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Quantum computing holds the promise of substantially speeding up computationally expensive tasks,
such as solving optimization problems over a large number of elements. In high-energy collider physics,
quantum-assisted algorithms might accelerate the clustering of particles into jets. In this study, we
benchmark quantum annealing strategies for jet clustering based on optimizing a quantity called “thrust” in
electron-positron collision events. We find that quantum annealing yields similar performance to exact
classical approaches and classical heuristics, after tuning the annealing parameters. Without tuning,
comparable performance can be obtained through a hybrid quantum/classical approach.
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I. INTRODUCTION

Quantum computers aim to harness the phenomena
of quantum mechanics to deliver considerable leaps in
processing power. In this way, quantum-assisted algorithms
might provide a solution to the increasingly challenging
and highly complex problem of analyzing and simulating
the interaction of particles in high-energy physics experi-
ments such as the Large Hadron Collider (LHC) [1] and its
forthcoming intensity upgrade. In particular, computation-
ally expensive tasks such as solving optimization problems
over many elements might be sped up using quantum
computers. One example of such an application in high-
energy physics is that of clustering particles into jets.
In particle physics, a jet is a collection of particles

collimated into a roughly cone-shaped region. Jets arise
from the fragmentation of elementary partons: quarks and
gluons that are produced in high-energy collisions. Because
of the confining properties of quantum chromodynamics
(QCD), quarks and gluons cannot be detected in isolation
since they carry color charge. Therefore, the process of
fragmentation yields jets, which are sprays of color-neutral
elementary or composite particles that can be experimen-
tally measured in particle detectors. To estimate the
kinematics of the quark or gluon that initiated the jet,
one typically uses jet clustering algorithms to combine the
observed particles into a collective jet object for further
study; see Ref. [2] for a review.
In contrast to proton-proton collisions at the LHC, which

typically involves the production of multiple jets, in
electron-positron collisions, the dominant event topology

is less complex and involves two back-to-back jets from the
fragmentation of a quark and an antiquark. This motivates
partitioning the event into two hemisphere jets, which can
be accomplished using event shapes [3]. One popular but
computationally expensive event shape is thrust [4,5],
which involves finding the hemisphere partition that max-
imizes their summed three-momenta. For an event with N
particles, finding the thrust optimum has a naive runtime of
OðN3Þ [6], though using a trick introduced in Ref. [7], it is
possible to improve this to OðN2 logNÞ [8]. On a universal
quantum computer, thrust can be computed in OðN2Þ [8]
using a strategy based on Grover search. Alternatively,
Ref. [8] showed how thrust can be phrased as a quadratic
unconstrained binary optimization (QUBO) problem,
suitable for quantum annealing. See Refs. [9–12] for other
proposed quantum algorithms for jet clustering, and
Ref. [13] for an extensive review of quantum algorithms
for collider data analysis.
In this paper, we benchmark the performance of quantum

annealing for hemisphere jet clustering with thrust. Thrust
is a particularly interesting optimization problem for testing
quantum algorithms because it has multiple equivalent
exact formulations and well-studied approximations. For
quantum annealing, we test a thrust implementation on the
Advantage QPU from D-Wave. We compare quantum
annealing to its classical counterpart and also study a
classical heuristic method based on iterative optimization.
After tuning the annealing parameters, we find that quan-
tum annealing yields good performance. Even without
tuning, we can combine quantum annealing with classical
iterative updates to reach the same performance with less
computational overhead. This suggests the importance of
further research on hybrid quantum/classical algorithms for
high-energy physics.
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The remainder of this paper is organized as follows.
In Sec. II, we review the formulation of thrust as a jet
clustering algorithm and explain how it can be solved using
quantum annealing. In Sec. III, we discuss the details
of quantum annealing and the specifics of the D-Wave
quantum processor device used for our study. In Sec. IV, we
present the results obtained when attempting to solve the
thrust-inspired quantum annealing algorithm proposed in
Ref. [8]. Our conclusions are provided in Sec. V.

