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Inspired by a recent study by Iancu, Mueller, and Triantafyllopoulos [Phys. Rev. Lett. 128, 202001
(2022)], we propose semi-inclusive diffractive deep inelastic scattering (SIDDIS) to investigate the gluon
tomography in the nucleon and nuclei at small x. The relevant diffractive quark and gluon parton
distribution functions (DPDFs) can be computed in terms of the color dipole S-matrices in the fundamental
and adjoint representations, respectively.
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I. INTRODUCTION

Nucleon tomography in terms of various “multidimen-
sional” parton distribution functions is one of the ultimate
goals of the current and future facilities in high-energy
nuclear and particle physics [1–3]. These include the
transverse-momentum-dependent distributions (TMDs)
and the generalized parton distributions (GPDs), which
provide different perspectives of the internal structure of
hadrons and nuclei. The so-called quantum phase space
Wigner distributions [4,5] of partons are regarded as the
mother distributions, since they ingeniously encode the
complete information about how partons are distributed
both in position and in momentum spaces.
At small x in the gluon saturation regime, the gluon

Wigner distribution is intimately connected to the well-
known color dipole S-matrix in the color-glass-condensate
(CGC) formalism [6–10], which has been a subject of
intensive study in the last few decades [11,12]. In
Ref. [13], it was suggested that the diffractive dijet
production in ep=eA collisions [13–18] may provide a
direct probe of the gluon Wigner distribution. Recently,
Iancu, Mueller, and Triantafyllopoulos [19] have consid-
ered the correction of an additional semihard gluon
radiation to this process, or “trijet” production. A remark-
able feature is that the leading dijet can have a much larger
transverse momentum than the saturation momentum Qs,
yet the process is still sensitive to gluon saturation due to

the third jet, whose transverse momentum is of the order
of Qs. Another remarkable feature is that the calculated
cross section factorizes in terms of the gluon PDF of the
“Pomeron,” or equivalently, as we shall see, the gluon
diffractive parton distribution function (DPDF). The
DPDFs are important ingredients for the QCD factoriza-
tion of diffractive hard processes [20–22]—see a recent
phenomenology study [23] and references therein. At
small x, the DPDFs are connected to the color dipole
S-matrix [24–29], and they are therefore systematically
calculable, including the gluon saturation effects.
Following these developments, in this paper, we will

further demonstrate that the semi-inclusive diffractive DIS
(SIDDIS), see Fig. 1, can provide a unique perspective of
gluon tomography at small x, where the quark and gluon
DPDFs can be systematically computed from the operator

FIG. 1. Semi-inclusive diffractive DIS process, where the
diffractive parton distributions of quarks and gluons can be
measured through final-state particles, including hadron/jet pro-
ductions. An incoming proton with momentum P diffractively
scatters into the final-state nucleon with momentum P0 and
deposits a longitudinal momentum fraction of xIP into hard
interaction with the virtual photon. The usual Bjorken x is defined
as xB ¼ βxIP for inclusive diffractive DIS.
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definitions consistent with the QCD factorization [20] in
the dipole formalism. This opens up new opportunities to
investigate the gluon Wigner distribution and gluon satu-
ration at the future electron-ion collider (EIC). More
importantly, the QCD factorization results in terms of
DPDFs are consistent with the CGC calculations in the
kinematics that both apply.
Compared to the usual semi-inclusive DIS (SIDIS)

[30–32], the diffractive process requires a large rapidity
gap, YIP ∼ lnð1=xIPÞ ≫ 1 with small xIP considered here,
between the nucleon remnant and the hard interaction part,
which can be easily identified in experiment. Combining
the methods applied in the QCD factorization for SIDIS
(see, e.g., Refs. [33,34]) and hard diffractive processes [20],
we expect that the QCD factorization for the SIDDIS is also
valid, and we can safely extract the relevant DPDFs from
the experiment. For the transverse-momentum-dependent
observables, we will need the TMD fragmentation function
and the associated soft factor as well, which can be defined
accordingly. Integrating over the transverse momentumwill
lead to a collinear factorization for SIDDIS, where the soft
factor does not contribute.
The study of hard diffractive processes has a long

history. Theoretically, there are three different approaches
based on the QCD factorization framework. For an
inclusive hard diffractive process, there is a collinear
factorization in terms of the DPDFs. In the CGC
approach, all diffractive processes can be described by
the dipole scattering amplitudes [26,35–37]. Meanwhile,
there is also a generalized parton distribution (GPD)
[38–40] approach to describe the hard exclusive proc-
esses [1,3,38–45], including deeply virtual Compton
scattering (DVCS). The consistency between the collin-
ear GPD formalism and the CGC/dipole formalism has
been shown for the DVCS process at small x [46]. The
investigation of SIDDIS in this paper extends this con-
sistency and provides a unified method that connects all
the above-mentioned approaches. Our discussions below
are limited to the so-called coherent diffractive processes.
However, this can be extended to the incoherent diffrac-
tive process as well.

