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We calculate the contribution from the qq̄g state production to the diffractive cross sections in deep
inelastic scattering at high energy. The obtained cross section is finite by itself and a part of the full next-to-
leading order result for the diffractive structure functions. We perform the calculation in exact kinematics
in the eikonal limit, and show that the previously known high-Q2 and large M2

X results for the structure
functions can be extracted from our results in the appropriate limits. We furthermore discuss the steps
required to obtain the full next-to-leading order results for the structure functions.
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I. INTRODUCTION

In collisions with high scattering energy, one is meas-
uring degrees of freedom of hadronic and nuclear states that
only have a small fraction of the full momentum of the
state, small-x degrees of freedom. The large amount of
phase space available at high collision energies leads to an
exponentially cascading emission of gluons. At some point,
however, this cascade must be limited by unitarity require-
ments on scattering amplitudes. Thus gluon mergings
eventually start to be equally important, even at transverse
resolution scales where a weak coupling description is
appropriate. The kinematical region where these two effects
balance each other is referred to as the gluon saturation
regime, and understanding it is the topic of many theo-
retical and experimental efforts. Experimentally the satu-
ration regime is relevant for understanding hadronic
collision processes and the formation of quark gluon
plasma at RHIC and the LHC. A particularly precise
and clean way to access the small-x degrees of freedom
is, however, provided by high energy deep inelastic
scattering (DIS), both in the HERA experiments, and at
the future electron-ion collider (EIC) [1–3] and LHeC [4,5].
Theoretically, a convenient way to discuss the physics of
gluon saturation is provided by the color glass condensate
(CGC) [6–8] effective field theory, where the nonlinear

gluon system is described as a classical color field. For the
DIS process, the CGC framework naturally leads to the
dipole picture [9–13].
In the dipole picture one factorizes the DIS process of a

virtual photon off a hadronic target into two ingredients.
First, the perturbative part of the process is the development
of the photon into a partonic state, to leading order a color
neutral quark-antiquark dipole. The second ingredient is the
scattering of this partonic state with the gluonic target,
which in the high collision energy limit can be treated as an
eikonal interaction with the classical color field. With the
prospect of higher luminosities and the availability of
nuclear targets in future DIS experiments, there has been
a systematic push in the field to improve the perturbative
accuracy of the dipole picture by going to higher orders in
perturbation theory. In recent years the dipole picture has
been extended to NLO accuracy for the high energy
BK/JIMWLK evolution [14–27] and the inclusive DIS
cross section [28–40].
Exclusive or diffractive DIS is expected to be even

more sensitive to gluon saturation than inclusive cross
sections [3,41–43]. One way to understand this is to note
that, due to the optical theorem, the total cross section is
proportional to the elastic dipole-target amplitude, propor-
tional to the gluon distribution in the target. Exclusive cross
sections, on the other hand, are calculated as the square
of the amplitude, and are thus much more sensitive to
the large amplitudes, a signature of the saturation regime.
Correspondingly, the recent work on inclusive scattering
has been accompanied by several calculations of exclusive
vector meson and diffractive dijet production at NLO in
the dipole picture [44–53]. While these processes are an

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 094014 (2022)

2470-0010=2022=106(9)=094014(33) 094014-1 Published by the American Physical Society

https://orcid.org/0000-0002-5894-7657
https://orcid.org/0000-0003-2023-1773
https://orcid.org/0000-0002-5045-4532
https://orcid.org/0000-0003-1647-502X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.094014&domain=pdf&date_stamp=2022-11-09
https://doi.org/10.1103/PhysRevD.106.094014
https://doi.org/10.1103/PhysRevD.106.094014
https://doi.org/10.1103/PhysRevD.106.094014
https://doi.org/10.1103/PhysRevD.106.094014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


extremely important part of the coming experimental
program, they both have some drawbacks for the purpose
of understanding gluon saturation. Exclusive vector meson
production requires some knowledge or modeling of the
bound state physics of the meson. While there are sys-
tematical ways to do this perturbatively, e.g., by a non-
relativistic QCD approach as in Ref. [48] or by using
universal parton distribution amplitudes that can independ-
ently be measured in other processes [46,50,54], this
unavoidably adds an additional source of uncertainty.
Dijets, on the other hand, are well defined perturbative
objects in a given jet algorithm, but only if the jet transverse
momenta are sufficiently large. At realistic collider energies
this has a tendency to push jet measurements to larger x and
thus outside the saturation regime.
In this paper we will focus on a process that has gathered

somewhat less attention in the work to push the dipole
picture to NLO accuracy; namely, inclusive diffractive DIS.
Here the experimental signature is a large rapidity gap
between the diffractive system (X) consisting of the photon
remnants, and the target or its remnants. In the dipole
picture the photon fluctuates into a variety of partonic
states, which scatter off the target without exchanging
color. In this sense the rapidity gap makes the process
fundamentally an exclusive one, with a cross section given
by the square of an amplitude. On the other hand, the
measurement is inclusive in the sense that one sums over
all of the different final states of the diffractive system,
measuring the cross section differentially only in its total
invariant mass MX. This latter inclusive aspect makes it
possible to extend the perturbative description to much
lower invariant masses and to lower x than for diffractive
dijets, even if the parton level final states are the same. The
cross sections for such processes are expressed in terms

of the diffractive structure functions FDð3Þ
2 ðβ; Q2; xPÞ and

FDð3Þ
L ðβ; Q2; xPÞ or, equivalently, the diffractive virtual

photon cross sections dσγ
�þA→Aþn=d½PS�n, which are the

quantities that we will calculate here.
At leading order in αs, the diffractive final state only

consists of a quark-antiquark dipole. This already provides
a good description of the general features of the exper-
imental measurements at small M2

X ∼Q2 [41] (see also
work in Refs. [55–57]). However, a strict leading order
picture fails to describe the rise of the cross section towards
larger MX where, in order to make a high invariant mass
partonic state, additional gluon radiation is required. The
phenomenologically most successful approach has been to
use the “Wüsthoff result” [58], which includes the radiation
of one extra gluon into the final state [59–64] in a large Q2

kinematical approximation. In our terminology, this tree-
level gluon emission is already a part of the NLO result,
being explicitly proportional to αs. In this paper we will
calculate the same contributions as in the Wüsthoff result at
what we call the exact kinematics in the eikonal limit. This
means that the kinematics within a diffractive system is

treated exactly without a largeQ2 approximation, while the
interaction with the target is eikonal.
Our result presented in this paper corresponds to a

subset of the NLO results that is finite by itself, and
suited for explicit numerical evaluation. The completion
of the full NLO calculation requires the inclusion of
virtual corrections with gluons that are not produced in
the final state. We plan to return to these contributions in
future work. Here we will merely outline steps that are
needed to calculate these virtual contributions in our
formalism. We have also here opted to calculate only the
contributions where the gluon is emitted before the
shockwave, not combining them with emissions after.
This avoids issues with collinear and soft divergences in
final state emissions, which eventually cancel against
virtual corrections.
This paper is structured in the following way. We will

start by introducing the experimental observable, the
diffractive structure function, in Sec. II and the dipole
picture formulation in terms of LCPT in Sec. III. Before
moving to specific diagrams we will then discuss in Sec. V
the general strategy to calculate phase space integrals for
2- and 3-particle final states of a fixed invariant massMX in
the context of an eikonal scattering picture where the
interaction with the target happens at a fixed transverse
coordinate. We will rederive the known result for the
leading qq̄ component of the wave function in our notations
in Sec. VI. We then move to the main new result of this
paper, the calculation of the qq̄g component of the cross
section in full kinematics in Sec. VII. A more detailed
exposition of intermediate stages of the calculation has
been presented earlier in Ref. [65]. We check in Sec. VIII
that our calculation reduces to known results in the
kinematical limits of large Q2 (Wüsthoff [58]) and large
MX (e.g., in Ref. [66]), before concluding in Sec. IX. The
results in this paper cover a finite, self-contained subset of
the NLO corrections to the diffractive results, generalizing
earlier calculations to the full kinematics. We plan to return
to the calculation of the remaining parts in a future
publication, as outlined in Sec. III.

II. DIFFRACTIVE STRUCTURE FUNCTIONS

The diffractive cross section σDeþA→MXþp in electron-
nucleus (or electron-proton) DIS integrated over the
squared momentum transfer t is usually expressed in terms
of the diffractive structure functions FD

2 and FD
L defined as

dσDeþA→MXþp

dβdQ2dxP
¼ 2πα2em

βQ4
½1þ ð1 − yÞ2�

�
FDð3Þ
2 ðβ; Q2; xPÞ

−
y2

1þ ð1 − yÞ2 F
Dð3Þ
L ðβ; Q2; xPÞ

�
: ð1Þ

The superscript (3) refers to the structure functions that
depend on three variables, in this case β; Q2, and xP
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discussed above. One can also consider structure functions
differentially in the squared momentum transfer t, in which

case one has the structure functions FDð4Þ
2;L ðβ; Q2; xP; tÞ. In

this work we consider both t-differential and t-integrated
cross sections. For simplicity we focus here on coherent
diffraction that corresponds to the events where the target
does not dissociate, but our results are straightforward to
generalize to dissociative events in the Good-Walker [67]
picture (see, e.g., Refs. [68–71]).
The diffractive structure functions are related to the total

diffractive cross sections in γ� þ A scattering as

xPF
Dð4Þ
T;L ¼ Q2

4π2αem

Q2

β

dσDγ�T;LþA→MXþA

dM2
Xdt

; ð2Þ

where T and L refer to transversely and longitudinally
polarized photons. The experimentally measured [72–75]
total diffractive cross sections are usually reported in terms
of the diffractive reduced cross section

σDð3Þr ðβ; Q2xPÞ ¼ FDð3Þ
2 ðβ; Q2xPÞ

−
y2

1þ ð1 − yÞ2 F
Dð3Þ
L ðβ; Q2xPÞ: ð3Þ

Here the Lorentz-invariant quantities describing the
kinematics are the virtuality of the photon −Q2 and the
fraction of the target longitudinal momentum xP carried by
the pomeron (exchanged in the scattering process) in the
frame where the target has a large longitudinal momentum,
defined as

xP ≡ ðP − P0Þ · q
P · q

¼ M2 þQ2 − t
W2 þQ2 −m2

N
≈
M2

X þQ2

W2 þQ2
: ð4Þ

The invariant mass of the diffractively produced system is
denoted by M2

X and the nucleon mass by m2
N. The variable

β ¼Q2=ð2q · ðP−P0ÞÞ≈Q2=ðM2
X þQ2Þ has, in the frame

where the target momentum is large, an interpretation as the
fraction of the pomeron momentum carried by the struck
quark. The four vectors P, P0 are the target nucleon
momenta before and after the scattering, respectively, see
Fig. 1. Finally y ¼ ðP · qÞ=ðP · lÞ is the inelasticity describ-
ing the energy transfer from the lepton with initial
momentum l, and q is the photon momentum.
We are working in the dipole picture, where one

develops the virtual photon state in a series of partonic
Fock states. Let us first consider the general case of an
n-parton Fock state, for which we denote the phase space
element as ½PS�n, At leading order only the n ¼ qq̄ state
contributes, and in this work we focus on including the
n ¼ qq̄g contribution, which is actually the dominant
component at high M2

X (small β) and at high Q2 [62].
This tree-level contribution is also a necessary ingredient
for the future full calculation of the diffractive structure

functions at NLO accuracy. The diffractive cross section
can be written as

dσDγ�T;LþA→MXþA

dM2
X

¼
X
n

Z
d½PS�n

dσγ
�
T;LþA→Aþn

d½PS�n
δðM2

X−M2
nÞ;

ð5Þ

where M2
n is the invariant mass of the Fock state n. The

cross section dσγ
�A→Aþn

d½PS�n for a production of a color-singlet

state n in photon-nucleus or photon-proton scattering is
expressed in terms of the scattering amplitudes (see [76],
except we now normalize with a 2qþ in a different place) as

dσDγ�þA→Aþn ¼ 2qþð2πÞδðqþ−qþn Þ
Y

i∈F:s:n

fdpi jMγ→nj2: ð6Þ

Here i ∈ F:s:n means iterating over all the particles i in the
Fock state n and qþn is the total plus momentum of the
partons in this Fock state. The one particle phase space
element reads

fdpi ≡ d2pidp
þ
i

2pþ
i ð2πÞ3

: ð7Þ

The scattering amplitude is obtained from the matrix
elements of dressed, interacting, states by leaving out a
momentum conservation delta function

DhF:S:njŜ − 1jγiD ¼ 2qþð2πÞδðqþγ − qþn ÞMγ→n; ð8Þ

where in the diffractive scattering the final state F:S:n is a
color singlet.
At high energies, the scattering amplitudesMγ→n can be

calculated by considering the γ → n process, and inserting
an interaction with the shockwave (target color field) in all
possible ways. At high energies the transverse coordinates
of the partons are fixed when they propagate in the color
field of the target and as such the interaction can be
straightforwardly described in terms of Wilson lines at

FIG. 1. Kinematics of inclusive diffractive DIS.
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fixed transverse coordinates as discussed in more detail
in Sec. IV.

III. OUTLINE OF NLO CALCULATION

We will in this paper compute a part of the NLO
correction to the diffractive structure functions that is finite
by itself. However, let us first discuss the overall structure
of the full NLO contribution in terms of the contributing
diagrams. This discussion will make it more clear which
parts of the NLO contributions are included in our result
here, and what still needs to be done to calculate the rest.
We are calculating, and drawing diagrams, for an exclusive
amplitude for a virtual photon-target shockwave scattering.
Thus a single diagram includes both the Fock state expan-
sion of the incoming dressed virtual photon state jγiD, and
that of the outgoing dressed multiparton state DhF:s:nj in the
amplitude (8). In the diagrams the shockwave is represented
by a blue band, with time progressing from left to right. The
state furthest to the left is the asymptotic incoming state (the
dressed virtual photon), which then develops into a super-
position of bare parton states, corresponding to the LFWFs
γ → n. The interaction with the shockwave then is given in
terms of the bare states [77]. On the other side of the
shockwave, furthest to the right, is the asymptotic final state

DhF:s:nj, which develops into a superposition of bare states,
going leftward in the figure. Thus the part of the figure to the
right of the shockwave corresponds to the complex con-
jugate of the LFWF of the final state, in particular with
energy denominators calculated with respect to the
final state.

At leading order, the only diagram contributing to the
scattering amplitude is diagram (a) shown in Fig. 2, where
the photon first splits to a qq̄ dipole, and then subsequently
the quarks scatter off the target color field with no net color
charge transfer to the target. In momentum space, we
denote the quark and antiquark transverse momenta as p0

and p1, respectively, and in transverse coordinate space use
the coordinates x0, x1. Similarly the fractions of the photon
plus momentum carried by the quark and the antiquark are
zi ¼ pþ

i =q
þ with z0 þ z1 ¼ 1.

A. Radiative corrections

The purpose of this paper is to calculate the gluon
emission part of the next-to-leading order contributions to
the diffractive structure functions, which dominates at large
M2

X. In the CGC, if one integrates the transverse momen-
tum of several final state particles without restriction, one
can encounter spurious UV divergences in real higher order
corrections, associated with the breakdown of the eikonal
approximation. This occurs when the light-cone momen-
tum p− scales associated with the produced system become
comparable or larger than that of the target. In the case of
diffractive structure functions considered here, the fixed
invariant mass of the produced qq̄g state ensures that the
eikonal approximation stays valid for the whole integration
range, by constraining the p− scale of the diffractive
system. For that reason, no UV divergence can arise in
real NLO corrections to diffractive structure functions. This
is to be compared to the case of inclusive DIS [31–33]
where one uses the optical theorem and thus the final state
is completely fixed to be the same as the initial one. In dijet
production [36,37,44,45,52], on the other hand, one typ-
ically fixes the momenta of some of the final state particles
and integrates over the others. This can lead to a different
pattern of cancellations between diagrams. The calculation
of the loop corrections is left for future work, but for
completeness we list all the relevant diagrams in the
following Sec. III B.
In order to calculate the n ¼ qq̄g contribution to the

diffractive scattering amplitude we include gluon emission
contributions from both the quark and the antiquark. There
can be a regular gluon emission before the shockwave
shown in diagrams in Figs. 3(b) and 3(c). In light cone

FIG. 2. Leading order amplitude. The blue band represents the
interaction with the target color field.