II. REVIEW OF JET CLUSTERINGWITH THRUST

Event shapes [3] are among the most extensively studied
observables to characterize jetlike behavior at colliders.
Their conceptual simplicity, combined with their sensitivity
to a range of QCD radiation features, makes them interest-
ing observables. Event shapes have been studied in
hadronic final states of electron-positron (eþe−) and deep
inelastic scattering (DIS) collisions [14–16]. For our
purposes, event shapes can often be interpreted as parti-
tioning an event into jets, which we review in this section.
Our study focuses on electron-positron collisions,

where the cross section is dominated by the process
eþe− → γ�=Z0 → qq̄. These events consist of a quark
recoiling against an antiquark with equal and opposite
momentum at lowest order. QCD radiation and hadroniza-
tion produce deviations from this back-to-back structure,
measured and quantified using event shapes.
Global event shapes like thrust [4,5] and sphericity [17]

are computed based on all observed final-state particles.
Each collider event is characterized by a set of particle four-
momenta pi ¼ ðEi; p⃗iÞ, with the index i ¼ 1; 2;…; N
running over all particles in the event. Following
the event-shape literature, we compute thrust in the
“P-scheme” [18,19], which is equivalent to dropping the
energy information Ei and restricting our attention to
the three-momenta p⃗i ¼ ðpx

i ; p
y
i ; p

z
i Þ. Throughout this

discussion, the particle kinematics are computed in the
center-of-mass frame of the collision, such that

XN
i¼1

p⃗i ¼ 0: ð1Þ

A. Thrust as a partition problem

Thrust is arguably the best-studied event shape at electron-
positron colliders. It has been measured with high precision,
especially at the Z0 peak, and compared to precision QCD
calculations [20,21]. Due to its ubiquity, it is a useful
benchmark for the study of quantum algorithms for colliders.
There are multiple equivalent definitions of thrust, and

we point the reader to Ref. [8] for a detailed discussion.1

Originally, thrust was defined as an axis-finding problem
[4,5], where one tries to find the unit three-vector n̂ that
maximizes the quantity

Tðn̂Þ ¼
P

N
i¼1 jn̂ · p⃗ijP
N
i¼1 jp⃗ij

: ð2Þ

Thrust itself is determined by

T ¼ max
n̂

Tðn̂Þ; ð3Þ

with corresponding thrust axis

n̂T ¼ argmax
n̂

Tðn̂Þ: ð4Þ

Thrust takes on a maximum value of 1 for two back-to-back
particles and a minimum of 1=2 for a perfectly isotropic
event configuration. For the results in Sec. IV, we report the
value of 1 − T ∈ ½0; 0.5� to emphasize the behavior in the
dijet (1 − T → 0) limit.
In the context of jet clustering, it is more convenient to

phrase thrust as a partitioning problem [23]. Let xi be equal
to 1 if particle i is inside of a jet and 0 otherwise. From a
given partition, we can compute the quantity

TðfxigÞ ¼ 2
jPN

i¼1 xip⃗ijP
N
i¼1 jp⃗ij

; ð5Þ

where the factor of 2 accounts for the fact that the particles
inside and outside of the jet have equal and opposite
momenta in the center-of-mass frame. Thrust turns out to
be equivalent to

T ¼ max
fxig

TðfxigÞ: ð6Þ

Letting fx̃ig be the partition that maximizes the above
expression, the jet three-momentum is

P⃗ ¼
X
i

x̃ip⃗i: ð7Þ

By momentum conservation, the total three-momentum of
the particles outside of the jet is −P⃗, which means that one
can replace x̃i → 1 − x̃i with no change to the thrust value.
To understand the equivalence of the axis-based and

partition-based formulations, note that the jet three-vector
P⃗ and the thrust axis n̂T are parallel. Particles are inside the
jet if n̂T · p⃗i > 0 and outside otherwise, which means that
the thrust axis effectively partitions the event into two
hemispheres separated by a plane perpendicular to the
thrust axis. (For a finite number of particles, n̂T · p⃗i can
never equal zero.) Often, one talks about the particles with
xi ¼ 1 as being in the left hemisphere while those with
xi ¼ 0 being in the right hemisphere.

1More recently, Ref. [22] showed how to phrase thrust in the
language of optimal transport theory.
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To compute thrust exactly, we use the algorithm in
Ref. [6], which is implemented in the event generator
PYTHIA8 [24]. This algorithm finds the exact value of thrust
by searching over all possible partitions of the event into
two hemispheres. Because two three vectors span a plane,
there are OðN2Þ partitions to check. Computing Eq. (5) for
a fixed partition takes OðNÞ, yielding an OðN3Þ algorithm.

B. Iterative approximation

A classical strategy to approximate thrust is by using an
expectation-maximization-style algorithm. (This approach
is used in the thrust implementation of PYTHIA6 [25].)
Starting from a seed partition, one can compute a seed jet
three-momentum P⃗seed. Then, one can find an updated
partition in OðNÞ by splitting the event into hemispheres
separated by the plane perpendicular to P⃗seed. This process
can be iterated and will converge in a finite number of steps.
While this method is not guaranteed to find the true thrust
optimum, it is a computationally efficient method to find
the local minimum.

