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It has been found that at a high luminosity eþe− collider, sizable ηc þ cc̄X, and ηb þ bb̄X events can be
produced when it works around the Z peak. In this paper, we calculate the decay widths of
Z → ηc þ cþ c̄þ X and Z → ηb þ bþ b̄þ X up to next-to-leading order (NLO) accuracy. We find that
the NLO corrections are significant in these two processes. After including the NLO corrections, the decay
widths of Z → ηc þ cþ c̄þ X and Z → ηb þ bþ b̄þ X are enhanced by about 34% and 28% for the
case of μR ¼ 2mQ, and are enhanced by about 112% and 83% for the case of μR ¼ mZ, respectively.
The differential decay widths dΓ=dz, dΓ=dm12, and dΓ=dm23 for these two decay processes are also
analyzed.
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I. INTRODUCTION

Heavy quarkonium production presents an ideal labo-
ratory for the study of the interplay between the perturba-
tive and nonperturbative effects of QCD; it has been a focus
of theoretical and experimental interest since the discovery
of J=ψ in 1974. In order to describe the quarkonium
production, the color-evaporation model (CEM) [1,2], the
color-singlet model (CSM) [3–5], and the nonrelativistic
QCD (NRQCD) effective theory [6] have been proposed.
Among them, the NRQCD effective theory provides a
systematic way of separating the short-distance and long-
distance effects in the quarkonium production, and has
achieved great success in describing the experimental data
of the quarkonium production, especially for the unpolar-
ized cross section of the J=ψ hadroproduction [7–10].
However, there are still challenges to NRQCD. For
instance, the hadroproduction cross section of ηc measured
by the LHCb experiments [11] can be well described by the
color-singlet contribution, i.e., the color-octet contribution
should be very small [12]. This seems inconsistent with the

heavy-quark spin symmetry (HQSS) relation between the
long-distance matrix elements (LDMEs) of ηc and J=ψ .1

It is important to study more processes involving the
charmonium for testing the NRQCD factorization.
It has been found that the heavy quarkonium production

through Z boson decays can provide a good platform for
studying the production mechanism of quarkonia, which
has attracted great attention [17–39]. A large number of Z
boson events can be accumulated at the LHC or a future
high-luminosity eþe− collider running around the Z pole.
At the LHC, there are about 109 Z bosons to be produced
per year [29]. It is well known that several proposed high-
luminosity eþe− colliders, such as the ILC [40], FCC-ee
[41], CEPC [42], and Super Z Factory [43], are planned to
run at the Z pole for a period of time. When the eþe−
collider runs at the Z pole and with a luminosity of
1034–36 cm−2 s−1, there are about 109–11 Z bosons to be
produced per year [44]. These colliders will open new
opportunities for studying the quarkonium production
through Z boson decays.
Most studies on the heavy quarkonium production

through the Z boson decays focus on the spin-triplet J=ψ
andϒ production, while few studies are for the spin-singlet
ηQ (Q ¼ b or c) production. In our recent work [38], we
studied the inclusive production of the ηQ via the Z boson
decays up to order αα2s within the framework of NRQCD,

*zhengxc@cqu.edu.cn
†wuxg@cqu.edu.cn
‡zhanxj@cqu.edu.cn
§zhouhua@cqu.edu.cn
∥liht@cqu.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1References [13,14] pointed out that the hadroproduction data
of J=ψ and ηc can be simultaneously described by one set of
LDMEs. However, theoretical predictions based on this set of
LDMEs fail to describe the J=ψ production data from eþe−
annihilation at the B-factory [15,16].
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in which the leading color-singlet (1S½1�0 ) and color-octet

(1S½8�0 ,
3S½8�1 , and 1P½8�

1 ) Fock states are considered. The
study found that there are many interesting features in these
production processes. An important channel contributing to
the inclusive production Z → ηQ þ X is Z → ηQ þQþ Q̄.
Experimentally, its decay width can be measured separately
through the heavy-flavor tagging technology. Therefore, it is
helpful to do a precise theoretical study on this channel. In
this paper, we devote ourselves to studying the decay
Z → ηQ þQþ Q̄þ X, which starts at order αα2s, up to
NLO QCD accuracy. We will use the CSM, which is
the leading-order (LO) contribution (in vQ, where vQ is
the velocity of the heavy quark or the heavy antiquark in the
quarkonium rest frame, v2c ≈ 30% for the ηc and v2b ≈ 10%

for the ηb [45]) of NRQCD,2 to calculate the decay width
of Z → ηQ þQþ Q̄þ X.
The NLO QCD corrections to Z → ηQ þ gg have

recently been finished through the CSM [39]. The authors
there found that the NLO corrections are significant due to
the fragmentation diagrams appearing at the NLO level.3

