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We compute the leading-twist T-odd quasidistributions of the proton in a spectator model with scalar and
axial-vector diquarks: the quasi-Sivers function fi;(x,k%;P.) and the quasi-Boer-Mulders function
hi(x,k%; P.). We obtain the quark-quark correlators in the four-dimensional Euclidian space by replacing
y+ and 6™t in the light-cone frame with y, and o;,. We show by analytical calculation that the results of £
and A7 derived from the correlators can reduce to the expressions of the corresponding standard T-odd
distributions fi;(x,k%) and hi(x,k%) in the limit P, - oo. The numerical results for these quasidis-
tributions and their first transverse moments for the # and d quarks in different x and P, regions are also
presented. We find that fllT(I) (x, P.) and Ef(l) (x, P.) in the spectator model are fair approximations to the
standard ones (within 20%-30%) in the region 0.1 < x < 0.5 when P, > 2.5-3 GeV. This supports the
idea of using T-odd quasidistributions to obtain standard distributions in the region P, > 2.5 GeV as fair

approximation.

DOI: 10.1103/PhysRevD.106.094003

I. INTRODUCTION

The Parton distribution functions (PDFs), defined
through the light-cone correlation functions are of funda-
mental importance in hadronic physics. They describe the
density of a parton carrying in hadron a light-cone fraction
x of the total momentum. Although PDFs are difficult to
calculate from the first principle of QCD, they play a
crucial role in the description of various high energy
inclusive processes via the QCD factorization theorem.
A natural extension of PDFs is the transverse-momentum-
dependent distributions (TMDs) [1]. They encode the
probability density of a parton inside the nucleon with
longitudinal momentum fraction x and transverse momen-
tum k7. In leading-twist there are eight TMDs, correspond-
ing to different polarization states of the hadron and
the parton. Of particular interest are two T-odd TMDs,
namely, the Sivers function fi;(x,k%) and the Boer-
Mulders function hi(x,k%). The former one describes
the asymmetric distribution of the unpolarized parton in
a transverse polarized hadron [2,3], while the latter one
describes the distribution of the transverse polarized
parton in an unpolarized hadron [4]. For these reasons
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they can give rise to the spin or azimuthal asymmetries in a
semi-inclusive deep inelastic scattering process or Drell-
Yan process.

Recently, the concept of quasi-PDFs for hadrons has been
proposed in Refs. [5,6] and has received a lot of attention.
Different from the standard PDFs, quasi-PDFs are defined
by the bilocal operators on a spatial interval such that they
can be calculated by the lattice QCD in a four-dimensional
Euclidian space. Quasi-PDFs have a parton probability
interpretation similar to the standard PDFs, but for a parton

carrying a fraction x of the finite momentum P of the hadron.
Although introducing quasi-PDFs will bring a explicit
dependence on the hadron momentum (usually denoted
by P, = |P|), it is found that, in the large limit of P,, the
quasi-PDF f(x, P.) converges to the standard PDF f(x).
This makes it possible to calculate the x dependence of the
standard PDFs by using lattice QCD. In particular, a number
of lattice calculations on quasi-PDFs and related quantities
[7-27] have been performed.

The framework of the quasidistributions can be also
extended to the case of TMDs, as already proposed in
Ref. [5]. The quasi-TMD f(x,k%; P,) has a parton prob-
ability interpretation similar to the TMD, but is defined in
the Euclidean space and depends on the hadron momentum
P.. In Refs. [28,29], the basic procedure that can be used to
compute the TMDs from lattice QCD using large momen-
tum effective theory (LAMET) [30] or quasi-TMDs has
been laid out. The T-even spin-dependent quasi-TMDs that
are amenable to lattice QCD calculations and that can be
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used to determine standard spin-dependent TMDPDFs
have also been constructed in Ref. [31]. Furthermore,
the quark Sivers function is computed [32] in the lead-
ing-order expansion in the framework of LAMET.