FIG. 3. Gluon emission before the shock.
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perturbation theory there is also an instantaneous γ → qq̄g
vertex resulting in instantaneous gluon emission diagrams in
Figs. 4(d) and 4(e). These are the contributions that we will
calculate in detail in this paper. Similarly the gluon can be
emitted after the shock, see diagrams in Figs. 5(f) and 5(g).
There are several relations between these diagrams. First,
since the virtual photon as a whole is color neutral, there is a
destructive interference between emissions from the quark
and from the antiquark. This cancels the leading small
transverse momentum (collinear) divergence and serves as
a useful check of the relative sign between the contributions.
The contributions with emissions after the shockwave,

pictured in Fig. 5, can be conveniently obtained from the
corresponding ones in Fig. 3 where the emission happens
before by taking a specific coordinate limit, in a procedure
developed in Ref. [78]. Here one first separates out from the
coordinate space γ� → qq̄g wave function a piece corre-
sponding to the final gluon emission. In terms of equations
this means that one writes the γ� → qq̄g wave function
obtained from diagrams in Figs. 3(b), 3(c), 4(d), and 4(e) in
a factorized form as1

ψ̃ γ�λ→q0q̄1g2 ¼ ψ̃ γ�λ→q0q̄1;q0→q0g2 ψ̃q0→q0g2

þ ψ̃ γ�λ→q0q̄1;q̄1→q̄1g2 ψ̃ q̄1→q̄1g2 : ð9Þ

Here ψ̃q0→q0g2 and ψ̃ q̄1→q̄1g2 are the 1 → 2 particle
gluon emission wave functions. Equation (9) should be
understood as the definition of the remaining parts
ψ̃ γ�λ→q0q̄1;q0→q0g2 and ψ̃ γ�λ→q0q̄1;q̄1→q̄1g2 . Here the notation
refers to these being the parts of the wave function that
are associated (e.g., by the helicity structure) with the first
γ� → qq̄ splitting (γ�λ → q0q̄1), but depend on the fact
that the (anti)quark will later emit a gluon (q0 → q0g2,
q̄1 → q̄1g2). Thus ψ̃ γ�λ→q0q̄1;q0→q0g2 and ψ̃ γ�λ→q0q̄1;q̄1→q̄1g2

depend on the coordinates of all three particles in the final
state. The calculation of the gluon emission diagrams after
the shock wave requires the qq̄ component in the dressed

Dhqq̄gj state. This, in turn, requires the ðqq̄g → qq̄Þ†
merging wave function, which is given by (minus) the
Hermitian conjugates of the corresponding emission wave
functions ψ̃q0→q0g2 and ψ̃ q̄1→q̄1g2 . In other words, one is here
factoring out from the gluon emission before the shock-
wave the gluon emission wave function that appears
when the gluon is emitted after. A look at the transverse
coordinate space γ → qq̄g wave function [see, e.g.,
Eqs. (C14) and (C19) in Ref. [33] for explicit expressions]
shows that indeed the structure of the regular emission
wave functions naturally factorizes like this.
Using the factorized notation (9), the procedure of

Ref. [78] for obtaining amplitudes for the emission-after-
the-shock contributions in Fig. 5 is the following. One
evaluates both the Wilson line operators and the γ� → qq̄
parts of the wave functions ψ̃ γ�λ→q0q̄1;q0→q0g2 , ψ̃ γ�λ→q0q̄1;q̄1→q̄1g2

with the transverse coordinates of the gluon and its parent

FIG. 4. Instantaneous diagram gluon emission wave function with emission before the cut.

FIG. 5. Gluon emission after shock. Note that the intermediate transverse coordinate of the quark (antiquark) before the gluon
emission is not the same as the coordinate at the cut. They are defined by x0

0 ≔
z0x0þz2x2

z0þz2
and x0

1 ≔
z1x1þz2x2

z1þz2
.

1Here ψ̃ denotes a reduced coordinate space wave function.
See Eqs. (16) and (17) for the normalization in the γ� → qq̄,
γ� → qq̄g case; the convention is trivially extended to the 1 → 2
gluon emission case.
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(anti)quark replaced by the coordinate of the parent
before the emission, and changes the sign. Thus, for
the emission from the quark, diagram in Fig. 3(b), one
replaces x0 → x0

0 and x2 → x0
0, in both the Wilson line

operator and in ψ̃ γ�λ→q0q̄1;q0→q0g2 , with the coordinate defined

asx0
0 ≔

z0x0þz2x2
z0þz2

. Correspondingly, for the emission from the
antiquark, diagram in Fig. 3(c), one replaces x1 → x0

1 and
x2 → x0

1, with x
0
1 ≔

z1x1þz2x2

z1þz2
. It is clear that this corresponds

to the Wilson line operator being evaluated at the correct
coordinate for the diagrams in Fig. 5(f) and 5(g). There is no
“emission after the shockwave” contribution for the instanta-
neous diagrams in Fig. 4(d) and 4(e). This is, however, built
into the formalismofRef. [78], since it turns out that the parts
of ψ̃ γ�λ→q0q̄1;q0→q0g2 , ψ̃ γ�λ→q0q̄1;q̄1→q̄1g2 corresponding to the
instantaneous diagrams vanish in the coordinate limits
x0;x2 → x0

0 and x1;x2 → x0
1, respectively.

One can arrive at this procedure for constructing the final
state emissions in multiple ways. In Ref. [78] it is derived
explicitly by looking at the expressions and noticing a
relation between the energy denominators of the different
diagrams. More generally, using the orthogonality of the
jγiD and jqq̄giD states one can derive the corresponding
relation between the wavefunctions for ðqq̄g → qq̄Þ†,
γ → qq̄ [diagrams in Fig. 5(f) and 5(g)], γ → qq̄g [dia-
grams in Figs. 3(b), 3(c), 4(d), and 4(e)] and the process
ðqq̄g → γÞ†, corresponding to the photon crossing the
shockwave first and all the emissions happening after
(i.e., the bare photon state in the final Dhqq̄gj). Since the
last one does not contribute to the amplitude because the
photon is color neutral, one obtains a linear relation for
the contributions of the emission diagrams of Figs. 3 and 5.
As discussed above, one can also see this relation directly
by looking at the coordinate space wave functions, using
the Fourier transforms from, e.g., Appendix C of [33].
In an inclusive observable where one integrates over the

momenta of the final state gluon and of its parent without
any restrictions, it would be natural to always keep the
initial and final state gluon emissions, Figs. 3 and 5,
together because they have a tendency to cancel each other
in the UV region where the gluon is at the same coordinate

as the emitting quark. Thus, they are often evaluated
together such as in Refs. [78,79]. However, for the case
of the diffractive structure function, the restriction on the
diffractive system mass MX cuts out contributions of large
transverse momenta. Thus it is quite natural to evaluate the
contributions of the emissions before and after the shock-
wave separately. On the other hand, the final state gluon
emissions are associated with the wave function renorm-
alization constants for, and gluon exchanges between, the
outgoing quarks. The relation to these contributions which
are, in our language, a part of the qq̄ part of the cross
section is especially important for the kinematical region
when the gluon becomes collinear to the quark, where
corresponding IR divergences must cancel. Thus it would
not be natural here to consider the diagrams with gluon
emission after the shockwave, before taking into account all
the loop corrections. In conclusion, for a final state with a
fixed MX, the natural way to group diagrams together is
different from some other observables. Since we are here
leaving the NLO qq̄ contribution overall to a future paper,
we will also not calculate the final state emission contri-
butions here. The exception to this is in Sec. VIII A, where
one works in the MX → ∞ limit neglecting the restriction
on final state momenta, and thus only the inclusion of the
final state emissions allows one to get a finite result.
The 3-jet cross section in diffractive DIS has been

computed earlier in Ref. [44], using the shockwave
formalism that should be equivalent to our result here.
The calculation includes emissions both before and after
the shockwave, as is appropriate for the case of a fully
differential 3-jet cross section. The IR divergences asso-
ciated with wave function renormalization of the outgoing
quarks would appear only after integrating over the phase
space of the gluon, which is not done in Ref. [44], but is
done here. Checking the equivalence of the result at the
final cross section level would require a significant amount
of algebra which we have not performed here. However, it
was found in Ref. [44] that the result is compatible with the
γ� → qq̄ wave function of Ref. [30], which is the starting
point of our calculation, as discussed in more detail in
Sec. VII.

FIG. 6. Propagator and normal vertex correction diagrams calculated in [32,33].

FIG. 7. Instantaneous vertex correction diagrams calculated in [32,33].
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B. Loop corrections

In addition to the radiative contributions discussed in this
paper, there are also loop corrections at NLO. We will return
to them in more detail in a future paper, but let us make a few
remarks here. First, there are the one-loop corrections to
the γ� → qq̄ wave function, depicted in Figs. 6 and 7.
These include a quark propagator correction before the
shockwave shown in diagrams in Fig. 6(h) and 6(i), and
corrections to the γ� → qq̄ vertex (including regular and
instantaneous gluon or quark exchange) shown in diagrams
in Figs. 6(j), 6(k), 7(l), 7(m), 7(n), 7(o), and 7(p). These one-
loop wave functions have already been calculated as a part of
the virtual photon NLO wave function [32,33,38–40], and
the results for the loop calculations can be directly taken
from these references.
In diffractive scattering there are also additional diagrams

that are not needed for total (inclusive) cross section and as
such are not available in the literature. Now it will be
necessary to add propagator correction diagrams where the
gluon crosses the shockwave, diagrams in Fig. 8(q) and 8(r).
These exhibit UV divergences in the limit when the gluon
coordinate becomes equal to the emitting (anti)quark.
Similarly to the calculation of the inclusive cross section
these will have to partially cancel UV divergences in the
vertex correction diagrams in Figs. 6 and 7. This cancellation
is the reason why the one-loop γ� → qq̄wave function alone
is not sufficient to directly achieve the full NLO result. In
addition to the propagator correction type diagrams, similar
normal and instantaneous vertex correction diagrams in
Fig. 9(s)–9(v) are also needed.
In our formalism (see [31,80] for more detailed discus-

sions, based on the seminal work of [76]) we specifically
exclude diagrams containing self-energy corrections inserted
on the external asymptotic particles. Thus we do not
explicitly have the diagrams in Fig. 10(w) and 10(x) in
our calculation. Instead, one must attach to the amplitude a
wave function renormalization constant

ffiffiffiffiffiffiffiffiffi
Zq=q̄

p
[again see

Eq. (11)], which includes the same physical contribution,
and is determined by the unitarity of the evolution operator.

The outgoing quark and antiquark wave function renorm-
alization constants also have UV divergences, which should
cancel the rest of the UV divergences from the vertex
corrections. Finally there are also diagrams with a gluon
exchange in the final state [diagrams in Fig. 11(y), 11(z),
and 11(aa)]. Naively, one could think that these corrections
correspond to a renormalization of the outgoing qq̄ state,
but they cannot be absorbed into just a constant, since the
quark and antiquark actually exchange momentum in the
exchange. A proper discussion of how to define the dressed
qq̄ outgoing state and treat the interactions between the
outgoing particles is a major part of the discussion of the full
NLO result, which we will return to in future work.

IV. INITIAL AND FINAL FOCK STATES

We will from now on focus on the leading order qq̄ part
and the radiative qq̄g part of the cross section. To begin, let
us define explicitly our notations and normalization for the
Fock states. The Fock expansion of the incoming virtual
photon state in terms of bare partonic states is

jγ�λðqþ;q;Q2ÞiD ¼
ffiffiffiffiffiffiffi
Zγ�λ

q �
Non-QCD Fock states

þ gX
q0q̄1 F:s:

Ψ̃γ�λ→q0q̄1 b̃
†
0d̃

†
1j0i

þ gX
q0q̄1g2 F:s:

Ψ̃γ�λ→q0q̄1g2 b̃
†
0d̃

†
1ã

†
2j0i þ � � �

�
;

ð10Þ

FIG. 8. Propagator correction diagrams where the gluon crosses
the shockwave, but is not produced.

FIG. 9. Gluon emission diagrams where the gluon crosses the shockwave, but is not produced.

FIG. 10. Diagrams with propagator correction in final state.
These are not included, but instead there is a wave function
renormalization constant for the outgoing states.

FIG. 11. Final state interaction diagrams.
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where F. s. stands for “Fock states.” For the outgoing partonic states the corresponding expansions are

Dhq̄1q0j ¼
ffiffiffiffiffiffi
Zq

p ffiffiffiffiffiffi
Zq̄

p �
h0jd̃1b̃0 þ gX

q00 q̄10 F:s:

0h0jd̃10 b̃00Ψ̃†
q0q̄1→q00 q̄10

þ gX
q00 q̄10g20 F:s:

h0jã20 d̃10 b̃00Ψ̃†
q0q̄1→q00 q̄10g20

þ � � �
�
; ð11Þ

Dhg2q̄1q0j ¼
ffiffiffiffiffi
Zg

p ffiffiffiffiffiffi
Zq

p ffiffiffiffiffiffi
Zq̄

p �
h0jã2d̃1b̃0 þ gX

q00 q̄10 F:s:
h0jd̃10 b̃00Ψ̃†

q0q̄1g2→q00 q̄10
þ � � �

�
: ð12Þ

Here, we have only written out states that are needed for the
full NLO cross section. In addition, marked with …, there
are other states needed at higher orders and non-QCD Fock
states, including the photon. In fact, for the radiative
corrections that we calculate in this paper, only the leading
order terms in Eqs. (11) and (12) are needed. Strictly
speaking the final state wave functions are not exactly
hermitian conjugates of initial state ones, but differ by
the sign of the iε in the energy denominators [see Eqs. (4.2)
and (4.3) of Ref. [76]]. This difference does not play a role
in the calculation of this paper, but will be crucial in
the calculation of the full NLO corrections to diffractive
DIS, that we leave for a future publication. The notation
Σ̃ denotes the sum over the quantum numbers of each
parton in the Fock state and a mixed space phase-space
integration for each parton [31,65]. Here the prime 0 in the

sum denotes the fact that the original state is not included in
the sum [76].2 For brevity the transverse coordinates and
flavor (f) and helicity (h) indices are not written down
explicitly here. We will discuss the color structure of the
final state explicitly below. The γ�λ-state renormalization
coefficient is Zγ�λ

¼ 1þOðe2Þ and so it can be dropped in
this work. The renormalization coefficients Zq;q̄;g of the
partonic states are of the order of 1þOðg2Þ, and as such do
not affect the tree-level NLO corrections that we discuss in
this paper.
In the mixed space xi are the transverse coordinates and

kþi the longitudinal momenta of the partons, and indices
i ¼ 0, 1 refer to the quark and the antiquark, and i ¼ 2 to
the gluon. The quark, antiquark, and gluon creation and
annihilation operators satisfy the (anti-)commutation
relations

½aðkþ0 ;x0; λ0; a0Þ; a†ðkþ1 ;x1; λ1; a1Þ� ¼ ð2kþ0 Þð2πÞδðkþ0 − kþ1 Þδð2Þðx0 − x1Þδλ0;λ1δa0;a1 ; ð13Þ

fbðkþ0 ;x0; h0; α0Þ; b†ðkþ1 ;x1; h1; α1Þg ¼ ð2kþ0 Þð2πÞδðkþ0 − kþ1 Þδð2Þðx0 − x1Þδh0;h1δα0;α1 ; ð14Þ

fdðkþ0 ;x0; h0; α0Þ; d†ðkþ1 ;x1; h1; α1Þg ¼ ð2kþ0 Þð2πÞδðkþ0 − kþ1 Þδð2Þðx0 − x1Þδh0;h1δα0;α1 : ð15Þ

Here ai and λi refer to the gluon color and polarization,
respectively.
In Eq. (10) the functions Ψ̃γ�λ→q0q̄1 and Ψ̃γ�λ→q0q̄1g2 are the

light front wave functions (LFWFs) describing the pertur-
bative γ� → qq̄ and γ� → qq̄g splittings. Furthermore it is
convenient to factor out the overall color factor, momentum
conservation and dependence on the photon transverse
momentum q, and define the reduced wave functions
ψ̃ γ�λ→q0q̄1 and ψ̃ γ�λ→q0q̄1g2 as

Ψ̃γ�λ→q0q̄1 ¼ ð2qþÞ2πδðkþ0 þ kþ1 − qþÞei
q
qþ·ðk

þ
0
x0þkþ

1
x1Þ

× 1α0α1 ψ̃ γ�λ→q0q̄1 ; ð16Þ

Ψ̃γ�λ→q0q̄1g2 ¼ ð2qþÞ2πδðkþ0 þ kþ1 þ kþ2 − qþÞ
× ei

q
qþ·ðk

þ
0
x0þkþ

1
x1þkþ

2
x2Þtaα0α1 ψ̃ γ�λ→q0q̄1g2 : ð17Þ

These LFWFs are currently available in the literature.
The lowest order ψ̃ γ�λ→q0q̄1 is a standard result [81]. Loop
corrections to it, as well as tree-level wave function
describing the γ� → qq̄g splitting have been recently
calculated in mixed space (and d dimensions) in
Refs. [30,32,38–40]; other results derived in momentum
space include Refs. [82–85], and some are compatible with
BFKL evolution [28,29] but not the gluon saturation
regime.