Reference [39] and the present paper give a complete study
on the ηQ production through Z boson decays up to NLO
QCD accuracy under the CSM.
The remaining parts of the paper are organized as

follows. In Sec. II, we briefly present useful formulas
for the process Z → ηQ þQþ Q̄þ X at the LO accuracy.
In Sec. III, we present the formulas for calculating the NLO
QCD corrections to the process Z → ηQ þQþ Q̄þ X. In
Sec. IV, numerical results and discussions are presented.
Section V is reserved as a summary.

II. LO DECAY WIDTH

Under the NRQCD factorization, the decay width for
Z → ηQ þQþ Q̄þ X can be written as

dΓZ→ηQþQþQ̄þX ¼
X
n

dΓ̃Z→ðQQ̄Þ½n�þQþQ̄þXhOηQðnÞi; ð1Þ

where dΓ̃ are short-distance coefficients (SDCs) and
hOηcðnÞi are LDMEs. The sum extends over all of the

intermediate color-singlet and color-octet states 2Sþ1L½1;8�
J .

In the lowest-order nonrelativistic approximation (i.e., the

CSM), only the color-singlet contribution with n ¼ 1S½1�0

needs to be considered.
In the practical calculation, we first calculate the decay

width for a free on-shell ðQQ̄Þ pair with quantum number
1S½1�0 , i.e., dΓZ→ðQQ̄Þ½1S½1�

0
�þQþQ̄þX

. Then the decay width for

the ηQ meson can be obtained from dΓ
Z→ðQQ̄Þ½1S½1�

0
�þQþQ̄þX

through replacing hOðQQ̄Þ½1S½1�
0
�ð1S½1�0 Þi by hOηQð1S½1�0 Þi.

At the LO level, there are four Feynman diagrams for the

decay process Z → ðQQ̄Þ½1S½1�0 � þQþ Q̄, which are shown
in Fig. 1. Corresponding to the four Feynman diagrams,
the LO amplitude for this process can be written as
MLO ¼ M1 þM2 þM3 þM4, where

iM1 ¼ −
ig

2 cos θW

−i
ðp1=2þ p2Þ2 þ iϵ

ūðp2ÞðigsγμTaÞ

· Π1Λ1ðigsγμTaÞ i
=p1 þ =p2 −mQ þ iϵ

ϵνðp0Þγν

· ðVQ − AQγ5Þvðp3Þ; ð2Þ

iM2 ¼ −
ig

2 cos θW

−i
ðp1=2þ p2Þ2 þ iϵ

ūðp2ÞðigsγμTaÞΠ1

· Λ1ϵνðp0ÞγνðVQ − AQγ5Þ
i

−=p0 þ =p1=2 −mQ þ iϵ

· ðigsγμTaÞvðp3Þ; ð3Þ

iM3 ¼ −
ig

2 cos θW

−i
ðp1=2þ p3Þ2 þ iϵ

ūðp2Þϵνðp0Þγν

· ðVQ − AQγ5Þ
i

−=p1 − =p3 −mQ þ iϵ
ðigsγμTaÞ

· Π1Λ1ðigsγμTaÞvðp3Þ; ð4Þ

FIG. 1. The LOFeynman diagrams forZ→ðQQ̄Þ½1S½1�0 �þQþQ̄.

2The next-order relativistic correction to the color-singlet
contribution is suppressed by order v2Q, while the color-octet
contribution is suppressed by order v4Q. It is noted that the short-
distance factor of the color-octet contribution may be enhanced
compared to that of the color-singlet contribution. In this work,
we assume the color-octet contribution is very small, and focus on
the color-singlet contribution.

3The large fragmentation contribution in the NLO corrections
of Z → ηQ þ gg can be calculated through the fragmentation-
function approach, where the large logarithms of mZ=mQ
in higher-order corrections can be resummed through the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution
of the fragmentation functions [46].