C. Seed axis via sphericity

One way to choose a sensible seed axis for the iterative
approximation above is to compute another event shape
called sphericity. As a QCD event shape, sphericity has no
specific disadvantages over thrust, though as discussed in
Ref. [26], it is not a true measure of isotropy.
The generalized sphericity tensor is defined as

Sab ¼
P

i p
a
i p

b
i jp⃗ijr−2P

i jpij2
; ð8Þ

where a, b ¼ 1, 2, 3 corresponds to the x, y, z components
of the particle three-momenta. The original sphericity
tensor in Ref. [17] uses r ¼ 2, but we focus on the
linearized sphericity tensor with r ¼ 1 since it is infrared
and collinear safe.
By diagonalizing Sab, one finds three eigenvalues

λ1 ≥ λ2 ≥ λ3, with λ1 þ λ2 þ λ3 ¼ 1. The sphericity of
the event is then defined as

S ¼ 3

2
ðλ2 þ λ3Þ; ð9Þ

such that S ¼ 0 for two back-to-back particles and S ¼ 1
for configurations with equal eigenvalues.
The sphericity axis is the eigenvector associated with

the eigenvalue λ1. The sphericity axis is similar to, but not
identical to, the thrust axis, and is therefore a useful seed for
the iterative approach.

D. Quantum annealing for thrust

The first quantum-assisted algorithms for jet clustering
were proposed in Ref. [8], based on thrust optimization.
In the context of quantum annealing, thrust can be

rephrased as a quadratic unconstrained binary optimization
(QUBO) problem with objective function

OQUBOðfxigÞ ¼
XN
i;j¼1

p⃗i ·p⃗jxixj; ð10Þ

where once again, each xi takes the value 0 or 1. To relate
this to thrust, note that

OQUBOðfxigÞ ¼
�XN

i¼1

jp⃗ij
�

2

TðfxigÞ2; ð11Þ

where TðfxigÞ is defined in Eq. (5). Because the term in
parentheses is independent of the partition, finding the
maximum of OQUBO is the same as optimizing for thrust.
This objective function will be the basis for our quantum
annealing studies.
Though we do not study it here, Eq. (10) is part of a one-

parameter family of QUBO-based jet algorithms [8]:

OQUBOðfxigÞ ¼
XN
i;j¼1

Qijxixj; ð12Þ

Qij ¼
p⃗i · p⃗j − EiEj cosR

1 − cosR
; ð13Þ

whereQij is the QUBO matrix. This expression is a variant
of the SISCONE algorithm [7], and dubbed as SINGLECONE in
Ref. [8]. This variant aims to cluster particles into a single
jet with characteristic radius R. Taking R to π=2 reduces to
the thrust (squared) problem in Eq. (11).

III. QUANTUM ANNEALING

Two quantum strategies for computing thrust were
presented in Ref. [8], one based on universal quantum
computing [27–29] and one based on quantum annealing
[30–35]. These two paradigms for quantum computing are
very different in their modes of operation, currently
available system sizes, and types of problems they can
solve. In particular, quantum annealing excels at solving
optimization problems such as those formulated in QUBO
form. For this study, we focus exclusively on quantum
annealing for thrust.

A. D-Wave advantage QPU

D-Wave offers a variety of commercially available
quantum annealing devices [36], whose operation is based
on the adiabatic theorem [37]. Starting from an initial
Hamiltonian whose ground state is known, the system is
slowly evolved to the problem Hamiltonian of interest. If
the system is evolved sufficiently slowly, then the adiabatic
theorem ensures that the system will stay in its ground state
throughout the evolution. Ideally, the energy of the system
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at the end of the annealing will be the ground state energy
of the problem Hamiltonian.
For this study, we use a 5000þ qubit quantum annealer

called Advantage 4.1, accessed through a cloud-based
service. This quantum processing unit (QPU) features
around 35 000 pairwise couplers between qubits, arranged
in a Pegasus topology of size 16 (P16) [36]. In addition to
specifying the QUBO problem, we can control the behavior
of the QPU by setting the chain strength [see Eq. (14)
below], annealing schedule, and the number of independent
annealing runs per event. The lowest energy found among
the independent runs gives the final reported value.
A key step in programming a quantum annealer is

finding an embedding of the QUBO problem into the
working graph of the QPU [38] (i.e., the subset of the full
chip graph excluding malfunctioning qubits and couplers).
This is a challenging problem in itself [38,39], often relying
on heuristic methods and requiring several tries until a
useful embedding is found.