In this work, we will study the quasidistributions of the
T-odd TMDs from the model aspects. As demonstrated in
Refs. [33-40], model calculations on quasidistributions
can provide useful information for which values of P, the
quasi-PDFs are fair approximations of standard PDFs.
To explore for what values of P, the T-odd quasi-TMDs
and the standard T-odd TMDs are approximations of each
other, we calculate the quark quasi-Sivers function
Fir(x,k3; P,) and quasi-Boer-Mulders function /i using
a spectator diquark model. We would like to study the
flavor dependence of these quasidistributions; therefore, in
the calculation we include both the scalar diquark and the
axial-vector diquark to obtain the distributions of u and d
quarks. In addition, we select the dipolar form factor for the
proton-quark-diquark vertex.

This paper is organized as follows: In Sec. II, we present
the definitions of standard T-odd TMDs and the corre-
sponding quasi-TMDs by using the light-cone correlators
and the Euclidean correlators, respectively. In Sec. III, we
perform the calculations of two quasidistributions in the

|

dé_ dng —iEk
(2r)?

q),»j(x,kT, S) = /

e 5P, S| ;(0)U" [0, o] [+00, E]w;(€)

spectator model with scalar and axial-vector diquarks. In
Sec. IV, we give the numerical results for the quasifunctions
and the first ky-moment of two functions to explore the
dependence of these distributions on x, P_, and k7. We
provide some conclusions in Sec. V.

I1. DEFINITION: STANDARD SIVERS
FUNCTION AND BOER-MULDERS FUNCTION,
QUASI-SIVERS FUNCTION AND
QUASI-BOER-MULDERS FUNCTION

In this section, we present the operator definitions for the
standard TMD distributions fi; and hi, as well as the
quasi-TMD distributions ]‘ILT and 71% respectively.

The standard TMD distributions are usually expressed
in the light-cone coordinate, in which one writes a* =
(a4 a*)/v/2 and a; = (a;,a,) for an arbitrary four-
vector a* in a specific reference frame, and the components
of a* are given as (a",a",ar). The standard TMD
distributions for a quark with light-cone momentum frac-
tion x = k™ /P* and transverse momentum k; appear in the
decomposition of the quark-quark correlation function ®
(in deep inelastic scattering)

P.S8)|z o, (1)

which can be parametrized according to the hermiticity, parity invariance, and charge conjugation invariance. In the above

equation, k* is the momentum of the quark, and

pr— PPy, = (s s P s 2)
— ) s UT )y — LM’ LM?T

are the momentum and the polarization vector of the nucleon, respectively. Furthermore, " are the gauge links to ensure

the gauge invariance of the operator definition,

U [0, +c0] = Pexp [—ig/oo dn‘A*(O*,n‘,OT)}PeXp [—ig/wr d¢r - Ar(07, 00_,4’T>}, (3)
0~ Or

u* ["'00,5] = Pexp [_ig/ow dlr 'AT(0+7 oo‘,é’T)}Pexp [_ig/oo_ dﬂ_A+(0+,’7_,‘fT)], (4)
&r &

where n~ = (0, 1,07), and P denotes all possible ordered
paths followed by the gluon field A, which couples to the
quark field y through the coupling constant g.

Then the standard Sivers function f7;(x,k%) and Boer-
Mulders function A7 (x, k%) can be defined by the following
expressions [1]:

€ijk iS . 1 +
T k) = T (e ke )

- o (x,ky,=S)] +Hec., (5)

: 1 i
L pl (x, k) = ZTr[cp[m sl (x,ky, S)
+ @l 1) (x, kep, —S)] + Hec., (6)

where H.c. denotes the Hermitian conjugate terms, and

. 1
O (x. k. S) = 5 Trl®@(x.kr. S)r ), (7)

- 1 .
@l 15l (x, k., S) ziTr[cb(x,kT,S)mws]. (8)
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On the other hand, quasi-TMDs are defined as the matrix elements of the following equal-time spatial correlation

function [5]

%mmwma:/ﬁ”&-MWﬂ,m
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where x = k_/P, 1s the longitudinal momentum fraction of the quark, and 2/": [0, +-o0] and U": [0, £] are the gauge links

having the forms

U™ [0, +oo] = Pexp {—zg/ dn*A=(0°, 7 OT)}Pexp [—ig/oooT dcr - Ap(0°, ooz,é’T)], (10)
U 00,8 = Pexp {—ig [ e mr@. OOZ,CT)}PCXP [—ig I anAZmO,nZ,fT)] (1)
ér &