ZHENG, WU, ZHAN, ZHOU, and LI PHYS. REV. D 106, 094008 (2022)

094008-2



iM4 ¼ −
ig

2 cos θW

−i
ðp1=2þ p3Þ2 þ iϵ

ūðp2ÞðigsγμTaÞ

·
i

=p0 − =p1=2 −mQ þ iϵ
ϵνðp0ÞγνðVQ − AQγ5Þ

· Π1Λ1ðigsγμTaÞvðp3Þ: ð5Þ

Here,VQ andAQ are vector and axial electroweak couplings,
respectively. More explicitly, Vc ¼ 1

2
− 4

3
sin2 θW , Ac ¼ 1

2
,

Vb ¼ − 1
2
þ 2

3
sin2 θW , and Ab ¼ − 1

2
. Π1 is the projector

for S-wave spin-singlet state

Π1 ¼
1

ð2mQÞ3=2
ð=p1=2 −mQÞγ5ð=p1=2þmQÞ; ð6Þ

and Λ1 is the color projector for color-singlet state

Λ1 ¼
1ffiffiffi
3

p ; ð7Þ

where 1 is the unit matrix of the SUð3Þc group.
With these amplitudes, the LO decay width for the

ðQQ̄Þ½1S½1�0 � pair can be calculated through

dΓðQQ̄Þ½1S½1�
0
�

LO ¼ 1

3

1

2mZ

X
jMLOj2dΦ3; ð8Þ

where
P

denotes the sum over the spin and color states of
initial and final particles. dΦ3 is the differential phase space
for the three-body final state, and

dΦ3 ¼ ð2πÞdδd
�
p0 −

X3
f¼1

pf

�Y3
f¼1

dd−1pf

ð2πÞd−12Ef
; ð9Þ

where d is the number of the space-time dimensions. With

these formulas, the LO decay width for Z → ðQQ̄Þ½1S½1�0 � þ
Qþ Q̄ can be calculated directly.

III. NLO CORRECTIONS

At the NLO level, the virtual and real corrections need to
be calculated. There are ultraviolet (UV) and infrared (IR)
divergences in virtual correction, and IR divergence in real
correction. The conventional dimensional regularization
with d ¼ 4 − 2ϵ is employed to regularize both UVand IR
divergences throughout this paper. In dimensional regu-
larization, the γ5 problem is notorious, and we adopt a
practical prescription proposed in Ref. [47]. In the follow-
ing subsections, we explain our main steps in calculating
the virtual and real corrections.

A. Virtual NLO correction

The virtual correction at the NLO level comes from the
interference of the one-loop Feynman diagrams and the LO

Feynman diagrams. Four typical one-loop Feynman dia-
grams are shown in Fig. 2. It is noted that, compared to the
J=ψ case [28], there are new type Feynman diagrams, in

which the ðQQ̄Þ½1S½1�0 � pair is produced from two virtual
gluons, need to be calculated in the ηQ case. These new
type Feynman diagrams do not contribute to the J=ψ case.
One of the new type diagrams is shown by the fourth
diagram in Fig. 2.
The virtual correction to the decay width of the process

Z → ðQQ̄Þ½1S½1�0 � þQþ Q̄ can be calculated through

dΓðQQ̄Þ½1S½1�
0
�

Virtual ¼ 1

3

1

2mZ

X
2ReðM�

LOMVirtualÞdΦ3; ð10Þ

where MVirtual is the amplitude for the virtual correction,
and dΦ3 is the differential three-body phase space, which
has been presented in Eq. (9).
In order to take the lowest-order nonrelativistic approxi-

mation, we need to expand the amplitude in q [the relative
momentum between the quark and antiquark in the

ðQQ̄Þ½1S½1�0 � pair]. In the actual calculation, we expand
the amplitude in q (it is equivalent to taking q ¼ 0 here)
before performing the loop integration. In the language of
method of region [48], this amounts to directly calculating
the contributions from the hard region. The Coulomb
divergence, which is power IR divergence, will vanish in
the calculation under dimensional regularization.
There are UV and IR divergences in the loop integrals.