B. Qubit chains

The thrust QUBO problem in Eq. (10) requires a fully
connected graph with couplers connecting every pair of
qubits. Since the P16 topology does not allow for full
connectivity, we must construct qubit chains. A qubit chain
is a group of physical qubits coupled together strongly
enough to behave as a single logical qubit. This technique
increases the connectivity of the logical qubits, at the
expense of having many fewer logical qubits than physical
qubits. For the D-Wave Advantage 4.1 QPU, the Pegasus
topology can embed a fully connected graph with a
maximum of 124 nodes. A graph of this size requires
chains of length 7.
To ensure that a qubit chain acts like single logical

qubit, the strength of the coupling in the chain has to be
determined empirically. If the coupling is too weak, the
chains will break, meaning that the logical qubits no longer
behave as single units. While one can apply postprocessing
techniques (e.g., majority vote) to determine the appro-
priate values for the logical qubits, results obtained in this
way can have higher energy than the target ground state.
On the other hand, if the coupling strength is set too high,
the chain couplers will dominate over the couplers in the
interactions of the QUBO problem. This produces a new
logical problem that is more concerned with keeping chains
consistent, and no longer yields a solution to the original
QUBO problem.
A reasonable starting point for optimizing the chain

strength is to set it to the largest coupling strength of the
original QUBO problem [40]. We define the relative chain
strength (RCS) as

RCS ¼ ACS
maxijjQijj

; ð14Þ

where Qij is the QUBO matrix from Eq. (12), and ACS
is the absolute chain strength that is used as an input
parameter when calling the solver. We set the default chain
strength to RCS ¼ 1 in Sec. IVA, and then explore
alternative choices in Sec. IV D 1.
Note that D-Wave’s QPUs feature an auto_scale func-

tion, which rescales the coupling strength values in the
problem to a range between −1 and þ1. This enables the
user to submit problems with values outside these ranges
and have the system automatically scale them to fit. We
perform this scaling separately for each thrust calculation.

C. Sample persistence variable reduction

When solving optimization problems, it is common to
run a heuristic solver multiple times and keep the best
solution found. Suppose all of the found solutions are
aggregated into an ensemble. In that case, one could ask if
there is any additional information to be gained by
analyzing the ensemble as a whole, aside from the solution
with the best value.
Previous studies have shown that it is indeed possible

to use the ensemble more efficiently. Consider fixing the
variables that have the same value in a large number of the
solutions obtained. With these variables fixed, the remain-
ing problem tends to be much smaller and simpler to solve.
This sample persistence variable reduction (SPVAR)
algorithm [41] has been reported to significantly increase
the success rate in finding the best-known energy in
quantum annealing applications.
In Sec. IV B, we consider a modified version of the

SPVAR algorithm: the multi-start SPVAR [42] shown in
Algorithm 1. This approach iteratively fixes the value of a
large portion of the variables to values that have a high
probability of being optimal.

D. Reverse annealing

By default, D-Wave’s QPUs are initialized such that each
of the N qubits are in a uniform superposition of 0 and 1.
With the usual forward schedule of quantum annealing,

Algorithm 1. Multi-start SPVAR [42].

Require: QUBO problem, num_reads,
fixing_threshold, elite_threshold, num_starts

for each start of num_starts do
Obtain sample of num_reads
Record energies from sample
Narrow down solutions to elite_threshold percentile
Find mean value of each variable in all solutions
Fix variables for which mean absolute value is larger than

fixing_threshold
end for
return Recorded energies, and a mapping from fixed variables
to values to which they were fixed
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one starts with a high traverse field, which gradually
decreases through the annealing process. In this way,
the quantum annealer performs a “global” search at the
beginning of the annealing schedule when the transverse
field is strong. As the transverse field gets weaker, the
search gets more “local.”
D-Wave recently introduced a reverse annealing fea-

ture [43] that allows the system to be initialized with a
known classical solution. The motivation for reverse
annealing is to better explore the local space around a
candidate solution to potentially find a state with even
lower energy. In reverse annealing, the system starts in a
classical configuration defined by the user (e.g., the result
after standard forward annealing), then the transverse
field is gradually increased (hence the name reverse
annealing), after which the transverse field is gradually
decreased again. For some problems, it has been shown
that optimizing the annealing schedule in this way results
in better performance, by balancing global exploration of
the state space with explorations in the vicinity of local
optima. Compared to the default forward approach, we
indeed find somewhat better performance with reverse
annealing in Sec. IV C.

