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Analysis based on the energy spectrum of noninteracting bosons shows that, under the circumstance of
parallel rotation and magnetic field, charged bosons form a Bose-Einstein condensate because of the lift of
the Landau level degeneracy by rotation [Y. Liu and I. Zahed, Phys. Rev. Lett. 120, 032001 (2018)]. In this
work, we study the interaction effect on the ground state of this Bose-Einstein condensate of charged
bosons from the viewpoint of spontaneous symmetry breaking. We employ a minimal model for charged
bosons with repulsive self-interaction. We find that the ground state of such a Bose-Einstein condensate is a
supergiant quantum vortex, i.e., a quantized vortex with a large circulation. The size of the vortex is as large
as the system size. The low-energy dispersion of the excitation spectra exhibits quadratic behavior, which is
an anisotropic realization of the type-II Goldstone boson. Our study may give some implications to off-
central relativistic heavy ion collisions, where large vorticity and magnetic fields can be generated.
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I. INTRODUCTION

Pions are the lightest hadrons of the strong interaction
and are regarded as the pseudo-Goldstone bosons associ-
ated with the dynamical chiral symmetry breaking. As
bosons, they may undergo Bose-Einstein condensation
(BEC) in certain circumstances. The studies of quantum
chromodynamics (QCD) at finite isospin chemical poten-
tial indicate that BEC of charged pions takes place when the
isospin chemical potential exceeds the mass of charged
pions [1–3]. It was proposed that BEC of pions may be
formed in compact stars [4–8], in heavy ion collisions
[9–11], and in the early Universe [12–14].
In relativistic heavy ion collisions, large vorticity and

magnetic fields can be generated. Theoretical studies
predicted that noncentral collisions involve large angular
momenta in the range 103–105ℏ [15–18]. The global
polarization of Λ hyperon observed in off-central Au-Au
collisions reported by the STAR Collaboration indicates a
large vorticity with an angular velocity Ω ≈ ð9� 1Þ ×
1021 Hz ∼ 0.05mπ [19]. Meanwhile, we expect that a large
magnetic field B, parallel to the vorticity, is formed at
the early stage of the collision. Numerical simulations
indicated that the strength of the magnetic field reaches
eB ∼m2

π [20–22]. The state of QCD matter under the
circumstance of parallel rotation and magnetic field (PRM)
arises as an interesting theoretical issue.
It was argued that PRM can induce BEC of charged

pions or a pion superfluid phase based on the solution of the
Klein-Gordon equation for noninteracting pions in PRM
[23]. The mechanism is simple but robust. The Landau

level degeneracy of charged pions in a constant magnetic
field is lifted by rotation, and the rotation then plays the role
of a chemical potential. However, the true ground state of
the pion superfluid with realistic pion-pion interaction is
yet unknown. Under the circumstance of PRM, the ground
state would be inhomogeneous, such as a quantized vortex
or a vortex lattice.
In this work, we study the interaction effect on the

ground state of such a pion superfluid. However, the
realistic pion-pion interaction dictated by the chiral sym-
metry of QCD is rather complicated. As a first step, we
consider in the work a simple model of charged bosons, a
complex scalar field with repulsive self-interaction. We
show that with repulsive self-interaction, the ground state of
the BEC of charged bosons in PRM is a supergiant
quantum vortex. Quantum vortices are a type of topological
defect exhibited in superfluids and superconductors. In a
cylindrical vortex state, the macroscopic wave function of
the condensate can be written as

ψðrÞ ¼ fðρÞeiwθ; w ∈ Z; ð1Þ

with the cylindrical coordinates r ¼ ðρ; θ; zÞ. A stable
vortex state in a quantum fluid is usually the singly
quantized with winding number w ¼ 1 (e.g., superfluid
at a given rotation rate). A vortex state with winding
number w ≥ 2 is called a giant vortex since the radial
profile behaves as fðρÞ ∼ ρjwj near the core. The giant
vortex is usually unstable owing to its large energy cost
(∼w2). Instead, a lattice of singly quantized vortices will
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form. Searching for giant vortices is a longstanding topic in
the research of quantum fluids [24–32]. The BEC of
charged bosons studied in this work provides an extreme
example; the ground state is a supergiant quantum vortex
with an extremely large winding number w ≫ 1.
This paper is organized as follows. In Sec. II we set up a

minimal model for interacting charged bosons in PRM. In
Sec. III we review the energy spectrum of noninteracting
charged bosons in PRM, which shows that BEC of charged
bosons can occur. In Sec. IV we study the BEC of
interacting bosons in PRM from the viewpoint of sponta-
neous symmetry breaking and show that the ground state of
such a BEC is a supergiant quantum vortex. The excitation
spectra of the vortex state are studied in Sec. V. We
summarize in Sec. VI.

