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Pion superfluid phase transition under an external magnetic field including
the inverse magnetic catalysis effect
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Pion superfluid phase transition under external magnetic field including the inverse magnetic catalysis
(IMC) effect is investigated by the Pauli-Villars regularized Nambu-Jona-Lasinio model. Based on
Goldstone’s theorem, we apply the massless Goldstone boson (z meson) to determine the onset of the
pion superfluid phase. The inverse magnetic catalysis effect is introduced by the magnetic field dependent
coupling G(eB), which is a decreasing function of magnetic field. At fixed temperature and baryon
chemical potential, the critical isospin chemical potential for the pion superfluid phase transition, including
the IMC effect, increases as the magnetic field grows, which is similar to the case without the IMC effect.
This demonstrates that magnetic field disfavors the pion superfluid phase when considering or ignoring the
IMC effect. The critical isospin chemical potential at fixed magnetic field, temperature, and baryon
chemical potential is shifted to a higher value by the IMC effect. Because it is more difficult to form a pion

superfluid with weaker coupling.
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I. INTRODUCTION

Recently, the magnetic field effect on the QCD phase
structure attracted much attention [1-6] due to its close
relation to high-energy nuclear collisions and compact stars.
For instance, the lattice QCD (LQCD) simulations per-
formed with physical pion mass observe the inverse
magnetic catalysis (IMC) phenomenon [7-14]; namely,
the pseudocritical temperature 7,. of chiral symmetry
restoration and the quark mass near 7'),. drops down with
increasing magnetic field. On the analytical side, many
scenarios are proposed to understand this inverse magnetic
catalysis phenomenon, but the physical mechanism is not
clear [15-44].

QCD phase structure at finite isospin chemical potential
contains the chiral symmetry restoration and pion superfluid
phase transitions. With vanishing external magnetic field
and temperature, when the isospin chemical potential is
higher than the pion mass in vacuum, the u quark and d
quark form coherent pairs and condensate. The system
enters the pion superfluid phase and the charged pion
becomes massless as the corresponding Goldstone mode
[45-70]. With a finite magnetic field, the charged pion
condensate breaks both isospin symmetry in the flavor
space and translational invariance in the coordinate space,
due to its direct interaction with the external magnetic field.
Furthermore, when one introduces a magnetic field into a
pion superfluid, either there is a superconductor or a
magnetic vortex, both of which can change the magnetic
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field. LQCD simulations exhibit a sign problem at finite
isospin chemical potential and magnetic field. By using a
Taylor expansion in the magnetic field, it is reported that at
vanishing temperature, the onset of pion condensate shifts to
a higher isospin chemical potential under magnetic fields
[71]. In the study of pion condensate in effective models, the
interaction between the charged pion condensate and the
magnetic field is simply neglected in Ref. [72—74]. To avoid
this complication, we have investigated the magnetic field
effect on pion superfluid phase transition through the
Goldstone’s theorem [75], where, starting from the normal
phase without pion condensate, the phase boundary of pion
superfluid is determined by its massless Goldstone mode
(z* meson). Note that the chiral symmetry, which will be
restored with increasing isospin chemical potential, controls
the mass of quarks, and will influence the formation of pion
(quark-antiquark pair) condensate and the pion superfluid
phase transition. However, the previous work on pion
superfluid phase transition under magnetic fields do not
consider the IMC effect of chiral symmetry restoration.
This paper focuses on the IMC effect on pion superfluid
phase transition under magnetic fields. Here we make use
of a Pauli-Villars regularized Nambu-Jona-Lasinio (NJL)
model, which is inspired by the Bardeen-Cooper-Shrieffer
(BCS) theory and describes remarkably well the quark
pairing mechanisms and the Goldstone mode [76-81].
Because the interaction between quarks determines the
symmetry broken and restoration. In our calculations, the
IMC effect is introduced by a magnetic field dependent
coupling (see Fig. 1). As a straightforward extension of our
previous work [75], we investigate pion superfluid phase
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FIG. 1. Magnetic field dependent coupling G(eB) fitted from
LQCD reported decreasing pseudocritical temperature of chiral
symmetry restoration. In this paper, we fix m, = 134 MeV.

transition under magnetic fields through its Goldstone
mode (7 meson).