2What exactly counts as the “same state” requires a more
detailed discussion in the case of a two-particle state than for
one particle; we plan to return to this in a future paper in the context
of the full NLO calculation where this term is needed. In practice,
only the diagrams including self-energy corrections on asymptotic
external legs need to be excluded, since they are already taken into
account thanks to the overall renormalization constants.
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In this work we consider diffractive scattering, which
requires that the final state partons must be in a color
singlet state (see also Ref. [86]). For both qq̄ and qq̄g
systems there exists exactly one such a configuration.
These states are

jq0q̄1isingletD ¼ δβ0;β1ffiffiffiffiffiffi
Nc

p jq0ðβ0Þq̄1ðβ1ÞiD; and ð18Þ

jq0q̄1g2isingletD ¼ tbβ0β1ffiffiffiffiffiffiffiffiffiffiffi
CFNc

p jq0ðβ0Þq̄1ðβ1Þg2ðbÞiD: ð19Þ

Here β0, β1 are the quark and antiquark colors and b is
the gluon color, and

ffiffiffiffiffiffi
Nc

p
and

ffiffiffiffiffiffiffiffiffiffiffi
CFNc

p
are normalization

factors.
Using the virtual photon Fock states it now becomes

possible to express the matrix elements written in Eq. (8) in
terms of the eikonal scattering operators ŜE describing a
color rotation of a quark or a gluon in the target color field.
For the n ¼ qq̄ Fock state we have

singlet
Dhq̄1q0jðŜE − 1Þjγ�λðqþ;q;Q2ÞiD
¼ ð2qþÞ2πδðpþ

0 þ pþ
1 − qþÞiMLO

γ�→qq̄; ð20Þ

where the superscript LO refers to the fact that we do not
include loop corrections to the γ� → qq̄ splitting in this
work. Similarly for n ¼ qq̄g we can write

singlet
Dhg2q̄1q0jðŜE − 1Þjγ�λðqþ;q;Q2ÞiD
¼ ð2qþÞ2πδðpþ

0 þ pþ
1 þ pþ

2 − qþÞiMNLO
γ�→qq̄g: ð21Þ

The eikonal scattering operator ŜE acts on the bare
quark, antiquark, and gluon creation operators as

ŜEã†ðkþ;x; λ; aÞ ¼ UAðxÞbaã†ðkþ;x; λ; bÞŜE; ð22Þ

ŜEb̃
†ðkþ;x; h; αÞ ¼ UFðxÞβαb̃†ðkþ;x; h; βÞŜE; ð23Þ

ŜEd̃
†ðkþ;x; h; αÞ ¼ ½U†

FðxÞ�αβd̃†ðkþ;x; h; βÞŜE: ð24Þ

Here α (a) is the quark (gluon) color before the shock and
β (b) after, and UFðAÞðxÞ refer to the Wilson lines at
transverse coordinate x in the fundamental (adjoint) rep-
resentation, describing a color rotation of the quark (gluon)
state when it propagates eikonally through the shockwave.
Using Eq. (6) the leading order diffractive cross section

can be written in terms of the scattering amplitudeMLO
γ�→qq̄

dσD;LOγ�λ→qq̄ ≔ ð2qþÞ2πδðpþ
0 þ pþ

1 − qþÞ
×gdp0

gdp1

X
h0;f0;h1;f1

jMLO
γ�→qq̄j2; ð25Þ

where the summation is over the quantum numbers of the
produced qq̄ state (for which there is exactly one color
singlet color configuration as discussed above). Similarly
the cross section for diffractive qq̄g production can be
written as

dσD;NLOγ�λ→qq̄g singlet ≔ ð2qþÞ2πδðpþ
0 þ pþ

1 þ pþ
2 − qþÞ

×gdp0
gdp1

gdp2

X
h0;f0;h1;f1;λ2

jMγ�→qq̄gj2;

ð26Þ

where we again sum over the final state quantum numbers
with only one possible color configuration.
TheWilson line structure in the scattering amplitude (20)

corresponding to diffractive qq̄ production now reads

δβ0β1ffiffiffiffiffiffi
Nc

p δα0α1 ½UFðx0Þβ0α0U†
Fðx1Þα1β1 − δβ0α0δβ1α1 �

¼ 1ffiffiffiffiffiffi
Nc

p ½TrðUFðx0ÞU†
Fðx1ÞÞ − Nc�; ð27Þ

where x0 and x1 are the quark and antiquark transverse
coordinates, respectively.
In this work we consider coherent diffraction in which

case the target nucleus does not dissociate and the average
over the target color sources is taken at the amplitude
level [67] (see also, e.g., Refs. [68–71] for a discussion of
the averaging procedure). This target average gives

1ffiffiffiffiffiffi
Nc

p hTr½UFðx0ÞU†
Fðx1Þ� − Nci ¼

ffiffiffiffiffiffi
Nc

p
ðS01 − 1Þ; ð28Þ

where hOi denotes the average over the target configura-
tions and we have defined

S01 ≡ 1

Nc
hTr½UFðx0ÞU†

Fðx1Þ�i: ð29Þ

From the complex conjugate amplitude one obtains exactly
the same structure but with the Wilson lines evaluated at
different transverse coordinates x̄i. The Wilson line struc-
ture at the cross section level then reads

NcðS01 − 1ÞðS†
0̄ 1̄

− 1Þ: ð30Þ

The qq̄g production case, Eq. (21), can be considered
similarly. The Wilson line structure in the amplitude (21) is

ðtbβ0β1Þ�ffiffiffiffiffiffiffiffiffiffiffi
CFNc

p taα0α1 ½UAðx2ÞbaUFðx0Þβ0α0U†
Fðx1Þα1β1−δα0β0δα1β1δab�

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
CFNc

p ½Uba
A ðx2ÞTrðtbUFðx0ÞtaU†

Fðx1ÞÞ−CFNc�: ð31Þ
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Note that the factor taα0α1 originates from the γ → qq̄g wave
function (17).
Again this needs to be averaged over the target configu-

rations at the amplitude level. Defining

S012 ≡ 1

CFNc
hUba

A ðx2ÞTr½tbUFðx0ÞtaU†
Fðx1Þ�i

¼ Nc

2CF

�
S02S12 −

1

Nc
2
S01

�
ð32Þ

the Wilson line structure at the cross section level can be
written as

CFNcðS012 − 1ÞðS†
0̄ 1̄ 2̄

− 1Þ: ð33Þ
Here the identity

Uba
A ðx2Þ ¼ 2Tr½UFðx2ÞtaU†

Fðx2Þtb�: ð34Þ
was used to express the adjoint Wilson line in terms of the
fundamental representation Wilson lines. In Eq. (32) the
mean field limit hO1O2i ¼ hO1ihO2i was used to express
the expectation value of the Wilson lines in terms of the
dipole correlators Sij. In particular we note that no higher
multipole functions (traces of n > 2 Wilson lines) appear
even at finite Nc in the mean field limit when we evaluate
the diffractive cross section, in contrast to the inclusive two
or three jet production case [87]. However at finite Nc the
BK [14,16] or JIMWLK [88–95] evolution would intro-
duce an implicit dependence on such correlators.
The dipole scattering amplitude 1 − S01 satisfies the

small-x BK or JIMWLK evolution equation. The necessary
nonperturbative input for this evolution (initial condition at
moderate x) can be determined by performing a fit to the
HERA inclusive structure function data [96–99] as, e.g., in
Refs. [34,100–103]. Instead of the BK/JIMWLK evolution
one can also use phenomenological parametrizations such
as the IPsat [104] model, where again the model parameters
can similarly be constrained by HERA data [105,106].
Although superficially different, our formulation here

is equivalent to the “outgoing state” formulation used,
e.g., in Refs. [78,107]. The generic amplitude (8) is
given by a matrix element between two dressed states
M ∼ DhoutjŜ − 1jiniD. The outgoing state approach con-
sists of first expressing the incoming dressed state jiniD in
terms of the bare Fock states just like we do (formally
expressed as a time evolution operator acting on a bare
asymptotic state). One then passes through the shockwave,
and obtains the state ðŜ − 1ÞjiniD also in terms of the bare
states. In the outgoing state formulation one then, instead
of taking a matrix element with the dressed state Dhoutj,
first inverts its Fock state expansion, expressing the
bare states at the shockwave in terms of the dressed states.
Then inserting this inverse Fock state expression into the
expression ðŜ − 1ÞjiniD, one obtains the outgoing state
ðŜ − 1ÞjiniD in terms of the dressed asymptotic (future)

states. From here one can either read off the amplitudes, or
first square them and think of the projection operator
joutiDDhoutj as a particle number operator counting what
are in Refs. [78,107] called bare particles at xþ ¼ ∞, which
we would here call dressed particles. In other words, in the
outgoing state formalism one is acting with the time
evolution operator from xþ ¼ 0 to xþ → ∞ on the state
ðŜ − 1ÞjiniD to express it in terms of the states joutiD,
whereas here we use the inverse time evolution operator
from xþ → ∞ to xþ ¼ 0 to get Dhoutj in terms of the bare
states at xþ ¼ 0. The connection is easiest to see in terms of
the diagrams for the amplitude, which are the same in both
approaches and lead to the same expressions.3

V. FINAL STATE PHASE SPACE

The diffractive structure functions are measured at fixed
invariant mass M2

X. On the other hand, the diffractive 2- or
3-parton production cross sections in Eqs. (25) and (26) are
written in terms of the three-momenta of the quarks and
gluons. These momenta are, in turn, obtained by Fourier-
transformation from coordinate space, which is how we
understand the interaction with the target color field. The
only place where the momenta of the final state particles
appear is in the exponentials of this Fourier-transform and
the delta function setting the invariant mass toM2

X. In order
to get the final diffractive structure function one needs to
integrate over the final state momenta with the restriction
on MX. It can be convenient to do this before integrating
over the coordinates of the particles. This results in generic
“transfer functions” from a coordinate space squared
amplitude to the final states with mass MX. These func-
tions, one for the two- and another one for the three-particle
final states, are the same for all states with the same number
of partons. Thus, it makes sense to calculate them sepa-
rately. Here, we will consider the two- and three-particle
phase space integrals separately in Secs. VA and V B.

A. Two-particle phase space

In terms of the reduced wave function ψ̃ γ�λ→q0q̄1 ≔
ψ̃ γ�λ→q0q̄1ðx0;x1; z0; z1Þ defined in Eq. (16) the diffractive
qq̄ production cross section (25) reads

dσDγ�λ→qq̄ðLOÞgdp0
gdp1

¼4πqþδðpþ
0 þpþ

1 −qþÞNc

Z
d2x0

Z
d2x1

×
Z

d2x̄0

Z
d2x̄1e−ix00̄ðp0−z0qÞe−ix11̄ðp1−z1qÞ

×
X
h0;h1;f

ðψ̃ γ�λ→q0̄q̄1̄Þ†ðψ̃ γ�λ→q0̄q̄1̄Þ½S†0̄ 1̄−1�½S01−1�;

ð35Þ

3Note, however, that Refs. [78,107] use a different normali-
zation for single particle states and for phase space integrals.
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where we have written Sij ¼ Sðxi;xjÞ and xij ¼ xi − xj.
The virtual photon polarization is denoted by λ, and the
transverse coordinates in the complex conjugate amplitude
are x̄i. The overall color factor Nc is obtained when
performing the color algebra in the final state requiring
that the outgoing state is a color singlet, see Eq. (30).
In order to obtain the diffractive cross section at fixed

invariant mass MX and squared momentum transfer t, we
need to integrate over the three-momenta p⃗0 and p⃗1 and
introduce delta functions that enforce the required kin-
ematics. Towards this goal we define the following trans-
verse momentum variables

Δ≡ p0 þ p1 − q; ð36Þ
l≡ z1p0 − z0p1; ð37Þ

which should be understood as the total momentum transfer
from the target to the diffractive system, and the relative
momentum of the quark-antiquark pair.4 These satisfy

Δ2 ≈ −t; ð38Þ
l2

z0z1
≡M2

X; ð39Þ

and neatly the Jacobian is unity, i.e., in (25) we may replace
d3p⃗0d3p⃗1 ↦ ðqþÞ2d2Δd2ldz0dz1 with zi ≔ pþ

i =q
þ. With

this change of variables, and imposing the MX and t
constraints, the diffractive cross section (25) becomes

dσDλ;qq̄
dM2

Xdjtj
¼ Nc

4π

Z
1

0

dz0

Z
1

0

dz1δðz0 þ z1 − 1Þ

×
Z

d2x0

Z
d2x1

Z
d2x̄0

Z
d2x̄1

× I ð2Þ
Δ I ð2Þ

MX

X
f

X
h0;h1

ðψ̃ γ�λ→q0̄q̄1̄Þ†ðψ̃ γ�λ→q0q̄1Þ

× ½S†
0̄ 1̄

− 1�½S01 − 1�; ð40Þ
where we defined

I ð2Þ
Δ ≔

Z
d2Δ
ð2πÞ2 δðΔ

2 − jtjÞeiΔ·ðz0x0̄0−z1x1̄1Þ ð41Þ

and

I ð2Þ
MX

≔
Z

d2l
ð2πÞ2 δðl

2 − z0z1M2
XÞeil·ðx0̄ 1̄−x01Þ: ð42Þ

As the reduced photon wave function ψ̃ γ�λ→q0q̄1 can only
depend on the coordinate separation r ≔ x0 − x1, it is
useful to make a change of variables from x0, x1 to the
dipole size r and the impact parameter b ¼ ðx0 þ x1Þ=2
(using again coordinates with a bar for the complex
conjugate amplitude). In these coordinates we get

I ð2Þ
Δ ¼

Z
d2Δ
ð2πÞ2 δðΔ

2 − jtjÞeiΔ·ðb̄−bþ2z0−1
2

ðr̄−rÞÞ; ð43Þ

I ð2Þ
MX

¼
Z

d2l
ð2πÞ2 δðl

2 − z0z1M2
XÞeil·ðr̄−rÞ: ð44Þ

In the most general case (i.e., without further assump-
tions), it is also possible to perform the l integral which
gives

I ð2Þ
MX

¼ 1

4π
J0ð ffiffiffiffiffiffiffiffiffi

z0z1
p

MXkr̄ − rkÞ: ð45Þ

This transfer function is related to the probability to
form a final state with the given invariant mass MX
given the dipole sizes r and r̄ in the amplitude and
conjugate amplitude with fixed longitudinal momentum
fractions zi for the quarks. The integral over Δ is of the
same form, and gives

I ð2Þ
Δ ¼ 1

4π
J0

� ffiffiffiffiffi
jtj

p 				b̄ − bþ ð2z0 − 1Þ
2

ðr − rÞ
				�: ð46Þ

Eventually we are also interested in t-integrated diffrac-
tive cross sections and structure functions. Integrating over
the squared momentum transfer t we findZ

0

−∞
dt I ð2Þ

Δ ¼ δð2Þ
�
b̄ − bþ 2z0 − 1

2
ðr̄ − rÞ

�
: ð47Þ

The most general result for the total diffractive cross
section in the case where the final state consists of two
particles is then given by Eq. (40) with the phase space

integrals I ð2Þ
Δ and I ð2Þ

MX
given above. In particular, we

emphasize that the cross section (40) cannot be, in general,
written in a factorized form commonly used in the literature
[61,62,108], where the result is expressed as a square of an
integral over the transverse coordinates in the amplitude.
In Sec. VI B we discuss in detail the approximations
necessary to obtain a form for the diffractive cross sections
where the dependence on impact parameter, amplitude
coordinates, and conjugate amplitude coordinates factorize
and enables one to write the result in the “squared
integral” form.
We finally note that the “off-forward” phase in the

amplitude coupling the dipole size and the momentum

4In fact, in the transverse plane the light cone coordinates
correspond to a two-dimensional nonrelativistic system, where
pþ plays the role of a mass. The definition of the relative
momentum can then be thought of as l ∼ p0=z0 − p1=z1, which is
the nonrelativistic or Galileian velocity of the particles in the rest
frame of the two-particle system.
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transfer is exp ði 2z0−1
2

Δ · rÞ as shown in Eq. (43), and not
exp ðið1 − z0Þr · ΔÞ as has been commonly used in the
literature based on Refs. [109,110]. The correct phase
factor has been discussed, e.g., in Refs. [111,112]. We
furthermore note that if one used the center-of-mass b0 ¼
z0x0 þ z1x1 as an impact parameter (which would be a
natural variable in light cone perturbation theory), no such
off-forward phase would appear and the phase factor in
Eq. (43) would be just exp ðiΔ · ðb̄0 − b0ÞÞ. While b0 is the
conjugate variable to the momentum transfer, it depends on
the probe. The definition b is more natural in a context

where one wants to discuss the geometrical transverse
structure of the target in a probe-independent manner. Thus
it is often used in the literature.