Using the correlation function in Eq. (9), we can write
the expressions for calculating the quasi-Sivers function
fir(x.k3,P,) and the quasi-Boer-Mulders function
hi(x,k%, P,) as follows [5,33]:

kS Ly
T ik P = = TH (e kr. )

— @ (x,ky, —S)] +Hec., (12)

[a—

ijk . Z i
R

N

+ ®larsl(x, ky, —S)] + Hee.,  (13)

where @ and ®lio=rs| are defined as

- 1
Ol (x, kp, S) = 5Tlr[ (x.kr,S:P)y),  (14)

. 1 i
q)[lﬁiz}’s](x,kT’ ) ETI‘[ (x kT,S P)lng]/S]_ (15)

III. ANALYTIC CALCULATION

In this section, we present the analytic calculation of the
quasi-Sivers function and the quasi-Boer-Mulders function
using a spectator model.

The model has been widely used to calculate the standard
TMDs [41-43] and generalized parton distributions
(GPDs) of the nucleon and the spin-0 hadron. Recently,
it was also applied to calculate quasi-PDFs [33] and quasi-
GPDs [44-46]. In the model, the nucleon is viewed as a
two-body composite system of an active quark with mass m
and a diquark with mass M. The latter one can be a scalar

'For a generic four-vector a*, we denote the ordinary
Minkowski components by (a°,ar, a?).

|

diquark or an axial-vector diquark according to its spin.
As shown in Fig. (1), the proton-quark-diquark coupling is
characterized by some effective vertices. For this purpose
we adopt the vertices for the scalar and the axial-vector
diquarks as

scalar diquark: ig,(k?), (16)
ga(k )
axial-vector diquark: Hys, 17

where gy (k?) denotes the form factors of the coupling. In
our calculations, we will use the dipolar form factor

k* —m? (k> =m?)(1 —x)?
(k7 4+ L% (A3)* (18)

L3(A) = xM% + (1 —x)AZ — x(1 —x)M?, (19)

with (P —k)?> = M%. gy and Ay denote the coupling
constants and the cutoffs, respectively. They are considered
as the free parameters of the model together with the
diquark mass M. In addition, the propagators of the scalar
and axial-vector diquarks are given by

(b)

FIG. 1.
diagram and the tree-level diagram in the spectator diquark
model. (b) Interference between the one-gluon exchange diagram
and the tree-level diagram in the spectator diquark model in
eikonal approximation.

(a) Interference between the one-gluon exchange
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scalar diquark: (20)

1
K- M2’

axial-vector diquark:

! v
e (21)

In this work, we adopt d* = —¢* to simplify the calcu-
lation. We admit that this polarization sum contains
unphysical polarization states of the axial-vector diquark.
|

ij
€TkTiSTj N ) 1 1 1
JrTTRT k2) — ——
k) = s A e

kT, 1 1

1
ek )_Z( 272 2(1 — x)P*

Tr[(MD)

where M and M)

TA(MO(S)MO(S) = MO

(S)/\_/[(O)

A. Standard Sivers function and Boer-Mulders function

The quark Sivers function and quark Boer-Mulders
function have been calculated by various models in the
literature, such as the spectator model [43,47-52], light-
cone quark model [41,53], nonrelativistic constituent quark
model [54,55], and MIT bag model [55-57]. In order to
make a comparison, we briefly review the procedure of
calculating the T-odd TMDs in the spectator model. To do
this we expand the gauge link to one-loop order. So the
Sivers and Boer-Mulders functions can be computed from

()0

(=S))r*] +H.c., (22)

(S) + MW (=) MO (=S))ic"tys] + H.c., (23)

are the tree-level and one-loop-level amplitudes of p — ¢gX shown in Fig. 1(a). Now, we perform the

so-called “eikonal approximation” and take into account only the leading parts of the momenta of the quark after the photon
scattering. Therefore, the eikonal propagator of the quark in the light-cone framework in Fig. 1(b) is given by

if+g—1+m)  ilk+q)y" i v (24)
(k+q=02>—m*+ie —20"(k+q) +ie 2-I"+ie’