E. Seeded-axis iterative search

As discussed in Sec. II B, it is possible to iteratively
approximate thrust starting from an initial seed axis.
This classical algorithm is significantly faster than solv-
ing the exact optimization problem, though it only
guarantees finding a local minimum. It typically con-
verges in a handful of iterations even for a large number
of particles, much smaller than the OðN2Þ possible
hemisphere partitions.
In Sec. IV E, we apply this iterative approach to two

choices of seed axis. The first is using the solution obtained
from the D-Wave Advantage QPU with default settings.
The second is using the sphericity axis found from Eq. (8)
with r ¼ 1. While the iterative approach only finds a
local minimum of thrust, it often does better than the plain
annealing result with minimal additional computational
overhead.

F. Simulated annealing

Finally, in addition to hardware QPUs like Advantage
(and its predecessor DW2000Q), D-Wave offers access
to classical QUBO solvers. Current QPUs have a limited
number of qubits which might not be sufficient to solve
problems at a real-world scale, but classical solvers can
overcome this limitation. We can also use classical solvers
to benchmark the quantum annealing performance. In
Sec. IV F, we present results obtained using the simulated
annealing algorithm [44], as implemented in D-Wave’s
Ocean Software Development Kit version 3.4.1 with the
default settings.

IV. RESULTS

We now present thrust results obtained from quantum
annealing on the D-Wave Advantage 4.1 QPU and compare
to hybrid and classical algorithms. The dataset used for this
benchmarking study consists of 1000 events from the
process:

eþe− → γ�=Z0 → qq̄; ð15Þ

generated in PYTHIA8.303 with the default settings. Events
were generated at a center-of-mass energy of 91.1876 GeV
(i.e., on the Z pole). We do not include the effects of
detector acceptance or smearing in this study.
As discussed at the end of Sec. II A, we use the built-in

thrust algorithm in PYTHIA to compute the exact thrust
partition and value.
The generated events feature a varying number of

particles, which allows us to study the performance of
the Advantage system as a function of problem size. In the
1000 events generated, the number of particles ranges from
17 to 95. In our study, we found that the number of physical
qubits needed to embed the QUBO problem scales as the
number of particles on the event to roughly the power of
1.82. We see that even though the Advantage system has
many more physical qubits than the average number of
particles in an electron-positron collision, the requirement
in Eq. (10) of a fully connected graph limits the size of the
problem we can solve.

A. Default D-Wave results

The default annealing parameters for the D-Wave
Advantage 4.1 QPU are

(i) Relative chain strength (RCS): 1.0;
(ii) Annealing time: 20 μs;
(iii) Number of runs per event (num_reads): 100.

With these parameters, one event would minimally take
2 ms to process. Including the overhead of embedding the
QUBO problem on the Advantage system, the runtime is
of the order of 0.1 to 100 s depending on the number of
particles. The reported solution is the best one found from
the 100 annealing runs.
As shown in Fig. 1, these default parameters yield

relatively poor performance, with upwards of 50% devia-
tions from the target value of one-minus thrust (1 − T). The
performance is relatively independent of the number of
particles. Note that the slight apparent gain in performance
with more particles is an artifact, since more particles
correspond to larger values of 1 − T and therefore smaller
percentage deviations. In Fig. 2(a), we plot the correlation
between the found thrust value and the exact thrust value.
While there is a cluster of events along the diagonal with
good behavior, there are extended tails where even after
100 runs, the QPU does not find the correct solution.
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B. Sample persistence variable reduction

To try to improve the performance, we test the multistart
SPVAR algorithm described in Sec. III C. We use the
default QPU parameters from Sec. IVA and set the SPVAR
parameters as

(i) Number of iterations (num_starts): 10;
(ii) Solutions kept for analysis (elite_threshold): 100%

but poor solutions removed as described below;
(iii) Threshold for fixing qubit (fixing_threshold): 0.65.

Because of the multiple iterations, one event now mini-
mally takes 20 ms to process, though this is dwarfed by the
computational overhead.
The SPVAR algorithm takes the set of nonoptimal

solutions from a given iteration and attempts to increase
the success rate of successive iterations by fixing the value of
variables to either 0 or 1. For a sample size of 100 and a
fixing threshold of 0.65, if a variable is found to have the
same value in more than 65 samples, the variable is fixed to
that value. Furthermore, after autoscaling the couplings, the
energy associated to a given solutionmust be greater than the
sum of the momenta of all particles in the event, divided by
6, for the sample to be considered in the count. In Fig. 2(b),
we show the correlation between the SPVAR thrust values
obtained after 10 iterations and the exact thrust values. There
is a modest improvement in the solutions obtained compared
to those yielded through the default annealing, though at a
higher computational cost.