B. Three-particle phase space

Let us next consider the phase space integral for the
case where there are three particles in the final state,
referring to the qq̄g system in this work. Analogously to
the two-particle case discussed above, the starting point is
the total diffractive cross section [see Eq. (26)] at fixedM2

X
and t:

dσDγ�λ→qq̄g

dM2
Xdjtj

¼ NcCF

ð4πÞ2
Z

d2p0

ð2πÞ2
Z

d2p1

ð2πÞ2
Z

d2p2

ð2πÞ2
Z

1

0

dz0
z0

Z
1

0

dz1
z1

Z
1

0

dz2
z2

δðz0 þ z1 þ z2 − 1Þδððp0 þ p1 þ p2 − qÞ2 − jtjÞ

× δððp0 þ p1 þ p2Þ2 −M2
XÞ
Z
x0

Z
x1

Z
x2

Z
x̄0

Z
x̄1

Z
x̄2

ð2πÞ6eix0̄0ðp0−z0qÞeix1̄1ðp1−z1qÞeix2̄2ðp2−z2qÞ

×
X

f;h0;h1;λ2

ðψ̃ γ�λ→q0̄q̄1̄g2̄Þ†ðψ̃ γ�λ→q0q̄1g2Þ½S†0̄ 1̄ 2̄ − 1�½S012 − 1�; ð48Þ

where the color factor trðtataÞ ¼ NcCF is again ob-
tained as shown in Eq. (33) in Sec. IV, p0, p1, p2 are
the four-momenta of the produced partons, and their
transverse coordinates are again labeled as x0, x1, x2 in
the amplitude, and x̄0; x̄1; x̄2 in the conjugate ampli-
tude. The plus momentum fractions are again denoted
by zi, and the transverse integral normalization is
defined as

R
x ≔

R
d2x
2π . Note that this introduces an

explicit ð2πÞ6 in Eq. (48), but will lead to nicer
expressions in the end.
Next we define the following transverse momenta

Pi ≔ pi − ziq; ð49Þ

K ≔ P2 −
z2
z0
P0; ð50Þ

P ≔ P0 þ z0Δþ z0
1 − z1

K; ð51Þ

Δ ≔ q − p0 − p1 − p2 ¼ −P0 − P1 − P2: ð52Þ

HerePi could be interpreted as themomentum of the particle
i with respect to the center of mass of the three-particle
system before the scattering (i.e., the momentum q). The
momentum Δ is then the total momentum transfer from the
target to the scattering system, andK the relative momentum
of the gluon with respect to the quark. The remaining P then
is proportional to the relative momentum of the antiquark
with respect to the quark-gluon system, which becomes
more obvious if one writes it as P ¼ z0z1½ðP0 þ P2Þ=
ð1 − z1Þ − P1=z1�. Using the above variables allows us to
rewrite the invariant mass of the final state particles in a
simple way as the sum of two squared momenta:

M2
qq̄g ≔ ðp0 þ p1 þ p2Þ2 ¼

P2
0

z0
þ P2

1

z1
þ P2

2

z2
− Δ2 ¼ 1 − z1

z1z20
P2 þ z0

z2ð1 − z1Þ
K2: ð53Þ

Now we need to apply the same changes to the exponential phases in the integral (48):

eix0̄0ðp0−z0qÞeix1̄1ðp1−z1qÞeix2̄2ðp2−z2qÞ ¼ eiðx0̄0þ
z2
z0
x2̄2−

z0þz2
z0

x1̄1Þ·Pei
z0

1−z1
ðx2̄2−x0̄0Þ·Ke−iðz0x0̄0þz1x1̄1þz2x2̄2Þ·Δ: ð54Þ

To obtain the cross section differentially in invariant mass and squared momentum transfer, we again integrate over all
three-momenta and include delta functions that impose the required constraints. This gives
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dσDγ�λ→qq̄g

dM2
Xdjtj

¼ 4π4NcCF

Z
1

0

dz0
z0

Z
1

0

dz1
z1

Z
1

0

dz2
z2

δðz0 þ z1 þ z2 − 1ÞI ð3Þ
Δ I ð3Þ

MX

×
Z
x0

Z
x1

Z
x2

Z
x̄0

Z
x̄1

Z
x̄2

X
h0;h1;λ2

ðψ̃ γ�λ→q0̄q̄1̄g2̄Þ†ðψ̃ γ�λ→q0q̄1g2Þ½1 − S†
0̄ 1̄ 2̄

�½1 − S012�; ð55Þ

where we have again separated the transverse momentum integrals:

I ð3Þ
Δ ¼

Z
d2Δ
ð2πÞ2 δðΔ

2 − jtjÞe−iðz0x0̄0þz1x1̄1þz2x2̄2Þ·Δ; ð56Þ

I ð3Þ
MX

¼
Z

d2P
ð2πÞ2

Z
d2K
ð2πÞ2 δ

�
1 − z1
z1z20

P2 þ z0
z2ð1 − z1Þ

K2 −M2
X

�
eiðx0̄0þ

z2
z0
x2̄2−

z0þz2
z0

x1̄1Þ·Pei
z0

1−z1
ðx2̄2−x0̄0Þ·K: ð57Þ

The integral in I ð3Þ
Δ can be evaluated using standard methods in spherical coordinates, yielding

I ð3Þ
Δ ¼ 1

4π
J0ð

ffiffiffiffiffi
−t

p kz0x0̄0 þ z1x1̄1 þ z2x2̄2kÞ: ð58Þ

Eventually we want to calculate t integrated diffractive structure functions. The integration over the squared momentum
transfer t givesZ

0

−∞
dtI ð3Þ

Δ ¼
Z

0

−∞
dt
Z

d2Δ
ð2πÞ2 δðΔ

2 − jtjÞe−iðz0x0̄0þz1x1̄1þz2x2̄2Þ·Δ ¼ δð2Þðz0x0̄0 þ z1x1̄1 þ z2x2̄2Þ≡ δð2Þðb̄ − bÞ; ð59Þ

where b ≔ z0x0 þ z1x1 þ z2x2 is the center of mass of the qq̄g system, and b̄ is the respective coordinate in the conjugate

amplitude.5 The calculation of I ð3Þ
MX

is more involved, and proceeds by Fourier transforming the δ function:

δ

�
1 − z1
z1z20

P2 þ z0
z2ð1 − z1Þ

K2 −M2
X

�
¼
Z
R

dη
2π

e
iη



1−z1
z1z

2
0

P2þ z0
z2ð1−z1ÞK

2−M2
X

�
: ð60Þ

To simplify the notation, we define the following transverse coordinates:

z ≔ x0̄0 þ
z2
z0
x2̄2 −

z0 þ z2
z0

x1̄1; ð61Þ

y ≔ x2̄2 − x0̄0: ð62Þ

With these and Eq. (60)—and completing some squares—we can write

I ð3Þ
MX

¼
Z
R

dη
2π

e−iηM
2
Xe−iη

z2
0
z1

1−z1
ð z
2ηÞ2e−iη

z0z2
1−z1

ð y
2ηÞ2
Z

d2P
ð2πÞ2

Z
d2K
ð2πÞ2 e

iη
1−z1
z2
0
z1



Pþz2

0
z1

1−z1
1
2ηz

�
2

eiη
z0

ð1−z1Þz2ðKþz2
2ηyÞ2 : ð63Þ

Computing the—now Gaussian—transverse momentum integrals requires shifting η → ηþ iϵ in the complex plane. With
this we have

R∞
0 dzeiηz ¼ i=ðηþ iϵÞ, and so

5Here we directly defined the impact parameter b as the “true” momentum-weighted impact parameter and not just the average of the
coordinates, cf. the discussion below Eq. (47).
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Z
d2P
ð2πÞ2

Z
d2K
ð2πÞ2 e

iη
1−z1
z2
0
z1



Pþz2

0
z1

1−z1
1
2ηz

�
2

eiη
z0

ð1−z1Þz2ðKþz2
2ηyÞ2 ¼ 1

ð4πÞ2
ið z20z1

1−z1
Þ

ηþ iϵ

i


ð1−z1Þz2

z0

�
ηþ iϵ

: ð64Þ

This allows us to write the remaining η integral as a residue in the lower half of the complex plane:

I ð3Þ
MX

¼ i
z0z1z2
ð4πÞ2 Res

 
e−iηM

2
Xe−iη

z2
0
z1

1−z1
ð z
2ηÞ2e−iη

z0z2
1−z1

ð y
2ηÞ2

ðηþ iϵÞ2 ; η → −iϵ

!
; ð65Þ

where we can now take ϵ → 0. The singularity at η ¼ 0 is
an essential singularity, which means that we can read
the above residue as the coefficient of the 1

η term in
the series expansion of the residue function. Defining

Y2
012 ≔

z2
0
z1

1−z1
z2 þ z0z2

1−z1
y2, the expansion is

1

η2
e−iηM

2
Xe−i

Y2
012
4η ¼

X∞
n¼0

ð−iM2
XÞn

n!

X∞
m¼0

ð−iY2
012Þm

m!

1

η2þm−n ;

ð66Þ

and so the residue is found at 2þm−n¼1⇒n¼mþ1.
Thus, we finally have

I ð3Þ
MX

¼ i
z0z1z2
ð4πÞ2

X∞
m¼0

ð−iÞ2mþ1

m!ðmþ 1Þ! ðM
2
XÞmþ1

�
Y2

012

4

�
m

¼ 2
z0z1z2
ð4πÞ2

MX

Y012

J1ðMXY012Þ; ð67Þ

where Y012 ≔ kY012k, and the series expansion of the
Bessel function of the first kind was recognized:

J1ðxÞ ¼
X∞
n¼0

ð−1Þn
n!ðnþ 1Þ!

�
x
2

�
2nþ1

: ð68Þ

In terms of the quark, antiquark, and gluon coordinates, the
transverse distance scale appearing as a conjugate to the
invariant mass reads

Y2
012 ¼ z0z1ðx0̄0 − x1̄1Þ2 þ z1z2ðx2̄2 − x1̄1Þ2

þ z0z2ðx2̄2 − x0̄0Þ2: ð69Þ

Note that Y2
012 does not depend on the center-of-mass of the

qq̄g system b ¼ z0x0 þ z1x1 þ z2x2 (or on b̄), which is the
Fourier conjugate to the momentum transfer Δ. Conse-
quently, if the impact parameter dependence factorizes
from the Wilson lines as S012 − 1 ¼ TðbÞðS012 − 1Þ, then
the t-integrated diffractive cross section is proportional toR
d2bjTðbÞj2.
The transverse momentum integrals I ð3Þ

MX
and I ð3Þ

Δ
combined with the virtual photon wave functions and
qq̄g-target scattering amplitudes can now be directly used

to calculate the total diffractive cross section at fixed
invariant mass M2

X using Eq. (55).

VI. LEADING ORDER DIFFRACTIVE
CROSS SECTION

In this section we present for completeness a derivation
for the qq̄ contribution to the leading order diffractive cross
section. The calculation is organized as follows. First in
Sec. VI A we review the leading order photon wave
function describing the γ → qq̄ dipole transition, and show
the squared wave function needed in the case of DDIS. In
Sec. VI B we derive the general leading order result for the
diffractive cross sections, after which we discuss in detail
what approximations are necessary in order to derive the
form commonly used in the literature.

A. Coordinate space wave function

The wave function describing the tree-level γ� → qq̄
splitting is required to evaluate the leading order cross
section Eq. (40). In D ¼ 4 dimensions the virtual photon
wave functions in transverse coordinate space read [81]
(see also Refs. [31,32])

ψ̃ γ�L→q0q̄1 ¼ −
eef
2π

δh1;−h0z
3=2
0 z3=21 2QK0ðx01Q̄Þ ð70Þ

for the longitudinal photon, and

ψ̃ γ�λ→q0q̄1 ¼ −i
eef
2π

ffiffiffiffiffiffiffiffiffi
z0z1

p ½ðz0 − z1Þδij þ 2ð−h1Þiϵij�δh1;−h0

×
ϵiλx

j
01

x01
Q̄K1ðx01Q̄Þ ð71Þ

for a transversely polarized photon with polarization λ,
with x01 ≔ kx01k and Q̄ ≔ ffiffiffiffiffiffiffiffiffi

z0z1
p

Q. The quark fractional
charge is denoted by ef. Note that our convention to pull
out a normalization factor ð2qþÞ from the definition of the
reduced wave function in Eq. (16) allows us to write the
wave functions in terms of the longitudinal momentum
fractions zi with no explicit dependence on qþ.
In order to calculate the diffractive cross sections we

need the squared wave functions in the case where the
quark transverse coordinates are different in the amplitude
and in the conjugate amplitude. Summing over the quark
helicities these squares read
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X
h0;h1

ðψ̃ γ�L→q0̄q̄1̄Þ†ðψ̃ γ�L→q0q̄1Þ ¼ 2
e2e2f
ð2πÞ2 z

3
0z

3
14Q

2K0ðx01Q̄ÞK0ðx0̄ 1̄Q̄Þ ð72Þ

and

1

2

X
T pol λ

X
h0;h1

ðψ̃ γ�λ→q0̄q̄1̄Þ†ðψ̃ γ�λ→q0q̄1Þ ¼
e2e2f
ð2πÞ2 z

2
0z

2
1ððz0 − z1Þ2 þ 1Þx01 · x0̄ 1̄

x01x0̄ 1̄
Q2K1ðx01Q̄ÞK1ðx0̄ 1̄Q̄Þ: ð73Þ

A more familiar form of the momentum fraction depend-
ence can be obtained noting that ðz0 − z1Þ2 þ 1≡
2ðz20 þ z21Þ, which holds under the plus-momentum con-
servation z0 þ z1 ¼ 1.

B. From wave function to diffractive cross section

The total diffractive cross section at leading order can be
obtained by substituting the virtual photon wave function in

Eq. (40), and using the phase space integrals I ð2Þ
Δ and I ð2Þ

MX

given in Eqs. (43) and (45). Let us first consider the case
where the virtual photon is longitudinally polarized.We note
that although the squared wave function (72) factorizes as
K0ðx01Q̄ÞK0ðx0̄ 1̄Q̄Þ, the diffractive cross section cannot be
written simply as a square of an amplitude, since the phase

space integral I ð2Þ
MX

mixes the transverse coordinates in the
amplitude and in the conjugate amplitude even after an
integral over the total momentum transfer, see Eq. (45).
In order to derive the leading order results for the qq̄

contribution to the diffractive structure functions com-
monly used in the literature [61], further approximations
are required. In particular, we assume that

(i) The invariant mass M2
X or virtuality Q2 is so

large that exp ½−i 2z−1
2

Δ · ðr − r̄Þ� ≈ 1 (note that
r2; r̄2 ≲ 1=Q2; 1=M2

X). In this case, the momentum

transfer integral of I ð2Þ
Δ gives only δð2Þðb − b̄Þ, see

Eq. (47). This is also the case if the dipole-proton
scattering amplitude depends on the center of mass
of the qq̄ system b0 ¼ z0x0 þ z1x1 and not on the
impact parameter b ¼ ðx0 þ x1Þ=2 (see discussion
in Sec. VA).

(ii) The dipole-target interaction does not depend
on the orientation of the dipole or that of the impact
parameter, i.e., S01 ≡ Sðkx0 − x1k; kbkÞ≕ Srb. The
angular dependence is commonly neglected when
the initial condition for the BK evolution is deter-
mined by fitting the HERA data [34,100–103] and in
parametrizations such as IPsat [104]. However, in
general such a (probably weak) angular dependence
should exist, see, e.g., Refs. [112–116].

Under these assumptions, the only dependence on the
angle θr;r̄ between r ≔ x01 and r̄ ≔ x0̄ 1̄ is in the phase

space integral I ð2Þ
MX

. This integral then gives

Z
dθr;r̄I

ð2Þ
MX

¼
Z

dθr;r̄J0ð ffiffiffiffiffiffiffiffiffi
z0z1

p
MXkr̄ − rkÞ ¼ 2πJ0ð ffiffiffiffiffiffiffiffiffi

z0z1
p

MXkrkÞJ0ð ffiffiffiffiffiffiffiffiffi
z0z1

p
MXkr̄kÞ; ð74Þ

and as such it factorizes into parts that only depend on transverse coordinates in the amplitude or in the conjugate amplitude.
Integrating over t results in a delta function forcing b ¼ b̄ [see Eq. (47)], and the cross section becomes

dσDL;qq̄
dM2

X
¼ Nc

e2

ð2πÞ2
X
f

e2f

Z
1

0

dz0 z30ð1 − z0Þ3
Z

d2b

�Z
dr rJ0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0ð1 − z0Þ

p
MXrÞQK0ðrQ̄ÞðSrb − 1Þ

�
2

; ð75Þ

where we have substituted the longitudinal photon wave function summed over helicities shown in Eq. (72). Note that if the
impact parameter dependence factorizes from the dipole scattering amplitude, i.e., ðSrb − 1Þ≡ TðbÞ½Sr − 1�, then the
impact parameter integral completely factorizes and gives

R
d2bjTðbÞj2.