Then we have the expressions

MO(s) = =g 0 L e s), 3
[ d i?eilyn? (f = |+ m)ig,((k=1)?) 1+ys$
MI(S) = / Cr P=m o)<l 1 i) (= —m +ie)(P-k ¥ F =M+ ie) 2 CSh (0
for the scalar diquark, and
i(f—m) . 9a(K*) . 1+7ys8
MO(S) =55 (P =k o) N A U(p.Ss). (27)
[ d —i*eze;(P =k, 2)Teon? (k= |+ m)d, Ga((k=1*)

MI(S) = / Q) (B—m+ie) (=" +ie) (k=12 +ie)(P—k+ > =M2+ie) 2 ' 7° (28)
: +2Y5’g u(p,Ss), (29)

for the axial-vector diquark, where
= (2P -2k + l)p, (30)

Y = (2P =2k + 1), — (P =k + (1 + x,))° ¢
— (P —k—x,)"g5, (31)

[

and e, denotes the color charge of the quark or diquark. «,
denotes the diquark anomalous chromomagnetic moment.
Here we adopt x, = 0.

Integrating over the loop momentum /¥, we arrive at the
analytic expressions for the Sivers function and the Boer-
Mulders function contributed by the scalar/axial-vector
diquark components,
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S e k) = b (x,K3)

ger (1=x)*(m+xM)M
AP A+ 2P Y
1(a) _ gaee (1=x)’x(m+M)M
fr k) = somy zade + sz Y
L@ (1) = gze? (1=x)?[(m+ (2x—=3)M)x —2m|M
k) = Rt AN+ L2(ADT
(34)

We can also compute the first transverse moment of the
two functions,

FEOW () = 100 () = / Py o 2f1T< 2)

_ gre? (m+xM)(1—x)3’ (35)

32027)PM  [L3(A9)P
700 = [ kg LR i)
B ge?  x(m+ M)(1—x)?
“wenwm mar
00 = [ i k)
~ geer (1—x)*(m—+ (2x—3)M)x —2m]
- 64(27)°M LZ(A2)? '
(37)

Finally, we apply the following spin-flavor relation to
obtain the distributions for the u and d valence quarks
[43,58]:

=z, = @)

=5

where f can be fi; or hi.

B. The quasi-Sivers and quasi-Boer-Mulders
functions

Using Egs. (12) and (13) and Fig. 1, we can calculate the
T-odd quasi-TMDs in a similar way. The main difference
is the Feynman rules for the eikonal propagator and the
eikonal vertex, for which they have the replacements

i i
—l*—l—ie_)—lz—l—ie’

—ie.n" — ie.nk.
Then we express ®(x, k7, S; P,) as

1 1
()2/1

+ MO

D(x.ky, 8. P) = 57 (MO () MO(s)

=$)MO(=5)). (39)

Here, applying a plus or minus sign corresponds to the
correlator for the quasi-Sivers function or the quasi-Boer-
Mulders function, respectively, 1 is deduced from the on-
shell condition of the diquark

8((P—k)* = —ko)? =k = (P, = k;)* = M3)

8(Py—ko—2) (40)

M%) = 8((Po
1
~ 2(Py— ko)

and has the expression

P= (1= 2P 11+ My = (1-2)Ppy,  (41)
with

k2 + M3

a=apr )

px =4/1+

Combining the definitions of the quasifunctions in
Egs. (12) and (13) with the correlator (39), it is not difficult
to obtain the expressions for the quasi-TMDs,

P kg p - 20 I )
I (2, P,) = —93(’;2)6% (2711)3% kzzhﬁ/fz, (44)
L@ (4 2. p.) = ga(K*)ez 1 M 2ImZ7 (46)

