
K-matrix analysis of e+ e− annihilation in the bottomonium region

N. Hüsken ,1,2 R. E. Mitchell ,1 and E. S. Swanson 3

1Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
2Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
3Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

(Received 12 May 2022; accepted 26 September 2022; published 9 November 2022)

We perform the first global and unitary analysis of eþe− → bb̄ cross sections. We analyze exclusive
cross sections in the BB̄, B�B̄ðþc:c:Þ, B�B̄�, B�

s B̄�
s , ϒðnSÞπþπ−, and hbðnPÞπþπ− channels as well as the

total inclusive cross section for bb̄ production. Pole positions and residues are determined for four vector
states, which we associate with theϒð4SÞ,ϒð10750Þ,ϒð5SÞ [orϒð10860Þ], andϒð6SÞ [orϒð11020Þ]. We
find strong evidence for the new ϒð10750Þ recently claimed by Belle, although with parameters not well
constrained by the data. Results presented here cast doubt on the validity of branching ratios reported earlier
using Breit-Wigner parametrizations or ratios of cross sections. We also compare our results with a
selection of theoretical calculations for the vector-bottomonium spectrum.
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I. INTRODUCTION

The spectrum of vector- (JPC ¼ 1−−) bottomonium
states above BB̄ threshold has been the source of a series
of surprises and unresolved issues. The initial exploration
of this region using inclusive eþe− annihilation to hadrons
[1,2] showed evidence for the production of two states with
masses heavier than the ϒð4SÞ, consistent with potential
model expectations for the ϒð5SÞ and ϒð6SÞ. More recent
measurements of the same process [3–5] have revealed
more complex structure. While the putative ϒð5SÞ and
ϒð6SÞ states [also called the ϒð10860Þ and ϒð11020Þ,
respectively] still appear as prominent peaks in the inclu-
sive cross section, the effects due to coupled-channel
scattering and the opening of a variety of open-bottom
thresholds (e.g., B�B̄, B�B̄�, BsB̄s, B�

sB̄s, B�
sB̄�

s) are now
more apparent and complicate the observed spectrum.
Extracting vector-bottomonium masses, total widths, and
partial eþe− widths from these spectra has posed serious
challenges. While fits to the inclusive eþe− spectrum using
a coherent sum of Breit-Wigner amplitudes are possible [5],
the fits violate unitarity and the results are expected to be
unreliable.
Recent measurements of the energy dependence of

exclusive eþe− → Bð�ÞB̄ð�Þ cross sections [6] confirm the
importance of coupled-channel scattering. Rather than
showing distinct peaks for the ϒð5SÞ and ϒð6SÞ, the cross

sections are marked by dramatic peaks and valleys at
various open-bottom thresholds. These nontrivial features
in the open-bottom cross sections undermine older mea-
surements of the ϒð5SÞ and ϒð6SÞ branching fractions,
such as those currently listed in the Particle Data Group’s
Review of Particle Properties (RPP) [7]. Previous branch-
ing fractions of the ϒð5SÞ to open-bottom final states, for
example, were estimated by first measuring the cross
section of eþe− to a given open-bottom final state at an
energy near the presumed mass of the ϒð5SÞ and then
dividing by the inclusive bb̄ cross section at the same
energy [8–10]. This ratio of cross sections would approxi-
mate an ϒð5SÞ branching fraction only if the ϒð5SÞ were
produced in isolation, an assumption we now know to
be false.
Besides strong coupled-channel effects in the open-

bottom final states, anomalously large cross sections for
eþe− to closed-bottom channels, such as ππϒðnSÞ (n ¼ 1,
2, 3) and ππhbðnPÞ (n ¼ 1, 2), have been observed
[11–15]. Their production rates were later found to be
enhanced by the presence of the exotic isovector-bottomo-
niumlike states, the Zbð10610Þ and Zbð10650Þ (also called
the Zb and Z0

b), which decay to πϒðnSÞ and πhbðnPÞ
[16,17]. In contrast to the complications in the open-bottom
channels, theϒð5SÞ andϒð6SÞ appear to be well isolated in
the closed-bottom channels, which allows for a more
reliable extraction of their mass and width [15]. These
relatively well-behaved cross sections also provide evi-
dence for an additional state, the ϒð10750Þ [15], which
may be the ϒð3DÞ bottomonium state.
With the recent publication of inclusive eþe− cross

sections [5] and exclusive eþe− cross sections to open-
bottom [6] and closed-bottom [15] final states, we are now
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in a position to perform the first global and unitary analysis
of the vector-bottomonium system above BB̄ threshold. We
use the K-matrix formalism for this analysis. In the
literature, the K-matrix is regularly used in the spectros-
copy of hadrons containing u, d, and s quarks, for example
in studies of scalar mesons in Refs. [18–20]. A first
application of a K-matrix in the analysis of heavy quarko-
nia was made by Uglov et al. [21] performing a unitary
coupled-channel analysis of eþe− annihilation to the DD̄,
D�D̄; and DD̄π channels for energies up to 4.7 GeV.
Masses and partial decay widths for the charmonium
resonances ψð3770Þ, ψð4040Þ, ψð4160Þ, and ψð4415Þ
were extracted. Comparing to Ref. [21], our study of the
bottomonium system includes three-body final states,
allows for nonresonant scattering, is further constrained
by the total inclusive cross section, and allows for an
analytic continuation to the complex energy plane.
In the following, we describe our model (Sec. II), the

datasets used in the analysis (Sec. III), and the fit procedure
(Sec. IV). In Sec. V, we present our results for the pole
positions of the ϒð4SÞ, ϒð10750Þ, ϒð5SÞ, and ϒð6SÞ, as
well as estimates for their branching fractions to all
considered channels. We discuss the results in Sec. VI,
comparing them to a variety of theoretical calculations, and
we share our conclusions in Sec. VII. Finally, a more
detailed description of the K-matrix formalism is given in
Appendix A together with a discussion of an analysis that
omits three-body channels in Appendix B.

II. K-MATRIX FORMALISM

Our fit to the data will employ a K-matrix that includes
resonant and nonresonant scattering terms and is modeled
as follows:

Kμ;ν ¼
X
R

gR∶μgR∶ν
m2

R − s
þ fμ;ν: ð1Þ

The indexR refers to resonances while greek indices denote
continuum channels. Except where noted below, the
resonant couplings (g) and nonresonant terms (f) incor-
porate energy-dependent form factors [see Eqs. (A31) and
(A32)] that are meant to capture the hadronic nature of the
relevant interactions. Form factors are parametrized in
terms of a universal scale β, while the resonant and
nonresonant coupling strengths are denoted ĝ and f̂,
respectively. Derivations and further details can be found
in Appendix A.
The scattering amplitude is written as

M ¼ ð1þ KCÞ−1K ð2Þ

where C is the Chew-Mandelstam function, with the
property

ℑðCÞ ¼ −ρ ð3Þ

and ρ is the diagonal phase space matrix with elements

ρμ;ν ¼ δμ;ν
kνðsÞ

8πSν
ffiffiffi
s

p : ð4Þ

Here, Sν is a symmetry factor and kν is the center-of-mass
momentum in channel ν. A detailed description of the
model choices and our reasons for them is given in
Appendix A.
Some of the fits described below employ Aitchison’s

P-vector formalism for production [22]. In our case this is
implemented as

Mμ;ee ¼
X
ν

ð1þ K̂ ĈÞ−1μ;νPν ð5Þ

where Pν ¼ Kν;ee, and K̂ and Ĉ are defined in the restricted
channel space that does not include the initial channel. No
form factors were used in the eþe− channels of the
production vector, as these are not relevant for leptons.
Additional modeling is required since we are fitting

three-body channels in a two-body formalism. We have
chosen two approaches:

(i) Create mock two-body channels for ðbb̄Þππ con-
sisting of the bottomonium state and a “ππ” state of
mass 2mπ with relative angular momentum set to
zero. This is a common method used in hadronic
scattering analyses.

(ii) We note that all the three-body channels have cross
sections of order 10 pb, while the open-bottom two-
body channels are order 100 pb. Thus it is reasonable
to treat the three-body channels perturbatively,
neglecting terms of order g2R∶3body. This can be
realized by placing the production (eþe−) channel
in the K-matrix and the three-body channels into a
“final-state” matrix, which we call F. Thus (see
Appendix A for details)

MΔ;ee ¼
X
μ

FðΔÞ
μ ð1þ Ĉ K̂Þ−1μ;ee ð6Þ

where Δ denotes a three-body channel, K̂ is defined
in the restricted channel space that includes two-
body channels and the production channel, and

FðΔÞ
μ ¼ KΔ;μ: ð7Þ

We are at liberty to choose an appropriate model
for the F-vector. Two different model choices will be
tested:
(iia) Resonances R feed the three-body channels Δ,

yielding
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FðΔÞ
μ ¼

X
R

gR∶ΔgR∶μ
m2

R − s
: ð8Þ

(Notice that the units of gR∶μ are dimension one
while gR∶Δ are dimension zero.)