On the other hand, for the transversely polarized photons, the leading order reduced wave function squared depends on
the angle between r and r̄ as shown in Eq. (73):

X
Tpol:λ

X
h0;h1

ðψ̃ γ�λ→q0̄q̄1̄Þ†ðψ̃ γ�λ→q0q̄1Þ ∝
r · r̄

krkkr̄k ; ð76Þ

which means that the part that depends on the dipole sizes r and r̄—omitting the dipole amplitudes for now—reads
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Z
d2r
Z

d2r̄I ð2Þ
MX

r · r̄
krkkr̄k ¼

Z
d2r
Z

d2r̄
Z

d2l
ð2πÞ2 δðl

2 − z0ð1 − z0ÞM2
XÞ

r · r̄
krkkr̄k e

il·ðr̄−rÞ: ð77Þ

Parametrizing the angles as ∠ðl; rÞ≕ θ and ∠ðl; r̄Þ≕ θ̄, we have for the dot product: r · r̄ ¼ rr̄ðcos θ cos θ̄ þ sin θ sin θ̄Þ,
where the sine term vanishes in the integration. Thus we are left withZ

r dr dθ
Z

r̄ dr̄ dθ̄
Z

d2l
ð2πÞ2 δðl

2 − z0ð1 − z0ÞM2
XÞ cos θ cos θ̄eilr̄ cos θ̄e−ilr cos θ

¼ π

Z
rdr
Z

r̄ dr̄ J1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0ð1 − z0Þ

p
MXrÞJ1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0ð1 − z0Þ

p
MXr̄Þ: ð78Þ

Consequently, we find that (only) under the assumptions listed at the beginning of this subsection the diffractive cross
section can be written in a factorized form independently of the photon polarization. Otherwise the transverse coordinates in
the amplitude and conjugate amplitude are mixed. In the future it will be interesting to study numerically the effect of these
assumptions, that were used, e.g., in Ref. [62] where a good description of the HERA diffractive structure function data was
obtained. Both cross sections can now under these assumptions be expressed in terms of an auxiliary function, denoting
now z0 ¼ z with the integral over z1 is performed using the δ function

Φnðz; β; Q;bÞ ¼
�Z

dr rJnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞ

p
MXrÞKnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞ

p
QrÞðSrb − 1Þ

�
2

: ð79Þ

Using this, we may write the diffractive structure functions as

xPFD
L;qq̄ðβ; xP; Q2Þ ¼ NcQ4

2π3β

X
e2f

Z
d2b

Z
1

0

dz z3ð1 − zÞ3Q2Φ0ðz; β; Q;bÞ; ð80Þ

xPFD
T;qq̄ðβ; xP; Q2Þ ¼ NcQ4

8π3β

X
e2f

Z
d2b

Z
1

0

dz z2ð1 − zÞ2ðz2 þ ð1 − zÞ2ÞQ2Φ1ðz; β; Q;bÞ; ð81Þ

which is in agreement with Ref. [62], once one accounts for
the different normalization of the dipole amplitude and the
different integration domain of z.

VII. TREE-LEVEL qq̄g CONTRIBUTION TO THE
DIFFRACTIVE STRUCTURE FUNCTIONS

In this section we present the main result of this paper:
the tree-level calculation of diffractive qq̄g production as a
function ofM2

X and t. We consider the case where the gluon
is emitted before the shockwave and the qq̄g system then

interacts with the target, corresponding to the diagrams in
Figs. 3(b), 3(c), 4(d), and 4(e). The emission-after-shock
contribution could then in principle be obtained by taking the
appropriate coordinate limits following the method devel-
oped in Refs. [78,107]. As discussed in Sec. III, we will
however leave it to a future publication. For simplicity we
only consider the massless quark limit in this work.
The diffractive qq̄g production cross section was written

in Sec. V B [see Eq. (55)] in terms of the phase space

integrals I ð3Þ
MX

and I ð3Þ
Δ given in Eqs. (67) and (59) as

dσDλ;qq̄g
dM2

Xdjtj
¼ 4π4NcCF

Z
1

0

dz0
z0

Z
1

0

dz1
z1

Z
1

0

dz2
z2

δðz0 þ z1 þ z2 − 1Þ
Z
x0

Z
x1

Z
x2

Z
x̄0

Z
x̄1

Z
x̄2

I ð3Þ
Δ I ð3Þ

MX

×
X

h0;h1;λ2

ðψ̃ γ�λ→q0̄q̄1̄g2̄Þ†ðψ̃ γ�λ→q0q̄1g2Þ½S†0̄ 1̄ 2̄ − 1�½S012 − 1�: ð82Þ

The only part missing from the diffractive qq̄g produc-
tion cross section is thus the calculation of the square of
the tree-level wave function ψ̃ γ�λ→q0q̄1g2 , with different
transverse coordinates in the amplitude (xi) and in the
conjugate amplitude (x̄i), summed over helicities. The plus
momentum fractions zi are external kinematical variables
and therefore the same in the direct and complex conjugate

amplitude. We calculate this square using the wave func-
tions for the longitudinally and transversely polarized
photons in four dimensions from Ref. [32] (see also
Refs. [30,38–40]), with the modification that the factor
of 2qþ has been taken out of the reduced wave functions ψ̃
in the definition (17). The reduced LFWF for the longi-
tudinal photon reads
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ψ̃Tree
γ�L→q0q̄1g2

¼ eefg
i

ð2πÞ2 ε
j�
λ2
2QK0ðQX012Þ ffiffiffiffiffi

z0
p ffiffiffiffiffi

z1
p

δh1;−h0

×

�
z1½ð2z0 þ z2Þδjm − ið2h0Þz2ϵjm�

�
xm
20

x2
20

�
− z0½ð2z1 þ z2Þδjm þ ið2h0Þz2ϵjm�

�
xm
21

x2
21

��
; ð83Þ

whereas for the transverse photon we have

ψ̃Tree
γ�λ→q0q̄1g2

¼ eefg

ð2πÞ2 ε
i
λε

j�
λ2

ffiffiffiffiffi
z0

p ffiffiffiffiffi
z1

p
δh1;−h0

Q
X012

K1ðQX012Þ

×

�
z1½ð2z0 þ z2Þδjm − ið2h0Þz2ϵjm�½ð2z1 − 1Þδil − ið2h0Þϵil�xl

0þ2;1

�
xm
20

x2
20

�
þ z0½ð2z1 þ z2Þδjm þ ið2h0Þz2ϵjm�½ð2z0 − 1Þδil þ ið2h0Þϵil�xl

0;1þ2

�
xm
21

x2
21

�
−

z0z1z2
z0 þ z2

½δij − ið2h0Þϵij� þ
z0z1z2
z1 þ z2

½δij þ ið2h0Þϵij�
�
; ð84Þ

where X012, x0þ2;1 and x0;1þ2 are defined as

X2
012 ≔ z0z1x2

01 þ z0z2x2
02 þ z1z2x2

12; ð85Þ

x0þ2;1 ≔ −
z0

z0 þ z2
x20 þ x21 ¼ x01 þ

z2
z0 þ z2

x20; ð86Þ

x0;1þ2 ≔ −x20 þ
z1

z1 þ z2
x21 ¼ x01 −

z2
z1 þ z2

x21: ð87Þ

The quantityQ2X2
012 corresponds to the qq̄g formation time divided by the lifetime of the virtual photon that forms the qq̄g

system, as discussed in more detail in Ref. [30]. Configurations with large Q2X2
012 are exponentially suppressed, which

enforces the restriction that the qq̄g state must develop within a formation time that is less than the lifetime of the virtual
photon.
The calculation of the squared wave functions

P
h0;h1;λ2ðψ̃ γ�λ→q0̄q̄1̄g2̄Þ†ðψ̃ γ�λ→q0q̄1g2Þ is cumbersome but straightforward.

More technical details are given in Ref. [65]. After a lot of algebra, we obtain the diffractive structure functions

xPF
Dð4ÞNLO
L;qq̄g ðxBj;Q2;β; tÞ ¼ 4

αsNcCFQ4

β

X
f

e2f

Z
1

0

dz0
z0

Z
1

0

dz1
z1

Z
1

0

dz2
z2

δðz0 þ z1 þ z2 − 1Þ

×
Z
x0

Z
x1

Z
x2

Z
x̄0

Z
x̄1

Z
x̄2

I ð3Þ
MX

I ð3Þ
Δ 4z0z1Q2K0ðQX012ÞK0ðQX0̄ 1̄ 2̄Þ

×

�
z21

�
ð2z0ðz0 þ z2Þ þ z22Þ

�
x20

x2
20

·

�
x2̄ 0̄

x2
2̄ 0̄

−
1

2

x2̄ 1̄

x2
2̄ 1̄

�
−
1

2

x2̄ 0̄ · x21

x2
2̄ 0̄
x2
21

�
þ z22

2

�
x2̄ 0̄ · x21

x2
2̄ 0̄
x2
21

þ x20 · x2̄ 1̄

x2
20x

2
2̄ 1̄

��
þ z20

�
ð2z1ðz1 þ z2Þ þ z22Þ

�
x21

x2
21

·

�
x2̄ 1̄

x2
2̄ 1̄

−
1

2

x2̄ 0̄

x2
2̄ 0̄

�
−
1

2

x20 · x2̄ 1̄

x2
20x

2
2̄ 1̄

�
þ z22

2

�
x2̄ 0̄ · x21

x2
2̄ 0̄
x2
21

þ x20 · x2̄ 1̄

x2
20x

2
2̄ 1̄

���
× ½1− S†

0̄ 1̄ 2̄
�½1− S012�; ð88Þ

for the longitudinal structure function, and
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xPF
Dð4ÞNLO
T;qq̄g ðxBj; Q2; β; tÞ ¼ 2

αsNcCFQ4

β

X
f

e2f

Z
1

0

dz0
z0

Z
1

0

dz1
z1

Z
1

0

dz2
z2

δðz0 þ z1 þ z2 − 1Þ

×
Z
x0

Z
x1

Z
x2

Z
x̄0

Z
x̄1

Z
x̄2

I ð3Þ
MX

I ð3Þ
Δ

z0z1Q2

X012X0̄ 1̄ 2̄

K1ðQX012ÞK1ðQX0̄ 1̄ 2̄Þ

× fϒðjðbÞj2Þ
reg þϒðjðcÞj2Þ

reg þϒðdÞ
inst þϒðeÞ

inst þϒðbÞ×ðcÞ
interf g½1 − S†

0̄ 1̄ 2̄
�½1 − S012� ð89Þ

for the transverse structure function.
The ϒ terms of the squared virtual photon light-front wave function are

ϒðjðbÞj2Þ
reg ¼ z21

�
ð2z0ðz0 þ z2Þ þ z22Þð1 − 2z1ð1 − z1ÞÞðx0̄þ2̄;1̄ · x0þ2;1Þ

ðx2̄ 0̄ · x20Þ
x2
2̄ 0̄
x2
20

− z2ð2z0 þ z2Þð2z1 − 1Þ ðx0̄þ2̄;1̄ · x2̄ 0̄Þðx0þ2;1 · x20Þ − ðx0̄þ2̄;1̄ · x20Þðx0þ2;1 · x2̄ 0̄Þ
x2
2̄ 0̄
x2
20

�
; ð90Þ

ϒðjðcÞj2Þ
reg ¼ z20

�
ð2z1ðz1 þ z2Þ þ z22Þð1 − 2z0ð1 − z0ÞÞðx0̄;1̄þ2̄ · x0;1þ2Þ

ðx2̄ 1̄ · x21Þ
x2
2̄ 1̄
x2
21

− z2ð2z1 þ z2Þð2z0 − 1Þ ðx0̄;1̄þ2̄ · x2̄ 1̄Þðx0;1þ2 · x21Þ − ðx0̄;1̄þ2̄ · x21Þðx0;1þ2 · x2̄ 1̄Þ
x2
2̄ 1̄
x2
21

�
; ð91Þ

ϒðdÞ
inst ¼

z20z
2
1z

2
2

ðz0 þ z2Þ2
−

z20z
3
1z2

z0 þ z2

�
x0þ2;1 · x20

x2
20

þ x0̄þ2̄;1̄ · x2̄ 0̄

x2
2̄ 0̄

�
þ z20z1ðz1 þ z2Þ2z2

z0 þ z2

�
x0;1þ2 · x21

x2
21

þ x0̄;1̄þ2̄ · x2̄ 1̄

x2
2̄ 1̄

�
; ð92Þ

ϒðeÞ
inst ¼

z20z
2
1z

2
2

ðz1 þ z2Þ2
−
z0z21ðz0 þ z2Þ2z2

z1 þ z2

�
x0þ2;1 · x20

x2
20

þ x0̄þ2̄;1̄ · x2̄ 0̄

x2
2̄ 0̄

�
þ z30z

2
1z2

z1 þ z2

�
x0;1þ2 · x21

x2
21

þ x0̄;1̄þ2̄ · x2̄ 1̄

x2
2̄ 1̄

�
; ð93Þ

ϒðbÞ×ðcÞ
interf ¼ −z0z1½z1ðz0 þ z2Þ þ z0ðz1 þ z2Þ�½z0ðz0 þ z2Þ þ z1ðz1 þ z2Þ�

×

�
ðx0̄þ2̄;1̄ · x0;1þ2Þ

ðx2̄ 0̄ · x21Þ
x2
2̄ 0̄
x2
21

þ ðx0̄;1̄þ2̄ · x0þ2;1Þ
ðx2̄ 1̄ · x20Þ
x2
2̄ 1̄
x2
20

�
þ z0z1z2ðz0 − z1Þ2

×

�ðx0̄þ2̄;1̄ · x2̄ 0̄Þðx0;1þ2 · x21Þ − ðx0̄þ2̄;1̄ · x21Þðx0;1þ2 · x2̄ 0̄Þ
x2
2̄ 0̄
x2
21

þ ðx0̄;1̄þ2̄ · x2̄ 1̄Þðx0þ2;1 · x20Þ − ðx0̄;1̄þ2̄ · x20Þðx0þ2;1 · x2̄ 1̄Þ
x2
2̄ 1̄
x2
20

�
: ð94Þ

It might be elucidating to note that the above expressions
satisfy the following symmetries in particle exchanges:

ϒðjðcÞj2Þ
reg ≡ϒðjðbÞj2Þ

reg ðz0↔ z1;x0↔x1;x̄0↔ x̄1Þ ð95Þ
ϒðeÞ

inst ≡ϒðdÞ
instðz0 ↔ z1;x0 ↔ x1; x̄0 ↔ x̄1Þ; ð96Þ

making their sum symmetric under the exchange of the
quark and antiquark. Meanwhile the ðbÞ × ðcÞ interference
term is already a sum of terms that can be obtained by this
exchange, and is thus symmetric by itself.

The results as expressed in Eqs. (88) and (89) are written
for the most general transverse coordinate space depend-
ence, and contain a total of six two-dimensional tranverse
coordinate integrations. In practical applications, the
Wilson line operators are usually available in coordinate
space from solutions of the BK equation, thus one way or
the other such coordinate integrations have to be present; if
the cross section formula was expressed in momentum
space, a similar number of transverse integrals would be
needed in the Fourier-transformation of the Wilson line
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operators to momentum space. More generally, with a
3-parton configuration passing through the shockwave one
ultimately has to integrate over either the coordinates of 6
Wilson lines, or over 6 tranverse momenta transferred by
the Wilson lines from the target to the scattering partonic
system.
Fully evaluating the cross section expressions numeri-

cally will be a nontrivial task. One simplification can be
provided by an additional assumption of a factorized
impact parameter dependence for the Wilson line operator
1 − S012, an approximation that is often made in phenom-
enological studies. The remaining integrals are nevertheless
more demanding than in the previously commonly used
large Q2 limit that we will discuss in Sec. VIII B. The
ultimate reason is that the large Q2 limit reduces the
problem to an “effective adjoint dipole” with only two
Wilson lines in the amplitude, instead of three. Then further
kinematical approximations allow one to write the cross
section in terms of the square of a single coordinate
integral. In the full case the helicity sums over the produced
particles, performed analytically, result in expressions that
couple the coordinates in the amplitude and its complex
conjugate. Thus a similar factorization is not possible.
The dipole amplitude Nij ¼ 1 − Sij satisfies the BK or

JIMWLK high-energy evolution equation, where the evo-
lution is parametrized in terms of the evolution rapidity
determined from the kinematics of the process. Different
versions of the evolution equations are factorized in terms of
different variables, associatedwith either light cone energyor
momentum [34], and require a consistent treatment in the
cross section.We emphasize that the contribution considered
in this section is one where the gluon momentum fraction z2
cannot become small, since it is limited by the finiteMX. This
contribution is thus not associated with the high energy
evolution of the target. Wewill have to return to the question
of evolution rapidity in more detail when addressing the full
NLO diffractive structure function.
These contributions to the diffractive structure functions

are finite without requiring any additional cancellations with
other diagrams. This is because the invariantmass of the final
state is fixed, and thus ultraviolet divergences do not appear.
This alsomeans that the divergences in the loop contributions
that we are not calculating here should cancel against each
other, see discussion in Sec. III. Note that without the M2

X
restriction the integration over the final state momentawould
set x̄i → xi and an ultraviolet divergence ∼

R
d2x02=x2

02 or
∼
R
d2x12=x2

12 would appear. In the diffractive structure
functions the corresponding structure is ∼

R
d2xi2xi2=x2

i2
(with i ¼ 0, 1) which is UV finite. The integration over the
momentum transfer sets the center of mass of the qq̄g system
b to be the same in the amplitude and in the conjugate
amplitude, b ¼ b̄, but this does not affect the behavior of

these integrals in the ultraviolet region (note that I ð3Þ
MX

does
not depend on b or on b̄).