4 Qn)d4rkE—m*

which are the contributions from the scalar diquark and the
axial-vector diquark, respectively, and
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y 44l Tr[(f -] - +M +m)2P -2k + 1) n?
o)y = [ gy T TP M eGP =26 ]
(27) (D + i€)(Dy + i€) (D3 + i€)(Dy4 + ie)
3 4 Tr[(f -] - + M) (K + m)(2P — 2k + 1) ;n%io;
(k)T = / d z4gs((k ) (k-7 m)(}” )(i{ m)( ' ?pnzm 5 ’ (48)
(2r) (Dy + i€)(D; + ie)(Ds + i€) Dy + ie)
. d*l - H M a d,d, I P
(erknS)) It :/ gul(— iy TLE= T+ s (P M)ysrys (K + m)dyudodigrcr] (49)
(27) (D + i€)(D, + i€) (D5 + i€)(Dy4 + i€)
. 4 T — U M)y? d,d, . u Vi
—(ellky) T :/ d 14 ol (k= 17) t[(k =1+ m)y 7./5(}0+ ?y vs(K +.m) wlsa a,,nzwlzJ/s]’ (50)
(27) (D + i€)(D, + i€) (D5 + i€)(Dy4 + i€)
with
Dlzlz, D3:(k—l)2—
DZZ—ZZ, D4:<(P—k+l>2—
Similarly, we use the residue theorem and pick up the residues of the diquark propagator and eikonal propagator,
1 1
—2mié(I7), —27i6((P — k + 1) — M%), 51
T Ve Sy iy v A (1)
where the second delta function provides two solutions,
1
S(P—k—=0*=M%) == (6(lp + A+ Ao) + 6(lp + A = A)). (52)

22

with 1y = \/ 22 + . — 21 - k. Here the diquark on-shell condition (40) has also been used. For the sake of completeness,
both solutions need to be considered.
After computing the traces and the integrals of [y and [, in Eqs. (47)—(50), we have

2.2 2
>L(s) k2 P — ljllq(s) k2 P — 1 L €cYs M(1 - 4/ d lT i
S bk P = ke P) = Gz g+ 2™ [ @,
{ (Mg + mPo) I — b (~2 + 2) . (Mko + mPy) -4 = M(=2 — Ao) } 53)
(=24 20) = Bll(r —kr)* + LIADP  [(=2=20)* = B][(Ir —kr)* + LY(AD)P S

2.2 2
@ g2 py = 1 ¢cYa M(1 - 3/ﬂi 54
Jir k. Po) (27)* 4p, k7 + LE(AZ)? (1=x) (27)% o 54

(=2 + 40)% = B][(Ir —kr)* + L2(A2)]
[(m — 3M)ko — 2(m — M)xPo| 5=+ (3M — m)(—z—m}

§ { [(m —3M)ko = 2(m — M)xPo) {55 + (3M — m) (=2 + )
2

(7= 20 =Bl ~kr P+ L2(ADP 55)

~ 1 1 e2q> d’l; 1
W (x, k3, P,) = — cJa____pm(1 - 3/ r
k) = e 2 T @,

)
[~ (m + M(2x = 3))ko + 2mPo) {55 + (m + M(2x = 3)) (=2 + o)
[(=A+4)* - lz][(lT —kT) + L3 (AZ))?
[—(m + M (2x = 3))ko + 2mPo] {45 + (m + M (2x = 3))(=A — o)
(=2 = 20)* = G[(Iy — kr)* + L3(A2)]? '
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The integration over I can be performed numerically. With
the above results, we can obtain the quasi-Sivers function
and the quasi-Boer-Mulders function of the « and d quarks
using the relation similar to Eq. (38),

fé=f. (57)

We can also provide the first transverse moment of these
quasifunctions,

0.00

x=0.1
—— xfx, k)
——————— P,=3 GeV
rrrrr -P,=5GeV|
fffff P,=8 GeV

0.8 1.0

x=0.3 ]
—— xfx, k)| ]
——————— P,=3 GeV
rrrrr -P,=5 GeV/
fffff P,=8 GeV| 1

0.8 1.0

x=0.7

—— xfHx k)
rrrrrrr P,=3 GeV
rrrrr -P,=5 GeV/
fffff P,=8 GeV,
-0.35 L L L L

0.0 0.2 0.4 0.6 0.8 1.0
ks

~ k2 .