The IR divergences from the virtual correction will be
canceled by the IR divergences from the real correction.
The UV divergences need to be removed through renorm-
alization. The renormalization scheme is taken as follows:
For the renormalization of the heavy quark field, the heavy
quark mass and the gluon field, the on-mass-shell (OS)
scheme is adopted, while for the renormalization of the

FIG. 2. Four typical one-loop Feynman diagrams for

Z → ðQQ̄Þ½1S½1�0 � þQþ Q̄.
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strong coupling constant, the modified minimal subtraction
(MS) scheme is adopted. With this renormalization scheme,
the quantities δZi ≡ Zi − 1 can be derived [49]

δZOS
2;Q ¼ −CF

αs
4π

�
1

ϵUV
þ 2

ϵIR
− 3γE þ 3 ln

4πμ2R
m2

Q
þ 4

�
;

δZOS
m;Q ¼ −3CF

αs
4π

�
1

ϵUV
− γE þ ln

4πμ2R
m2

Q
þ 4

3

�
;

δZOS
3 ¼ αs

4π

�
ðβ00 − 2CAÞ

�
1

ϵUV
−

1

ϵIR

�

−
4

3
TF

X
Q

�
1

ϵUV
− γE þ ln

4πμ2R
m2

c

��
;

δZMS
g ¼ −

β0
2

αs
4π

�
1

ϵUV
− γE þ lnð4πÞ

�
; ð11Þ

where μR is the renormalization scale, γE is the Euler
constant. β0 ¼ 11CA=3 − 4TFnf=3 is the one-loop coeffi-
cient of the QCD β function, in which nf is the number of
active quark flavors. β00 ¼ 11CA=3 − 4TFnlf=3 and nlf ¼ 3

is the number of light-quark flavors. When μR ∈ ½mc;mbÞ,
we consider the charm-quark loop in the gluon self-energy
butneglect thebottom-quarkand top-quark loops in thegluon
self-energy, i.e., nf ¼ nlf þ 1 ¼ 4; when μR ∈ ½mb;mtÞ,
we consider the charm-quark and bottom-quark loops in
the gluon self-energy but neglect the top-quark loop in the
gluon self-energy, i.e.,nf ¼ nlf þ 2 ¼ 5. ForSUð3Þc group,
CA ¼ 3, CF ¼ 4=3 and TF ¼ 1=2.
In the calculations, the package FeynArts [50] is

employed to generate Feynman diagrams and amplitudes,
the package FeynCalc [51,52] is employed to carry out the
color and Dirac traces, the packages $Apart [53] and FIRE
[54] are employed to conduct partial fraction and integra-
tion-by-parts (IBP) reduction. After the IBP reduction, all
one-loop integrals are reduced into master integrals, and the
master integrals are calculated by the package LoopTools
[55] numerically. The final phase-space integrations are
calculated with the help of the package Vegas [56].

B. Real NLO correction

The real correction to the process Z → ðQQ̄Þ½1S½1�0 � þ
Qþ Q̄ comes from the process Zðp0Þ → ðQQ̄Þ½1S½1�0 �ðp1Þþ
Qðp2Þ þ Q̄ðp3Þ þ gðp4Þ. Four typical Feynman diagrams
are shown in Fig. 3. Compared to the J=ψ case, we need
to deal with new type Feynman diagrams, in which the

ðQQ̄Þ½1S½1�0 � pair is produced from the gluon fragmentation,
such as in the fourth diagram of Fig. 3.
Using these Feynman diagrams, the amplitude (MReal)

for the real correction can be written down directly. Then
the differential decay width for the real correction can be
calculated through

dΓðQQ̄Þ½1S½1�
0
�

Real ¼ 1

3

1

2mZ

X
jMRealj2dΦ4; ð12Þ

where dΦ4 is the differential four-body phase space,

dΦ4 ¼ ð2πÞdδd
�
p0 −

X4
f¼1

pf

�Y4
f¼1

dd−1pf

ð2πÞd−12Ef
: ð13Þ

There are IR divergences in the real correction, which
come from the phase-space integration over the region
where the momentum of the final gluon is close to zero. We
employ the two-cutoff phase-space slicing method [57] to
isolate the IR divergences in the real correction. Due to the
fact that there is no collinear divergence in the present
process, we only need to introduce one cutoff parameter δs.
Then the phase space for the real correction is divided into
two regions: The soft region with E4 ≤ mZδs=2 and the
hard region with E4 > mZδs=2. Here, we define the gluon
energy E4 in the rest frame of the initial Z boson. More
explicitly, the real correction can be divided into two parts

dΓðQQ̄Þ½1S½1�
0
�

Real ¼ dΓðQQ̄Þ½1S½1�
0
�

S þ dΓðQQ̄Þ½1S½1�
0
�

H ; ð14Þ

where

dΓðQQ̄Þ½1S½1�
0
�

S ¼ 1

3

1

2mZ

X
jMRealj2dΦ4jE4≤mZδs=2; ð15Þ

and

dΓðQQ̄Þ½1S½1�
0
�

H ¼ 1

3

1

2mZ

X
jMRealj2dΦ4jE4>mZδs=2: ð16Þ

Applying the eikonal approximation to the amplitude in
the soft region [57,58], we obtain