(iib) The two-body channel μ feeds the three-body
channel Δ directly,

FðΔÞ
μ ¼ fΔ∶μ: ð9Þ

As a further extension, which we did not pursue,
intermediate states saturating ππ (say an f0) in a
three-body channel like ππϒ could be included

FðΔ¼ππϒÞ
μ ¼ gR∶μ · gR∶f0ϒ · gf0∶ππ

ðm2
R − sÞðm2

f0
− sππÞ

ð10Þ

if efficiency corrected Dalitz plots were available.
Form factors were not incorporated in the modeling of

three-body channels since this was judged to be an
unnecessary complication.
Once the scattering amplitude is computed, cross sec-

tions are obtained by integrating over the relevant Dalitz
plot region. This method comprises a rigorous, if pertur-
bative, approach to solving the three-body problem in the
K-matrix formalism. The general problem requires solving
integral equations and has a long history of investigation
[23]. Results for both of our methods (iia) and (iib) will be
reported below.
An additional novel aspect of our approach is the use of

the inclusive scattering process. This is achieved by fitting
the sum of all channels to σbb̄ ¼ Rbb̄ · σðeþe− → μþμ−Þ.
An immediate problem that this procedure raises is that
the sum over the measured channels falls short of the
inclusive cross section for high center-of-mass energiesffiffiffi
s

p ≳ 10.75 GeV, implying that missing channels can be
important. Possible missing open-bottom channels that are
relevant to the energy region of the fit are listed in Table I.
Because this represents a substantial source of modeling
ignorance, we choose to represent this dynamics with a
single dummy channel chosen to correspond to the lightest
channel. Thus the channel masses are set to mðBsÞ and the
relative angular momentum is l ¼ 1. We have tested
sensitivity to these choices by adjusting the dummy

threshold to mðBÞ þmðB�Þ þmðπÞ and 2 ·mðB�Þ þ
mðπÞ and find negligible difference.
Additional error can arise in the model due to neglected

resonances with masses much greater than
ffiffiffi
s

p
in the fit

region. If considered, these would contribute

δKμ;ν ≈
gR∶μgR∶ν

m2
R

ð11Þ

to the K-matrix. This is equivalent to a nonresonant
interaction, and is therefore accounted for in the fit to a
large extent.
Lastly, we consider neglected high mass channels. In this

case the relative channel momentum will be zero and there
will be no effect in the scattering amplitude for P-waves and
beyond. For S-waves the imaginary part of the amplitude
denominator will not change. The real part will shift by
ĝ2½1=ð8π2Þ − s=ð96π2M2Þ þ…� and thus will be largely
absorbed in the bare parameters, and will not affect the
physical properties of the amplitude.

III. DATASETS

With Belle, BABAR, CLEO, and CUSB, four different
experiments made contributions to the study of vector-
bottomonium states in electron-positron annihilation in the
past, with the latter three focused on the inclusive cross
section, while the former also studied exclusive cross
sections at various center-of-mass energies above the
open-bottom threshold.
For this work, we use measurements of the ratio of

inclusive bottom antibottom-quark production over muon
production

Rbb̄ ¼
σðeþe− → bb̄Þ

σðeþe− → μþμ−Þ ð12Þ

by BABAR and Belle [3,4]. This ratio Rbb̄ is obtained from a
measurement of the total hadronic cross section, sub-
tracting u-, d-, s-, c-quark contributions extrapolating a
model fitted to experimental data of σðeþe− → hadronsÞ
below the open-bottom region (see Ref. [24] for details). A
detailed comparison between the BABAR and Belle mea-
surements and a determination of radiative corrections has
been performed in Ref. [5]. We will use the combined data
reported in Ref. [5] for the dressed Rbb̄ ratio and multiply
by σðeþe− → μþμ−Þ ¼ 4πα2

3s to obtain the total dressed cross
section for inclusive bottom-quark pair production σbb̄.
In addition, the Belle Collaboration recently published

cross section measurements of many exclusive open-
(eþe− → ðbq̄Þðb̄qÞ) and hidden-bottom (eþe− → ðbb̄Þππ)
processes. The open-bottom processes include BB̄, B�B̄,
and B�B̄� [6] and B�

sB̄�
s [25]. Here and in the following,

Bð�Þ
ðsÞB̄

ð�Þ
ðsÞ is an abbreviation including charge-conjugated

channels as well as the combinations of two neutral and two

TABLE I. Some missing two-body channels.

Channel Threshold l

BsBs 10734 1
BsB�

s 10782 1
BB1 11000 0
BB0

1 ≈11015 0
B�B0 ≈11055 0
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oppositely charged open-bottom mesons. For the BB̄, B�B̄,
and B�B̄� channels dressed cross sections only corrected
for initial-state radiation (ISR) effects were published. For
B�
sB̄�

s , only “visible” (directly measured) cross sections
were made available. Initial-state radiation effects are in
general reaction dependent and can have an influence on
the reconstruction efficiency, so that there is no straightfor-
ward way to convert the visible cross section for eþe− →
B�
sB̄�

s into a dressed cross section. Instead, we use the
visible cross section in our fit for this process alone and
thus implicitly assume that the ISR correction is small
compared to the sizable uncertainties of the measurement.
The hidden-bottom channels measured by Belle were

ϒðnSÞπþπ− (n ¼ 1, 2, 3) [15] and hbðnPÞπþπ− (n ¼ 1, 2)
[14]. We also consider the measurements of ϒð1SÞπþπ−
and ϒð2SÞπþπ− at the ϒð4SÞ resonance [15,26]. For these
hidden-bottom channels, we abbreviate πþπ− as ππ in the
following. In case of all hidden-bottom processes, Born
cross sections—observed cross sections corrected for ISR
and vacuum polarization (VP) effects—were published. As
VP effects are independent of the final state, we multiply
the hidden-bottom cross sections by the VP correction
factors given in Ref. [5] to turn the Born cross sections into
dressed cross sections. If no value of the VP correction
factor is available at a given center-of-mass energy, we
interpolate linearly between two neighboring points. Given
the large density of data for Rbb̄ and thus the VP correction
factor in Ref. [5], we only have to interpolate over small
center-of-mass energy regions. Reference [15] shows addi-
tional data points in the ϒð10753Þ region obtained using
the ISR method [eþe− → γISRϒðnSÞππ]. These are not
publicly available because the effective luminosity changes
rapidly with center-of-mass energy for these measurements
[27]. These data points are thus ignored here.
In principle, as was mentioned in Sec. II [see Eq. (10)],

our model could accommodate intermediate resonances in
three-body processes. However, no information is available
on the center-of-mass energy dependence of the ϒðnSÞππ
and hbðnPÞππ Dalitz plots. These would be of particular
interest for future high statistics measurements by Belle II.

IV. FIT AND ANALYSIS STRATEGY

We perform a combined least-squares fit to the data using
Eqs. (1), (A15), (A35), and (A36) with four poles and up to
11 channels [BB̄, B�B̄, B�B̄�, “BsB̄s,” B�

sB̄�
s , ϒð1SÞππ,

ϒð2SÞππ,ϒð3SÞππ, hbð1PÞππ, hbð2PÞππ, and eþe−]. A fit
with only three poles does not yield a satisfactory result.
We define a total of nine different models using three

different form factor scales β ¼ 0.8, 1.0, and 1.2 GeV and
three different treatments of the three-body hidden-botto-
monium channels. In the first set of models, three-body
channels are described in a quasi-two-body approach
including a ðππÞ quasiparticle with mass mππ ¼ 2mπ . In
the other two sets of models, three-body channels are

treated perturbatively, using either a resonant or nonreso-
nant coupling as defined in Eqs. (8) and (9). Given the lack
of data on the center-of-mass energy dependence of the

ϒðnSÞππ and hbðnPÞππ Dalitz plots, we do not use FðΔÞ
μ

given in Eq. (10). In addition, we also consider three two-
body models applied to the open-bottom channels only as a
test of the importance of the three-body data and the
robustness of the conclusions (see Appendix B).
The difficulty in estimating initial parameters, the large

number of parameters and, by construction, strong corre-
lation between them, forced the adoption of a step-by-step
fit procedure. We start using a single pole and a single
channel (BB̄) to describe the total cross section σbb̄ in the
ϒð4SÞ region below the B�B̄ threshold, where σbb̄ ≈
σðeþe− → BB̄Þ and Brðϒð4SÞ → BB̄Þ ≈ 100%. Then, we
add the remaining three poles together with the BB̄ data. In
an iterative procedure, we then add a new channel to absorb
differences between the exclusive and the inclusive cross
section, refit, and add the exclusive data for that channel.
These steps are repeated until all open-bottom channels
have been included, with the “BsB̄s” channel used to
absorb missing intensity, added last. For the “BsB̄s”
channel, we fix the nondiagonal background parameters
f̂μ;ν (μ ≠ ν) to zero. For all other open-bottom channels, all
background terms f̂μ;ν are free parameters [see Eq. (A32)
for the definition of the coupling f̂].
In addition, the bare masses mR and couplings ĝR∶μ are

free parameters in the fit, apart from the couplings of the
lowest mass pole for which we fix ĝR∶μ ¼ 0 for μ ≠ BB̄
owing to the experimental observation that the ϒð4SÞ is
fully saturated by its decay to BB̄.
Based on these fits, we add the three-body hidden-

bottom processes one by one and refit the data for each
step. Here, we use the three different approaches of adding
either quasi-two-body channels or treating the three-body
channels perturbatively in one of the final-state matrices F
detailed above. In the former case, we fix the background
terms in the K-matrix f̂μ;ν to zero if μ or ν is a three-body
channel, but allow for a free background term in the
production P-vector.
To determine statistical uncertainties of the fit, we use a

bootstrapping method generating 1000 pseudo datasets by
randomly varying all data points following Gaussian
distributions Gðσ; δσÞ where σ and δσ are the measured
cross section and its uncertainty at any given s. Given that
Belle did not use a prior requiring σ to be positive, we allow
random variations to negative cross sections as well. For
each pseudo dataset, we repeat the fit starting from the
nominal solution for a given model choice. To cross-check
our result, each fit result to a pseudo dataset is tested as a
new set of starting parameters in the fit to the actual data,
and if that fit yields a better result, we replace the previous
solution and repeat the determination of uncertainties with
the new fit result. In each channel, we obtain confidence
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levels for each center-of-mass energy containing the
central 68% (90%) of all fit variations for a given
model. We remark that the nominal fit result does not
necessarily lie in the center of the interval, in large part
because the fit result is positive by definition, whereas the
(pseudo) data are allowed to have negative cross section
values.
To extract pole locations, in those cases where the

eþe− channel is contained in the production vector,
we extend K andM by one dimension using Kμ;eþe− ¼ Pμ

and Keþe−;eþe− ¼ P
R

g2R∶ee
m2

R−s
and systematically scan

Meþe−;eþe−ðsÞ in the complex plane. We look for poles
on the nearest sheets defined such that the sign of the
imaginary part of the breakup momentum kμ is negative for
channels whose thresholds are below [mthr < ℜðmpoleÞ]
and positive for channels whose thresholds are above the
pole mass. If a candidate for a pole in the complex plane is
found, we repeat the scan around the pole with a finer grid.
This procedure is repeated multiple times and only those
candidates that can still be identified as poles on a grid with
eV binning are examined further.
Once pole candidates are identified, we determine the

residues Resμ using a discrete version of Cauchy’s residue
theorem (this aids in producing stable results):

