavy meson
thresholds this matching is not valid. Nevertheless, we
provide the values of the couplings to the two lowest lying
meson-antimeson pairs with the quarkonium states which
are not ruled out in Table XVI. This is possible since the
values of the couplings do not depend directly on the mass
gap between the threshold and the quarkonium state.
Using the threshold EFT and following the analysis from

Refs. [68–71] one can study the heavy meson molecule
picture for exotic states close to a heavy meson-antimeson
threshold. As pointed out in Ref. [68] the molecular nature
of Xð3872Þ can be explained by an accidental fine-tuning
of χ1ð2PÞmass to the D̄D� threshold which would result in
a abnormally large scattering length for the heavy meson-
antimeson scattering. Such scenario is compatible with our
results, however to confirm it, it would require a high
precision determination of the χ1ð2PÞ mass.
Hybrid quarkonium states also are expected to appear in

the threshold region. The hybrid states associated to the
lowest lying gluelump, with κpc ¼ 1þ−, appear at 4.000–
4.150 GeV and 10.690–10.790 GeV [16,66,67] in the
charmonium and bottomonium sectors, respectively.
Meanwhile, the ones associated to the second lowest lying
gluelump, with κpc ¼ 1−−, appear at 4.5 GeV and
11.14 GeV [72] in the charmonium and bottomonium
sectors, respectively. For the former case the mixing with
quarkonium is heavy quark mass suppressed [16] and its
effects are of Oð1=m2

QÞ. However, in the latter case the
mixing is not suppressed and its effects can be, in principle,
of the same order as the heavy meson-antimeson pair of
similar mass. Therefore, its study would be interesting.
Furthermore, for an accurate computation of their hybrid

quarkonium masses, which is also necessary for a good
understanding of the spectrum of quarkoniumlike states in
the threshold region, it is also necessary the study of the
mixing of quarkonium hybrids with the heavy meson-
antimeson pairs. For this objective, the formulation of the
mixing terms of hybrid quarkonium states with heavy
meson-antimeson pairs should be worked out as well as the
matching expression as NRQCD correlators. The latter
should be computed with lattice QCD or models in order to
obtain numerical evaluations.
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APPENDIX: SPIN NOTATION
AND TIME REVERSAL

Let ðaκÞα be the covariant components of an irreducible
tensor of rank κ and ðbκÞα the contravariant components of
an irreducible tensors of rank κ. Under rotations, the latter
transforms with the complex conjugate transformation of
the former. To differentiate between the two transforma-
tions we write the spin indices that transform with the
complex conjugate representation as superindices and the
ones that transform as the standard representation as lower
indices.

ðaκÞα ¼ ðDκÞαα0 ðaκÞα0 ; ðA1Þ

ðbκÞα ¼ ðD�
κÞαα0 ðbκÞα0 ; ðA2Þ

with ðDκÞαα0 a Wigner function. Recall that repeated spin
indices should be understood as summed.
We follow standard conventions and write irreducible

tensor fields for spin κ particles and antiparticles in
covariant and contravariant basis, respectively. However,
it should be noted that a covariant basis for both is also
possible. For instance, for the heavy antiquark these two
choices correspond to using χ or χc ¼ iσ2χ� as our heavy
antiquark field. Similarly, the light-quark operators Q̄κp

could be replaced by the charge conjugates of Qκp and this
way both light-quark operators would transform in the
covariant basis.
Sums over the same spin index as superscript and

subscript are invariant under rotation transformations

ðbκÞαðaκÞα ¼ ðbκÞα0 ðD†
κÞαα0 ðDκÞαα00 ðaκÞα00

¼ ðbκÞα0δα0α00 ðaκÞα00 ¼ ðbκÞα0 ðaκÞα0 : ðA3Þ

We can lower or rise an index by applying the trans-
formation [73]

JAUME TARRÚS CASTELLÀ PHYS. REV. D 106, 094020 (2022)

094020-20



ðaκÞα ¼ ðℵκÞαα0 ðaκÞα0 ¼ ð−1Þκ−αðaκÞ−α; ðA4Þ

ðbκÞα ¼ ðℵκÞαα0 ðbκÞα0 ¼ ð−1Þκ−αðbκÞ−α; ðA5Þ

with

ðℵκÞαα0 ¼ Dκ
αα0 ð0; π; 0Þ ¼ e−iπðS

y
κÞαα0 : ðA6Þ

If the components of an irreducible tensor are complex
numbers then the ℵκ transformation is equivalent to
complex conjugation.
The scalar product is defined as

ðaκÞ · ða0κÞ≡ ðaκÞαða0κÞα ¼ ð−1Þκ−αðaκÞ−αða0κÞα: ðA7Þ

The irreducible product of two covariant irreducible
tensors is

faκ1 ⊗ aκ2gκα ≡ Cκακ1α1κ2α2ðaκ1Þα1ðaκ2Þα2 : ðA8Þ

Note that using Eq. (A8) to form a scalar out of to
irreducible tensors of the same rank yields a different
normalization than the scalar product

faκ ⊗ a0κg00 ¼
ð−1Þ2κffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ þ 1

p ðaκÞ · ða0κÞ: ðA9Þ

To combine a covariant and a contravariant irreducible
tensors into an irreducible representation one of the
irreducible tensors needs to be transformed to match the
transformation of the other [73]. We choose the following

faκ1 ⊗ ℵκ2bκ2gκα ¼ Cκακ1α1κ2−α2ð−1Þκ2þα2ðaκ1Þα1ðbκ2Þα2 :
ðA10Þ

However, other forms are also valid. For instance, since

ð−1Þκ2þα2Cκακ1α1κ2−α2 ¼ ð−1Þ2κ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ þ 1

2κ1 þ 1

s
Cκ1α1κ2α2κα; ðA11Þ

the product

Cκ1α1κ2α2καðaκ1Þα1ðbκ2Þα2 ; ðA12Þ

is also an irreducible tensor of rank κ.
The time reversal operator [74] is

T ¼ ðℵκÞK; ðA13Þ

with K the complex conjugate operator. This form of the
time reversal operator also relies of a standard form of the
spin matrices in which Jy is purely imaginary. We have
chosen a ð1=2Þ� ⊗ ð1=2Þ representation of the heavy-quark
spin indices, which is convenient since we do not have to
specify if the heavy quark spin state is a singlet or a triplet.
The time reversal transformation on the fields is as follows

TΨðt; r;RÞT−1 ¼ σ2Ψð−t; r;RÞσ2; ðA14Þ

TMκαðt; r;RÞT−1 ¼ ð−1Þκ−ασ2Mκ−αð−t; r;RÞσ2: ðA15Þ

The spherical harmonics with the Condon-Shortley nor-
malization transform as

KYlm ¼ Y�
lm ¼ ð−1ÞmYl−m; ðA16Þ

ðℵlÞmm0Ylm0 ¼ ð−1Þl−mYl−m: ðA17Þ

Therefore, it is convenient to always consider ilYlm in the
construction of operators in the Lagrangian. In this way
scalar products such as

ðblÞmðilYlmÞ; ðilYlmÞ�ðalÞm; ðA18Þ

are invariant under time reversal symmetry.
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