FIG. 3. Four typical real-correction Feynman diagrams for the

decay process, Z → ðQQ̄Þ½1S½1�0 � þQþ Q̄.
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X
jMRealj2jE4≤mZδs=2

¼ 4παsCFμ
2ϵ
R

�
−

p2
2

ðp2 · p4Þ2
þ 2p2 · p3

ðp2 · p4Þðp3 · p4Þ

−
p2
3

ðp3 · p4Þ2
�X

jMLOj2: ð17Þ

Up toOðδsÞ corrections, the differential phase space for the
soft region can be factorized as [57]

dΦ4jE4≤mZδs=2 ¼ dΦ3

dd−1p4

ð2πÞd−12E4

����
E4≤mZδs=2

; ð18Þ

where dΦ3 denotes the differential three-body phase space
without emitting a gluon, whose expression has been
shown in Eq. (9).
Inserting Eqs. (17) and (18) into Eq. (15), and carrying

out the integration over p4 [59,60], we obtain

dΓðQQ̄Þ½1S½1�
0
�

S ¼ dΓðQQ̄Þ½1S½1�
0
�

LO

�
CFαsΓð1þ ϵÞ

π

�
4πμ2R
m2

Z

�
ϵ
���

1

ϵ
− ln δ2s

��
1 −

κp2 · p3

ðκ2 − 1Þm2
Q
ln κ2

�
þ 1

2β2
ln

�
1þ β2
1 − β2

�

þ 1

2β3
ln

�
1þ β3
1 − β3

�
þ 2κp2 · p3

ðκ2 − 1Þm2
Q

�
1

4
ln2

u0 − juj
u0 þ juj þLi2

�
1 −

u0 þ juj
v

�
þ Li2

�
1 −

u0 − juj
v

������
u¼κp2

u¼p3

	
; ð19Þ

where

β2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

Q=E
2
2

q
;

β3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

Q=E
2
3

q
;

v ¼ ðκ2 − 1Þm2
Q

2ðκE2 − E3Þ
;

κ ¼
p2 · p3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 · p3Þ2 −m4

Q

q
m2

Q
;

where E2 and E3 are also defined in the rest frame of the
initial Z boson.
Due to the constraint E4 > mZδs=2 for the hard region,

the contribution from the hard region is finite, then

ΓðQQ̄Þ½1S½1�
0
�

H can be numerically calculated in four dimensions.
The real correction can be obtained by summing the
contributions from the hard and soft regions easily. Both
the contributions from the soft and hard regions are
separately dependent on the cutoff parameter δs, while
the sum of these two contributions should be independent
to the choice of δs (δs should be small enough.). Verifying
this δs independence is an important test of the correctness
of the calculation. We have checked the δs independence,
and have found that the results are independent of δs within
the error of the numerical integration when δs varies from
10−5 to 10−7.
The net NLO corrections can be obtained through

summing the virtual and real corrections. After sum-
ming the virtual and real corrections, the UV and IR
divergences are exactly canceled, and the finite results
are obtained. The decay width dΓZ→ηQþQQ̄X can be
obtained from dΓ

Z→ðQQ̄Þ½1S½1�
0
�þQQ̄X

by multiplying a factor

hOηQð1S½1�0 Þi=hOðQQ̄Þ½1S½1�
0
�ð1S½1�0 Þi ≈ jRηQð0Þj2=ð4πÞ, where

RηQð0Þ is ηQ radial wave function at the origin, which
can be calculated by using the potential model [61].

IV. NUMERICAL RESULTS AND DISCUSSIONS

The input parameters for the numerical calculation are
taken as follows [62]:

mc¼1.67�0.07GeV; mb¼4.78�0.06GeV;

mZ¼91.1876GeV; sin2θW¼0.231; α¼1=128; ð20Þ

where mc and mb are the pole masses, α is the electro-
magnetic coupling constant at mZ. For the running strong
coupling constant, we use the two-loop formula