Resμ ¼
i
N

XN
n¼1

Mμ;μðsnÞ ·
ρμðsnÞffiffiffiffiffi

sn
p · ðsn −m2

poleÞ; ð13Þ

where the sum over n is chosen such that the discrete values
of sn run along a closed circle around the position of the
pole candidate m2

pole in the complex plane. These residues
are related to the partial width of the relevant resonance for
channel μ via ΓR;μ ¼ jResμjR.
It is possible for “ghost poles” to appear in the formal-

ism. This is particularly true for theϒð4SÞ region where the
fit tends to arrange the background terms such that ½1þ
KC� is not invertible for s ¼ m2

ghost pole. We identify ghost
poles by comparing their total widths as determined by the
residues to twice the imaginary part of the pole location.
Lack of agreement is evidence for a ghost pole. We also
adjust the strengths of the couplings ĝ and f̂ by a factor
λ < 1. As this factor is reduced to zero, poles should
approach the bare mass on the real axis, while ghost poles
can exhibit other behavior. We have found that both
methods yield valuable information; for example, most
ghost poles have total widths that are Oð105Þ times too
small with respect to the imaginary part of the pole
location.

V. RESULTS

In this section, we first present fit results for our nine
model variations (Sec. VA). We then analyze the structure
of the solutions in the complex plane. This allows us to

determine resonance masses and total widths by extracting
pole locations (Sec. V B) and to determine branching
fractions and partial widths by calculating the residues
of each pole in each channel (Sec. V C). As a by-product,
we also plot two-body to two-body hadronic cross sections
(Sec. V D).

A. Fits

Figure 1 presents experimental data and fit results for the
quasi-two-body model with β ¼ 1.0 GeV for the ten chan-
nels under consideration. The inner (red) and outer (green)
shaded regions show the central 68% and 90% confidence
levels as determined with the bootstrap method described in
Sec. IV. As can be seen, the fit is quite good, with a χ2 per
degree of freedomof 1.17.Note, however, that the paucity of
data above

ffiffiffi
s

p ¼ 11 GeV leads to ambiguity in the large
energy behavior of the exclusive channels, subject to the
constraint provided by the inclusive reaction. Furthermore,
the dummy channel [Fig. 1(d)] takes up substantial strength,
especially near the resonances at (approximately) 10.9 and
11.0 GeV. The question of what this channel represents will
be considered below. We remark that the spike seen in the
left of Fig. 1(a) is the trailing edge of the ϒð4SÞ.
The fit significantly underestimates the data near

10.65 GeV in the B�B̄ channel [Fig. 1(b)]. This is caused
by the low value of σbb̄ in this energy region [see Fig. 1(l)]
where evidently the inclusive data do not agree with
exclusive measurements [28].
Fit results for all nine models are displayed in Fig. 2. One

sees that the fits are quite consistent through the regions in
which they are constrained. Many of the channels show the
ambiguity in the high energy region mentioned above,
which is to be expected due to the absence of exclusive
data. Chi-squared values for all the fits are given in Table II,
showing similar fit quality for all the models (with perhaps
a slight preference for the three-body nonresonant class of
models).

B. Poles

A summary of the extracted pole positions for each
model is presented in Table III with model predictions
summarized in Table IV. The poles are labeled ϒð4SÞ,
ϒð10750Þ, ϒð5SÞ, and ϒð6SÞ because they clearly repro-
duce the states reported in the RPP [7]. [The RPP names for
these states are ϒð4SÞ, ϒð10753Þ, ϒð10860Þ, and
ϒð11020Þ respectively.] We also report 68% confidence
intervals. In a few instances the sheet structure of the
corresponding pole is ambiguous. In those cases, multiple
pole locations are reported with the sheet being indicated
by the signs on the imaginary part of the breakup
momentum of the five open-bottom channels (ordered by
threshold). Intervals reported in square brackets correspond
to alternative solutions found during the bootstrap
procedure.
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Those T-matrix poles that correspond to poles of the
K-matrix are displayed in color in Fig. 3. Each point
represents a pole from a fit to the bootstrap pseudo data for
different model choices. Poles that we identify as spurious,
but which nevertheless have sizable residues, are shown in
gray. The RPP estimates of mass and width (corresponding
to points M − iΓ=2) are also shown as stars with
error bars.
All models and bootstrap variations agree quite well for

the ϒð5SÞ and ϒð6SÞ pole positions, with the ϒð5SÞ
agreeing with the RPP estimate, while our fits obtain a
total width for theϒð6SÞ that is approximately twice that of
the RPP. In contrast, the situation for ϒð4SÞ and ϒð10750Þ
is less clear.
Turning attention to the ϒð4SÞ, we see that most pole

positions cluster near the nominal RPP value, although 10–
20 MeV higher in mass. There is, however, a region of the
β ¼ 1.0 GeV, three-body nonresonant model poles that lies
near ℑð ffiffiffi

s
p Þ ¼ −0.03 GeV. The number of data points is

sufficiently sparse (and the model is sufficiently general)
that perhaps a variety of nearly degenerate minima of the
objective function exist. In this case, the secondary group of
poles appear to be associated with BB̄ threshold. We note
that the secondary group of poles has substantial overlap
with a group of ghost poles (indicated in gray). These
points tend to move toward the BB̄ threshold upon
rescaling the couplings—indicative of their spurious
nature—and hint that the three-body nonresonant secon-
dary group of bootstrap poles should not be considered as
viable bottomonium resonance candidates.
For theϒð10750Þ, the main accumulation of poles seems

to agree with the RPP value. However, other solutions
cannot be ruled out. The high model dependence found in
these fits yielding poles with a large range of masses and
widths reflects the lack of data in the energy region around
10.7 GeV. Some models contained ghost poles in this
region that move toward the thresholds of either the dummy
or the B�

sB�
s channel as the couplings are decreased. New
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FIG. 1. Fit result for the quasi-two-body model with β ¼ 1.0 GeV. Black points are data, the red line is the fit result, and the red and
green shaded areas are the central 68% and 90% C.L. regions. The order of the channels is (a) BB̄, (b) B�B̄, (c) B�B̄�, (d) the dummy
channel (“BsB̄s”), (e) B�

sB̄�
s , (f) ϒð1SÞππ, (g) ϒð2SÞππ, (h) ϒð3SÞππ, (i) hbð1PÞππ, (j) hbð2PÞππ, (k) σbb̄ in the ϒð4SÞ region, and

(l) σbb̄ above the ϒð4SÞ region. The gray dashed lines in (k) and (l) indicate thresholds for B�B̄, B�B̄�, BsB̄s, and B�
sB̄�

s , respectively.
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data from an upcoming Belle II measurement in this energy
region will be key in determining the properties of the
ϒð10750Þ with higher precision.

C. Residues

To determine partial widths and branching fractions, we
use the method discussed in Sec. IV to calculate the
residues for each channel at each pole in the complex
plane. Considering the significant model dependence and
large statistical uncertainties, we do not quote central
values, but only estimate ranges for each measurement
that take into account both the statistical and model spread
in our solutions.
We first consider electronic widths, which are reported in

the top panels of Figs. 4, 5, 6, and 7 for the ϒð4SÞ,
ϒð10750Þ, ϒð5SÞ, and ϒð6SÞ, respectively. The results are
summarized and compared to theoretical expectations in
Table V of the next section.
Extracted electronic widths for the ϒð4SÞ state (Fig. 4)

range from 0.003 to 0.62 keV, with most values clustering
near 0.15 keV, somewhat lower than the RPP value of
0.272� 0.029 keV. A first measurement of the eþe−
partial width for the ϒð10750Þ is reported in Fig. 5, with
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FIG. 2. Comparing fit results for different model choices: Red lines correspond to the quasi-two-body models, yellow lines to the
three-body models with resonant couplings, and yellow lines to three-body models with nonresonant couplings. Solid lines correspond
to β ¼ 1.0, whereas dashed and dotted lines correspond to β ¼ 0.8 and β ¼ 1.2, respectively. The order of plots (a) through (l) is the
same as in Fig. 1.

TABLE II. Global χ2 values for the different fit models. The
number of degrees of freedom (“ndf”) is given by the number of
data points (424) minus the number of free parameters in a model.

Model χ2 ndf χ2=ndf

β ¼ 0.8=two body 417 362 1.15
β ¼ 1.0=two body 423 362 1.17
β ¼ 1.2=two body 423 362 1.17

β ¼ 0.8=three body=nonres 392 352 1.11
β ¼ 1.0=three body=nonres 413 352 1.17
β ¼ 1.2=three body=nonres 381 352 1.08

β ¼ 0.8=three body=resonant 438 367 1.19
β ¼ 1.0=three body=resonant 430 367 1.17
β ¼ 1.2=three body=resonant 421 367 1.15
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TABLE III. Pole positions in MeV. Parentheses indicate central 68% C.L. regions; square brackets indicate regions of a second,
separate bootstrap solution where present. In case the sheet structure of a pole is ambiguous (for broad poles or poles close to a
threshold), values extracted from deeper sheets are reported as well. These additional sheets are labeled by “þ” and “−” signs
corresponding to the sign of the imaginary part of the breakup momentum of the open-bottom channels sorted by ascending thresholds.