II. MINIMAL MODEL

Recent lattice QCD calculations indicate that pions can
still be treated as point particles for magnetic field strength
eB ∼m2

π [33]. The realistic interaction between pions dic-
tated by the chiral symmetry of QCD is rather complicated.
As a first step,we consider a simplemodel of charged bosons,
a relativistic complex scalar field with a repulsive self-
interaction. The Lagrangian density is given by

L ¼ ð∂μΦ�Þð∂μΦÞ −m2
πjΦj2 − λjΦj4: ð2Þ

For charged pions, the coupling constant may be set to be
λ ¼ m2

π=ð2f2πÞ so that the s-wave pion-pion scattering length
in the I ¼ 2 channel at the tree level, aππ ¼ mπ=ð16πf2πÞ
[34], is recovered. However, this is inadequate since the
realistic interaction dictated by the chiral symmetry of QCD
is complicated and the neutral pion should be taken into
account. In addition, in the presence of a magnetic field, new
interaction will be induced. Our theoretical results in this
work can only be applied to a simple system of charged
bosons.
We replace the system in a constant magnetic field along

the z direction, B ¼ Bẑ. Furthermore, a global rigid
rotation along the magnetic field is applied, with angular
velocity Ω ¼ Ωẑ. We consider the case eB > 0 and Ω > 0
without loss of generality. It is convenient to study the
system in a rotating frame. The spacetime metric gμν of the
rotating frame is given by

ds2 ¼ ð1 − Ω2ρ2Þdt2 þ 2Ωydxdt − 2Ωxdydt − dr2; ð3Þ

where r ¼ ðx; y; zÞ and ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The cylindrical

coordinates r ¼ ðρ; θ; zÞ will also be used in the following.
The action of the system is given by

S¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
−jgj

p
½gμνðDμΦÞ�ðDνΦÞ−m2

πjΦj2−λjΦj4�; ð4Þ

where jgj ¼ detðgμνÞ. The constant magnetic field enters
the Lagrangian density through the covariant derivative

Dμ ¼ ∂μ þ ieAμ, where Aμ is the vector potential in the

rotating frame. Since
ffiffiffiffiffiffiffiffiffi
−jgjp ¼ 1, it is convenient to rewrite

the action as S ¼ R
d4xL, with the Lagrangian density

L¼ jðDtþΩyDx−ΩxDyÞΦj2− jDiΦj2−m2
πjΦj2−λjΦj4:

ð5Þ

In the rest frame, it is convenient to use the symmetric
gauge AR

μ ¼ ð0; ByR=2;−BxR=2; 0Þ so that the rotational
symmetry along the z-axis is manifested. The vector
potential in the rotating frame is then given by Aμ ¼
ð−BΩρ2=2; By=2;−Bx=2; 0Þ according to the coordinate
transformation to the rotating frame tR ¼ t, ρR ¼ ρ,
θR ¼ θ þ Ωt. Note that an additional electric field E ¼
BΩρ is induced in the rotating frame. However, according
to the identity Dt þΩyDx −ΩxDy ¼ ∂t þΩy∂x − Ωx∂y,
the induced electric field E cancels out automatically,
indicating that the rotating frame corresponds only to a
frame change with no new force [23]. Therefore, the
Lagrangian density (5) reduces to

L ¼ jð∂t − iΩLzÞΦj2 − jDiΦj2 −m2
πjΦj2 − λjΦj4; ð6Þ

where Lz ≡ −iðx∂y − y∂xÞ ¼ −i∂θ is the angular momen-
tum along the z direction.