αsðμRÞ ¼
4π

β0 lnðμ2R=Λ2
QCDÞ

�
1 −

β1 ln lnðμ2R=Λ2
QCDÞ

β20 lnðμ2R=Λ2
QCDÞ

�
; ð21Þ

where β1 ¼ 34C2
A=3 − 4TFCFnf − 20TFCAnf=3 is the

two-loop coefficient of the QCD β function. According

to αsðmZÞ ¼ 0.118 [62], we obtain Λnf¼5

QCD ¼ 0.226 GeV

and Λnf¼4

QCD ¼ 0.328 GeV. With the values for ΛQCD, the
strong coupling constant at any scale can be directly
calculated through Eq. (21). For the radial wave functions
at the origin, we adopt the values from the potential-model
calculation [61], i.e.,

jRηcð0Þj2 ¼ 0.810GeV3; jRηbð0Þj2 ¼ 6.477GeV3: ð22Þ

A. Integrated decay widths

In this subsection, we give the integrated decay widths
for the decay channel Z → ηQ þQþ Q̄þ X up to the
NLO level.
In order to have a glance on the size of the NLO

corrections, we first present the decay widths when the
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input quark masses are taken as their central values (i.e.,
mc ¼ 1.67 GeV and mb ¼ 4.78 GeV), an analysis of the
uncertainties of these decay widths will be presented later.
The decay widths of Z → ηQ þQþ Q̄þ X up to the NLO
level are given in Tables I and II, where ΓNLO denotes the
sum of the LO contribution and the NLO corrections. The
renormalization scales are set as two energy scales involved
in the processes, i.e., 2mQ andmZ. Tables I and II show that
the NLO corrections contribute significantly to the decay
widths in both cases. The NLO corrections increase the
decay width of Z → ηc þ cþ c̄þ X by ∼34% for μR ¼
2mc and ∼112% for μR ¼ mZ; and they increase the decay
width of Z → ηb þ bþ b̄þ X by ∼28% for μR ¼ 2mb and
∼83% for μR ¼ mZ.
In Figs. 4 and 5, the dependence of the decay widths

on the renormalization scale is shown. After including
the NLO corrections, the dependence of the decay
widths on the renormalization scale is weakened. For
Z→ηcþcþ c̄þXðZ→ηbþbþ b̄þXÞ, the decay width
decreases by 77%(57%) at LO, and by 63%(39%) at
NLO when μR varies from 2mQ to mZ. However, this
dependence is still strong even including the NLO
corrections.
Now, let us estimate the theoretical uncertainties for

these decay widths. The main uncertainty sources include
the renormalization scale, the heavy quark masses, and the
radial wave functions at the origin.4 For the uncertainties
caused by the renormalization scale, we estimate them by

varying the renormalization scale between two physical
energy scales involved in the processes, i.e., 2mQ and mZ.
Furthermore, we take the average values of the decay
widths under the two choices of the renormalization scale
as their central values. For the uncertainties caused by the
heavy quark masses, we estimate them by varying the
heavy quark masses in the ranges given in Eq. (20), i.e.,
mc ¼ 1.67� 0.07 GeV and mb ¼ 4.78� 0.06 GeV. For
the radial wave functions at the origin, the authors of
Ref. [61] did not give an error estimate. Since the potential
used in Ref. [61] does not include the spin effect, the wave
functions calculated in this way are accurate up to correc-
tions of relative order v2Q. Therefore, we estimate the
uncertainties by attaching an error of 30% of the central

TABLE I. The decay width (in unit keV) of Z→ηcþcþ c̄þX
up to the NLO level under two different choices of μR, where the
input charm quark mass is taken as the central value (i.e.
mc ¼ 1.67 GeV) and the K factor is defined as K ¼ ΓNLO=ΓLO.

μR αsðμRÞ ΓLO ΓNLO K

2mc 0.245 62.7 84.3 1.34
mZ 0.118 14.5 30.8 2.12

TABLE II. The decay width (in unit keV) of Z → ηb þ bþ
b̄þ X up to the NLO level under two different choices of μR,
where the input bottom quark mass is taken as the central
value (i.e. mb ¼ 4.78 GeV) and the K factor is defined as
K ¼ ΓNLO=ΓLO.

μR αsðμRÞ ΓLO ΓNLO K

2mb 0.180 10.8 13.8 1.28
mZ 0.118 4.65 8.49 1.83
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FIG. 4. The LO and NLO decay widths for Z→ηcþcþ c̄þX
as functions of the renormalization scale μR.
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FIG. 5. The LO and NLO decay widths for Z→ηbþbþ b̄þX
as functions of the renormalization scale μR.