Model ϒð4SÞ ϒð10750Þ ϒð5SÞ ϒð6SÞ
RPP (Breit-Wigner) 10579.4� 1.2 10753� 6 10885.2þ2.6

−1.6 11000� 4

−ið10.25� 1.25Þ −ið18þ9
−6 Þ −ið18.5� 2Þ −ið12þ4

−3 Þ
β ¼ 0.8=two body 10603 10721 10880 11007

−i 14.0 −i 45.7 −i 19.0 −i 19.3
(68% C.L.) (10590–10609) (10711–10730) (10879–10881) (11006–11008)

−ið14.2–9.4Þ −ið53.3–40.2Þ −ið19.9–18.0Þ −ið20.4–18.3Þ
β ¼ 1.0=two body 10592 10753 10884 11003

−i 9.4 −i 24.0 −i 19.1 −i 22.5
(68% C.L.) (10590–10593) (10745–10758) (10883–10885) (11002–11003)

−ið10.5–8.6Þ −ið31.3–18.5Þ −ið20.1–18.1Þ −ið23.5–21.0Þ
β ¼ 1.2=two body 10606 10767 10882 11005

−i 9.5 −i 19.7 −i 19.0 −i 19.1

(− −þþþ)
10599
−i 13.1

(68% C.L.)
(10599–10609) (10762–10774) (10881–10883) (11004–11005)
−ið10.0–7.6Þ −ið21.4–18.2Þ −ið20.3–17.3Þ −ið20.0–18.2Þ

(− −þþþ)
(10593–10599)
−ið18.4–10.0Þ

β ¼ 0.8=three body=nonres 10582 10635 10881 11003
−i 18.8 −i 7.9 −i 21.3 −i 25.8

(68% C.L.) (10581–10583) (10633–10638) (10880–10883) (11002–11004)
−ið21.2–15.8Þ −ið9.1–5.7Þ −ið22.3–19.3Þ −ið27.8–23.9Þ

β ¼ 1.0=three body=nonres 10579 10747 10882 11003
−i 21.7 −i 20.3 −i 20.1 −i 22.1

(68% C.L.) (10577–10580) [(10590–10593)] (10743–10755) (10881–10883) (11002–11004)
−ið25.9–18.9Þ [−ið11.4–9.4Þ] −ið29.8–14.7Þ −ið20.6–18.7Þ −ið23.3–20.8Þ

β ¼ 1.2=three body=nonres 10578 10639 10882 11001
−i 18.9 −i 68.0 −i 18.4 −i 19.0

(− − −þþ) 10657
−i 62.9

(− − − −þ) 10657
−i 62.8

(68% C.L.) (10575–10580) [(10598–10607)] (10607–10658) (10881–10883) (11000–11002)
−ið22.0–16.4Þ [−ið9.0–6.3Þ] −ið86.3–58.7Þ −ið19.5–17.2Þ −ið19.8–18.0Þ

(− − −þþ) (10626–10717)
−ið78.0–48.6Þ

(− − − −þ) (10626–10714)
−ið78.3–49.3Þ

β ¼ 0.8=three body=resonant 10592 10675 10879 11003
−i 9.8 −i 15.7 −i 21.2 −i 23.9

(68% C.L.) (10591–10593) (10663–10688) (10878–10880) (11002–11004)
−ið10.8–9.0Þ −ið17.6–14.8Þ −ið22.7–20.1Þ −ið25.3–21.8Þ

β ¼ 1.0=three body=resonant 10591 10755 10883 11003
−i 9.3 −i 15.2 −i 18.4 −i 22.4

(68% C.L.) (10.590–10.593) (10748–10759) (10882–10884) (11002–11004)
−ið10.4–8.7Þ −ið19.2–13.1Þ −ið19.6–17.4Þ −ið23.4–20.9Þ

β ¼ 1.2=three body=resonant 10606 10776 10881 11003
−i 9.7 −i 39.8 −i 18.7 −i 18.6

(68% C.L.) (10597–10607) (10704–10781) (10880–10883) (11001–11003)
−ið9.9–8.1Þ −ið134.3–27.0Þ −ið19.8–17.1Þ −ið19.6–17.6Þ

Final estimate (10590–10610) (10630–10780) (10878–10884) (11000–11008)
−ið6–16Þ −ið10–70Þ −ið17–22Þ −ið18–27Þ
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values ranging from 0.004 to 0.10 keV. These values are
somewhat smaller than those for the ϒð4SÞ, an issue to
which we return in Sec. VI C. Figures 6 and 7 show that the
situation is somewhat cleaner in the cases of the ϒð5SÞ and
ϒð6SÞ, with all extracted partial widths for both in a range
between roughly 0.04 and 0.07 keV.
Our extracted values for both the ϒð5SÞ and ϒð6SÞ

electronic widths are substantially smaller than the values
reported in the RPP, which are 0.31� 0.07 and
0.13� 0.03 keV, respectively. The original measurements
of the inclusive eþe− cross sections and their subsequent
parametrization [1,2], which are the basis for the RPP
values, were based on very little data and unconstrained
models. In Ref. [1], for example, the inclusive eþe− cross
section was modeled using a sum of Gaussian distributions,
with a single Gaussian distribution covering the entire
ϒð5SÞ region. Our model is more fine grained and better
constrained by the addition of more experimental data.
These circumstances, and the proximity of the recently
discovered ϒð10750Þ, drive the large deviations from the
RPP values. The implications of this deviation will be
explored in Sec. VI C.
Branching ratios for hadronic two- and three-body

channels are also displayed in Figs. 4–7 and are summa-
rized and compared to expectations in Tables VI–IX. Once
again, the model variants permit moderately large variation

0 0.2 0.4 0.6 0.8 1
  (keV)-e+e

0 0.2 0.4 0.6 0.8 1

Br

0 0.0002 0.0004 0.0006 0.0008 0.001

FIG. 4. Branching fractions and electronic width of the ϒð4SÞ.
Red markers correspond to the quasi-two-body models, yellow
markers to the three-body models with resonant couplings, and
blue markers to the three-body models with nonresonant cou-
plings. Markers in the same color follow the order β ¼ 1.0
(circles), β ¼ 1.2 (squares), β ¼ 0.8 (triangles). Black stars
correspond to the RPP estimate.
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FIG. 5. Branching fractions and electronic width of the
ϒð10750Þ; color code is the same as in Fig. 4.
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model. The black stars represent the RPP estimate using a Breit-
Wigner parametrization.
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in the extracted branching ratios. This can be due to a
number of effects. For example, we report a nonzero
branching fraction of 0.6 (0.4–0.9)% for ϒð4SÞ → B�B̄
for the β ¼ 1 GeV quasi-two-body model. This is a result
of the pole being found very close to the B�B̄ threshold
with a sizable width. In other models, the ϒð4SÞ → B�B̄
branching fraction can grow to around 30%, depending on
the location of the pole with respect to the threshold and on
the width of the state.
A more subtle example of model variation is visible in

Fig. 6, where three branching fractions (circles) for
ϒð1SÞππ lie above the other six values. These three points
are all models in which β ¼ 1 GeV, which happen to have
a narrower ϒð10750Þ than the other models, hence less
overlap with the ϒð5SÞ, and hence larger ϒð1SÞππ branch-
ing fractions.
Branching fractions to the “missing” channel show some

dependence on the state, with values of (70–90)% [ϒð6SÞ],
(31–77)% [ϒð5SÞ], and anywhere between zero and 79%
[ϒð10750Þ]. It is perhaps expected that these branching
fractions diminish as the mass of the resonance decreases.
Nevertheless it is disconcerting that so much of the ϒð5SÞ
and ϒð6SÞ states disappear into unseen channels. Of
course, this may be due to increasing phase space and
channels with higher

ffiffiffi
s

p
. It may also be due to the lack of

data above 11 GeV. For example, the putativeϒð6SÞ signal
is truncated in the B�B̄ channel by missing data [see
Fig. 1(b)], and therefore that 6S branching fraction may
be missing some intensity.
Lastly, we note that both the ϒð5SÞ and ϒð6SÞ are

reported to decay to Zbπ and Z0
bπ, with the two Zb states

decaying to B�B̄ and B�B̄�, respectively. This implies that
B�B̄π and B�B̄�π could be important components of the
missing channel.

D. Hadronic scattering cross sections

With the K-matrix in hand it is a simple matter to obtain
cross sections for all channels. Here we examine the set of
25 two-body channels to confirm that the model is
behaving in a reasonable way. The result for the two-body
variant with β ¼ 1.0 GeV is displayed in Fig. 8 along with
the central 68% and 90% intervals that are obtained from
fits to the pseudo data samples. The cross sections obtained
from all the fit models are shown in Fig. 9.
We see that the cross sections have the scale of typical

hadronic cross sections, which is reassuring. All cross
sections also display a sharp threshold rise, which is not
unexpected. This is typically followed by a rapid drop over
a range of

ffiffiffi
s

p
≈ 100 MeV. Again, this is expected [29] as

this scale is set by the relevant hadronic wave functions.
Beyond the threshold region there is scant evidence of the
bottomonium resonances, with small peaks visible at
ϒð10750Þ, ϒð5SÞ, and ϒð6SÞ in some channels. This is
likely due to the large background scattering present and
the large couplings to the dummy channel.
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FIG. 6. Branching fractions and electronic width of the ϒð5SÞ;
color code is the same as in Fig. 4.

0 0.04 0.08 0.12 0.16 0.2
  (keV)-e+eΓ

0 0.2 0.4 0.6 0.8 1

Br

0 0.02 0.04 0.06 0.08 0.1

FIG. 7. Branching fractions and electronic width of the ϒð6SÞ;
color code is the same as in Fig. 4.
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It is interesting that the range of fits in Fig. 8 tend to
follow those of Fig. 9. Evidently the different fit models
tend to span a region in parameter space similar to the
minima obtained in the variant model space. This is a strong
indication that the modeling is consistent and that the
fluctuations present are due to data quality.

VI. DISCUSSION AND INTERPRETATION

The large bottom-quark mass makes bottomonium an
ideal system for the application of constituent quark
models. It is therefore informative to compare the results

we find to model predictions and lattice field theory
computations where they exist.