C. Reverse annealing

We next test a modified annealing schedule, based on
D-Wave’s Reverse Advance Composite. This module
allows the user to reverse anneal an initial sample through
a sequence of annealing schedules.
An annealing schedule is specified as a list of ½t; s� pairs,

in which time t is given in microseconds from the run start
and the normalized persistent current s is given in the

range [0, 1]. In this format, the default forward annealing
corresponds to

f½0.0; 0.0�; ½20.0; 1.0�g; ð16Þ
which yields a linear ramp up of the persistent current. For
reverse annealing, we use the schedule

f½0.0; 1.0�; ½t; 0.5�; ½20.0; 1.0�g; ð17Þ

for t in f5; 10; 15g. While the total annealing time per run is
still 20 μs, we start from full current, reverse anneal to half
current, and then forward anneal back up to full current.
For the first run in a submission, we start from a

random solution. Then, each subsequent run uses the best
solution found thus far as its initial state. We run 100
reverse anneals for each of the three schedules in Eq. (17),
and show results from the best solution in Fig. 2(c). We find
a modest improvement in the quality of the solutions
compared to the default method, for essentially the same
computational cost.

D. Tuning the D-Wave QPU

Given that the SPVAR and reverse annealing techniques
did not lead to a substantial improvement in the quality of
the annealing results, we now turn to trying to tune the
annealing parameters for the problem we are trying to
solve. We explore the impact of changing the chain
strength, annealing time, and sample size. While we do
not attempt an exhaustive optimization, we achieve sig-
nificantly better results using tuned parameters, as shown
in Fig. 2(d).

1. Chain strength scan

The RCS in Eq. (14) controls the degree to which
chained physical qubits behave as one logical qubit.
Larger values of RCS preserve logical qubit coherence

FIG. 1. Quantum annealing results using the default parameters of the D-Wave Advantage 4.1 QPU. Shown is the percent deviation
from the target value of one-minus thrust, as a function of the number of particles. The box plots represent the median as a solid black
line for each bin, as well as the first and third quartiles. Outlier points are displayed as black diamonds.
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. Correlation between the one-minus-thrust value found using heuristic methods (vertical axis) and the exact method (horizontal
axis). Results from the Advantage QPU with default settings are shown for (a) forward annealing, (b) the SPVAR algorithm, and
(c) reverse annealing. Additional results are for (d) the Advantage QPU with tuned setting, (e) using the forward annealing results
without tuning as a seed for classical iterative improvement, and (f) classical simulated annealing.
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at the expense of making it harder to minimize the QUBO
loss. Smaller values of RCS allow qubit chains to break,
leading to inconsistent results.
To optimize the choice of RCS, we consider five

representative events with 23, 28, 33, 37, and 39 particles,
respectively. For each event, we consider 13 different
values of the RCS, ranging from 0.05 to 0.20, increasing
in steps of 0.0375, and from 0.25 to 2.00, increasing in
steps of 0.25. To emphasize the impact of RCS on finding
solutions, we increase the number of runs per event to 104,
compared to the default of 100.
The results of the RCS scan are shown in Fig. 3, where

the success rate is determined by performing 40 indepen-
dent executions and counting the fraction of executions
where the solver returns the exact result. We see that we can
improve the success rate by tuning the RCS value for a
given problem. The overall trend is that lower RCS values
yield higher success rates, implying that chain coherence is
less important than chain flexibility. For larger problems,
there is a smaller range of RCS values for which the success
rate is close to unity. We tested an event with 45 particles
that had a success rate of 0 regardless of the RCS value. The
success rate for most events is largely unchanged for RCS
values at or below 0.2, so we take RCS ¼ 0.2 for our tuned
parameter value, compared to the default of RCS ¼ 1.0.

2. Annealing time scan

In order to increase the success rate for large problem
sizes, we need to tune another crucial parameter: the
annealing time. Longer annealing times increase the
accuracy of the adiabatic approximation that underlies
quantum annealing.
We selected three events from the chain strength scan

study, containing 33, 39, and 45 particles, respectively. For
each event, we perform an annealing time scan using ten
values evenly spaced linearly in the range from 1 to
1000 μs. (The maximum annealing time for the
Advantage QPU system is 2000 μs). We set RCS ¼ 0.2,

which, according to Fig. 3, is optimal for the 39 particle
event, allowing us to emphasize the impact of annealing
time. As with the chain strength scan, we set the number of
runs per event to 104.
As shown in Fig. 4, even with an annealing time of 1 μs,

the QPU already saturates the success rate for the 33 particle
problem. For the 39 and 45 particle problems, the success
rate rises to around 75% for an annealing time 100 μs, with
no gain in performance for longer runs. Of course, longer
annealing times for a fixed number of runs result in longer
execution times. Thus, one needs to consider whether the
increase in execution time resulting from setting a longer
annealing time value would not be better spent in generating
additional runs with shorter annealing times. We decided not
to attempt a more refined optimization of the annealing time,
and we fix our tuned annealing time to 100 μs, compared to
the default value of 20 μs.