The rest of paper is organized as follows. Section II
describes our theoretical framework to study the pion
superfluid phase transition including the IMC effect. The
numerical results and discussions are presented in Sec. III,
which focus on the comparison between the results with
and without the IMC effect. Finally, we give the summary
in Sec. IV.

II. FRAMEWORK

The two-flavor NJL model is defined through the
Lagrangian density in terms of quark fields y [76-81]

L=y (iy,D* —mo+you)y +G [(l/‘/u/)2 + (u'fiysﬁlf)z} - (D)

Here the covariant derivative D, = d, + iQA, couples
quarks with electric charge Q = diag(Q,,Q,) =
diag(2e/3,—e/3) to the external magnetic field B =
(0,0, B) in z-direction through the potential A, = (0,0,
Bx{,0). my is the current quark mass. The quark chemical
potential y = diag(u,, ua) = diag(up/3 + p;1/2, up/3—
u;/2) is a matrix in the flavor space, with yu, and p,
being the u- and d-quark chemical potentials and up and
u; being the baryon and isospin chemical potentials.

G is the coupling constant in the scalar and pseudoscalar
channels. In a vacuum, the chiral symmetry U(1), ®
Ul)p~U(1), ® U(1), is spontaneously broken into
the isospin symmetry U(1),. In the medium with finite
isospin chemical potential, the broken chiral symmetry will
be (partially) restored, which leads to the chiral restoration
phase transition. Meanwhile, the isospin symmetry will be
broken, which leads to the pion superfluid phase transition.
Corresponding to the symmetries and their spontaneous
breaking, we have two order parameters; a neutral chiral
condensate (yy) for chiral restoration phase transition and
a charged pion condensate (yst'y) for pion superfluid
phase transition. According to the Goldstone’s theorem, the
pseudo-Goldstone mode of chiral symmetry breaking is the

neutral pion 7°, and the Goldstone mode of isospin

symmetry breaking is the charged pion z . Physically, it
is equivalent to define the phase transition by the order
parameter and Goldstone mode [82,83].

As a straightforward extension of our previous paper
[75], we use the Goldstone mode (massless 7 meson) to
determine the pion superfluid phase transition at finite
temperature, chemical potential, and magnetic field,

my+(eB, T, ug, u;) = 0. (2)

The inverse magnetic catalysis phenomenon can be
characterized either by the chiral condensate or the critical
temperature of chiral symmetry restoration from LQCD
simulations [7-14]. Therefore, to include the inverse
magnetic catalysis effect in the NJL model, one approach
is to fit the LQCD results of chiral condensate [84—87], and
another approach is to fit the LQCD result of critical
temperature [27,28,84,88]. In our calculations, following
Refs. [27,28,84,88], we use our two-flavor NJL model with
a magnetic field dependent coupling G(eB), derive the
normalized critical temperature T.(eB)/T.(0), and fit the
LQCD reported decreasing pseudocritical temperature of
chiral symmetry restoration [7]. As plotted in Fig. 1, the
magnetic field dependent coupling G(eB)/G(eB = 0) is a
decreasing function of magnetic field, and it reduces 20% at
eB/m2 = 35 (with m, = 134 MeV). As we have checked,
with our fitted coupling constant G(eB), the magnetic
catalysis phenomena of chiral condensates at low temper-
atures and the inverse magnetic catalysis phenomena at
high temperatures can be reproduced.

In the NJL model, mesons are constructed through quark
bubble summations in the frame of random phase approxi-
mation [77-81]. Taking into account of the interaction
between charged mesons and magnetic fields, the meson
propagator D+ can be expressed in terms of the polari-
zation function I+ [75,89-92],

= 2G(eB)
Der (k) =12 2G(eB)L, (k)

3)

where k = (ky,0,—+/(20 + 1)eB,k;) is the conserved
Ritus momentum of z meson under magnetic fields.