A potential (transverse) infrared divergence is removed,
for a gluon emitted before the shockwave, by the dipole
amplitude part vanishing for jx02j ∼ jx12j → ∞. For the
emissions after the shockwave that we are not calculating
here, these configurations are not suppressed by the Wilson
line correlator, and need to cancel against the wave function
renormalization of the outgoing quarks. Similarly there is
no soft gluon divergence in the limit z2 → 0, as the
invariant mass, which we keep finite, gives a lower bound
for the integral z2 ≳ 1=M2

X. For a parametrically large MX

our result would give a large logarithm ∼ lnM2
X from the

lower limit of the z2 integration. While such contributions
could be resummed [117], they are not easily accessible at
EIC energies and we will not consider this resummation
further here. The BK/JIMWLK evolution of the target,
on the other hand, is associated with the z2 → 0 limit of
contributions where the gluon crosses the shockwave, but is
reabsorbed and not measured in the final state, which we
are leaving to future work.
The interpretation of the cumbersomeϒ terms is actually

straightforward. First, ϒðjðbÞj2Þ
reg describes the contribution

where the gluon is emitted by the quark in the amplitude
and absorbed by the same quark in the conjugate amplitude.

Similarly, ϒðjðcÞj2Þ
reg corresponds to the case where the

antiquark emits and absorbs the gluon. Furthermore, the
instantaneous gluon emission and absorption by the quark

(antiquark) is described by ϒðdÞ
inst (ϒðeÞ

inst). Finally, gluon
emission by the quark and absorption by the antiquark

(or vice versa) contributes the term ϒðbÞ×ðcÞ
interf . Note that the

instantaneous contribution only appears as a part of
the transverse cross section. The interference between
the regular and instantaneous gluon emissions is included

in the terms ϒðdÞ
inst and ϒðeÞ

inst, with the former including the
interference contributions containing the (d) diagram, and
similarly the latter those of the (e) diagram.
We emphasize that prior to this work the qq̄g contribu-

tion to the diffractive cross section has only been known in
approximate kinematics and for a transverse photon only
(which dominates at high Q2), see discussion in Sec. VIII.
For the longitudinal polarization even approximative
results have been missing from the literature. The cross
sections (88) and (89), that are the main results of this work,
are finite and can be straightforwardly implemented in
phenomenological applications. In a future work we plan
to apply these results to describe the HERA diffractive
structure function data.

VIII. RECOVERING KNOWN LIMITS

A. The large-MX limit

As a verification of our calculation, herewewill extract the
qq̄g contribution for FD

T in the limit of large MX, i.e., in the
limit when the emitted gluon is soft. This limit has been
considered by several authors, e.g., in Refs. [66,117–121].
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To be specific, wewill use the result as it iswritten inRef. [66]
and also used in the phenomenological studies [61,62]. The
derivation simplifies considerably in the β → 0 limit, i.e., for
final states with arbitrarily large invariant masses MX in
comparison to the virtuality of the photon: M2

X ≫ Q2. The
result of Ref. [66] for the qq̄g contribution—including gluon
emissions from the quark-antiquark dipole both before and
after the scattering off the shockwave6—is, converted to our
notations,

xPF
DðMSÞ
T;qq̄g ðxP;β ¼ 0;Q2Þ

¼ αsNcCFQ2

16π5αem

Z
d2x0

Z
d2x1

Z
d2x2

Z
1

0

dz
zð1− zÞ jψ̃

LO
γ�λ→q0̄q̄1̄

j2

×
x2
01

x2
02x

2
12

½N02 þN12 −N01 −N02N12�2: ð97Þ

A key feature of this result is that the qq̄g LFWF has been
factorized to the leading order qq̄ LFWF, the BK kernel
describing thegluon emission, and the scattering of the tripole
state in terms of scatterings of daughter dipoles.
Our starting point to rederive the large-MX result is

Eq. (48), with the final state momentum integrals still
undone. First we note that the leading process to create
high invariant mass final states is caused by the emissions
of soft gluons, with z2 ≪ 1, and at the limit z2 → 0we have
M2

X ≈ P2
2=z2. We consider a t integrated cross section,

whose momentum dependence in this limit reads

dσDγ�λ→qq̄g

dM2
X

∼
Z

dz2
z2

Z
d2p0

ð2πÞ2
Z

d2p1

ð2πÞ2

×
Z

d2p2

ð2πÞ2 e
ix0̄0p0þix1̄1p1þix2̄2p2δ

�
p2
2

z2
−M2

X

�
¼ δð2Þðx0 − x0̄Þδð2Þðx1 − x1̄Þ

Z
dz2

×
Z

d2p2

ð2πÞ2 e
ix22̄p2

z2
p2
2

δ

�
z2 −

p2
2

M2
X

�
¼ 1

M2
X
δð2Þðx0 − x0̄Þδð2Þðx1 − x1̄Þδð2Þðx2 − x2̄Þ;

ð98Þ

where we assumed thatM2
X is dominated by the gluon light

cone energy p2
2=z2. We have here integrated over z2,

assuming that MX is large enough so that it is always

possible to find a solution to the delta function constraint
z2 ¼ p2

2=M
2
X with 0 < z2 < 1. In reality this is not possible

for arbitrarily large p2. Thus our approximation has
rendered the p2 integral unbounded, resulting in a delta
function setting x2 − x2̄. This approximation, as discussed
in Sec. III and in Sec. VII, would make the cross section
UV divergent unless one also includes the diagrams with
emission after the shockwave, using the procedure of
subtracting from the “emission before” term the appropriate
coordinate limit. Thus we will include these contributions
here, unlike in the rest of this paper.
At this point we can integrate over the coordinates in the

conjugate amplitude using the delta functions. Starting
from the equation (48) we now get

dσDγ�λ→qq̄g

dM2
XdxP

¼ NcCF

ð4πÞ2
Z

1

0

dz0
z0

Z
1

0

dz1
z1

δðz0 þ z1 − 1Þ

×
Z

d2x0d2x1d2x2

1

M2
X

×
X

f;h0;h1;λ2

jψ̃ γ�λ→q0̄q̄1̄g2̄ðS†012 − 1Þ

− ½emission after�j2: ð99Þ

For calculating the subtraction terms correctly, we need to
decompose the γ → qq̄gwave function into gluon emission
and effective γ → qq̄ parts according to Eq. (9). Here the
limit of z2 → 0 simplifies things dramatically. In the soft
gluon limit the wave function is given by [note that in our
normalization conventions for the reduced wave functions,
see Eqs. (16) and (17), this relation is true without addi-
tional coefficients]:

ψ̃ γ�λ→q0q̄1g2 ≈
z2→0

ψ̃LO
γ�λ→q0q̄1

½ψ̃q0→q0g2 þ ψ̃ q̄1→q̄1g2 �; ð100Þ

where the effective γ → qq̄ wave functions ψ̃ γ�λ→q0q̄1;q0→q0g2

and ψ̃ γ�λ→q0q̄1;q̄1→q̄1g2 defined by Eq. (9) have become
independent of the gluon emission in the limit z2 → 0.
This simplification can be understood in several equivalent
ways. In coordinate space, the argument is that for a soft
emission z2 → 0 the coordinate of the emitting particle
does not change, and therefore the original γ → qq̄ splitting
is independent of the later gluon emission. For momentum
space wave functions the reason is that in the limit z2 → 0
the gluon light cone energy blows up and thus energy
denominators for gluon emission become independent of
the state emitting the gluon,

k−qq̄g − k−γ ≈ k−g ≈ k−qg − k−q ≈ k−q̄g − k−q̄ : ð101Þ

This leads to a factorization of the γ → qq̄g wave function
into leading order γ → qq̄ and q → qg, q̄ → q̄g wave
functions in momentum space, which is carried over into
coordinate space. We recall from Sec. III A that the

6The authors of Ref. [66] justify the contribution from the
emission after the shockwave as resulting from the normalization
of the photon state, which is possible in the soft gluon limit.
However, this contribution is better understood as resulting from
emissions after the shockwave; see discussion in Ref. [121].
The normalization condition for the photon state can only be used
to obtain such contributions in the soft gluon limit where the
γ → qq̄g wave function factorizes into γ → qq̄ and gluon
emission wave functions, but not in general kinematics [31,32].
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subtraction procedure consists in pulling out the gluon
emission wave function and then taking the limit of the
gluon coordinate being equal to its emitter in the remaining
factors. In this case we can also factor out the common
γ → qq̄ part. Thus we get, restoring the coordinates for
clarity,

½ψ̃ γ�λ→q0q̄1g2ðx0;x1;x2ÞðS012 − 1Þ − ½emission after��
¼ ψ̃LO

γ�λ→q0q̄1
ðx0;x1Þfψ̃q0→q0g2ðx0;x2Þ

× ½ðS012 − 1Þ − ðS012 − 1Þjx2→x0 �
þ ψ̃ q̄1→q̄1g2ðx1;x2Þ½ðS012 − 1Þ − ðS012 − 1Þjx2→x1 �g:

ð102Þ

We now use the coordinate limits of the “tripole” (see,
e.g., [32,33]) operators

S012jx2→x0 ¼ S012jx2→x1 ¼ S01 ð103Þ

and the relation (see also, e.g., [32,33])

S012 − S01 ¼
Nc

2

Nc
2 − 1

ðS02S21 − S01Þ ≈
Nc→∞

S02S21 − S01

¼ N02N21 − N02 − N21 þ N01 ð104Þ

with Nij ¼ 1 − Sij to get

½ψ̃ γ�λ→q0q̄1g2ðx0;x1;x2ÞðS012 − 1Þ − ½emission after��
¼ ψ̃LO

γ�λ→q0q̄1
ðx0;x1Þfψ̃q0→q0g2ðx0;x2Þ

þ ψ̃ q̄1→q̄1g2ðx1;x2Þg½N02N21 − N02 − N21 þ N01�:
ð105Þ

We can now use the gluon emission wave function, which
in our conventions [see Eq. (37) of Ref. [80] and recall the
normalization of the reduced wavefunction from (16), (17)]
reads

ψ̃q0→q0g2ðx0;x2Þ ≈
z2→0

2g
Z

d2p2

ð2πÞ2
p2 · ε�λ2
p2
2

eip2·ðx2−x0Þ

¼ 2gi
2π

ðx2 − x0Þ · ε�λ2
ðx2 − x0Þ2

; ð106Þ

and similarly for the antiquark. Using this relation in
Eq. (99) enables the familiar calculation of the BK kernelX

λ2

jψ̃q0→q0g2ðx0;x2Þ þ ψ̃ q̄1→q̄1g2ðx1;x2Þj2

¼ g2

π2
x2
01

x2
02x

2
21

¼ 4αs
π

x2
01

x2
02x

2
21

: ð107Þ

Inserting the squared wave functions from Eq. (107) and
(105) into (99) one then directly recovers the result (97).

B. The large-Q2 limit

In this section we will rederive the Wüsthoff result for
the qq̄g contribution to FD

T [58,60,108], which is an
approximate result at the large-Q2 limit for this next-to-
leading order contribution. Specifically we will verify that
theWüsthoff result emerges from the NLO result calculated
in exact kinematics when one takes the large-Q2 limit. The
Wüsthoff result for the qq̄g contribution has been exten-
sively used in phenomenology [60–62,64], and it has some
special features we seek to understand in depth. It can be
written in coordinate space in the appealing short form7:

xPF
DðGBWÞ
T;qq̄g ðxP; β; Q2Þ ¼ αsβ

8π4
X
f

e2f

Z
d2b

Z
Q2

0

dk2
Z

1

β
dz

�
k4 ln

Q2

k2

��
1 −

β

z

�
2

þ
�
β

z

�
2
�

×

�Z
∞

0

dr r
dσ̃dip
d2b

ðb; r; xPÞK2ð
ffiffiffi
z

p
krÞJ2ð

ffiffiffiffiffiffiffiffiffiffi
1 − z

p
krÞ
�
2
�
; ð108Þ

while a momentum space version can be found, e.g., from
Ref. [60].
An essential feature of the large-Q2 structure function is

the manifestation of the DGLAP splitting function for g →
qq̄ splitting. This is associated with the DGLAP evolution of
the parton distributions of the pomeron, and is written in

terms of the target minus momentum fractions β and z (recall
that we work in a frame where the photon has a large plus
momentum). In the frame where the target has a large
longitudinal momentum β can be interpreted as the fraction
of the pomeronmomentum carried by the stuck parton, and it
is also related to the invariant mass of the final state as
β ¼ Q2=ðQ2 þM2

XÞ. The fraction z is the fraction of the
pomeron minus momentum transferred to the qq̄ system. On
the one hand, the presence of the splitting function in the
large Q2 limit is unavoidable in QCD. On the other hand,
since we are using light cone perturbation theory to quantize

7We use the explicit form from Ref. [62], which is written in
color glass condensate formalism. Its connection to the original
two-gluon exchange formulation [58,60] is discussed in
Refs. [61,65].