II. DIFFRACTIVE PDFs FROM DIPOLE
AMPLITUDE AT SMALL x

It has been shown that, at small x, the quark and gluon
TMD distribution functions are directly related to the color
dipole S-matrix in the CGC formalism [7–9,47–53]. In this
section, we use the same method to establish the connection
between the DPDFs and the color dipole. The result in the
gluon case is equivalent, up to the normalization factor, to
the “unintegrated gluon distribution of the Pomeron”
calculated in Ref. [19].
Let us begin with the standard definition of the quark

DPDF [21] generalized to include the transverse momen-
tum (k⊥) dependence

2EP0
dfDq ðx; k⊥; xIP; tÞ

d3P0

¼
Z

dξ−d2ξ⊥
2ð2πÞ6 e−ixξ

−Pþþiξ⃗⊥·k⃗⊥

× hPSjψ̄ðξÞL†
nðξÞγþjP0XihP0XjLnð0Þψð0ÞjPSi; ð1Þ

where the future-pointing gauge link in the fundamental
representation of QCD is defined as LnðξÞ≡
exp ð−ig R∞

0 dλv · Aðλnþ ξÞÞ. Here, n represents a light-
cone vector conjugate to the nucleon momentum n2 ¼ 0
and n · P ¼ 1. The final-state nucleon carries momentum
P0 ¼ Pþ Δ with t ¼ Δ2. xIP ¼ n · ðP − P0Þ is the momen-
tum fraction of the incoming nucleon carried by the
Pomeron. We introduce the momentum fraction of the
Pomeron carried by the quark β ¼ x=xIP. Integrating
over k⊥, we recover the collinear quark DPDF.
Just like usual TMDs, the naive definition [Eq. (1)]

contains end-point singularities at higher orders, which will
be cured by the soft factor subtraction. This will introduce
the associated TMD-like evolution and resummation [34],
which are important for phenomenology applications. We
will come back to this issue in the future. In the following,
we will neglect such higher-order effects. We also mention
that Eq. (1) is similar to, but different from the generalized
transverse-momentum-dependent parton distribution
(GTMD) [54] or the Wigner distribution [5]. In particular,
theGTMDappears in the amplitude for the exclusive process,
whereas the TMD DPDF appears in the cross section for
semi-inclusive diffractive processes. However, there exist
strong connections between them, as we will show below.
Similarly, we can define the gluon TMD DPDF

2EP0
dfDg ðx;k⊥;xIP;tÞ

d3P0

¼
Z

dξ−d2ξ⊥
xPþð2πÞ6e

−ixξ−Pþþiξ⃗⊥·k⃗⊥

×hPSjFþμðξÞL†
nðξÞγþjP0XihP0XjLnð0ÞFþ

μ ð0ÞjPSi; ð2Þ

where the gauge link is in the adjoint representation.
The main goal of our paper is to compute the quark and

gluon DPDFs in the CGC framework. The typical Feynman
diagrams are shown in Fig. 2, where the double lines

FIG. 2. The typical Feynman diagrams for the diffractive quark
(left) and gluon (right) distribution functions computed from the
dipole amplitudes at small x.
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represent gauge links. To the order of accuracy, the final
state jXi is saturated by a single antiquark and a gluon for
the quark and gluon DPDFs, respectively. Calculating the
left diagram of Fig. 2 and its complex conjugate, we find
the following result:

x
dfDq ðβ;k⊥;xIPÞ

dYIPdt
¼
Z

d2k1⊥d2k2⊥F xIPðk1⊥;Δ⊥Þ

×F xIPðk2⊥;Δ⊥Þ
Ncβ

2π
T qðk⊥;k1⊥;k2⊥Þ;

ð3Þ

for the quark DPDF at small x. Here, k1 represents the
momentum for one of the two vertical gluon lines in the left
diagram of Fig. 2. For the complex conjugate of this
diagram, we use k2. T q represents the sum of four terms
T q ≡ Tqðk⊥; k1⊥; k2⊥Þ − Tqðk⊥; 0; k2⊥Þ− Tqðk⊥; k1⊥; 0Þþ
Tqðk⊥; 0;0Þ, where

Tqðk⊥; k1⊥; k2⊥Þ

¼ k01⊥ · k02⊥k2⊥
½βk2⊥ þ ð1 − βÞk021⊥�½βk2⊥ þ ð1 − βÞk022⊥�

; ð4Þ

with k0i⊥ ¼ k⊥ − ki⊥.F xIPðki⊥;Δ⊥Þ is the Fourier transform
of the dipole S-matrix in the fundamental representation,

F xðq⊥;Δ⊥Þ¼
Z

d2b⊥d2r⊥
ð2πÞ4 eiq⊥·r⊥þiΔ⊥·b⊥

×
1

Nc

�
Tr

�
U

�
b⊥þ

r⊥
2

�
U†

�
b⊥−

r⊥
2

���
x
;