III. FREE-PARTICLE PICTURE

In the absence of interaction (λ ¼ 0), the Klein-Gordon
equation in PRM is given by

½−ð∂t − iΩLzÞ2 þ K2D þ ∂
2
z −m2

π�Φðt; rÞ ¼ 0; ð7Þ

where the operator K2D is defined as

K2D ¼ ∂
2

∂ρ2
þ 1

ρ

∂

∂ρ
−
L2
z

ρ2
−
1

4
e2B2ρ2 þ eBLz: ð8Þ

Consider a cylindrical system with radius R. The solution
can be written as

Φðt; rÞ ¼ e−iEtþipzzþilθφnlðρÞ; ð9Þ

where pz is the momentum along the z-direction and l is the
angular momentum quantum number. The solution of the
radial part can be given by [23]

φnlðρÞ ¼ N nlρ
jlje−1

4
eBρ2

1F1

�
−anl; jlj þ 1;

eBρ2

2

�
; ð10Þ

where N nl is a normalization factor and 1F1 is a confluent
hypergeometrical function with the parameter

−anl ¼
1

2
ðjlj − lþ 1Þ − 1

2eB
½ðEþ ΩlÞ2 − p2

z −m2
π�: ð11Þ
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The energy levels E ¼ Enl can be obtained by imposing a
zero boundary condition at ρ ¼ R, i.e.,

1F1

�
−anl; jlj þ 1;

eBR2

2

�
¼ 0; ð12Þ

where anl is defined as the ðnþ 1Þth zero of left-hand side
for a given l.
For a large system with radius R → ∞, anl → n, and the

function 1F1 reduces to an associated Laguerre polynomial.
At Ω ¼ 0, the energy spectrum recovers the Landau levels

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

π þ eBð2nþ 1Þ
q

; ð13Þ

with −n < l < N − n. Here N ≡ eBR2=2 is the degeneracy
of the Landau levels. When a rotation is turned on, the
degeneracy is lifted and the spectrum becomes Enl ¼
En � Ωl. The termΩl plays the role of a chemical potential.
BEC takes place if the largest chemical potential ΩN
exceeds the effective mass

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
p

in the lowest
Landau level [23].
In the following, we will study the BEC of interacting

bosons from the viewpoint of spontaneous breaking of the
U(1) symmetry.

IV. GROUND STATE WITH INTERACTION

Now we turn on the interaction. It is useful to work in the
imaginary-time formalism. The partition function of the
system is given by

Z ¼
Z

½dΦ��½dΦ� expð−SEÞ; ð14Þ

where the action reads

SE ¼
Z
X
fΦ�GΦþ λjΦj4g; ð15Þ

with

G ¼ m2
π − ð∂τ −ΩLzÞ2 − K2D − ∂

2
z : ð16Þ

Here
R
X ≡

R β
0 dτ

R
d3r, with τ being the imaginary time andβ

being the inverse of the temperature. We focus on the zero
temperature limit (β → ∞) in the following. If the ground
state is a Bose-Einstein condensate, the complex scalar field
Φðτ; rÞ acquires a nonzero expectation value. Therefore, we
decompose the quantum field Φðτ; rÞ into its classical part
ψðrÞ and its quantum fluctuation ϕðτ; rÞ, i.e.,

Φðτ; rÞ ¼ ψðrÞ þ ϕðτ; rÞ: ð17Þ

While the condensate ψðrÞ is static, it can be inhomo-
geneous. The profile of the condensate is determined by

minimizing the effective potential, which is rather hard to
evaluate beyond the tree level. At the tree level, the treatment
is in analogy to the Gross-Pitaevskii (GP) theory of non-
relativistic Bose-Einstein condensates [35,36]. The GP
potential of the present system is given by

U½ψðrÞ� ¼
Z

d3r½ψ�ðrÞðm2
π −Ω2L2

z − K2D − ∂
2
zÞψðrÞ

þ λjψðrÞj4�: ð18Þ

Furthermore,we assume that the condensate is homogeneous
along the z direction, ψðrÞ ¼ ψðρ; θÞ. The GP potential per
length along the z-direction reads