4The Monte Carlo numerical integration in the calculation
would lead to an error. However, the error of the numerical
integration is on the order of 10−2 keV for the ηc case, and
10−3 keV for the ηb case in our calculation. Thus, the error from
the numerical integration is negligible.
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value for ηc, and 10% of the central value for ηb. More
explicitly, we take jRηcð0Þj2 ¼ 0.810� 0.243 GeV3 and
jRηbð0Þj2 ¼ 6.477� 0.648 GeV3. Then we obtain

ΓLO
Z→ηcþcc̄X ¼ 38.6þ24.1þ6.7þ11.6

−24.1−5.5−11.6 keV;

ΓNLO
Z→ηcþcc̄X ¼ 57.6þ26.7þ10.3þ17.3

−26.8−8.4−17.3 keV; ð23Þ

and

ΓLO
Z→ηbþbb̄X

¼ 7.74þ3.09þ0.35þ0.78
−3.09−0.40þ0.78 keV;

ΓNLO
Z→ηbþbb̄X

¼ 11.1þ2.7þ0.5þ1.2
−2.7−0.5−1.2 keV: ð24Þ

Here, the first error is caused by the renormalization scale,
the second error is caused by the heavy quark mass, and the
last error is caused by the radial wave function at the origin.
From Eqs. (23) and (24), we can see that the largest error
arises from the renormalization scale uncertainty for both
ηc and ηb cases. Furthermore, we find that although the K
factors are sensitive to the renormalization scale, they are
insensitive to the heavy quark mass, e.g., when we vary the
charm (bottom) quark mass from 1.60 GeV (4.72 GeV) to
1.74 GeV (4.84 GeV), the K factor changes from 1.50
(1.43) to 1.49 (1.44) for the ηc (ηb) case.
Adding the uncertainties in quadrature, we obtain

ΓLO
Z→ηcþcc̄X ¼ 38.6þ27.6

−27.3 keV;

ΓNLO
Z→ηcþcc̄X ¼ 57.6þ33.4

−33.0 keV; ð25Þ

and

ΓLO
Z→ηbþbb̄X

¼ 7.74þ3.21
−3.21 keV;

ΓNLO
Z→ηbþbb̄X

¼ 11.1þ3.0
−3.0 keV: ð26Þ

B. Differential decay widths

The differential distributions contain more information
than the integrated decay widths, which can be used to test
the current theory. Therefore, it is interesting to see the
differential distributions of the two Z boson decay
processes.
The energy fraction carrying by ηc or ηb in the processes

can be defined as z≡ 2p0 · p1=m2
Z. The LO and NLO

differential decay widths dΓ=dz for the processes Z →
ηc þ cþ c̄þ X and Z → ηb þ bþ b̄þ X are shown in
Figs. 6 and 7, respectively. Figures 6 and 7 confirm the
importance of the NLO corrections. For the ηc production,
the magnitude of dΓ=dz is increased obviously at small and
moderate z values and decreased slightly at higher z values.
And for the ηb production, the magnitude of dΓ=dz is
increased at all z values. The uncertainties for dΓ=dz are
also shown in the figures, which are obtained by combining
the uncertainties of the renormalization scale, the heavy
quark mass, and the wave function at the origin.

The momenta of heavy quarks in the final state can be
determined experimentally using the heavy-flavor tagging
technology. Therefore, the differential decay widths
dΓ=dm12 and dΓ=dm23 can be measured experimentally,
where m12 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 þ p2Þ2

p
and m23 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þ p3Þ2

p
are

invariant masses of two final-state particles. We present the
LO and NLO differential decay widths dΓ=dm12 and
dΓ=dm23 for Z→ ηcþcþ c̄þX and Z→ηbþbþ b̄þX
in Figs. 8, 9, 10, and 11, respectively. The uncertainties
for these differential decay widths are also shown in these
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FIG. 6. The LO and NLO differential decay widths dΓ=dz for
Z → ηc þ cþ c̄þ X. The error bars show the total uncertainties
caused by the renormalization scale, the heavy quark mass, and
the wave function at the origin, and the total uncertainties are
obtained by adding each uncertainty in quadrature.
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Z → ηb þ bþ b̄þ X. The error bars show the total uncertainties
caused by the renormalization scale, the heavy quark mass, and
the wave function at the origin, and the total uncertainties are
obtained by adding each uncertainty in quadrature.
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figures. From the figures, we can see that the differential
decay widths dΓ=dm12 and dΓ=dm23 are changed signifi-
cantly after including the NLO corrections, especially
for the decay Z → ηc þ cþ c̄þ X. Moreover, it is
found that the NLO differential decay widths dΓ=dm12