ð5Þ

where

Uðb⊥Þ ¼ P exp

�
ig
Z

∞

−∞
dz−Aþðz−; b⊥Þ

�
ð6Þ

is the Wilson line along the light cone in the fundamental
representation. Similarly, the diffractive gluon DPDF is
represented by the right diagram in Fig. 2 and reads

x
dfDg ðβ;k⊥;xIPÞ

dYIPdt
¼
Z

d2k1⊥d2k2⊥GxIPðk1⊥;Δ⊥Þ

×GxIPðk2⊥;Δ⊥Þ
N2

c−1

πð1−βÞT gðk⊥;k1⊥;k2⊥Þ;

ð7Þ

where we again define T g ≡ Tgðk⊥; k1⊥; k2⊥Þ − Tg

ðk⊥; 0; k2⊥Þ − Tgðk⊥; k1⊥; 0Þ þ Tgðk⊥; 0; 0Þ, with

Tgðk⊥;k1⊥;k2⊥Þ¼
1

½βk2⊥þð1−βÞk021⊥�

×
1

½βk2⊥þð1−βÞk022⊥�
�
βð1−βÞk2⊥

k021⊥þk022⊥
2

þð1−βÞ2ðk01⊥ ·k02⊥Þ2þβ2
ðk2⊥Þ2
2

�
: ð8Þ

The gluon dipole S-matrix is defined as

Gxðq⊥;Δ⊥Þ¼
Z

d2b⊥d2r⊥
ð2πÞ4 eiq⊥·r⊥þiΔ⊥·b⊥

×
1

N2
c−1

�
Tr
�
Ũ
�
b⊥þ

r⊥
2

�
Ũ†

�
b⊥−

r⊥
2

���
x
;

ð9Þ

where Ũ is the same Wilson line, but in the adjoint
representation.
The above DPDFs can be applied to semi-inclusive

diffractive processes (Fig. 1), where the argument for QCD
factorization should be analogous to those for hard dif-
fractive DIS [20] and nondiffractive semi-inclusive DIS
[33,34]. The combination of these two factorization proofs
should lay the groundwork for the QCD factorization of our
process. As an example, consider semi-inclusive quark
production. To leading order, the differential cross section
can be immediately written down in terms of the quark
DPDF

dσSIDDISðlp → l0p0qXÞ
dxBdyd2k⊥dYIPdt

¼ σ0e2qxB
dfDq ðβ; k⊥; xIPÞ

dYIPdt
; ð10Þ

where σ0 ¼ 4πα2emSep
Q4 ð1 − yþ y2

2
Þ, and the usual DIS variables

are defined as xB ¼ Q2=2P · q, y ¼ q · P=kl · P, and Sep ¼
ðkl þ PÞ2. Additional soft factors will be needed at higher
orders. The formula (10) is consistent with the direct calcu-
lation within the CGC formalism, where the cross section
γ�p → qXp0 is obtained by first considering the split γ� → qq̄
and then integrating over the phase space of the antiquark.
This is demonstrated in Appendix B using a technique
developed in Ref. [48]. We expect that this consistency
persists to higher orders starting with the qq̄g final state,
but this has to be carefully investigated in future work.
The quark and gluon dipole S-matrices may contain

nontrivial correlations between Δ⊥ and k⊥ with observable
consequences. Particularly if these correlations depend on
the nucleon spin, they will open up new opportunities to
explore spin-orbital correlations inside hadrons:
(1) The cosð2ϕÞ correlation [13] between Δ⊥ and ki⊥ in

the dipole S-matrix results in a similar correlation
between k⊥ and Δ⊥ in the DPDFs. This can be
observed experimentally as cos 2ϕ and higher-order
azimuthal asymmetries between the recoiling proton
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and observed hadrons in SIDDIS in Fig. 1.
Previously, such asymmetries have been studied
theoretically in exclusive processes [13,18].

(2) For nondiffractive processes, the leading-order
TMDs contain correlations between the transverse
momentum and the polarizations of the parton and/
or the nucleon states [30–32]. Extending these
parametrizations to the DPDFs will provide a unique
perspective of the hadron tomography. For example,
it has been shown that the TMD quark and gluon
Sivers functions at small x are related to the spin-
dependent odderon [55–59]. It is interesting to
explore how the diffractive Sivers functions arise
from the spin-dependent dipole S-matrix.

In addition, the gluon GPDs can be expressed in terms
of the dipole amplitudes [46]: HgðxIP;Δ⊥Þ ¼
2Nc
αs

R
d2q⊥q2⊥F xIPðq⊥;Δ⊥Þ ¼ N2

c−1
Ncαs

R
d2q⊥q2⊥GxIPðq⊥;Δ⊥Þ,

where we have set the skewness parameter in the GPD as
ξ ¼ xIP. Therefore, we can rewrite the DPDFs in terms of
the gluon GPD as well. In particular, for large-transverse-
momentum DPDFs, we have

x
dfDq;gðβ; k⊥; xIPÞ

dYIPdt

����
k⊥≫Qs

¼ α2s
2π

Cq;g
k4⊥

ðHgðxIP;Δ⊥ÞÞ2; ð11Þ

where Cq¼ β3ð1−βÞ2=Nc and Cg ¼ ð1þ 2βÞ2ð1 − βÞ3N2
c=

ðN2
c − 1Þ. This builds an interesting connection between

hard diffractive processes and the GPD physics. In addi-
tion, the 1=k4⊥ power behavior is very different from that of
the nondiffractive quark and gluon TMDs [48,53], which
behave as 1=k2⊥ at large k⊥, leading to logarithmically
divergent k⊥ integrals.