DIFFRACTIVE DEEP INELASTIC SCATTERING AT NLO IN … PHYS. REV. D 106, 094014 (2022)

094014-21



the projectile photon, the light cone momentum fraction
ξ ¼ β=z does not appear spontaneously in the calculation.
These kinematical variables are illustrated in Fig. 12.
The three-particle phase space has been treated only

approximately in the Wüsthoff result. The result is written
in terms of the size r of an “effective adjoint dipole” formed
by the gluon and the quark-antiquark pair. Thus the
interaction with the target color field appears in the form
of an adjoint representation dipole cross section σ̃dip. There
is also an explicit logQ2 resulting from the integral over
some of the “internal” kinematics of the qq̄ pair as we will
demonstrate explicitly below.
The contribution corresponding to the DGLAP splitting

function ½ð1 − β=zÞ2 þ ðβ=zÞ2� originates from the part of
phase space where emissions are strongly ordered in trans-
versemomenta. Sincewewant toobtain theDGLAPsplitting
function with fixed momentum fractions in k−, this implies
that the kþ momentum fractions must also be strongly
ordered. This is the Bjorken aligned jet [122] configuration.
Thus it is more convenient to work in momentum space to
make the connection to the Wüsthoff result. To make this
more specific, we choose the transverse momenta for the
three-particle qq̄g final state (after the shockwave) as

Pi ≔ pi − ziq; ð109Þ

P̂qq̄ ≔
z0P1 − z1P0

z0 þ z1
; ð110Þ

K̂gg̃ ≔ ðz0 þ z1ÞP2 − z2ðP0 þ P1Þ; ð111Þ

Δ̂ ≔ −P0 − P1 − P2; ð112Þ

where pi are the transverse momenta of the final state
partons, and the variable P̂qq̄ can be interpreted as the
relative momentum between the quark and antiquark,
whereas K̂gg̃ is the momentum of the gluon with respect
to the quark-antiquark system, i.e., the “effective gluon.”The
total transverse momentum transfer in the scattering process
is Δ̂. The corresponding conjugate variables in transverse
coordinate space can be determined by writing

P0 · x0 þ P1 · x1 þ P2 · x2 ≡ P̂qq̄ · uþ K̂gg̃ · rþ Δ̂ · b;

ð113Þ
from which one obtains

u ¼ x1 − x0; ð114Þ

r ¼ x2 −
z0x0 þ z1x1

z0 þ z1
; ð115Þ

b ¼ z0x0 þ z1x1 þ z2x2: ð116Þ

Here u is the size of the qq̄ dipole, r is the distance from
the gluon to the center of mass of the qq̄ system, i.e.,
the size of the effective gluonic dipole, and b is the center
of mass.
In the derivation of the largeQ2 limit of our result for FD

T ,
Eq. (88), our starting point is the expression (82) for the
diffractive cross section. The calculation then proceeds

FIG. 12. Kinematics for the diffractive qq̄g-production diagram. Left: dipole picture frame, where the probe has a large qþ which is
conserved in the interaction with the target. We show the plus and transverse momenta, with Pqq̄ the relative transverse momentum of the
qq̄ pair and Kgg̃ of the gluon-effective gluon dipole. Right: infinite target momentum frame, where one tracks the minus component of
the momentum, i.e., the target momentum fraction. The zigzag line refers to the pomeron emitted from the target, and is used to illustrate
a generic diffractive interaction between the virtual photon and target. The two scattering pictures are connected by the invariants of the
scattering. In the GBW limit the qq̄ pair forms a hard system that is seen as pointlike by the target color field, thusM2

qq̄ and Pqq̄ are the
same before and after the shockwave. In the aligned jet limit z2 ≪ z1 ≪ z0 ≈ 1 we have M2

qq̄ ≈ P2
qq̄=z1, and from the collinear

factorization picture on the right: M2
qq̄ ¼ 2ðxBj=ξÞqþP− þ q2 ¼ ð1=ξ − 1ÞQ2. The invariant mass of the qq̄g system and Kgg̃, on the

other hand, are affected by the interaction with the shockwave. In the dipole picture, before the shockwave, we have
M2

qq̄g ≈M2
qq̄ þK2

gg̃=z2. The invariant mass after the shockwave is M2
X ¼ ð1=β − 1ÞQ2 ≈M2

qq̄ þ K̂2
gg̃=z2.
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roughly as follows. First we Fourier transform the LFWFs
back into momentum space where we can apply the
kinematic approximations related to the leading logQ2

limit. Then we write the virtual photon LFWF in momen-
tum space using natural relative momenta from the per-
spective of the physical picture that emerges at the large-Q2

limit discussed above. This enables us to apply the aligned
jet limit (AJL) approximations at the LFWF level, after
which we proceed to integrate over surplus degrees of

freedom at the cross section level. In the aligned jet
kinematics we have the strong transverse momentum
ordering Q2 ≫ P2

qq̄ ≫ K2
gg̃ ≫ Δ2. The corresponding kþ

momentum fraction ordering is z2 ≪ z1 ≪ z0 or, symmet-
rically, z2 ≪ z0 ≪ z1. Since these two limits give the same
contribution, we will just concentrate on the first one and in
the end multiply the result by 2.
The transverse Fourier transform of the LFWF into

momentum space is defined as [32]

ψ̃
γ�T→qq̄g
NLO ¼

Z
d2k0

ð2πÞ2
Z

d2k1

ð2πÞ2
Z

d2k2

ð2πÞ2 ð2πÞ
2δð2Þðk0 þ k1 þ k2 − qÞeiðk0·x0þk1·x1þk2·x2Þψγ�T→qq̄g

NLO : ð117Þ

Performing the Fourier transforms and rewriting the Fourier momenta in terms of the natural momenta using

k1 ¼ −
z1

z0 þ z1
Kgg̃ þ Pqq̄; ð118Þ

k0 ¼ −
z0

z0 þ z1
Kgg̃ − Pqq̄; ð119Þ

the diffractive cross section from Eq. (82) becomes

dσDλ;qq̄g
dM2

X
¼ NcCF

4ð2πÞ2
Z

0

−∞
dt
Z

1

0

dz0
z0

Z
1

0

dz1
z1

Z
1

0

dz2
z2

δðz0 þ z1 þ z2 − 1Þ
Z

d2P̂qq̄

ð2πÞ2
Z

d2K̂gg̃

ð2πÞ2
Z

d2Δ̂
ð2πÞ2

× δðΔ̂2 − jtjÞδ
�

K̂2
gg̃

z2ðz0 þ z1Þ
þ z0 þ z1

z0z1
P̂2
qq̄ −M2

X

�
×
Z
u

Z
r

Z
b

Z
ū

Z
r̄

Z
b̄
ð2πÞ6eiðū−uÞ·P̂qq̄eiðr̄−rÞ·K̂gg̃eiðb̄−bÞ·Δ̂

×
X

h0;h1;λ2

ðψ̃ γ�λ→q0̄q̄1̄g2̄Þ†ðψ̃ γ�λ→q0q̄1g2Þ½Sð3Þ†ū r̄ b̄
− 1�½Sð3Þurb − 1�; ð120Þ

where the hatted quantities are the final state momenta. The squared virtual photon amplitude Fourier transformed to
coordinate space reads

ðψ̃ γ�λ→q0̄q̄1̄g2̄Þ†ðψ̃ γ�λ→q0q̄1g2Þ ¼
Z

d2P̄qq̄

ð2πÞ2
Z

d2K̄gg̃

ð2πÞ2
Z

d2Δ̄
ð2πÞ2 ðψγ�λ→q0̄q̄1̄g2̄Þ†e−iū·P̄qq̄−ir̄·K̄gg̃−ib̄·Δ̄ð2πÞ2δð2ÞðΔ̄Þ

×
Z

d2Pqq̄

ð2πÞ2
Z

d2Kgg̃

ð2πÞ2
Z

d2Δ
ð2πÞ2 ðψγ�λ→q0q̄1g2Þeiu·Pqq̄þir·Kgg̃þib·Δð2πÞ2δð2ÞðΔÞ: ð121Þ

Now we begin the application of the aligned jet limit approximations. First, we assume that the relative transverse
momentum of the parent dipole kPqq̄k is much larger than that of either of the daughter dipoles, i.e., kPqq̄k ≫ kKgg̃k. In
position space this corresponds to a configuration where the gluon is emitted far away from the parent dipole, i.e.,
kuk ≪ krk. This makes the dipole amplitude independent of the parent dipole size, and enables us to separate and perform
the u-integrations in Eq. (120), which yields two delta functionsZ

d2u
ð2πÞ2

Z
d2ū
ð2πÞ2 e

iū·ðP̂qq̄−P̄qq̄Þe−iu·ðP̂qq̄−Pqq̄Þ ¼ δð2ÞðP̂qq̄ − P̄qq̄Þδð2ÞðP̂qq̄ − Pqq̄Þ: ð122Þ

This enables us to perform the Pqq̄ and P̄qq̄ integrations in Eq. (120).
To perform the t integration of (120), we separate the closely related transverse momentum transfer integrals
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Z
0

−∞
dt
Z

d2b̄
2π

Z
d2b
2π

Z
d2Δ̂
ð2πÞ2

Z
d2Δ̄
ð2πÞ2

Z
d2Δ
ð2πÞ2 δðΔ̂

2 − jtjÞð2πÞ4δð2ÞðΔ̄Þδð2ÞðΔÞeib̄·ðΔ̂−Δ̄Þe−ib·ðΔ̂−ΔÞ

¼
Z

0

−∞
dt
Z

d2b̄
2π

Z
d2b
2π

Z
d2Δ̂
ð2πÞ2 e

iΔ̂·ðb̄−bÞδðΔ̂2 − jtjÞ ¼
Z

d2b̄
2π

Z
d2b
2π

δð2Þðb̄ − bÞ: ð123Þ

An essential step that we need to take before we proceed
is to consider how to connect our results written in terms of
the plus-momentum fractions to the minus momentum
fractions in the Wüsthoff result (108). The essential idea
here is to think in terms of invariant masses of different
multiparton states. To connect the frames of reference, we
need to approximate the invariant masses in the aligned jet
limit as

M2
qq̄ ¼

1 − ξ

ξ
Q2 ¼ ð1 − z2Þ2

P2
qq̄

z0z1
≈
P2
qq̄

z1
; ð124Þ

M2
qq̄g þQ2 ¼ Q2 þ z0 þ z1

z0z1
P2
qq̄ þ

K2
gg̃

z2ðz0 þ z1Þ

≈Q2 þ P2
qq̄

z1
þK2

gg̃

z2
¼ Q2

ξ
þK2

gg̃

z2
; ð125Þ

where zxP ¼ xBj=ξ is the fraction of the target momentum
carried by the qq̄ system. Given the above relations, we can
reparametrize the often occurring combination

P2
qq̄ þ z1Q2 ¼ z1ðM2

qq̄ þQ2Þ ¼ z1Q2=ξ: ð126Þ

It is useful to write the qq̄g energy denominator in terms of
the diffractive state mass

M2
X ¼ 1 − β

β
Q2 ≈

P̂2
qq̄

z1
þ K̂2

gg̃

z2
; ð127Þ

where K̂gg̃ is the gluon relative momentum after the
shockwave. Recall that Pqq̄ ≡ P̂qq̄ is conserved in the
shockwave which enables us to leverage final state infor-
mation about M2

X to simplify the γ� LFWF before the

shockwave. We now want to eliminate z2 using these
variables, so that

z2 ¼
βK̂2

gg̃

Q2ð1 − zÞ : ð128Þ

With this relation the three particle state invariant mass
before the shockwave becomes

M2
qq̄g ¼

Q2

βK̂2
gg̃

½ðz − βÞK̂2
gg̃ þ ð1 − zÞK2

gg̃�; ð129Þ

and the “outer” (i.e., qq̄g state) LC energy denominator in
the NLO virtual photon LFWF will be

M2
qq̄g þQ2 ¼ Q2

βK̂2
gg̃

½zK̂2
gg̃ þ ð1 − zÞK2

gg̃�: ð130Þ

Note the distinction that this is for the qq̄g state before the
shockwave. The momentum K̂2

gg̃ after the shockwave is
fixed by the final state kinematics. It, or the qq̄g invariant
mass, is not the same before (M2

qq̄g) and after (M2
X) the

shockwave. The momentum argument of the wave function
before the shockwave Kgg̃ will need to be Fourier trans-
formed into coordinate space, see Eq. (121), in order to
include the interaction with the target shockwave. The
momentaKgg̃ and K̄gg̃ before the shockwave are separate in
the DA and CCA, which have to be Fourier transformed
separately.
Next we move on to manipulate the virtual photon

splitting light-front wave function in the aligned jet limit.
The γ�λ → qq̄g LFWF in momentum space in the conven-
tion of Refs. [31,32] is

ψ
γ�T→qq̄g
NLO ¼ 4eefðgtaαβÞ

ffiffiffiffiffiffiffiffiffi
z0z1

p �
−Σ̄ijkl

ðbÞ
ð−k1Þimkεjλε

�l
σ

½k2
1 þ Q̄2

ðbÞ�½m2 þ ωðbÞðk2
1 þ Q̄2

ðbÞÞ�

− Σ̄ijkl
ðcÞ

ki
0l

kεjλε
�l
σ

½k2
0 þ Q̄2

ðcÞ�½l2 þ ωðcÞðk2
0 þ Q̄2

ðcÞÞ�

− Σ̄ij
ðdÞ

ε�iσ ε
j
λ

½m2 þ ωðdÞðk2
1 þ Q̄2

ðdÞÞ�
þ Σ̄ij

ðeÞ
ε�iσ ε

j
λ

½l2 þ ωðeÞðk2
0 þ Q̄2

ðeÞÞ�
�
; ð131Þ

where the momenta are defined as
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l ≔
z1

ðz0 þ z1Þðz1 þ z2Þ
Kgg̃ −

z2
z1 þ z2

Pqq̄; ð132Þ

m ≔
z0

ðz0 þ z1Þðz0 þ z2Þ
Kgg̃ þ

z2
z0 þ z2

Pqq̄; ð133Þ

and the vertex factors are

Σ̄ijkl
ðbÞ ¼ 1

4

1

z0 þ z2
½ð2z0 þ z2Þδkl − ið2h0Þz2ϵkl�½ð2z1 − 1Þδij − ið2h0Þϵij�; ð134Þ

Σ̄ijkl
ðcÞ ¼ 1

4

1

z1 þ z2
½ð2z1 þ z2Þδkl þ ið2h0Þz2ϵkl�½ð2z0 − 1Þδij þ ið2h0Þϵij�; ð135Þ

Σ̄ij
ðdÞ ¼

1

4

z0z2
ðz0 þ z2Þ2

½δij − ið2h0Þϵij�; ð136Þ

Σ̄ij
ðeÞ ¼

1

4

z1z2
ðz1 þ z2Þ2

½δij þ ið2h0Þϵij�; ð137Þ

with

Q̄2
ðbÞ ¼ z1ðz0 þ z2ÞQ2; ωðbÞ ¼

z0z2
z1ðz0 þ z2Þ2

; ð138Þ

Q̄2
ðcÞ ¼ z0ðz2 þ z1ÞQ2; ωðcÞ ¼

z2z1
z0ðz2 þ z1Þ2

; ð139Þ

Q̄2
ðdÞ ¼ z1ðz0 þ z2ÞQ2; ωðdÞ ¼

z0z2
z1ðz0 þ z2Þ2

; ð140Þ

Q̄2
ðeÞ ¼ z0ðz2 þ z1ÞQ2; ωðeÞ ¼

z2z1
z0ðz2 þ z1Þ2

: ð141Þ

In the aligned jet limit, these LC structures simplify
significantly. Let us now take the strongly ordered
limit z2 ≪ z1 ≪ z0. Note that the leading term at z2 ¼ 0,
Kgg̃ → 0 cancels out, and thus one has to include sublead-
ing terms in the small-Kgg̃ expansion to get the develop-
ment right. We are left with

k1 → Pqq̄; ð142Þ
k0 → −Kgg̃ − Pqq̄; ð143Þ

l → Kgg̃ −
z2
z1

Pqq̄; ð144Þ

m → Kgg̃; ð145Þ

and

Σ̄ijkl
ðbÞ ¼ −

1

2
½δij þ ið2h0Þϵij�δkl; ð146Þ

Σ̄ijkl
ðcÞ ¼ 1

2
½δij þ ið2h0Þϵij�δkl; ð147Þ

Σ̄ij
ðdÞ ¼

1

4
z2½δij − ið2h0Þϵij�; ð148Þ

Σ̄ij
ðeÞ ¼

1

4

z2
z1
½δij þ ið2h0Þϵij�: ð149Þ

Additionally it will be useful to simplify the momentum
dependence of the qq̄g LFWF by using the three particle
state invariant mass:

m2 þ ωðbÞðk2
1 þ Q̄2

ðbÞÞ ¼
z0z2

z0 þ z2
ðM2

qq̄g þQ2Þ ≈ z2ðM2
qq̄g þQ2Þ; ð150Þ

l2 þ ωðcÞðk2
0 þ Q̄2

ðcÞÞ ¼
z1z2

z1 þ z2
ðM2

qq̄g þQ2Þ ≈ z2ðM2
qq̄g þQ2Þ: ð151Þ

With these simplifications the normal emission part of the wave function (131) becomes

ψ
γ�T→qq̄g
NLO

����
AJL

¼ 4eefðgtaαβÞ
ffiffiffiffiffiffiffiffiffi
z0z1

p εjλε
�l
σ

1
2
½δij þ ið2h0Þϵij�δkl

z2ðM2
qq̄g þQ2Þ

×

�
−

Pi
qq̄

P2
qq̄ þ z1Q2

Kk
gg̃ þ

ðPqq̄ þKgg̃Þi
ðPqq̄ þKgg̃Þ2 þ z1Q2

�
Kk

gg̃ −
z2
z1
Pk
qq̄

��
: ð152Þ
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In the kinematic regime P2
qq̄ ≫ K2

gg̃ and we can first simplify the term in the square brackets as

½…� ¼
−Pi

qq̄ððPqq̄ þKgg̃Þ2 þ z1Q2ÞKk
gg̃ þ ðPqq̄ þKgg̃ÞiðP2

qq̄ þ z1Q2ÞðKk
gg̃ −

z2
z1
Pk
qq̄Þ

ððPqq̄ þKgg̃Þ2 þ z1Q2ÞðP2
qq̄ þ z1Q2Þ

≈
−2Pqq̄ ·Kgg̃Pi

qq̄ þ ðP2
qq̄ þ z1Q2ÞKi

gg̃

ðP2
qq̄ þ z1Q2Þ2 Kk

gg̃ −
z2
z1

Pi
qq̄P

k
qq̄

P2
qq̄ þ z1Q2

þOðK3
gg̃Þ; ð153Þ

where the last term is kept since in this strong ordering limit we have z2=z1 ∼K2
gg̃=P