The meson pole mass m .+ is defined through the pole of
the propagator at zero momentum (/ = 0, k3 = 0),

1 —2G(eB)I+ (kg = m,+) = 0, (4)
and

I+ (ko) = Jy(my) + I, (ky), (5)
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k0+ﬂ1_En’_En '
Jnw (ko) = [(ko +u1)?/2 = 1'1Q,B| = n|QyBlljy
n/|QuB|n|QdB|]r_1yn/’ (8)

with flavors f = u, d, spin factor a, =2 — 5,9, quark
energy E, = \/ p3 +2n|QB| + mZ, quark Landau level

n=0,1,2..., (dynamical) quark mass m, =my—2G
(eB)(wpy), and Fermi-Dirac distribution function
f(x)=1/(e" +1) in J,(m,), and the u-quark energy

E, = \/pg +2n'|Q,B| + m} and d-quark energy E, =

VP + 201QB + m2 in T (ko).
The (dynamical) quark mass m,, is determined by the gap
equation,

my

q) - (9)

1 —-2G(eB)J,(m m,
Because of the four-fermion interaction, the NJL model is
not a renormalizable theory and needs regularization. In this
work, we make use of the gauge invariant Pauli-Villars
regularization scheme [16,75-80,92,93], where the quark
momentum runs formally from zero to infinity. The three
parameters in the Pauli-Villars regularized NJL model,
namely the current quark mass my = 5 MeV, the coupling
constant G(eB = 0) = 3.44 GeV~? and the Pauli-Villars
mass parameter A = 1127 MeV are fixed by fitting the
chiral condensate () = —(250 MeV)?, pion mass m, =
134 MeV and pion decay constant f, = 93 MeV in vacuum
with T = pup = p; =0 and eB = 0.

III. RESULTS

Figure 2 depicts the critical isospin chemical potential yf
for pion superfluid phase transition at 7 = ug = 0 (in red),
critical isospin chemical potential y§ for chiral symmetry
restoration at T = pg = 0 (in blue) and z+ meson mass M .+
at T = up = p; = 0 (in black) as functions of magnetic field
with constant coupling G(eB = 0) (dashed lines) and
magnetic field dependent coupling G(eB) (solid lines).
Here, u7 is determined by condition m,:(eB,T =0,
pup = 0,u; = uf) =0, and § is defined through the quark
mass jump. When including the inverse magnetic catalysis
effect by G(eB), the critical isospin chemical potential 4§ for
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FIG. 2. (Upper panel) Critical isospin chemical potential uJ for
pion superfluid phase transition at 7 = pg = 0 (red lines),
meson mass M+ at T = up = p; = 0 (black lines) and critical
isospin chemical potential u§ for chiral restoration phase tran-
sition at T = pp = 0 (blue lines) as functions of magnetic field
with constant coupling G(eB = 0) (dashed lines) and magnetic
field dependent coupling G(eB) (solid lines). (Lower panel) The
zoom-in figure in the region 4 < eB/m?2 < 7.5. In this paper, we
fix m, = 134 MeV.

chiral symmetry restoration changes from MC phenomenon
(increasing with magnetic field) to IMC phenomenon
(decreasing with magnetic field). However, the critical
isospin chemical potential y7 for pion superfluid phase
transition with magnetic field dependent coupling G(eB) is
similar as the case with constant coupling G(eB = 0). It is
an increasing function of magnetic field, which means that
magnetic field disfavors the pion superfluid phase, even
including the IMC effect. There exists some numerical
differences. In the regions eB/m2 < 4.5 and eB/m2 > 5,
the p7 with the IMC effect (red solid line) is higher than that
without the IMC effect (red dashed line), and at strong
magnetic field, for instance, eB/ m2 = 35, the difference
increases up to 10%. Physically, it is harder to form the pion
(quark-antiquark pair) condensate with weaker interaction.
Therefore, it is expected to obtain higher 47 when including
IMC effect. However, with 4.5 < eB/m2 < 5, the u7 with
IMC effect (red solid line) is lower than that without IMC
effect (red dashed line). This might be related to the first-
order chiral restoration phase transition, associated with an
abrupt jump of quark mass, which happens at very similar
isospin chemical potential. Note that the crossing point of y§
and u7 located at eB/m2 =45 with IMC effect and
eB/m2 = 4.75 without IMC effect, respectively.
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In Fig. 2, we also make comparison between critical
isospin chemical potential pj for pion superfluid phase
transition and zT meson mass in vacuum M, = m,+
(eB,T =0,up =0,u; =0). Under weak-magnetic field
eB/m2 < 4.5, the y¥ is equal to the z* meson mass in
vacuum M .+, which can be analytically proved by directly
comparing the pole equation (4) and gap equation (9)
[56,75]. With 4.5 < eB/m% <7, we obtain p% < M,
and with stronger magnetic field eB/m2 > 7, we have
ui > M+, which are obtained numerically. Without the
IMC effect, the turning points are located at eB/m2 = 4.75
and eB/m% = 7.5. The deviation between u7 and M+ at
strong magnetic field is enhanced by the IMC effect.