PV = [ kel P (58)
7L(1) - oy K 71 2

hy ' (x,P,) = dkTZMzhl (x,k7,P,). (59)

Finally, we find that the T-odd TMDs reduce to the
standard TMDs in the limit P, — oo,

pan 2 L 2
17 (X kF, P, — 00) = fi7 (x,k7), (60)
B (x, k3, P = hi?(x, k3 61
1 (x kg, P, = 00) = by (x, k7). (61)
0.08 : : : .
x=0.1
—— xfx, 1)
0.06 N P=3Gev| ]
R N P,=5 GeV
[~
e s e P,=8 GeV|
-z
£ 0.04F E
o
=
e
0.02} ]
0.00
0.0 0.2 0.4 0.6 0.8 1.0
kr
0.6 : : : .
o5 x=0.3
T — xft i)
& 04F ]
e 0.3} ]
==
o
* 02f ]
01F ]
0.0
0.0 1.0
0.05 : : : .
x=0.7
0.04} itk
- P,=3 GeV
;Rz --—-P,=5 GeV|
e 003 N P=8GeV| 1
R .
z \
o
Fo02f ]
»
0.01 E
0.00 . P st
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. The quasi-Sivers function }’qu (x,k%; P.) (multiplied by x) of the up (left) and down (right) quarks as a function of k; in the
spectator model. The dotted line, dot-dashed line, and dashed line correspond to the results at P, = 3, 5, and 8 GeV, respectively.
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This extends the observation that the quasi-PDFs
should reduce to the standard PDFs defined in terms
of the light-cone correlation functions [5,59] at
P, - .

IV. NUMERICAL RESULT

In this section, we will numerically compute the T-odd
quasi-TMDs of u and d quarks to study the P, dependence
of these distributions and compare them with the standard
distributions. To do this we need to assign the values of the
parameters in Egs. (53)—(56). Here we adopt the choices in
the original works [43,58],

xh U, 13 P,)

xh U, 13 Py)

B, 13 P,)

0.0 0.2 0.4 0.6 0.8 1.0
kr

m=036GeV, ¢#=6525 @ =28716, (62)
Agq=05GeV, M,=06GeV, M,=08GeV.
(63)

The factors g, and g, are determined from the normaliza-
tion condition of the unpolarized distributions,

1 o .
”/ ‘“/ dicif}) (x. k) = 1,
0 0
| )
P A dx A di2f\Y (x,k3) = 1,

which consequently normalizes f{ to 2 and f‘f to 1.

(64)

xBhdx, k3 p,)

xBhdx, k3 p,)

0.00 . . —— .
-0.02 | ]
004} e ]
2 e
.
ﬂé-0.0G - x=0.7 g
xhidix, k)
P,=3 GeV
-0.08F - P,=5 GeV| ]
————— P,=8 GeV
-0.10 - - - -
0.0 0.2 0.4 0.6 0.8 1.0

kr

FIG.3. The xf"fT(l) u/ d(x, P,. k%) and xﬁfm u/ d(x, P_,k3)at P, = 3,5, and 8 GeV in the spectator model. The upper, central, and lower

rows show the results at x = 0.1, 0.3, 0.7, respectively.
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In order to replace the Abelian interaction of gluons with
the QCD color interaction, we make the following replace-
ment [47]:

o2

< 5 Cra,

4n (65)

where C. = 4/3 and we choose a, ~ 0.3 in the calculation.

In Fig. 2, we plot the quasi-Sivers function (timed with x)
Fiz(x,k%; P,) of the up (left panel) and down (right panel)
quarks as a function of k; = |ky|. The upper, central, and
lower panels show the results at x = 0.1, 0.3, and 0.7,
respectively. The dotted line, the dot-dashed line and the
dashed line correspond to the results at P, =3, 5, and
8 GeV, respectively. The solid line shows the result of the
standard Sivers function f1;(x,k%) for comparison. The
quasi-Boer-Mulders function (timed with x) &1 (x,k%; P.)
is plotted in Fig. 3 in a similar way. One can find that the
sizes of the quasi-TMDs decrease with increasing kr,
which is similar to the kp-shape of the standard TMDs.
The results also show that the quasi-Sivers function of the
up quark is negative, while that of the down quark is
positive. The quasi-Boer-Mulders functions of the up and
down quarks are both negative. In all cases, the sizes of the

T-odd quasi-TMDs are smaller than those of the standard
TMDs. However, as P, increases, the sizes of the quasi-
TMDs increase and converge to the standard TMDs.
Another observation is that the convergence depends on
x; that is, in the smaller x region, in general the quasi-TMDs
converge more quickly as P, increases.