and dΓ=dm23 are negative at the large m12 or m23

for Z → ηc þ cþ c̄þ X. This indicates that the NLO
corrections are negative and larger than the LO contribution
in these phase space regions. In the boundary regions of the

phase space, some large logarithmic terms often appear in
the coefficients of the perturbation expansion, which may
spoil the convergence of the perturbation series. In these
boundary regions, it is necessary to resum these large
logarithmic terms so as to obtain precise theoretical results.
Because of these large logarithmic terms, if we calculate to
a certain order (e.g., NLO) in these regions, we may obtain
nonphysical negative results. Fortunately, in the considered
processes, the absolute values of the negative contributions
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FIG. 8. The LO and NLO differential decay widths dΓ=dm12 for
Z → ηc þ cþ c̄þ X. The error bars show the total uncertainties
caused by the renormalization scale, the heavy quark mass, and the
wave function at the origin, and the total uncertainties are obtained
by adding each uncertainty in quadrature.
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FIG. 9. The LO and NLO differential decay widths dΓ=dm12 for
Z → ηb þ bþ b̄þ X. The error bars show the total uncertainties
caused by the renormalization scale, the heavy quark mass, and the
wave function at the origin, and the total uncertainties are obtained
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for Z → ηc þ cþ c̄þ X. The error bars show the total uncertain-
ties caused by the renormalization scale, the heavy quarkmass, and
the wave function at the origin, and the total uncertainties are
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of these regions are not large. Thus, we believe that the
differential decay widths for most regions of the phase
space and the integrated decay widths, which are obtained
in this paper, are reliable.

V. SUMMARY

In the present paper, we have studied the decays Z →
ηc þ cþ c̄þ X and Z → ηb þ bþ b̄þ X up to NLO QCD
accuracy. Integrated and differential decay widths of both
decay processes are obtained, and the uncertainties for them
are estimated.We find that the NLO corrections to the decay
widths for Z → ηc þ cþ c̄þ X and Z → ηb þ bþ b̄þ X
are significant. The dependence of the decay widths on the
renormalization scale is very strong although the depend-
ence is weakened after including the NLO corrections. This
brings a big uncertainty to the theoretical predictions under
the conventional renormalization scale setting. The higher-
order corrections can reduce the uncertainty caused by
the renormalization scale. However, it is very difficult to
calculate the higher-order corrections beyond the NLO
for these processes at present. In the literature, the principle
of maximum conformality (PMC) scale-setting approach
[63–66] has been suggested to eliminate such scale uncer-
tainty, whose key idea is to determine the correctmomentum
flow of the process by using the nonconformal β-terms that
govern the αs running behavior with the help of renormal-
ization group equation. As a comparison, we also calculate
the integrated decay widths under the PMC scale setting.
Following the standard PMC procedures to the decay
width of Z → ηQ þQþ Q̄þ X, we obtain ΓPMC

Z→ηcþcc̄X ¼
95.4þ34.1

−32.2 keV and ΓPMC
Z→ηbþbb̄X

¼ 14.7þ1.7
−1.7 keV. Here, the

PMC predictions of the decay width are independent to
the choices of μR, and the errors come from the uncertainties
of the heavy quark masses and the wave functions at the
origin.

The cross sections for eþe−→Z→ηQþQþQ̄þX at the
Z pole5 can be derived from the decay widths ΓZ→ηQþQQ̄X

through the formulas derived in the Appendix A1 of
Ref. [67], i.e.,

σeþe−→ηQþQQ̄X ¼ e2ð1 − 4 sin2 θW þ 8 sin4 θWÞ
8 sin2 θW cos2 θWmZΓ2

Z

× ΓZ→ηQþQQ̄X: ð27Þ

Then we obtain

σeþe−→ηcþcc̄X ¼ 1.37þ0.80
−0.78 pb; ð28Þ

σeþe−→ηbþbb̄X ¼ 0.264þ0.072
−0.071 pb: ð29Þ

If the luminosity of a Z factory can be up to 1035 cm−2 s−1

[43], there are about 1.4 × 106 ηc þ cc̄X events and
2.6 × 105 ηb þ bb̄X events to be produced per operation
year. Moreover, the background of the Z factory is clean.
Therefore, the two production processes may be studied at a
high luminosity Z factory.
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