U½ψðρ; θÞ� ¼ U½ψðrÞ�R
dz

¼
Z
2D
½ψ�ðρ; θÞðm2

π −Ω2L2
z

− K2DÞψðρ; θÞ þ λjψðρ; θÞj4�; ð19Þ

where
R
2D ≡ R

2π
0 dθ

R
R
0 ρdρ. The minimization of U leads to

a relativistic GP equation in PRM,

½m2
π −Ω2L2

z − K2D þ 2λjψðρ; θÞj2�ψðρ; θÞ ¼ 0: ð20Þ

The next task is to solve the 2D problem defined by
U½ψðρ; θÞ�. To perform a variational calculation, it is useful
to expand ψðρ; θÞ in terms of a complete set of basis
functions. To this end, we note that the eigenfunction of
the operator in the quadratic term, m2

π −Ω2L2
z − K2D, is

given by

Fnlðρ; θÞ ¼ φnlðρÞΘlðθÞ; ð21Þ

with eigenvalues

Knl ¼ m2
π −Ω2l2 þ eBð2anl þ jlj − lþ 1Þ: ð22Þ

Here, ΘlðθÞ ¼ eilθ=
ffiffiffiffiffiffi
2π

p
and φnlðρÞ is the solution (10) of

the Klein-Gordon equation. Therefore, it is natural to
expand ψðρ; θÞ in terms of Fnlðρ; θÞ, i.e.,

ψðρ; θÞ ¼
X∞
n¼0

X∞
l¼−∞

cnlFnlðρ; θÞ: ð23Þ

The GP potential can be expressed in terms of the
variational parameters cnl as

U ¼
X
nl

Knljcnlj2 þ λ

Z
2D

����
X
nl

cnlFnlðρ; θÞ
����
4

: ð24Þ

The expression (24) has a transparent quadratic plus
quartic structure. Nonzero value of ψ develops when at
least one of the eigenvalues Knl becomes negative.
Therefore, the critical condition for BEC is given by
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min
nl

Knl ¼ 0: ð25Þ

Noting that anl is always positive, we see clearly that the
BEC is driven by the rotation: The quantity Ωl plays the
role of an l-dependent chemical potential. Because anl is an
increasing function of n, the critical condition for BEC will
be first fulfilled for n ¼ 0. For negative l, Knl is an
increasing function of jlj and is hence always positive.
Therefore, BEC occurs only for positive l. For positive l,
we have Knl ¼ m2

π þ eBð2anl þ 1Þ −Ω2l2. In Fig. 1, we
demonstrate the l-dependence of Knl at l > 0. At large l,
anl goes faster than l2. The competition between the
decreasing term −Ω2l2 and the increasing term 2eBanl
results in a unique global minimum at a certain quantum
number l. For sufficiently large Ω, this minimum for n ¼ 0
becomes negative and the BEC is induced. The critical
angular velocity is given by

Ωc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eBð2a0l� þ 1Þ
q

l�
: ð26Þ

Here, l� is the location of the minimum that is exactly zero.
Taking eB ¼ m2

π , for N ¼ 25 and N ¼ 100, we have l� ¼
20 and l� ¼ 84, respectively. As N goes to infinity
(R → ∞), l� → N. The critical angular velocity approaches
ΩcR ≃ 2=

ffiffiffiffi
N

p
, which is vanishingly small. Thus the

mechanism of rotation induced BEC in a magnetic field

is quite robust. Note that the critical condition (25) is
consistent with the analysis in the free-particle picture [23].
We then perform full variational calculations to deter-

mine the ground state in the BEC phase Ω > Ωc. A typical
numerical calculation has been performed for eB ¼ m2

π and
N ¼ 25, corresponding to a system size R ≃ 10 fm. In this
case, ΩcR ≃ 0.59. The two-dimensional profile of the
condensate is shown in Fig. 2. We find that it is always
isotropic, indicating that the condensate wave function
ψðρ; θÞ is actually composed of a single l-component. This
is supported by the results for the variational parameters;
cnl is finite only for a certain quantum number l ¼ w, while
it is vanishingly small for all other values of l. Therefore,
the condensate wave function can actually be expressed as

ψðρ; θÞ ¼ fðρÞeiwθ; ð27Þ

with fðρÞ ¼ P
n cnwφnwðρÞ, corresponding to a vortex

state. This can be understood from the l-dependence of
the quantity K0l. For Ω > Ωc, the location of the unique
minimum, l ¼ l0, moves to larger values (l0 > l�) and the
minimum becomes negative. As a result, if the interaction is
sufficiently weak, the superposition (23) favors a single

(a) n = 0

(b) n = 1

l

R = 0
R = 0.5
R = 0.6
R = 0.7
R = 0.8

K n
lR
2

FIG. 1. l-dependence of the quantity Knl for different values of
Ω. Here we show the result for n ¼ 0 and n ¼ 1. The behavior for
higher levels is similar. In this plot we take eB ¼ m2

π and N ¼ 25.