In the upper panel of Fig. 4, we plot the x dependence of
the first transverse moment of the quasi-Sivers function
]’ILT(I) (x, P.) (timed with x) of the u (left panel) and d (right
panel) quarks defined in Eq. (58). The dotted line, the dot-

dashed line, and the dashed line correspond to P, = 3, 5,
and 8 GeV, respectively. The solid line denotes the first

transverse moment of the standard Sivers function f ILT“) (x).
Similarly, we plot the x dependence of the first transverse

moment of the quasi-Boer-Mulders function Ell(l)(x, P,)
(timed with x) of the u (left panel) and d (right panel)
quarks in the lower panel of Fig. 4. Again, here the solid
line denotes the first transverse moment of the standard

Boer-Mulders function. We note that our results of f ILT(] ) (x)
and hll(l)(x) are qualitatively consistent with the phenom-
enologically extractions in size and sign. We find that as

P, increases, in general, the sizes of flLT(l)(x, P.) and

Z

0.01 T T T T 0.04 T T T T
0.00 xfHDde)
P,=3 GeV
fffff -P,=5 GeV|
_ R N S P,=8 GeV/
N N0.02 E
?:-0.02 = 4 ?;
2 =
= = S
B : i —xfHo B
-0.04 - Rk ~-P,=3GeV | /
s - P,=5 GeV/|
————— P,=8 GeV/ 0.00
_0.06 1 1 1 1 _0.01 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
0.02 T T T T 0.02 T T T T
0.00 0.00 k
002} ] _
= 2002} ]
Z Z
2004 ] =
15-0 06 | | ] 5004 )
: - P,=3 GeV
- P,=5 GeV, 3 1
0.08F N\ s P,=8 GeV/| ] 0.06
0.10 1 1 1 1 0.08 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

FIG. 4. The first ky-moment of the quasi-Sivers function x]N"f‘Tq (x,P,) (upper) and that of the quasi-Boer-Mulders function
xiﬁmq (x, P,) (lower) as a function of x in the spectator model. The dotted, dash-dotted, and dashed lines denote the results at P, = 3, 5,

X

and 8 GeV, respectively. The solid lines depict the corresponding first kr-moment of the standard functions.
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ﬁf(l) (x, P.) increase and the shapes of them get close to the
corresponding standard distributions. There are also some
exceptions which can be seen in the small x region
of the quasi-Sivers function, particularly, for the d quark
the quasifunction can have a sign opposite to that of the
standard function in the small region. Also a node appears

at x~ 0.2 for fllT(I)d(x, P,) at the small P, region.

To provide a more comprehensive discussion on the
variation of the quasidistributions with increasing P, in
different x regions, in Fig. 5 we plot the ratios flle (x,P,)/
flle (x) (upper panel) and ﬁf(l)(x, Pz)/hf(l)(x) (lower
panel) as functions of P, at fixed x = 0.1, 0.3, 0.5, and 0.7,
respectively. From the figure one can see that the ratio
]‘#1) (x,P,)/ flLT(l) (x) is clearly flavor dependent. For the u
quark Sivers distribution the ratio is less than 1 except
x =0.1; the ratios in different x regions are positive
approaches to 1 around P, ~ 8 GeV. Meanwhile, for the
d quark Sivers function, the ratio is negative in the smaller P,
region and turns to be positive in the larger P, region. Also,
the ratio flLT(l) (x,P)/f ILT(I) (x) for the d quark converges to 1
slower than that for the u quark distribution. In the case of
the Boer-Mulders function, the ratios for the u quark and the

D) A )

iU p,) mf (D8 )

P

z

d quark are very similar; that is, they are positive and less
than 1 in the entire x region. In the region x < 0.5, the ratio
approaches 0.9-0.95 at P, = 8 GeV, while in the larger x
region (such as x = 0.7) the ratio approaches 0.8-0.85 at
P, = 8 GeV. That is, in the large x region the quasi-Boer-
Mulders function converges slower.