3. Sample size scan

Our last scan is aimed at determining the right number of
annealing runs needed to obtain reasonable performance.
Using the full dataset, we performed independent runs of
sizes 100, 1000, 5000, and 10 000. The results are shown in
Fig. 5, where we compare the average percent deviation
from one-minus thrust as a function of the number of
particles. While there is considerable improvement going
from 100 runs to 1000 runs, the performance is very similar
for larger run sizes. We therefore set the tuned sample size
to 1000 runs, compared to the default value of 100.

4. Tuned results

In summary, we choose our tuned annealing parameters
to be

(i) Relative chain strength: 0.2;
(ii) Annealing time: 100 μs;

FIG. 3. Success rate as a function of the RCS in Eq. (14) for five
different events with increasing number of particles: 23 (blue),
28 (orange), 33 (green), 37 (red), and 39 (purple). For each event,
we report the success rate among 40 executions, where each
execution consists of 104 annealing runs with the default
annealing time of 20 μs.

FIG. 4. Success rate as a function of annealing time for three
events with increasing number of particles: 33 (green), 39 (purple),
and 45 (black). For each event, we report the success rate among 40
executions, where each execution consists of 104 annealing runs
with RCS ¼ 0.2 Even with an annealing time of 1 μs, the QPU
already saturates the success rate for the 33 particle problem.
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(iii) Number of runs per event: 1000.
Compared to the default in Sec. IVA, this represents a
factor of around 50 increase in minimum runtime per event.
That said, the overhead of embedding the QUBO problem
onto the Advantage system dominates the runtime. The
results are shown in Fig. 2(d), which represent a consid-
erable improvement to those in Fig. 2(a).

E. Seeded-axis iterative search

Having tuned the Advantage QPU system, we now
compare its performance to hybrid and classical solving
strategies. As described in Sec. III E, starting from a seed
axis, one can iteratively find an improved value of thrust.
We explore two choices of seeds:

(i) Hybrid quantum/classical: The axis from the default
D-Wave annealing in Sec. IVA;

(ii) Classical only: The linearized sphericity axis de-
fined in Sec. II C.

In Fig. 2(e), we show the results of using the default
D-Wave annealing as the seed, which is a hybrid quantum/
classical approach. Here, the seed axis is determined by
taking the three-momentum sum of the particles clustered
in QUBO formulation from Eq. (10). We find substantially
better performance than the default D-wave results, with
performance comparable to the tuned annealing. Given the
low computational overhead of the iterative approach, this
supports the value of hybrid strategies where quantum
(reverse) annealing could be used in concert with classical
iterative improvement.
In Fig. 6, we show the number of iterations needed to

converge to a global minimum, comparing the D-Wave
seed to the sphericity seed. In general, the sphericity axis
requires fewer iterations to converge to a local optimum. In
particular, for more than 90% of the events, it takes at most
one iteration to reach the true ground state starting from the
sphericity seed. This suggests that the sphericity seed is a
better starting point for the iterative approach, which we
quantify further in Sec. IV G.

F. Simulated annealing

As a final comparison, we test the performance of
classical simulated annealing. As apparent from Fig. 2(f),
results obtained from this approach are very close to the
true ground state solution obtained through the exact solver.
This serves as a sanity check on the formulation of the
QUBO problem. The runtime for classical simulating
annealing is of the order of 10 to 100 ms per event, which
is around 2 orders of magnitude faster than the quantum
annealing approach when overhead is included. This
excellent performance, along with short running times,
sets a performance goal to be achieved by quantum
annealing on the thrust problem. Similar classical perfor-
mance benchmarks will help assess the potential of
quantum annealing to solve the highly complex problems
faced at the LHC and its future upgrade.

FIG. 5. Average percentage deviation from 1 − T as a function of number of particles in the event, acting on the full dataset, for
increasing number of annealing samples: 100 (fuchsia), 1000 (green), 5000 (red), and 10 000 (blue). For each problem, the RCS was set
to 0.2 and the annealing time to 100 μs.

FIG. 6. Number of iterations needed to reach a local optimum
when using a seed from the default D-Wave annealing (maroon)
compared to a seed from the linearized sphericity tensor (green).
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FIG. 7. Average percentage deviation from the exact value of one-minus thrust, as a function of the number of particles. Shown are the
seven solving methods studied in this paper: default D-Wave annealing (blue), multistart SPVAR (gray), reverse annealing (purple),
tuned D-Wave annealing (pink), iterative improvement from the default D-Wave seed (green), iterative improvement from the sphericity
seed (red), and classical simulated annealing (orange). Quantum algorithms are displayed in solid lines, while hybrid and classical
algorithms are displayed in dashed and dotted lines, respectively. The bottom plot is a vertical enlargement of the top plot to highlight the
best performing algorithms.