2
qq̄, whereas the associated term

proportional to ðz2=z1ÞKi
gg̃P

k
qq̄ is discarded as a higher order term. Out of the instantaneous emission terms, the contribution

from diagram in Fig. 4(e) is enhanced by a factor of 1=z1 with respect to diagram in Fig. 4(d), which means that in the
aligned jet limit, we can neglect the contribution from the latter, and only the former contributes. Using the identity

1

2
½δij þ ið2h0Þϵij�εjλ ¼ δh0;λε

i
λ ð154Þ

we see that the quark (and, consequently, antiquark) helicity is completely fixed by the photon polarization. This is a
common feature of LCPT vertices: the particle carrying all the longitudinal momentum in a splitting inherits the light front
helicity of the parent [80]. We can now combine the leading instantaneous contribution with the regular emissions

ψ
γ�T→qq̄g
NLO

����
AJL

¼ 4eefðgtaαβÞ
ffiffiffiffiffiffiffiffiffi
z0z1

p εiλε
�j
σ δh0;λ

z2ðM2
qq̄g þQ2Þ

×

�−2Pqq̄ ·Kgg̃Pi
qq̄ þ ðP2

qq̄ þ z1Q2ÞKi
gg̃

ðP2
qq̄ þ z1Q2Þ2 Kj

gg̃ −
z2
z1

Pi
qq̄P

j
qq̄

P2
qq̄ þ z1Q2

þ 1

2

z2
z1
δij
�

¼ 4eefðgtaαβÞ
ffiffiffiffiffiffiffiffiffi
z0z1

p εiλε
�j
σ δh0;λ

z2ðM2
qq̄g þQ2Þ

ξ

z1Q2

�
−2

ξ

z1Q2
ðPqq̄ ·Kgg̃ÞPi

qq̄K
j
gg̃ þKi

gg̃K
j
gg̃ − ξ

z
1 − z

K̂2
gg̃

z1Q2
Pi
qq̄P

j
qq̄

þ 1

2

zK̂2
gg̃

1 − z
δij
�
: ð155Þ

Next we move on to calculate the squared amplitude. Here it is important to recall that the momenta Kgg̃ and K̄gg̃ in the
DA and CCA, respectively, are separate, whereas Pqq̄ ≡ P̄qq̄ ≡ P̂qq̄ due to Eq. (122). We need the following algebra:

�
−ξ

P̂i
qq̄P̂

j
qq̄

z1Q2
þ 1

2
δij
��

−ξ
P̂i
qq̄P̂

j
qq̄

z1Q2
þ 1

2
δij
�
¼ ξ2

P̂4
qq̄

ðz1Q2Þ2 þ ξ
P̂2
qq̄

z1Q22
þ 1

2
¼ 1

2
ðξ2 þ ð1 − ξÞ2Þ ð156Þ

and

�
−2

ξ

z1Q2
ðP̂qq̄ ·Kgg̃ÞP̂i

qq̄K
j
gg̃ þKi

gg̃K
j
gg̃

��
−ξ

P̂i
qq̄P̂

j
qq̄

z1Q2
þ 1

2
δij
�
¼ 2ξ2

P̂2
qq̄ðP̂qq̄ ·Kgg̃Þ2
ðz1Q2Þ2 − 2ξ

ðP̂qq̄ ·Kgg̃Þ2
z1Q2

þ 1

2
K2

gg̃: ð157Þ

Now we remember that at the cross section level we are integrating over the phase space d2P̂qq̄ with P̂2
qq̄ ¼ z1ð1 − ξÞQ2=ξ

fixed, i.e., over the angle of P̂qq̄. This means that we can replace

P̂i
qq̄P̂

j
qq̄ →

1

2
P̂2
qq̄δij ¼

1

2

1 − ξ

ξ
z1Q2δij: ð158Þ

Thus we get
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2ξ2
P̂2
qq̄ðP̂qq̄ ·Kgg̃Þ2
ðz1Q2Þ2 − 2ξ

ðP̂qq̄ ·Kgg̃Þ2
z1Q2

þ 1

2
K2

gg̃ →
1

2
ðξ2 þ ð1 − ξÞ2ÞK2

gg̃: ð159Þ

Analogously the other cross term yields 1
2
ðξ2 þ ð1 − ξÞ2ÞK̄2

gg̃. Finally, the last term gives�
−2

ξ

z1Q2
ðP̂qq̄ ·Kgg̃ÞP̂i

qq̄K
j
gg̃ þKi

gg̃K
j
gg̃

��
−2

ξ

z1Q2
ðP̂qq̄ · K̄gg̃ÞP̂i

qq̄K̄
j
gg̃ þ K̄i

gg̃K̄
j
gg̃

�
¼ ðξ2 þ ð1 − ξÞ2ÞðKgg̃ · K̄gg̃Þ2: ð160Þ

With these the full squared amplitude can be written as

1

2

X
h;λ;σ

ðψγ�T→qq̄g
NLO jAJLÞ†ψγ�T→qq̄g

NLO jAJL ¼ 8e2e2fg
2
z0z1
z22

ð ξ
z1Q2Þ2ðξ2 þ ð1 − ξÞ2Þ

ðM2
qq̄gðKgg̃Þ þQ2ÞðM2

qq̄gðK̄gg̃Þ þQ2Þ

×

�
Ki

gg̃K
j
gg̃ þ

1

2

zK̂2
gg̃

1 − z
δij
��

K̄i
gg̃K̄

j
gg̃ þ

1

2

zK̂2
gg̃

1 − z
δij
�
; ð161Þ

where we note that after the aligned jet configuration approx-
imations the squared amplitude took a form that factorizes into
a DA-like and a CCA-like parts similar to what has been seen
in literature [58,60,123,124], even though this was not
possible at earlier stages. To elaborate, we were only able
to find the factorized form of the cross section with the
“effective qq̄g wave function” after squaring the amplitude
and integrating over the angle of the relativemomentum of the
qq̄ pair. The same traceless rank-2 tensor structure is found in
Ref. [123], also through a procedure of first squaring the
amplitude, summingover internal degrees of freedomand then
refactorizing the result. Appendix C of Ref. [123] gives an
interesting interpretation of the tensor structure of the γ → gg̃

effective wave function in terms of polarization vectors in the
projectile and target light cone gauges. Note, however, that the
recent paper [125] that appeared shortly after the first version
of this manuscript, succeeds in extracting the traceless
structure for the wave function already at the amplitude level,
without squaring it first and without averaging over the angle
of the hard momentum P. We also note that the DGLAP
splitting function ðξþ ð1 − ξÞ2Þmanifests at this stage of the
calculation, i.e., it is an underlying feature of the γ�T → qq̄g
splitting function.
After this refactorization, the Fourier transforms over

Kgg̃ and K̄gg̃ now separate, and can be evaluated as

Z
d2K
ð2πÞ2 e

iK·r
KiKj þ 1

2

zK̂2
gg̃

1−z δ
ij

M2
qq̄gðKÞ þQ2

¼ βK̂2
gg̃

ð1 − zÞQ2

Z
d2K
ð2πÞ2 e

iK·r
KiKj þ 1

2

zK̂2
gg̃

1−z δ
ij

K2 þ zK̂2
gg̃

1−z

ð162Þ

¼ βK̂2
gg̃

ð1 − zÞQ2

"�
rirj

r2
−
1

2
δij
� 

δð2ÞðrÞ − 1

2π

zK̂2
gg̃

1 − z
K2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zK̂2

gg̃

1 − z
r2

s !!
þ 1

2
δijδð2ÞðrÞ

#

≅
1

2π

βK̂2
gg̃

ð1 − zÞQ2

zK̂2
gg̃

1 − z

�
1

2
δij −

rirj

r2

�
K2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zK̂2

gg̃

1 − z
r2

s !
; ð163Þ

where ≅ is used to imply effective equivalence since the contributions with r≡ 0 vanish identically as the dipole amplitude
vanishes at r≡ 0. Thus after the transverse Fourier transforms we find for the squared virtual photon amplitudeZ

d2Kgg̃

ð2πÞ2 e
iKgg̃·r

Z
d2K̄gg̃

ð2πÞ2 e
−iK̄gg̃·r

1

2

X
h;λ;σ

ðψγ�T→qq̄g
NLO jAJLÞ†ψγ�T→qq̄g

NLO jAJL

¼ 2
ð4πÞ2
ð2πÞ2 αemαse

2
f
z0
z1

β4K̂8
gg̃

ð1 − zÞ4Q8
½ξ2 þ ð1 − ξÞ2�

�
δij − 2

rirj

r2

��
δij − 2

r̄ir̄j

r̄2

�
K2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zK̂2

gg̃

1 − z
r2

s !
K2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zK̂2

gg̃

1 − z
r̄2

s !
:

ð164Þ
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For the next stage we need the following identities which enforce the physical invariant masses at the cross section level:Z
d2P̂qq̄

ð2πÞ2 δ
�
P̂2
qq̄

z1
þ K̂2

gg̃

z2
−M2

X

�
¼ z1

4π
; ð165Þ

and Z
1

0

dz2
z32

δ

�
z −
�
1 −

βK̂2
gg̃

Q2z2

��
¼ ð1 − zÞQ4

β2K̂4
gg̃

: ð166Þ

We need to perform the change of variables ðz2; K̂2
gg̃Þ ↦ ðz; k2Þ, where k2 ≔ K̂2

gg̃=ð1 − zÞ is the mean virtuality of the
exchanged t-channel gluon in the two-gluon exchange model [58,60]. This change is enacted by inserting the relations
between these quantities as δ-function integrals:Z

d2K̂gg̃

ð2πÞ2
Z

dz2
z32

¼
Z

d2K̂gg̃

ð2πÞ2
Z

dz2
z32

Z
dk2
Z

dz δ

�
z −
�
1 −

βK̂2
gg̃

Q2z2

��
δ

�
k2 −

K̂2
gg̃

1 − z

�
¼ 1

4π

Z
dk2
Z

dz
Q4

β2k4
: ð167Þ

After this the remaining longitudinal momentum fraction integrals separate and may be performed. Keeping in mind the
assumption that 1≳ z0 ≫ z1 ≫ z2, we find,Z

1

0

dz0

Z
z1;max

z1;min

dz1
z1

δðz0 þ z1 þ z2 − 1Þ ¼
Z

1−z2−z1;min

1−z2−z1;max

dz0
1 − z0 − z2

¼ log

�
z1;max

z1;min

�
≡ log

�
Q2

βk2

�
≈ log

�
Q2

k2

�
: ð168Þ

Here we have taken z1;max ¼ 1 and z1;min ≡ z2, reflecting the kinematics of the aligned jet limit. We are also taking β to be of
order one, and calculating in the leading large logarithmic limit inQ2, thus the constant under the log is not under control at
this point of the calculation. We will additionally need the relationZ

d2r
2π

Z
d2r̄
2π

eikt·ðr−r̄Þ
�
δij − 2

rirj

r2

��
δij − 2

r̄ir̄j

r̄2

�
¼ 2

Z
dr rJ2ðktrÞ

Z
dr̄ r̄J2ðktr̄Þ ð169Þ

to simplify the tensor structure by computing the angular integrals.
Recalling that ξ ≔ β

z, we can finally collect our results and write the final result for the qq̄g contribution to the transverse

diffractive structure function using Eq. (2) at the large-Q2 limit

xPF
Dð3Þ;LLðQ2Þ
T;qq̄g ¼ 2NcCF
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�
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; ð170Þ

where the leading factor of 2 accounts for the other
momentum ordering where one has z1 ≫ z0 ≫ z2. Explic-
itly writing out the color factor and taking into account
the normalization of the dipole amplitude, we find exact

agreement with the result of Ref. [62] shown in Eq. (108).
To reiterate, we were able to find exact agreement with the
large-Q2 limiting qq̄g contribution to FD

T with a calculation
beginning from the corresponding full OðαsÞ-accuracy
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LCPT result. This precise agreement is very reassuring,
given that the Wüsthoff result was derived in a very
different formalism more in the spirit of a perturbative
two-gluon exchange [58,60]. Results similar to the Wüsth-
off result can be found in Refs. [123,124], where a
semiclassical color field picture of the diffractive scattering
is utilized.
In Eq. (170) we can recognize the origins of some key

features. The wave function of a gluon splitting to the
effective adjoint dipole is a Bessel K2 function and the
wave function overlap of the effective dipole and a final
state with invariant mass MX is a J2. This particular
structure, in stead of the usual K1, J1 for a transverse
photon, originates from the transverse tensor structure of
the γ → gg̃ wave function at the aligned jet limit.
Furthermore, we see the DGLAP g → qq̄ splitting function
which emerged from the squared virtual photon wave
function in momentum space at the aligned jet limit,
corresponding to the first step in the DGLAP evolution
of a diffractive quark parton distribution function. It is
interesting that similar Bessel K2 functions appear in a
forward (small transverse momentum) limit also in the
calculation of Ref. [44], although it is not completely
obvious whether they have the same origin as here.
The transverse structure function, Eq. (170), is propor-

tional to logQ2 and as such dominates at large Q2. This
logarithm originates from the aligned jet configuration part
of the phase space when integrating over the kinematics of
the qq̄ pair. This is explicitly visible in Eq. (168) where the
logQ2=k2 contribution is obtained when integrating over
the quark momentum fraction in the aligned jet limit. As the
longitudinal photon wave function suppresses the aligned
jet configurations where z0 ≪ 1 or z1 ≪ 1, the same log
would not be present in the high-Q2 limit of the longi-
tudinal structure function.

IX. DISCUSSION AND CONCLUSIONS

In conclusion, we have here taken a significant step
towards calculating diffractive structure functions at NLO
accuracy in the color dipole picture applicable to the
saturation regime of QCD. Our calculation includes the
“radiative” part of the NLO correction, i.e., the qq̄g
component in the terminology used in earlier works. For
the diffractive structure function one calculates the cross
section for a fixed invariant mass, a much more inclusive
final state than for jet production. Compared to dijet
production, this observable thus does not require a jet
definition. The subset of the NLO contribution calculated
here should be finite by itself.
We have also checked that we can independently

reproduce two earlier results for the diffractive structure
functions appearing in the literature. In the limit of a soft
gluon (i.e., large mass diffractive state), we reproduce an
earlier result derived by many authors (including, e.g., the
derivation by Munier and Shoshi in a framework very

similar to ours). More nontrivially, in the limit of a fixed
β ¼ Q2=ðM2

X þQ2Þ and large Q2, we recover the earlier
result used by Golec-Biernat and Wüsthoff (GBW) and in
many other phenomenological studies. The original deri-
vation of this result is perhaps not that clearly documented
in the available literature. Certainly it is performed in a
collinear factorization-type framework very different from
ours. We have thus provided a completely independent
rederivation of the large-Q2 result in the dipole picture,
fully agreeing with it.8 Specifically, our calculation shows
how to obtain the ingredients of the large-Q2 result: a
DGLAP-type logarithm in Q2, a splitting function Pg→qq̄

and also the somewhat curious traceless rank-2 tensor
“photon to effective gluon dipole wave function” [see
Eq. (161)], from a dipole picture calculation. Thus we
believe that the method of this calculation can be helpful in
more general for matching the dipole picture with the
collinear factorization limit.
Experimentally, the diffractive structure function is a key

part of the program in high energy DIS experiments, both at
HERA and at the future EIC. Compared to, e.g., diffractive
dijets, it is a clean and well-defined observable without
requiring high transverse momentum or heavy quarks in the
final state. This makes it possible to access smaller values
of xBj at a finite collision energy than for dijet observables,
and thus to achieve a better sensitivity to gluon saturation.
The nuclear modification of diffractive structure functions
has already been identified as a key observable for gluon
saturation at the EIC [1].
Our results are presented in a form that can directly be

applied to phenomenology. They generalize the large-Q2

and large-MX results used in earlier phenomenological
studies to a more precise kinematics. Depending on
assumptions on the impact parameter dependence of the
dipole amplitude, various different simplifications are
possible. However, our main result is completely general
in this regard and can be applied to any impact parameter
dependence. It will be interesting to evaluate the diffractive
structure function numerically, both in order to compare to
earlier limiting results, and to test dipole amplitude para-
metrizations against a new set of experimental data. On
the theory side, we have in this paper also outlined the
necessary steps to complete the NLO calculation of the
diffractive structure function. Here there are many recent
results that can be taken advantage of. The loop corrections
to the γ → qq̄g light cone wavefunction are known
[31–33]. So is the procedure to factorize the large loga-
rithms of xP into the BK/JIMWLK evolution of the target
[65,126], once the corresponding diagrams (with a gluon
crossing the shockwave but not the cut) are calculated. The
treatment of final state gluon exchanges poses interesting
conceptual questions that are new in the context of LCPT.

8Apart from the treatment of the color factor of the adjoint
dipole, which was noted already in Refs. [61,62].
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While in many ways straightforward, these further calcu-
lations are sizable enough projects that they are best left for
future publications.
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