A. General features

Figure 1 reveals that most fit variability lies in the region
above

ffiffiffi
s

p
≈ 11 GeV and around

ffiffiffi
s

p ¼ 10.75 GeV. The
former is clearly because of the lack of data in exclusive
channels for large energy. As a result the strength in the
inclusive measurement can be shared in different ways
throughout the available channels. This observation is
reinforced by the results of Fig. 2, which show that the
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FIG. 8. Cross sections for Bð�Þ
ðsÞ B̄

ð�Þ
ðsÞ → Bð�Þ

ðsÞB̄
ð�Þ
ðsÞ scattering. The red line shows the fit result for the two-body β ¼ 1.0 fit while red and

green shaded areas indicate the regions containing 68% and 90% of the pseudo data fits.

K-MATRIX ANALYSIS OF eþe− ANNIHILATION IN … PHYS. REV. D 106, 094013 (2022)

094013-11



large energy ambiguity is reflected in the model variant
optimal fits. Evidently, model variation recapitulates data
variance, which is a strong indication of the consistency of
our approach. As we have noted, the paucity of data above
11 GeV makes it difficult to pin down branching fractions
for the ϒð6SÞ; hence measurements in this region would be
most welcome.
The other region of greatest model variation occurs nearffiffiffi
s

p ¼ 10.75 GeV. As might be guessed, this is correlated
with ambiguity in the pole location of the ϒð10750Þ. We
find very strong evidence for this state with a significance
well above 10σ compared to models using only three poles,
where the significance is estimated using the difference in

the minimum χ2 of the respective fits. However, its location
varies with model and under bootstrapping. The imaginary
part of the pole runs between 10 and 70 MeV (with the
largest cluster around 20 MeV). More importantly, the real
part of the pole lies above or below the nominal missing
channel threshold, which leads to a significant spread of the
measured branching fractions.
Theϒð10750Þwas discovered in three-body decays [15]

to ϒðnSÞππ. Because of this we thought it prudent to
determine if evidence for this resonance exists in the two-
body open-bottom channels. This investigation is reported
in Appendix B. We again see strong evidence for the
ϒð10750Þ (similar to Ref. [5]).
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FIG. 9. Cross sections for Bð�Þ
ðsÞB̄

ð�Þ
ðsÞ → Bð�Þ

ðsÞ B̄
ð�Þ
ðsÞ scattering. Line styles and colors match those in Fig. 2.
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Figure 2(d) shows the rate for eþe− to the missing
dummy channel. One sees that the reaction is dominated by
the ϒð5SÞ and ϒð6SÞ, with a more ambiguous contribution
from the ϒð10750Þ. This result is driven by the lack of
agreement between σbb̄ [Figs. 2(k) and 2(l)] and the sum
over the measured exclusive channels. As we have dis-
cussed above, we interpret the discrepancy as being due to
missing multipion final states such as B�B̄π and B�B̄�π,
including Zbπ and Z0

bπ contributions.
Figure 2(k) focuses on the ϒð4SÞ region in the inclusive

cross section. One sees an asymmetric peak and a node near
10.6 GeV that is apparently associated with the B�B̄
threshold (indicated as a dashed line in the panel). We
have already noted that the RPP reports anϒð4SÞmass that
is approximately 15 MeV below ours. In fact, the real part
of our pole position does not lie at the peak of the cross
section. The older model, from which the RPP mass is
obtained, assumed a Breit-Wigner resonance amplitude (so
that the mass necessarily lies near the peak position of
approximately 10.58 GeV). Of course, the assumption of a
Breit-Wigner form can be improved, as we have done
with the K-matrix formalism. The node appears to be
due to destructive interference between the resonance
portion of the amplitude and the background scattering,
which turns on just at B�B̄ threshold. In the end, unitarity
of the model and this effect combine to yield a pole
position that is somewhat removed from the Breit-
Wigner mass.
Lastly, Table II gives the global chi-squared for the nine

models considered here. All values lie between 1.08 and
1.19, indicating that the fits are both good, given the
disagreement between the inclusive and the sum of exclu-
sive cross sections around 10.65 GeV, and comparable with
each other. Again, this shows that model variation is
consistent with data variation as revealed in the bootstrap
fits, which demonstrates both the reliability of the approach
and its limits.

B. Masses

Pole positions are the most basic quantities extracted
from the fit; it is thus of interest to compare our results to
models and lattice field theory computations. There is a
large amount of model literature and our goal is not to
perform a comprehensive survey. We therefore focus on six
models: three recent examples from the literature and three
further models that are due to us. These are
(1) (GM) a version of the Godfrey-Isgur “relativized”

quark model, which assumes relativistic kinetic
energies, smeared potentials based on the one gluon
exchange interaction, and a Lorentz scalar linear
confining potential [30].

(2) (ARM) a relativized model reported in Ref. [31].
The model uses relativistic kinetic energy and spin-
dependent interactions with a Lorentz structure
informed by lattice field computations. The spin-

dependent interactions are given by (this corrects
typographic errors in the original)

V1 ¼ −ð1 − ϵÞbr;
V2 ¼ ϵbr − CF

αS
r
;

V3 ¼ 3CF
αh
r3

;

V4 ¼ CFαh
b2h
r
expð−bhrÞ:

The model reported here uses ϵ ¼ 0.25 as obtained
by lattice computations and was fit to 59 meson
masses across all flavor sectors.

(3) (NR) a nonrelativistic model with perturbative spin-
dependent interactions reported in Ref. [32]. This
model was originally used to describe the charmo-
nium spectrum and was refit to 17 well-known
bottomonium states here.

(4) (bbg) a simple spin-independent model of mesons
and constituent gluon hybrid states, first reported in
Ref. [33], where it was applied to charmonia and
charmonium hybrids. We have refit the model to 17
bottomonium states here.

(5) (SOEF) a nonrelativistic constituent model with a
frozen coupling, regulated one gluon exchange
short-range interactions, and a mixture of Lorentz
scalar and vector screened confinement potentials
[34]. Use of a screened confinement potential limits
the model to low-lying states.

(6) (EFT) a potential nonrelativistic QCD effective field
theory that incorporates input from lattice field
theory [35].

The final comparison will be made to the recent lattice
field calculation of Ryan and Wilson [36]. This work uses
2þ 1 dynamical quark flavors on anisotropic lattices of
size 203 × 128 and 243 × 128. The pion mass is relatively
heavy at 391 MeV. The authors are able to identify the
likely composition of states by evaluating overlaps with a
variety of operators. Their preferred identifications are
shown in the last column of Table IV.
The table reveals that model predictions have typical

deviations of tens of MeV from each other, and from
experimental masses, with the situation getting worse as
one moves up the spectrum. Certainly, it appears that the
ϒð6SÞ is anomalously light (by 60–100 MeV) with respect
to theory expectations. The lightest four masses extracted
from lattice field theory line up fairly well (within several
tens of MeV) with quark models. The authors of Ref. [36]
identify the next two vector states as the ð2DÞ and a hybrid
meson, as indicated in the table.
On the experimental side, the authors of Ref. [15]

speculate that the ϒð10750Þ is either a ð3DÞ bottomonium
state or a bottomonium hybrid. The approximately 50 MeV
deviation from the ð3DÞ quark model is perhaps not
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unusual; on the other hand, it is rather far removed from
the ð2DÞ state as predicted by the quark models. In contrast,
the lattice computation did not resolve a D-wave near
10420 MeV and the authors assigned the 10718 state to
ð2DÞ, which is a possible attribution for theϒð10750Þ if the
lattice results are confirmed at lighter sea quark masses.
Finally, the lattice and model calculations yield a vector
hybrid near 11000 MeV, which is too heavy for a
reasonable interpretation of the ϒð10750Þ signal.

C. Couplings

Constituent quark model computations of electronic
widths and two- and three-body decay modes exist. (In
principle these can also be obtained in lattice calculations,
but this remains to be done.)
Table V shows the electronic partial widths for the

resonances considered in this study as reported in the
RPP, determined by us, and the quark model computations
due to Godfrey and Moats [30] and Segovia et al. [34]. We
also give results from a quark model calculation that
attempts to account for persistent overestimation of decay
constants in nonrelativistic models by softening the short-
range interaction with the aid of the running coupling [37]
(labeled “LS” in the table).

The table suggests that the quark models tend to agree on
the magnitude of the coupling and that, perhaps not
surprisingly, these roughly agree with the measured values
as reported in the RPP. However, as discussed above,
typical older model assumptions lead to widths that are
higher than they should be. Indeed, our results are smaller
by approximately a factor of 2 for theϒð6SÞ and a factor of
6 for the ϒð5SÞ. The value for ϒð10750Þ is new. The trend
is that these widths (and hence, decay constants) fall more
rapidly with radial quantum number than previously
thought, which implies that short-range dynamics in typical
constituent quark models is not as well understood as
hoped. Future lattice field theory computations of decay
constants should help clarify the situation.
We extract an eþe− partial width of (4–100) eV for the

ϒð10750Þ. For most models and bootstrap solutions, we
find values substantially larger than the roughly 2 eV that
quark models typically obtain for D-wave widths. Possible
explanations are that (i) S-D wave mixing is larger than
what typical quark models predict, (ii) the D-wave iden-
tification is incorrect, or (iii) quark model descriptions of
short-range dynamics become worse as the angular
momentum increases. In view of the large overall spread
in our fit results, it is perhaps too early to speculate on this
discrepancy, although we suspect that option (iii) should be
considered further by modelers.
Tables VI–IX report branching fractions for the four

resonances as determined here, RPP values, and theoretical
expectations from the GM and SOEF quark models.
As expected, in most of the models and bootstraps,

nearly the entire width of the ϒð4SÞ is in the BB̄ mode
(Table VI). As discussed above, we do however report a
nonzero value for the B�B̄ mode because a number of
bootstrap poles lie above this threshold. Our three-body
branching fractions are 2 to 4 times larger than those given
in the RPP; however our ranges are quite large. These
higher branching fractions are a consequence of the pole

TABLE V. Experimental and theoretical eþe− widths (keV).
The entries in “our estimate” correspond to the full range of
model results.