III. UNPOLARIZED DPDFs IN A SATURATION
MODEL

Here, we consider the kinematics of zero momentum
transfer from the target (Δ⊥ ¼ 0Þ and investigate the β
dependence of DPDFs fDq;g in detail. To illustrate that, we
evaluate the ki⊥ integrals in Eqs. (3) and (7) numerically,
assuming a simple Gaussian form for the color dipole (see,
e.g., Ref. [26]),

F xIPðki⊥Þ ¼
S⊥

ð2πÞ2
1

πQ2
s
e−k

2
i⊥=Q2

s ; ð12Þ

where the (quark) saturation scale Qs depends on xIP, and
S⊥ represents the transverse area of the target. The same
parametrization will be used for the gluon dipole GxIPðki⊥Þ,
but with the saturation momentum for the adjoint repre-
sentation Qas. They are related as Q2

as ¼ CA
CF

Q2
s ≈ 2Q2

s .
With these assumptions, we find that the DPDFs depend on
the ratios k⊥=Qs and k⊥=Qas for the quark and gluon
distributions, respectively:

x
dfDq;gðβ; k⊥; xIPÞ

dYIPdt
¼ N q;gDq;g

�
β;

k⊥
Qs;as

�
; ð13Þ

where N q ¼ S2⊥Nc=ð2πÞ5 and N g ¼ S2⊥2ðN2
c − 1Þ=ð2πÞ5.

For ordinary TMDs, relations like Eq. (13) exhibit the
phenomenon of geometric scaling—namely, distributions
fðx; k⊥Þ depend on k⊥ and x only through the ratio
k⊥=QsðxÞ. However, in the present problem, the extra
factor β complicates this interpretation. In Fig. 3, we show
the quark DPDF Dqðβ; k⊥=QsÞ as functions of k⊥=Qs for
different values of β. The strong falloff at large k⊥ confirms
the above power counting analysis. On the other hand, the
shape and magnitude of these curves strongly depend on β.
Nonetheless, the authors of Ref. [19] have observed that

the DPDFs do exhibit geometric scaling if it is expressed
in terms of the modified saturation momentum Q̃2

ðaÞs≡ð1 − βÞQ2
ðaÞs. A simple explanation within our approach is

to look at the denominator of Eqs. (4) and (8):

1

k2⊥ þ ð1 − βÞk2i⊥ − 2ð1 − βÞki⊥ · k⊥
; ð14Þ

and noting that, typically, ki⊥ ∼QðaÞs. When 1 − β is of
order unity, the characteristic value of k⊥ is ki⊥ ∼QðaÞs,
such that the scaling geometric variable is k⊥=QðaÞs.
However, when 1 − β becomes very small, Eq. (14) is
power-suppressed when k2⊥ ≳ ð1 − βÞk2i⊥ ∼ ð1 − βÞQ2

as ¼
Q̃2

ðaÞs. Thus, the k⊥ distribution is effectively limited to

k⊥ ≲ Q̃ðaÞs, and the scaling variable becomes k⊥=Q̃ðaÞs.
To corroborate the above argument, in Fig. 4 we plot Dg

as a function of k⊥=Q̃as for the same three values of β as in
Fig. 3. We divide the results by the common prefactor
1 − β, which naturally arises from the large-β analysis (see
below). The three curves now agree very well with each
other and peak around the modified saturation momentum
k⊥ ¼ Q̃as, in agreement with Ref. [19].
We further integrate out k⊥ to derive the integrated

DPDFs and compare to previous results [19,29]. Within
the Gaussian approximation for the dipole amplitudes, we
can write

FIG. 3. The transverse momentum dependence of the quark
diffractive distribution for different values of β ¼ 0.3, 0.5, 0.8,
plotted as functions of k⊥=Qs; see Eq. (13).
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x
dfDq;gðβ; xIPÞ

dYIPdt
¼ N q;g2πDq;gðβÞQ2

s;as: ð15Þ

In Fig. 5, we show the numerical results for Dq;gðβÞ. In
order to understand the different behaviors in the quark and
gluon cases, we will derive below some analytic results
around the end-point regions β ¼ 0 and β ¼ 1. This also
helps to provide simple approximate expressions for the
functions Dq;gðβÞ in the whole kinematic interval
0 ≤ β ≤ 1:

DqðβÞ ¼ ðb1 þ b2ð1 − βÞÞβð1 − βÞ; ð16Þ

DgðβÞ ¼ða0 þ a1βÞð1 − βÞ2; ð17Þ

with b1 ¼ 3π2

16
− 1, b2 ¼ 20−3π2

16
, a0 ¼ lnð2Þ

2
, and a1 ¼

45π2−272
256

− lnð2Þ
2
. These parameters are determined by the

end-point behaviors. When β ¼ 0, by averaging over the
azimuthal angles of k1⊥ and k2⊥ in Eqs. (3) and (7), we find

T qjβ→0 ¼ Θðk1⊥ − k⊥Þ × Θðk2⊥ − k⊥Þ; ð18Þ

T gjβ→0¼
1

8k4⊥
ðk2⊥þk21⊥þðk2⊥−k21⊥ÞSignðk1⊥−k⊥ÞÞ

× ðk2⊥þk22⊥þðk2⊥−k22⊥ÞSignðk2⊥−k⊥ÞÞ: ð19Þ

The subsequent integrals can be done analytically, and this
fixes the values of b1 þ b2 and a0.
On the other hand, the behavior near β → 1 is much

more complicated. The integrand of Eq. (3) vanishes if we
set β ¼ 1 naively. In order to obtain the correct leading
behavior in 1 − β, we first make the rescaling
k̃i⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − β
p

ki⊥, after which k⊥ and k̃i⊥ become compa-
rable [see the argument around Eq. (14)]. We then expand
the integrand T q;gðk; k1⊥; k2⊥Þ around β ¼ 1:

T qjβ→1 ¼
k̃21⊥ð2k2⊥ þ k̃21⊥Þ
ðk2⊥ þ k̃21⊥Þ2

k̃22⊥ð2k2⊥ þ k̃22⊥Þ
ðk2⊥ þ k̃22⊥Þ2

; ð20Þ

T gjβ→1 ¼
ð1 − βÞ2

2

k̃21⊥ð3k4⊥ þ 3k2⊥k̃21⊥ þ k̃41⊥Þ
ðk2⊥ þ k̃21⊥Þ3

×
k̃22⊥ð3k4⊥ þ 3k2⊥k̃22⊥ þ k̃42⊥Þ

ðk2⊥ þ k̃22⊥Þ3
: ð21Þ

The remaining integrals over k̃i⊥ and k⊥ can be performed
analytically. An overall factor of 1 − β comes from the final
integral

R
d2k⊥ ∼ Q̃2

s ¼ ð1 − βÞQ2
s , and the parameters b1

and a0 þ a1 can be read off from the coefficients.
Similar parametrizations for the quark/gluon DPDFs

have been derived in Ref. [25]. Our result in Eq. (16)
for the quark case agrees with theirs, whereas there is a
factor of 2 difference for the gluon case in Eq. (17). As we
explain in detail in Appendix C, we also find agreement
with the results of Refs. [26,29], although in the gluon case
there is an overall factor of 2 difference due to an
inconsistent parametrization of the dipole S-matrix in the
adjoint representation in Ref. [26]; see also the discussion
in Ref. [36]. This also explains the difference between our
result and that from Ref. [25] for the gluon DPDF.
The above results can be regarded as inputs for the

DPDFs at the initial scale μ ∼Qs;as. They have also been
extracted from the HERA experiments [60–62]. The shapes
and magnitudes of the quark/gluon diffractive PDFs calcu-
lated from the CGC/dipole formalism in Eqs. (16) and (17)
are very similar to those determined from these measure-
ments. Of course, to have a quantitative comparison, one
has to evolve our results to the relevant scales and compare
them to those in Refs. [60–62]. We will pursue this
direction in a future publication.
In addition, we notice that the ratio between total

momentum fractions carried by quarks and gluons,
2Nf

R
dβxfDq ðβ;xIPÞR

dβxfDg ðβ;xIPÞ
≈ 0.33 with Nf ¼ 3, is very close to that

determined by the ZEUS Collaboration [63]. The additional
difference can be explained by the evolution effect fromQs
to the scales used there. It is interesting to further notice that
the total momentum fraction is normalized,

/

/

FIG. 4. Same as Fig. 3 for the gluon. Here, we plot k⊥
Q̃as

Dðβ;k⊥=QasÞ
1−β

as functions of k⊥=Q̃as for β ¼ 0.3, 0.5, 0.8 (blue, red, and black
curves, respectively), where Q̃2

as ¼ ð1 − βÞQ2
as.

FIG. 5. The integrated quark and gluon diffractive distribution
functions as functions of β. Relative sizes between these two
depend on additional factors; see Eq. (15).
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Z
dβx

�
2NfdfDq ðβ;xIPÞ

dYIPdt
þdfDg ðβ;xIPÞ

dYIPdt

�
≈

S2⊥
ð2πÞ3Q

2
s ; ð22Þ

where we have applied Q2
as=Q2

s ≈ CA=CF.