FIG. 8. Same as Fig. 7 but now plotted as a function of the exact one-minus thrust.
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G. Performance comparison

We now summarize results for all of the approaches
applied to the thrust QUBO problem, including quantum,
hybrid, and classical techniques. In Fig. 7, we plot the
average percentage deviation in the found value of one-
minus thrust as a function of the number of particles in the
event. We show results as a function of one-minus thrust
in Fig. 8.
For the three untuned annealing strategies (default

D-Wave, multi-start SPVAR, and reverse annealing), we
see deviations ranging from 10% to 50%, depending on the
precise algorithm used and target thrust value. For fixed
annealing time, algorithmic improvements like reverse
annealing can yield substantially improved performance
on this problem, but the gains are not sufficient to match the
classical solvers.
The tuned annealing strategy exhibits a substantial

improvement, with deviations now in the range of 1% to
3% percent, with a few outliers. Intriguingly, comparable
performance is exhibited for the hybrid quantum/classical
approach of iterating from the untuned annealing seed. This
suggests that the tuned and untuned annealers often find the
same basins of attraction, but the tuned annealer is able to
get closer to the local optimum.
Thus, by tuning quantum annealers, or employing hybrid

quantum/classical methods, we can roughly match the
performance of classical heuristics for the thrust problem.
That said, the best performance is obtained from the two
classical strategies: the iterative approach starting from the
sphericity axis and simulated annealing. For some (but not
all) particle configurations, the thrust problem exhibits local
minima, which the classical methods are able to more often
avoid. Nevertheless, the quantum and hybrid strategies find
sensible thrust values, and there may be ways to improve the
performance with further algorithmic refinements.

V. CONCLUSION

In this paper, we benchmarked thrust-based quantum
annealing algorithms for jet clustering on the D-Wave
Advantage 4.1 QPU. Algorithmic improvements like multi-
start SPVAR and reverse annealing showed some promise on
this problem, but the biggest gains came from tuning the
annealing parameters. As expected, longer annealing times
and more runs yielded improved performance. Less obvious
were the gains from reducing the chain strength, which
suggests that further improvements could be obtained
through more dynamic chain strength specifications.
Thrust is an interesting problem for benchmarking

quantum algorithms for high-energy physics since so
much is already known about its behavior. The iterative
classical heuristic is a well-known approach for estimating
thrust, and we compared the performance starting from a
quantum-derived seed versus a classical sphericity seed.

The fact that the classical seed performs better than the
quantum seed suggests that quantum annealing sometimes
gets trapped in local optima. More investigations into
hybrid quantum/classical methods could yield better
approaches to addressing this issue.
The primary limitation of this study is that we had to

restrict our attention to problems that could fit on the
D-Wave QPU. We did not observe any obvious trends with
the number of particles, so we do not know how these
results might extrapolate to future larger systems. Given
that smaller chain strength parameters were preferred, it
would be interesting to study whether purposefully broken
chains might yield comparable performance. This would
allow the embedding of larger problems at the expense
of not having a consistent specification of a fully con-
nected graph.
Overall, these results suggest that quantum annealing

and hybrid quantum/classical algorithms are viable
approaches to performing clustering tasks in high-energy
physics. We look forward to extensions of this work to
multijet algorithms, with the hope of finding efficient ways
to use quantum annealing to identifying jets in proton-
proton events in conditions similar to those at the LHC.
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APPENDIX: ADDITIONAL PLOTS

For completeness, in Fig. 9 we show the percent deviation from the target value of one-minus thrust for six optimization
schemes studied in this paper. Note that the vertical axis differs substantially between each of these plots.

(a)

(b)

(c)

FIG. 9. Percent deviation from the target value of one-minus thrust, as a function of number of particles. The box plots represent the
median as a solid black line for each bin, as well as the first and third quartiles. Outlier points are displayed as black diamonds. Results
from the Advantage QPU with default settings are shown for (a) forward annealing (repeated from Fig. 1 for convenience), (b) the
SPVAR algorithm, and (c) reverse annealing, (d) the Advantage QPU with tuned setting, (e) using the forward annealing results without
tuning as a seed for classical iterative improvement, and (f) classical simulated annealing.
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(d)

(e)

(f)

FIG. 9. (Continued).
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