State RPP Our estimate LS GM SOEF

ϒð4SÞ 0.272 (0.003–0.62) 0.31 0.39 0.21
ϒð5SÞ 0.31 (0.037–0.068) 0.28 0.33 0.18
ϒð6SÞ 0.13 (0.043–0.074) 0.26 0.27 0.15
ϒð10750Þ (0.01–0.40)a (0.004–0.10) 2.38 eVb

aFrom ambiguous solutions in Ref. [5].
bAssuming a 3D state.

TABLE IV. Experimental and theoretical vector-bottomonium masses (MeV).

State RPP Our estimate GM ARM NR bbg SOEF EFT LGT

13S1 9460 9465 9444 9454 9445 9502 9442 9419.1(4)
23S1 10023 10003 10029 10010 10002 10015 10009 9981(4)
33S1 10355 10354 10374 10344 10339 10349 10356 10384(12)
43S1 10579 (10590–10610) 10635 10641 10614 10610 10607 10638
53S1 10885 (10878–10884) 10878 10865 10849 10848 10818 10886
63S1 11000 (11000–11008) 11102 11065 11064 11064 10995

13D1 10138 10156 10146 10148 10117 10155 10191(9)
23D1 10441 10453 10432 10435 10414 10454 10718(33)
33D1 10698 10697 10679 10684 10653 10712

ϒð10750Þ 10753 (10630–10780)

Hybrid 11093 10690 10952(33)
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position being shifted toward higher masses. The three-
body branching fractions are constrained by a single Belle
data point on the ϒð4SÞ resonance. If the pole is indeed
shifted, the peak in the cross sections of the three-body
processes is shifted as well, leading to a larger branching
ratio when compared with the assumption that the energy
point is in the maximum of the resonance. The quark model
three-body branching fractions are in the ranges of both the
RPP and our measurements, and it is perhaps too early to
make judgements on the efficacy of the models.
Extracted branching ratios and quark model predictions

for the ϒð10750Þ are presented in Table VII, including
model predictions for the ð3DÞ state. Within the large
uncertainties, there is a reasonably good match with the
quark model predictions, lending some support to the
identification of the ϒð10750Þ with the ϒð3DÞ.
Table VIII shows our results for the ϒð5SÞ. We see that

the missing channel determined here is up to 3 times larger
than that reported in the RPP. We have attributed this
substantial missing strength to B�B̄ð�Þπ, potentially through
the Zð0Þ

b intermediate state, although we remind the reader
that experiments reported ratios of cross sections rather
than branching fractions in this case.
Other branching fractions also show substantial dis-

agreement with the RPP values, with the largest discrep-
ancy in the B�B̄ channel. Comparison to the quark models
is somewhat confused because they do not account for all
possible channels in determining the total width. Of course,
relative branching fractions remain meaningful. Both mod-
els predict that B�B̄ is the dominant decay mode with B�B̄�

an order of magnitude smaller. We find some evidence for
the reverse situation, which agrees with the trend in
the RPP.
Lastly, we consider theϒð6SÞ branching fractions shown

in Table IX. Once again, much of the full width appears to
be unmeasured, with approximately 80% going to the
missing channel. We attribute this to missing B�B̄ð�Þπ, as
discussed above. In this case, the quark models agree on the
ordering BfðB�B̄Þ ≳ BfðB�B̄�Þ > BfðBB̄Þ. We, on the
other hand, findBfðB�B̄Þ ≫ BfðB�B̄�Þ, although we stress
that new data on exclusive cross sections above 11 GeV
could lead to significant changes in these branching
fractions.
Although branching fractions are not reported for the

ϒð10750Þ and ϒð6SÞ in the RPP, they list ratios of widths,
as shown in Tables X and XI. Our results for the ϒð6SÞ

TABLE VII. ϒð10750Þ branching ratios (%).

Channel RPP Our estimate GM SOEF

BB̄ � � � (0.7–58) 23 � � �
B�B̄ � � � (0.1–67) 0.2 � � �
B�B̄� � � � (0.7–59) 76.7 � � �
“BsB̄s” � � � (0.008–89) � � � � � �
B�
sB̄�

s � � � (0.05–34) � � � � � �
ϒð1SÞππ � � � (0.005–1.8) � � � � � �
ϒð2SÞππ � � � (0.009–3.8) � � � � � �
ϒð3SÞππ � � � (0–0.6) � � �
hbð1PÞππ � � � (0.01–2.6) � � � � � �
hbð2PÞππ � � � (0.004–1.7) � � � � � �

TABLE VIII. ϒð5SÞ branching ratios (%).

Channel RPPa Our estimate GM SOEF

BB̄ 5.5 (0.6–31) 19.5 22.3
B�B̄ 14 (0.03–3.2) 60.6 42.4
B�B̄� 38 (2.9–17) 8.8 0.3
“BsB̄s” [25] (31–77) � � � � � �
B�
sB̄�

s 18 (0.9–33) 7.3 27.4
ϒð1SÞππ 0.53 (0.6–2.5) � � � 0.023
ϒð2SÞππ 0.78 (1.6–5.2) � � � 0.033
ϒð3SÞππ 0.48 (0.2–1.7) � � � 0.01
hbð1PÞππ 0.35 (0.3–2.8) � � � � � �
hbð2PÞππ 0.57 (0.9–4.0) � � � � � �

aObtained using ratios of cross sections near the ϒð5SÞ mass.

TABLE VI. ϒð4SÞ branching ratios (%). The entries in “our
estimate” correspond to the full range of model results.

Channel RPP Our estimate GM SOEF

BB̄ >96 (66–100) ≈100 ≈100
B�B̄ (0.02–33) 0 0
ϒð1SÞππ 8.2 × 10−3 (0.0001–0.032) 7.5×10−3 29.4 × 10−3

ϒð2SÞππ 8.2 × 10−3 (0.002–0.048) 8.0×10−3 1.2 × 10−3

TABLE IX. ϒð6SÞ branching ratios (%).

Channel RPP Our estimate GM SOEF

BB̄ � � � (0.8–8.6) 3.9 5.3
B�B̄ � � � (1.9–12) 22.4 19.6
B�B̄� � � � (0.2–6.2) 17.4 15.0
“BsB̄s” � � � (70–90) � � � � � �
B�
sB̄�

s � � � (0.04–9.7) 0.9 2.6
ϒð1SÞππ � � � (0.3–1.2) � � � 0.35
ϒð2SÞππ � � � (0.3–2.9) � � � 8.0 × 10−3

ϒð3SÞππ � � � (0.2–1.0) � � � 0.049
hbð1PÞππ � � � (0.5–2.1) � � � � � �
hbð2PÞππ � � � (0.2–4.3) � � � � � �

TABLE X. Γðϒð10750Þ → eþe−Þ · Γðϒð10750Þ → ϒðnSÞππÞ=
Γtot ðeVÞ.
Channel RPP Our estimate

1S 0.295(175) (0.0003–0.74)
2S 0.875(275) (0.001–2.7)
3S 0.235(25) (0–0.16)
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align very well with those reported in the RPP, which
supports our estimated branching fractions in Table IX.
Alternatively, our ratio for the ϒð3SÞππ decay mode of the
ϒð10750Þ is smaller than that of the RPP over the full
model range. The three-body branching fractions of
Tables VII–IX are all comparable in size, which we find
reasonable.
Finally, we draw attention to the large branching

fractions for closed-bottom three-body channels for the
ϒð5SÞ (Table VIII) and ϒð6SÞ (Table IX), which are 3 or
more orders of magnitude larger than those seen for the
ϒð4SÞ. The formerly perplexing dipion decays of heavy
quarkonia are now widely believed to be understood in
terms of long-lasting open-bottom fluctuations and mixing
with the novel Zb states (see, for example, Ref. [38]). The
challenge here is that the Zb mesons have masses that are
rather far removed from the ϒð5SÞ and ϒð6SÞ masses.
Relevant box diagrams contain B̄ð�ÞBð�Þ mesons and are
therefore also far removed in mass. Of course the pos-
sibility of higher mass resonances in the box diagram is
open, and should be investigated.
We are aware of one computation that uses an effective

field theory approach to estimate dipion transition rates
for ϒð10750Þ and ϒð6SÞ assuming that these states are
hybrids [39]. Predictions are Γðϒð10750Þ → ϒð1SÞππÞ ≈
43.4 keV and Γðϒð6SÞ → ϒð1SÞππÞ ≈ 99.1 keV, with
substantially smaller widths for ϒð2S; 3SÞππ. These results
are consistent with our large range of extracted values.
In summary, it appears that the model predictions for

open-bottom decay widths for ϒð5SÞ and ϒð6SÞ do not
agree well with our extracted residues, although the
uncertainties are large. Both groups (GM [30] and SOEF
[34]) used the well-established “3p0” model for strong
decays to obtain their results. Although the model is very
simple, the ratios of partial widths that are related by spin
symmetry should be robust. The lack of agreement could
then imply that the assumed spin structure of the 3p0 model
is incorrect. An alternative is that these partial widths also
depend on wave function overlaps, and these can be
particularly difficult to model high in the spectrum, where
details such as the location of wave function nodes can
become very important.