IV. CONCLUSION

In summary, we have established a connection between
the QCD factorization for hard diffractive processes and the
small-x CGC formalism by computing the diffractive PDFs
in terms of the dipole S-matrices. The transverse-momen-
tum-dependent DPDFs can be studied in semi-inclusive
diffractive DIS processes. The integrated DPDFs have been
evaluated with a Gaussian assumption for the dipole S-
matrix. These results can be regarded as inputs at the initial
scale for collinear QCD factorizations applied to all other
hard diffractive processes. This provides a powerful tool to
unify different frameworks at small x.
We have briefly commented on the nontrivial correlation

between the momentum transfer Δ⊥ and the parton trans-
verse momentum k⊥ in the DPDFs as a direct consequence
of the correlations in the dipole amplitude between Δ⊥ and
ki⊥ [13]. Such correlations are measurable at the EIC, where
the proton recoil momentum Δ⊥ can be directly measured
by Roman pots. Moreover, if these correlations depend on
the nucleon spin, they will open up new opportunities to
explore the spin-orbital correlations inside the nucleon. This
may lead to a complementary method to investigate the
gluon orbital angular momentum contribution to the proton
spin, as compared to the proposals of exclusive processes in
the literature for this purpose [64–68].Wewill come back to
these questions in a future publication.
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APPENDIX A: CALCULATION OF DPDFs

In this appendix, we give the outline of the derivation of
the quark DPDF [Eq. (3)] and the gluon DPDF [Eq. (7)]. To
compute the gluon DPDF from its definition in Eq. (2), we
first expand the gluonic operator Fþμ and the associated
gauge links Ln which interact with the background field Aþ
of the CGC. The multiple interactions with the CGC can
be resummed by the Wilson lines U which constitute the

dipole S-matrix. There are important differences compared
to the nondiffractive TMD gluon distributions computed in
Ref. [53]. First, there is no leading-order correspondence
between the gluon DPDF and the dipole amplitude as was
the case for the nondiffractive TMD gluon distribution
[49,50]. This is because a final-state gluon radiation is
required to guarantee the colorless exchange between the
gluonic fields and the nucleon target in the diffractive case.
As a consequence, nonzero contributions come from the
diagrams shown in Fig. 2. Second, because of the colorless
exchange, the amplitude of this diagram depends on the
dipole S-matrix, whereas for the nondiffractive TMDs, it is
the amplitude squared that depends on the dipole S-matrix.
Now, let us move to the derivation. We closely follow the

calculation of the nondiffractive TMD gluon distribution at
small x in Ref. [53]. The major difference, as mentioned
above, is the colorless exchange between the nucleon target
and the partonic part from the gluon distribution calcu-
lations; see Fig. 2. Consider the right diagram in Fig. 2. We
first observe that the gluon connecting the target and the
Wilson line (denoted by a double line) has a vanishing plus-
momentum. This is a consequence of the eikonal approxi-
mation [note the dz− integral in Eq. (6)]. Therefore, the
other gluon entering the triple-gluon vertex has a plus-
momentum kþ1 ¼ xIPPþ. The kinematics of this splitting is

kμ1 ¼ ðkþ1 ; 0; k1⊥Þ → kμ þ qμ

¼ ðβkþ1 ;−q−; k1⊥ − k⊥Þ þ ðð1 − βÞkþ1 ; q−; k⊥Þ: ðA1Þ

Since the outgoing gluon with momentum qμ is on shell
and transverse,

q−¼ k2⊥
2ð1−βÞkþ1

; ϵ� ·q¼ 0→ ϵþ� ¼ ϵ⃗�⊥ · k⃗⊥
q−

; ðA2Þ

where ϵα is the polarization vector, and we work in the
gauge ϵ− ¼ 0. The phase space integral for the emitted
gluon is thus

d4q
ð2πÞ3 δðq

2Þ ¼ d2k⊥
16π3

dxIP
ð1 − βÞxIP

¼ d2k⊥
16π3

dYIP

1 − β
: ðA3Þ

The intermediate gluon denominator takes the form

1

k2
¼ 1

−2βkþ1 q− − ðk⃗1⊥ − k⃗⊥Þ2

¼ −
1 − β

βk⃗2⊥ þ ð1 − βÞðk⃗1⊥ − k⃗⊥Þ2
: ðA4Þ

The triple-gluon vertex can be evaluated as
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Z
d3zeik·zhq; αjFþνðzÞ ∼ hq; αj

�Z
d4xAAA

�
ðkþAν − kνAþÞ

∼ ½kþðgνα⊥ ð−kþ qÞ− þ gα−ð−2q − kÞν þ g−νð2kþ qÞαÞ
− kνðgþαð−kþ qÞ− þ gα−ð−2q − kÞþ þ g−þð2kþ qÞαÞ�ϵ�αðqÞAþðkgÞ

¼ ð2kþq−gνα⊥ ϵ�α − 2q−kνϵþ� − 2kνk · ϵ�ÞAþ

¼ −
1

1 − β
ðβk2⊥δνα⊥ þ 2ð1 − βÞðkν1⊥ − kν⊥Þðkα1⊥ − kα⊥ÞÞϵ�αAþ; ðA5Þ

where ν is transverse, and we use

k · ϵ� ¼ −q−ϵþ� − ðk1⊥ − k⊥Þ · ϵ⃗�⊥ ¼ −k1⊥ · ϵ�⊥: ðA6Þ

Multiplying Eq. (A4) by Eq. (A5) and squaring, we obtain
the kernel in Eq. (8).
Similarly, we can derive the TMD quark DPDF shown in

the left panel of Fig. 2. In particular, the partonic part is the
same as that in Eq. (41) of the published version of
Ref. [53]. Again, to compute the quark DPDF, we need
to make sure that there is a colorless exchange between the
partonic part and the nucleon target. This requires the
following replacement:

1

Nc
Tr½hUðx1ÞU†ðx2ÞUðy2ÞU†ðy1Þi

− hUðx1ÞU†ðx2Þi − hUðx2ÞU†ðy1Þi þ 1�

→
1

Nc
Tr½hUðx1ÞU†ðx2Þi − 1�

×
1

Nc
Tr½hUðy2ÞU†ðy1Þi − 1�: ðA7Þ

With additional kinematic variable replacements, we arrive
at the result in Eq. (3).

APPENDIX B: DERIVATION OF EQUATION (10)

In this appendix, we show how the semi-inclusive quark
production in diffractive DIS calculated in the CGC/dipole
formalism can be factorized into the TMD quark DPDF in
the limit of k⊥ ≪ Q, where k⊥ is the final-state quark
transverse momentum and Q is the virtuality of the photon.
In this process, lþ p → l0 þ kþ X þ p0, the incoming
lepton radiates a highly virtual photon, which interacts with
the nucleon target diffractively and produces a final-state
quark with momentum k. The derivation here also applies
to semi-inclusive hadron production in diffractive DIS,
where a final-state fragmentation function will be included.
At this order, there is no difference between hadron and
jet productions. At higher orders, the TMD fragmentation
and jet functions will enter the factorization formula,
respectively.
In the CGC/dipole formalism, the quark production

comes from the process that the virtual photon splits into
a quark-antiquark pair and goes through diffractive inter-
action with the nucleon target, γ�p → qq̄p, at the leading
order. The amplitude for this process has been computed
[13], and the differential cross section for the quark
production can be derived by integrating out the phase
space of the antiquark,

dσSIDDISðlp → l0qp0XÞ
dxBdQ2d2k⊥dYIPdt

¼ α2eme2qNc

xBQ2

�
1 − yþ y2

2

�Z
dzδ

�
1 − β − β

k2⊥
ϵ2f

�Z
d2q⊥d2q0⊥F xðq⊥;Δ⊥ÞF xðq0⊥;Δ⊥Þ

× ðz2 þ ð1 − zÞ2Þ
�

k⊥
k2⊥ þ ϵ2f

−
k⊥ − q⊥

ðk⊥ − q⊥Þ2 þ ϵ2f

�
·

�
k⊥

k2⊥ þ ϵ2f
−

k⊥ − q0⊥
ðk⊥ − q0⊥Þ2 þ ϵ2f

�
; ðB1Þ

where β ¼ xB=xIP, and z is the momentum fraction of the
incoming photon carried by the final-state quark, and
ϵ2f ¼ zð1 − zÞQ2. The delta function in the above equation
comes from the momentum conservation along the nucleon
momentum direction. To derive that, we notice that the
momentum fractions of the incoming nucleon carried by the

quark and antiquark are xq ¼ xBk2⊥
zQ2 and xq̄ ¼ xBk2⊥

ð1−zÞQ2, respec-

tively, where we have applied the approximation ofΔ⊥ ≈ 0,
and the quark and antiquark have balanced transverse

momenta jkq⊥j ∼ jkq̄⊥j. The momentum conservation
leads to xIP ¼ xB þ xq þ xq̄, which results in ð1 − βÞ=
β ¼ k2⊥=ϵ2f.
Similar to the nondiffractive quark production in the DIS

process [48], the above contribution is also dominated by
the so-called aligned jet configuration—i.e., z ∼ 1 or z ∼ 0.
Only in this kinematics can we find that ϵ2f ∼ k2⊥ and that the
differential cross section does not vanish at large Q2. This
can be illustrated by rewriting the above delta function,

SEMI-INCLUSIVE DIFFRACTIVE DEEP INELASTIC … PHYS. REV. D 106, 094015 (2022)

094015-7



δ

�
1 − β − β

k2⊥
ϵ2f

�
¼ β

ð1 − βÞ2
k2⊥
Q2

δ

�
zð1 − zÞ − β

1 − β

k2⊥
Q2

�

¼ β

ð1 − βÞ2
k2⊥
Q2

�
δð1 − zÞ

z
þ δðzÞ
1 − z

�
;

ðB2Þ

where the last equation comes from small-k2⊥=Q2

expansion. Substituting the above expansion result into
Eq. (B1), we derive Eq. (10).