FIG. 2. Profile of the condensate jψðρ; θÞj in the x-y plane for
various values of the interaction strength: (a)–(b) λ ¼ 0.1,
(c)–(d) λ ¼ 0.5, (e)–(f) λ ¼ 1. In this calculation we take
eB ¼ m2

π and N ¼ 25. The color bars are in units of mπ .
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l-component with w ≃ l0. Numerical results confirm this
understanding. For example, the locations of the minima are
l0 ¼ 24, 30, 42 for ΩR ¼ 0.6, 0.7, 0.8, respectively. For
λ ¼ 1, thewinding numbers are respectivelyw ¼ 23, 29, 39.
The small discrepancy comes from the combined effects of
the interaction and the higher energy levels (n ≥ 1).

Therefore, in the presence of interaction, the ground state
of the BEC is a supergiant vortex with winding number
w ≫ 1. The condensate wave function takes the form (1).
The radial profile fðρÞ is shown in Fig. 3. Because of the
large winding number, the size of the vortex is always as
large as the system size.
We have also performed calculations for N ¼ 100 with

the same magnetic field eB ¼ m2
π , indicating a larger

system size, R ≃ 20 fm. We find the above conclusion
remains. In this case, ΩcR ≃ 0.25. In Fig. 4, we show the l
dependence of the quantity Knl for different values of Ω.
The qualitative behavior for the lowest level n ¼ 0 is the
same as the case N ¼ 25, leading to similar results for
the condensate profile (Fig. 5). The radial profile of the
condensate is shown in Fig. 6. We see that the size of the
vortex is still as large as the system size. The locations of
the minima of K0l are l0 ¼ 84, 88, 98 for ΩR ¼ 0.26, 0.3,
0.4, respectively. For λ ¼ 1, the winding numbers are,
respectively, w ¼ 84, 86, 93, which as close to the values
of l0, as we expect.

ΩR = 0.6
ΩR = 0.7
ΩR = 0.8

f(
)
m

= 0.10 = 0.25

= 1.00= 0.50

(a) (b)

(c) (d)

FIG. 3. Radial profile fðρÞ of the condensate wave function for
various values of interaction strength and rotation rate. In this
calculation we take eB ¼ m2

π and N ¼ 25.

l

K n
lR
2

(b) n = 1

(a) n = 0

R = 0
R = 0.20
R = 0.26
R = 0.30
R = 0.40

FIG. 4. l-dependence of the quantity Knl for different values of
Ω. Here we show the result for n ¼ 0 and n ¼ 1. In this plot we
take eB ¼ m2

π and N ¼ 100.

FIG. 5. Profile of the condensate jψðρ; θÞj in the x-y plane for
various values of the interaction strength: (a)–(b) λ ¼ 0.1,
(c)–(d) λ ¼ 0.5, (e)–(f) λ ¼ 1. In this calculation we take
eB ¼ m2

π and N ¼ 100. The color bars are in units of mπ .
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V. EXCITATION SPECTRA

The elementary excitations in the BEC can also be
calculated. They are quanta of the quantum fluctuation
ϕðτ; rÞ. Taking the quantum fluctuation into account, the
action becomes SE ¼ βU½ψðrÞ� þ Sflðϕ�;ϕÞ, where the
fluctuation contribution Sfl can be obtained by substituting
)17 ) into (15). To calculate the excitation spectra, only the

quadratic terms are relevant, which can be evaluated to be

S2ðϕ�;ϕÞ ¼
Z
X
½ϕ�ðGþ 4λjψ j2Þϕþ λðψ�2ϕ2 þ ψ2ϕ�2Þ�:

ð28Þ

Considering the fact that the condensate takes the form
ψðrÞ ¼ fðρÞeiwθ, we expand the fluctuation as

ϕðτ; rÞ ¼
X
n;Q

ϕ̃nðQÞe−iωντþipzzFn;lþwðρ; θÞ; ð29Þ

where Q ¼ ðiων; pz; lÞ and ων ¼ 2πν=βðν ∈ ZÞ is the
boson Matsubara frequency. Then we can write