VII. CONCLUSIONS

We provide the first comprehensive analysis of vector
bottomonia using data on both the production of various
exclusive open- and hidden-bottom channels and the

inclusive cross section for bottom antibottom-quark pair
production in electron positron annihilation. In a unitary
approach using the K-matrix formalism, we find a total of
four poles, the ϒð4SÞ, ϒð10750Þ, ϒð5SÞ, and ϒð6SÞ in
accordance with the RPP. Allowing for a nonresonant
contribution and a proper treatment of thresholds, we
extract a pole position of the ϒð4SÞ that is about 10–
20 MeV higher than previous values. While we find a
significant contribution of the additional ϒð10750Þ state
previously observed by Belle in eþe− → ϒðnSÞπþπ−, the
paucity of the data in that energy region allows for a broad
range of masses and widths, all describing the data
similarly well. The large number of two-body thresholds
in the ϒð4SÞ and ϒð10750Þ regions further complicate the
situation. The pole positions of the ϒð5SÞ and ϒð6SÞ are
well constrained by the (inclusive) data, with the ϒð5SÞ
position agreeing well with the RPP average and the ϒð6SÞ
being about twice as wide as previous measurements.
The K-matrix description allows us to determine abso-

lute branching ratios of all four states for the first time,
although relatively few data points in the exclusive mea-
surements and (potentially as a consequence) a significant
model dependence lead to large uncertainties. However, our
method of extracting these branching fractions is more
robust than the ratios of cross sections currently being
reported in the RPP, especially given that none of the
exclusive cross sections of open-bottom production exhibit
clean peaks in the ϒð10750Þ, ϒð5SÞ, and ϒð6SÞ regions.
For these three states, we find a large fraction of the
intensity is still missing, with Bð�ÞB̄ð�Þπ channels, poten-

tially populated by Zð0Þ
b contributions, identified as prom-

ising candidates to explain the discrepancy between the
exclusive and the inclusive data. A measurement of
these cross sections using Belle (II) data could resolve
this issue in the future, thereby significantly reducing
model uncertainties.
Additional data in the ϒð10750Þ region from Belle II are

highly anticipated in order to more cleanly study this state,
with a more precise measurement of its branching ratios
aiding in identifying its nature. Similarly, additional exclu-
sive measurements in the ϒð6SÞ region above 11 GeV
would be beneficial to reduce current ambiguities caused
by the total absence of such data. Finally, one might
speculate about the nature of the ϒð5SÞ and ϒð6SÞ states,
given that their decay rate to three-body hidden-bottom
channels is significantly enhanced compared to the conven-
tional ϒð4SÞ state. Whether this can be explained by a

strong coupling to the exotic Zð0Þ
b states or requires an exotic

interpretation of the ϒð5SÞ and ϒð6SÞ states remains to be
answered.
Comparison with quark model calculations reveal that

bottomonium masses are in reasonable agreement with our
pole positions. However, there are indications that partial
widths to open-bottom channels are in disagreement with
experiment, implying that the decay model may need to be

TABLE XI. Γðϒð6SÞ→eþe−Þ·Γðϒð6SÞ→ϒðnSÞππÞ=Γtot ðeVÞ.
Channel RPP Our estimate

1S 0.46(8) (0.19–0.71)
2S 0.65(52) (0.13–2.0)
3S 0.33(16) (0.12–0.69)

N. HÜSKEN, R. E. MITCHELL, and E. S. SWANSON PHYS. REV. D 106, 094013 (2022)

094013-16



revisited or that details in the computation are incorrect.
Similarly, our electronic widths deviate substantially from
RPP values and model predictions, showing a rapid fall
with radial quantum number. This observation is difficult to
explain in simple quark models, and hints at the necessity
of radical modification to models if the results are con-
firmed in the future.
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APPENDIX A: K-MATRIX FORMALISM

A perusal of the literature reveals a plethora of con-
ventions in use for the K-matrix formalism, which can lead
to confusion. For this reason we present a somewhat
pedagogic review of the method with explicit formulas
for a variety of relevant quantities. A critique of some
common model choices (along with a description of our
modeling) is also presented.
We start with the conventional relationship between the

scattering matrix (S) and the transition matrix (T):

S ¼ 1þ iT: ðA1Þ

Conservation of probability is equivalent to unitarity of the
S-matrix (namely SS† ¼ S†S ¼ 1), which implies that

T − T† ¼ iTT† ¼ iT†T: ðA2Þ

To facilitate using the conventional scattering formulas of
quantum field theory (as exemplified, for example in the
RPP), we choose to work with the invariant amplitude (M)
defined by

T ¼ ð2πÞ4δ4ðptot
i − ptot

f Þ
Y
f

1ffiffiffiffiffiffiffiffi
2Ef

p ·M ·
Y
i

1ffiffiffiffiffiffiffi
2Ei

p ; ðA3Þ

where the index fðiÞ refers to the final (initial) particles in
the reaction.

In this case Eq. (A2) becomes

−iðMμν −M�
νμÞ ¼

X
γ

1

Sγ

Z
Mμγðfpμg; fkγgÞ

·M�
νγðfpνg; fkγgÞdΦðfpμg∶fkγgÞ;

ðA4Þ

where we now make the channel indices explicit and
introduce a symmetrization factor, Sγ . The right-hand side
comes from

P
γ TμγT�

νγ where the notation is resolved as a
sum over channels (denoted γ) and an integral over three-
momentum. The result is written in terms of the invariant
phase space dΦ [this is ð2πÞ4 larger than the RPP con-
vention] defined by

dΦðfpig∶fkfgÞ≡ ð2πÞ4δ4ðptot
i − ktotf Þ

Y
f

d3kf
ð2πÞ32Ef

:

ðA5Þ

For two bodies A → CþD in the center-of-mass frame

dΦ ¼ ð2πÞ4δ4ðpC þ pD − pAÞ
d3pC

ð2πÞ32EC

d3pD

ð2πÞ32ED

¼ 1

4π2
k�

4MA
dΩ: ðA6Þ

We have introduced the center-of-mass momentum k�ðM2
AÞ

which we generalize to

k�ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðm1 þm2Þ2Þðs − ðm1 −m2Þ2Þ

p
2

ffiffiffi
s

p : ðA7Þ

We stress that this quantity will not be considered below
threshold in the following (except when exploring the
T-matrix in the complex plane) for reasons to be discussed
shortly. Thus it is implemented with a theta function forcing
it to zero below threshold.
In keeping with particle physics convention, the branch

cut in the square root will be taken along the positive real
axis (however, the usual branch cut along the negative real
axis will be used for the square root in the denominator,
which exhibits a nonphysical singularity at s ¼ 0).
Now restrict attention to two-body scattering in

the center-of-mass frame with two-body intermediate
states γ. We get

Mμν −M�
νμ ¼ i

X
γ

1

Sγ

Z
Mμγðfpμg; fkγgÞ

·M�
νγðfpνg; fkγgÞ

kγ�
16π2

ffiffiffi
s

p dΩðk1Þ: ðA8Þ
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Finally, assume that the amplitudes are not functions of the
angle so that this equation reduces to an algebraic equation.
Going to matrix form then gives

M −M† ¼ 2iMρM† ðA9Þ

where

ðρÞμγ ≡ δμγ
kγ�

Sγ8π
ffiffiffi
s

p ðA10Þ

is the phase space matrix. Different conventions for the
phase space exist—these can be absorbed into the defi-
nition of K and will not affect pole positions but will yield
unconventional expressions for cross sections and other
physical quantities.
Equation (A9) is equivalent to

ðM−1 þ iρÞ† ¼ M−1 þ iρ; ðA11Þ

which implies that the quantity in brackets is real and
symmetric. It is therefore useful to identify a matrix with
the same properties:

K−1 ≡M−1 þ iρ − R; ðA12Þ

where R is a real function along the diagonal of K. The
function R can in turn be incorporated into the phase space
by defining a new quantity C as

C≡ R − iρ: ðA13Þ

Thus we have

M−1 ¼ K−1 þ C ðA14Þ

or

M ¼ ð1þ KCÞ−1K ¼ Kð1þ CKÞ−1
¼ KðK þ KCKÞ−1K: ðA15Þ

Many choices for the function C are possible (and many
are made in the literature). However it is preferable to use
one that maintains analyticity across thresholds (hence
R ≠ 0) since this smooths discontinuities that fitting routines
find difficult to handle. In this paper we will therefore set C
equal to the Chew-Mandelstam function [18,41]. The real
part of the Chew-Mandelstam function is related to its
imaginary part by a once-subtracted dispersion integral,

CγðsÞ ¼ CðsγÞ −
s − sγ
π

Z
∞

sγ

ds0
rðs0Þ

ðs0 − sÞðs0 − sγÞ
; ðA16Þ

that ensures a smooth transition across threshold. Here sγ ¼
ðm1 þm2Þ2 is the threshold for channel γ. The auxiliary

function is chosen to guarantee that the imaginary part ofCγ

is ργ . Thus r is the continuation of ρ to the complex plane:

rγðsÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ðm1þm2Þ2

sþiϵ Þ · ð1 − ðm1−m2Þ2
sþiϵ Þ

q
16πSγ

: ðA17Þ

The integral can be done yielding [we set CðsγÞ ¼ 0]
[41]

CγðsÞ ¼
rγðsÞ
π

log

�
ξγðsÞ þ rγðsÞ
ξγðsÞ − rγðsÞ

�
−
ξγðsÞ
π

m2 −m1

m2 þm1

log
m2

m1

;

ðA18Þ

where the additional function is defined by

ξγðsÞ ¼
1

16πSγ
·

�
1 −

ðm1 þm2Þ2
sþ iϵ

�
: ðA19Þ

Figure 10 displays the real and imaginary parts of the
Chew-Mandelstam function. We remark that many authors
choose to continue k� [and thus ρðsÞ] below threshold in the
name of “analyticity.” This amounts to making a model
choice of the real part of C that is particularly poor, as
illustrated in the figure, and we recommend against this
practice.
Some authors choose to include angular momentum

factors in the Chew-Mandelstam function [42]. The deri-
vation we have presented leaves no room for modifications
of this sort. And in fact, it is clear that these factors are
associated with the scattering amplitude rather than the
phase space, and are better modeled in the couplings, as
described below.
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FIG. 10. The Chew-Mandelstam function for (m1 ¼ m2 ¼ 1).
Red solid line: real part of the Chew-Mandelstam function. Blue
dashed line: imaginary part of the Chew-Mandelstam function.
Green dotted line: imaginary part of ρðsÞ continued below
threshold.
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The remaining task is to specify the elements of K.
Gribov et al. have argued that scattering amplitudes
factorize near poles [43]; hence it is sensible to write the
elements of K in terms of the product of channel couplings
and a “bare” pole. This is common practice in the field,
which we follow here. Thus we parametrize K with
resonant and nonresonant (“background”) terms:

Kμ;ν ¼
X
R

gR∶μgR∶ν
m2

R − s
þ fμ;ν: ðA20Þ

The index R refers to a resonance and greek indices refer to
continuum channels. The couplings must be real but can be
s dependent [angular dependence is excluded by the
assumptions leading to Eq. (A15)]. Extracted couplings
are spin averaged for gR∶ee and are spin summed in
other cases.
Many choices for the s dependence of the couplings

exist. To facilitate the discussion and to gain insight into
these choices it is helpful to compare to the propagator for a
scalar field. To this effect we consider a heavy field ϕ with
mass M coupled to a light scalar with mass m. The
interaction Lagrangian is taken to be 1

2
g
R
d4xϕφ2.