What is the situation when turning on the temperature and
baryon chemical potential? Figure 3 is the phase diagram of
pion superfluid in y; — T (with ug = 0) and p; — up (with
T = 0) planes at eB/m2 = 10 and eB/m?2 = 20, where the
solid (dashed) lines correspond to the case with (without)
IMC effect. Fixing temperature (upper panel) or baryon
chemical potential (lower panel), the phase transition from
normal phase to pion superfluid phase happens with
increasing isospin chemical potential. On the left side of
the phase transition line, it is the normal phase, and on the
right side, it is the pion superfluid phase. With higher
temperature, the thermal motion of quarks are stronger.
Hence, it is more difficult to form pion condensate, and the
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FIG. 3. (Upper panel) Pion superfluid phase diagram in y; — T
plane with pp = 0 and fixed magnetic field. (Lower panel) Pion
superfluid phase diagram in y; — up plane with 7 = 0 and fixed
magnetic field. The left lines are for eB/m2 = 10, and right for
eB/m2 = 20. In this paper, we fix m, = 134 MeV.

critical isospin chemical potential becomes higher. With
fixed temperature and vanishing baryon chemical potential,
the critical isospin chemical potential increases with mag-
netic fields. With higher baryon chemical potential, the
mismatch between the Fermi surface of quark and antiquark
is larger. This also prohibits the pion condensate, and leads
to higher critical isospin chemical potential. With fixed
baryon chemical potential and vanishing temperature, the
critical isospin chemical potential also increases with
magnetic fields. Including the IMC effect, at finite magnetic
field, temperature and baryon chemical potential, the pion
superfluid phase transition happens at higher isospin
chemical potential, which is caused by the weaker coupling
between quark and antiquark. The difference of critical
isospin chemical potential is Su! ~ (8 ~11) MeV with
fixed T and vanishing up, and §pf* =~ (10 ~ 19) MeV with
fixed pp and vanishing T at eB/m2 = 10, and du! ~ (14 ~
25) MeV and §uf® ~ (14 ~ 48) MeV at eB/m2 = 20. The
deviation between the phase transition lines with and
without IMC is enhanced by the magnetic field.

IV. SUMMARY

Pion superfluid phase transition under external magnetic
field including the inverse magnetic catalysis effect is
investigated through the Pauli-Villars regularized NJL
model. Based on Goldstone’s theorem, we apply the
massless Goldstone boson (z meson) to determine the
phase boundary of pion superfluid. The inverse magnetic
catalysis effect is introduced by the magnetic field depen-
dent coupling G(eB), which is a decreasing function of
magnetic field.

At fixed temperature and baryon chemical potential,
including IMC effect, the critical isospin chemical potential
u7 for pion superfluid phase transition increases with the
magnetic field, which is qualitatively similar as the case
without IMC effect. This indicates that magnetic field
disfavors the pion superfluid phase with and without IMC
effect. The deviation of yJ with and without the IMC effect
is enhanced by the magnetic field.

Comparing with the case ignoring the IMC effect, the
critical isospin chemical potential for pion superfluid phase
transition at fixed magnetic field, temperature and baryon
chemical potential is shifted to higher value by the IMC
effect. Due to the weakened coupling, it becomes harder to
form pion condensate, and the critical isospin chemical
potential for pion superfluid phase transition will become
higher. This conclusion is independent on the specific
formula for coupling G(eB).
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