APPENDIX C: COMPARISON TO THE
DIFFRACTIVE STRUCTURE FUNCTIONS

CALCULATED IN REF. [26]

Integrating over the azimuthal angles in Eqs. (3) and (7),
we find

x
dfDq ðβ; k⊥; xIPÞ

dYIPdt
¼ πNcβ

8ð1 − βÞ2
�Z

∞

0

dk21⊥F ðk21⊥Þ


1 − 2β þ ð1 − βÞk21⊥ − ð1 − 2βÞk2⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2⊥ þ ð1 − βÞk21⊥Þ2 − 4ð1 − βÞ2k2⊥k21⊥
p

��
2

; ðC1Þ

x
dfDg ðβ; k⊥; xIPÞ

dYIPdt
¼ πðN2

c − 1Þ
8ð1 − βÞ3

�Z
∞

0

dk21⊥Gðk21⊥Þ


β2 þ ð1 − βÞ2 þ k21⊥

k2⊥
ð1 − βÞ

−
ðð1 − 2βÞk2⊥ − ð1 − βÞk21⊥Þ2 þ 2βð1 − βÞk4⊥
k2⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2⊥ þ ð1 − βÞk21⊥Þ2 − 4ð1 − βÞ2k2⊥k21⊥

p
��

2

: ðC2Þ

We immediately recognize the same structure as in the
diffractive structure functions calculated in Ref. [26]. For
the qq̄ contribution to the diffractive structure function for
the transversely polarized photon, we can explicitly rewrite
Eq. (20) of Ref. [26] as

FD
ft;qq̄gðQ2; β; xIPÞ ¼ Q2πð1 − βÞ

Z
1

0

dαðα2 þ ð1 − αÞ2Þ

×
dfDq ðβ; k⊥; xIPÞ

dYIP
ðC3Þ

after adjusting the normalization difference of the unin-
tegrated gluon distribution

FRef: ½26�ðq⊥Þ ¼
2πNcq2⊥

αs
F ðq⊥Þ: ðC4Þ

In Eq. (C3), we have integrated over t, assuming the
exponential form eBDt (as was done in Ref. [26]). The
parameter α is related to k⊥ as

k2⊥ ¼ αð1 − αÞQ2
1 − β

β
: ðC5Þ

Equation (C3) can then be recognized as a kT factorization
formula. At largeQ2, one can take the collinear limit of this
by inserting the above constraint and expanding in k2⊥=Q2:

1 ¼
Z

dk2⊥δ
�
k2⊥ − αð1 − αÞQ

2ð1 − βÞ
β

�

≈
β

Q2ð1 − βÞ
�
δðαÞ
1 − α

þ δð1 − αÞ
α

�Z
dk2⊥: ðC6Þ

Now the integral over α can be easily carried out, giving

FD
ft;qq̄gðQ2; β; xIPÞ ≈ 2β

dfDq ðβ; xIPÞ
dYIP

; ðC7Þ

where the factor of 2 accounts for the quark and antiquark
contributions. The longitudinal diffractive structure func-
tion FD

l;qq̄, like the inclusive longitudinal structure function,
is power-suppressed. Therefore, Eq. (21) of Ref. [26] does
not have a corresponding interpretation in terms of the
DPDF.
On the other hand, the qq̄g contribution to the transverse

structure function, Eq. (23) of Ref. [26], is related to the
gluon DPDF [Eq. (C2)]. A direct comparison is somewhat
obscure because Ref. [26] did not distinguish the quark
and gluon dipole amplitudes (and hence the corresponding
saturation momenta Qs and Qas). Still, we can make the
following identification in the gluon case:

FRef: ½26�ðq⊥Þ →
πðN2

c − 1Þq2⊥
Ncαs

Gðq⊥Þ: ðC8Þ

With this, Eq. (23) of Ref. [26] becomes
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xIPFD
ft;qq̄ggðQ2; β; xIPÞ ¼ πβ

Z
1

β

dξ
ξβ0

ðð1 − ξÞ2 þ ξ2Þ
Z ð1−β0ÞQ2

dk2⊥
αs
2π

ln
ð1 − β0ÞQ2

k2⊥
x0
dfgðβ0; k⊥; xIPÞ

dYIP

¼
Z

1

β
dξðð1 − ξÞ2 þ ξ2Þ

Z ð1−β0ÞQ2 d2k⊥
k2⊥

αs
2π2

Z
k2⊥
d2k0⊥x0

dfgðβ0; k0⊥; xIPÞ
dYIP

; ðC9Þ

where β0 ¼ β=ξ and x0 ¼ xIPβ0. This can be recognized as
the g → q DGLAP evolution of the collinear DPDF.
We, however, note that Eq. (C8) is an ad hoc pre-

scription to correct for the inconsistent treatment of
the quark and gluon saturation momenta Qs and Qas in
Ref. [26]. This introduces ambiguities. For example, by
normalizing G to match the integrated gluon distribution

with the same saturation scale Qas ¼ Qs as for the quark
distribution, the unitarity of the dipole S-matrix is
spoiled. As a consequence, the numerical result for the
integrated gluon DPDF differs from ours by a factor of 2.
This can be seen by comparing the curves in our Fig. 5
and those in Fig. 3 of Ref. [29] after adjusting the other
normalization factors.
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