Performing the standard Dyson sum yields a scattering
amplitude of

M ¼ −g2

s −M2 − ΠðsÞ ; ðA21Þ

where −iΠ is the ϕ self-energy given by (we use the MS
scheme to renormalize)

ΠðsÞ¼ g2

16π2S

Z
1

0

dx log½xm2þð1−xÞm2−xð1−xÞs− iϵ�:

ðA22Þ

The imaginary part of the self-energy is given by

ℑðΠÞ ¼ −
1

16πS
g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sγ=s

q
· θðs − sthr;γÞ ¼ −g2ργðsÞ:

ðA23Þ

At lowest order, the ϕ particle width is given by

Γ ¼ g2

8π

k�ðMÞ
SM2

; ðA24Þ

which can be immediately generalized to the case of two-
to-two scattering in the center-of-mass frame as

ΓðsÞ ¼ g2k�ðsÞ
8πSs

; ðA25Þ

from which we conclude

ℑðΠÞ ¼ −
ffiffiffi
s

p
ΓðsÞ: ðA26Þ

Notice that, because the imaginary part of the self-energy
is (up to −g2) the phase space ρ, and because the loop
integral is analytic, the Chew-Mandelstam function is
related to the self-energy by CðsÞ ¼ g2ΠðsÞ (up to a
constant). One can therefore think of employing the
Chew-Mandelstam function as a prescription for bringing
the K-matrix scattering amplitude into agreement with the
Dyson form of the full scalar propagator.
Equation (A26) shows the relationship between the s-

dependent resonance width and phase space. In general this
relationship can be more complicated due to vertex
corrections, or, less formally, due to the finite size of the
hadrons involved [44]. At minimum it is known that
ΓðMÞ ∼ k�ðMÞ2lþ1 where l is the angular momentum in
the final state. This can be incorporated into the formalism
by setting gðsÞ ¼ g0k�ðsÞl. It is of course possible to go
further by specifying additional s dependence that is meant
to mimic hadronic interactions at the vertex. Well-known
examples are the Walker model [45]

ΓWðsÞ ¼ ΓR

�
k�
kR

�
2lþ1 Mffiffiffi

s
p

�
k2R þ β2

k2� þ β2

�
l

ðA27Þ

and the similar MAID model [46]

ΓMðsÞ ¼ ΓR

�
k�
kR

�
2lþ1M2

s

�
k2R þ β2

k2� þ β2

�
l

: ðA28Þ

The model of von Hippel and Quigg [47] incorporates an
estimate of centrifugal barrier penetration and reads

ΓvHQðsÞ ¼ ΓR
kR
k�

Mffiffiffi
s

p jhlðkR=βÞj2
jhlðk�=βÞj2

; ðA29Þ

where hl is a spherical Hankel function. This is closely
related to the commonly employed Blatt-Weisskopf cen-
trifugal barrier penetration factor, which is derived under
the assumption that the semiclassical impact parameterffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

=k is much larger than the range of the final-
state interaction potential, 1=β. The effects of barrier
penetration may then be computed in nonrelativistic quan-
tum mechanics by matching the outgoing wave function in
the lth wave to an assumed inner wave function at the
distance 1=β. The resulting transmission coefficients are
called Blatt-Weisskopf factors [48] and are denoted
vlðk=βÞ. We note that, as required, vl ∼ k2l for small
momentum and vl → 1 for large momentum [we take
v0ðxÞ¼1, v1ðxÞ¼x2=ð1þx2Þ, v2ðxÞ¼x4=ð9þ3x2þx4Þ,
etc.]. The resulting width model can be written as
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ΓBlWðsÞ ¼ ΓR
k�
kR

M2

s
vlðk�=βÞ
vlðkR=βÞ

: ðA30Þ

The general utility of the Blatt-Weisskopf factors may be
questioned. For example, the factorization k� ≪ β required
to enable wave function matching is only true very near
threshold and does not hold over typical energy ranges
involved in data analysis. Indeed the assumption that the
strong force is weak beyond 1 fm is often vitiated by one-
pion-exchange forces. Furthermore, the Blatt-Weisskopf
and von Hippel–Quigg factors do not impose any damping
on the form factor for k� ≫ ΛQCD, which is not consistent
with expectations for hadronic interactions. Finally, all the
models incorporate normalization on resonance. This is
convenient for interpreting multiplicative factors (in this
case, ΓR); however, it is problematic below threshold where
kR does not exist. We will therefore not use this form of
normalization in our model.
An alternative way to obtain width form factors is to

employ a microscopic model of hadronic decays. For
example the 3p0 strong decay model has been used to
obtain a form factor describing ϒð4SÞ → BB̄ decay by the
BABAR Collaboration [49]. This form factor plays an
important role in the analysis as it has a node just beyond
the ϒð4SÞ peak.
Motivated by the same decay model, we choose to

parametrize the coupling constants for resonance R and
channel α as

gR∶μðsÞ ¼ ĝR∶μ

�
kμðsÞ
β

�
lμ
· exp½−k2μðsÞ=β2�: ðA31Þ

Recall that kμ is zero below threshold. We choose not to
normalize at the point s ¼ M2

R because the relevant
momentum does not exist when the bare resonance is
below threshold.
In principle models can inform s dependence in back-

ground scattering (see, for example Ref. [29]); however,
we choose to implement the simplest and most agnostic
model as

fμ;ν ¼ f̂μ;ν ·

�
kμðsÞ
β

�
lμ

·

�
kνðsÞ
β

�
lν

· exp
�
−
�
k2νðsÞ þ k2μðsÞ

β2

��
: ðA32Þ

This form was chosen for simplicity, consistency with the
coupling model, and because we found that some sort of
high energy damping was beneficial to fit robustness. The
model was used for all two-body background channels
except eþe−, where a form factor is inappropriate.
Finally, we report useful formulas for extracting physical

quantities. All of these results follow the conventions of the
RPP with the sole exception of the factor of ð2πÞ4 in the

invariant phase space. Thus the differential cross section
and decay width are given by

dσ ¼ jMj2
4pi

ffiffiffi
s

p dΦn ðA33Þ

and

dΓ ¼ jMj2
2M

dΦn: ðA34Þ

The cross section for exclusive two-body eþe− annihilation
to channel μ is given by

σðeþe− → μÞ ¼ 1

16πs

kμ
kee

jMμ;eej2: ðA35Þ

For two-to-three scattering 12 → 345, the differential cross
section is given by

dσ ¼ 1

ð2πÞ3
1

64s
ffiffiffi
s

p
ki
jM345∶12j2dm2

12dm
2
23: ðA36Þ

Finally, if the vector decay constant is defined by

h0jψ̄γμψ jVi ¼ mVfVϵμ ðA37Þ

then the perturbative relationship to the coupling is given
by

fV ¼
ffiffiffi
3

p ���� gV∶eeðm
2
VÞ

8παQ

����: ðA38Þ

Similarly, the perturbative three-body partial width is
given by

ΓR∶Δ ¼ g2R∶ΔAR∶Δðm2
RÞ

32ð2πÞ3m3
R

ðA39Þ

where A is the area of the Dalitz plot for this decay.
In this work we do not rely on perturbative expressions,

rather partial widths are extracted from residues, as we have
described in Sec. IV. In this regard, two useful relationships
are

ΓR∶Δ ¼ jResðMμ;ΔÞj2
jResðMμ;μÞj

·
AR∶Δ

32ð2πÞ3m3
R

ðA40Þ

and, for the two-body case,

ΓR∶ν ¼
jResðMμ;νÞj2
jResðMμ;μÞj

·
ρν
mR

: ðA41Þ

N. HÜSKEN, R. E. MITCHELL, and E. S. SWANSON PHYS. REV. D 106, 094013 (2022)

094013-20



APPENDIX B: OPEN-BOTTOM CHANNELS

We present fit results for the case in which only two-
body channels are considered. This is of interest because
the evidence for the ϒð10750Þ was in three-body decay
modes [15] and we wish to examine the possibility that this
state can be discerned in the two-body data. We have
therefore examined the two-body system with three models
defined by β ¼ 0.8, 1.0, and 1.2 GeV. Fit results are shown

in Fig. 11. We note that the general features of the fits are
similar to those of the full model. Paucity of data, however,
is evidenced by nearly degenerate minima that are found for
the β ¼ 0.8 and 1.0 GeV cases. Global χ2 values are given
in Table XII, where we see very similar results (if slightly
worse) to the full case.
Pole positions for the restricted model are given in

Fig. 12. Once again, results are very close to those of
the full model.
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FIG. 11. Fit results using only the two-body data for three different values of β. Ambiguous solutions for two of the three models are
also shown.
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These results yield strong evidence for the ϒð10750Þ,
with a similar range of resonance parameters as when three-
body channels are included in the dataset. The minimum χ2

in fits with three poles is at least 150 units worse with six
fewer parameters than in fits with four poles, again leading
to a statistical significance of larger than 10σ. We conclude
that the evidence for the ϒð10750Þ is robust and
convincing.
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