S2 ¼
1

2

X
Q

X
nn0

Λ†
nðQÞMnn0 ðQÞΛn0 ðQÞ; ð30Þ

where ΛnðQÞ ¼ ðϕ̃nðQÞ; ϕ̃�
nð−QÞÞT. The matrixMðQÞ can

be expressed as

Mnn0 ðQÞ ¼
�
KnðQÞδnn0 þAnn0 ðlÞ Bnn0 ðlÞ

Bnn0 ð−lÞ Knð−QÞδnn0 þAnn0 ð−lÞ

�
; ð31Þ

where Q ¼ ðiων; pz; lÞ. The elements are given by

KnðQÞ ¼ −½iων þ ðlþ wÞΩ�2 þ p2
z þm2

π þ eB½2an;lþw þ jlþ wj − ðlþ wÞ þ 1�;

Ann0 ðlÞ ¼
2λ

π

Z
R

0

ρdρf2ðρÞφn;lþwðρÞφn0;lþwðρÞ;

Bnn0 ðlÞ ¼
λ

π

Z
R

0

ρdρf2ðρÞφn;lþwðρÞφn0;w−lðρÞ: ð32Þ

The excitation spectra can be determined by detM ¼ 0
with the analytical continuation iων → Eþ iϵ.
Typical behavior of the excitation spectra is shown in

Fig. 7 for ΩR ¼ 0.6 and λ ¼ 1 with system size N ¼ 25.
The lowest level of the spectra fulfills the Goldstone’s

theorem. Interestingly, the Goldstone mode in this system
is an anisotropic generalization of the type-II Goldstone
boson [37–42]; In the low-energy limit, the excitation
energy E shows a quadratic rather than linear dispersion.
Especially, for l ¼ 0, the dispersion relation of the lowest

R = 0.26
R = 0.30
R = 0.40

f(
)/
m
π

(a) (b)

(c) (d)

FIG. 6. Radial profile fðρÞ of the condensate wave function for
various values of interaction strength and rotation rate. In this plot
we take eB ¼ m2

π and N ¼ 100.

E/
m

E/
m

l

(a) pz = 0 (b) l = 0

pz/m

FIG. 7. Energy of the elementary excitations as a function of l
for pz ¼ 0 (a) and as a function of pz for l ¼ 0 (b) at ΩR ¼ 0.6
for λ ¼ 1. The lowest three levels are shown in this plot. In this
calculation we take eB ¼ m2

π and N ¼ 25.
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excitation can be well approximated as EðpzÞ≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ðwΩÞ2

p
− wΩ, where wΩ plays the role of a

chemical potential. Thus the excitation energy exhibits a
quadratic dispersion EðpzÞ ∼ p2

z for pz → 0. This quadratic
behavior is similar to the previously discussed type-II
Goldstone boson at finite density [39]. On the other hand,
if the dynamical electromagnetic field is taken into account,
the system becomes a superconductor and it is interesting to
study how this gapless mode will be modified.

VI. SUMMARY

In summary, we have shown that under the circumstance
of parallel magnetic field and rotation, the charged bosons
get Bose condensed and the ground state is a supergiant
quantum vortex with a winding number w ≫ 1. The
condensate is almost located at the edge of the system,
indicating that the size of the vortex is as large as the system
size. The formation of supergiant vortex may give some
implications to off-central heavy ion collisions. However,
the realistic pion-pion interaction dictated by the chiral
symmetry of QCD is rather complicated. In the future, we

need to consider realistic pion-pion interactions and the
chiral symmetry of QCD. It is also interesting to investigate
the multi-pion Bose-Einstein correlations [43–46] and see
how the Bose-Einstein condensation and the supergiant
vortex (if still exist with realistic interaction) influence
these correlations. It is also interesting to explore the
relation between the hyperon polarization and the quan-
tized vortex in such a pion superfluid [47].
Finally, the mechanism of forming super giant quantum

vortices studied in this work is robust and general. Since
(pseudo)relativistic particles can be engineered in con-
densed matter and cold atom systems [48–50], relativistic
bosons under parallel magnetic field and rotation may also
be engineered to explore the super giant quantum vortices.
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