Compared with the results in Ref. [33], we can find
that there are some common features shared by the
T-odd quasi-TMDs and the T-even quasi-PDFs. First,
in both cases the quasidistributions reduce to the
standard distributions in the limit P, — oco. Second, the qua-
sidistributions can have an opposite sign to the standard
distributions in certain regions, such as fif(x,k>;P,),
3{(x, P.), and h¥(x, P,). However, there is also the feature
of the T-odd quasi-TMDs which is different from that of
T-even quasi-PDFs. As is evident from Ref. [33], for the
intermediate x region 0.1 < x < 0.4-0.5, the quasi-PDFs
F4(x), gl(x), and hY(x) approximate the corresponding
standard PDFs within 20%-30% when P, > 1.5-2 GeV.
While from Fig. 5 we find that the T-odd quasi-TMDs in the
spectator model are fair approximations to the standard
TMDs (within 20%-30%) in the intermediate x region
when P, > 2.5-3 GeV, which is larger than the case of the

HD9 P D 00

f

M p ) mtDd

1
hy

0
o 2 4 6 8 10

FIG. 5. Upper: the ratio of fme(x, P.)/ flLT(1> (x) as a function of P, for the u and d quarks in the spectator model. Lower: the ratio

ili(l) (x
1 )
results at x = 0.1, 0.3, 0.5, and 0.7, respectively.

P.)/ hf(l)(x) as a function of P, for the u and d quarks. The solid, dotted, dash-dotted, and dashed lines correspond to the
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T-even quasi-PDFs. Thus, to obtain the results for the T-odd
TMDs as accurate as that for the T-even PDFs in the lattice
calculation, one should explore a relatively larger P,
region. Finally, in our study we have chosen the diquark
anomalous chromomagnetic moment as k, = 0 to simplify
the calculation. We find that varying x, between 0 and 1
will not change our numerical result qualitatively.
Particularly, in the case x, = 1 there is still a fair agreement
between the quasi-TMDs and the standard TMDs in the
region P, > 2-3 GeV.

V. SUMMARY

In this paper, we computed the two twist-2 T-odd
quasidistributions, the quasi-Sivers function fi;(x,k%, P,)
and the quasi-Boer-Mulders function hi(x,k%,P.), in a
spectator model with both scalar diquark and axial-vector
diquark. The quasifunctions are obtained by replacing y*
and ¢'" with y, and 6,,, which make them defined in a four-
dimensional Euclidean space rather than in the Minkowski
space-time. We applied the dipolar form factor for the
proton-quark-diquark vertex to provide the expressions of
the quasifunctions and compare them with the standard
functions in the same model. To perform the integra-
tions over the /, and [/, components of the gluon four-
momentum, we adopted the cut-diagram approach. We
found that the two T-odd quasi-TMDs reduce to the
analytical results of the corresponding standard TMDs in
the limit P, — co, which is analogous to the results of the

T-even quasi-PDFs f;, §;, and k,. This observation is also
supported by the numerical results for fi7(x,k%; P,) and
hi(x,k%; P.) as functions of the transverse momentum k;
at different x and P,. Another observation is that the
convergence depends on x; that is, in general the quasi-
TMDs approach the standard ones more quickly in the
smaller x region than in the larger x region as P, increases.
We studied the flavor dependence of the quasi-TMDs and
found that the quasi-Sivers functions of the u and d quarks
are quite different, while the quasi-Boer-Mulders functions
are almost flavor blind. We also calculated the first

ky-moment of the T-odd quasi-TMDs fllT(l)(x, P.) and
ﬁf(l)(x, P.) as functions of x and P,. We found that

fllT(l)(x, P.) and fzf(l)(x,Pz) in the spectator model are
fair approximations to the standard ones (within 20%—
30%) in the region 0.1 < x < 0.5 when P, > 2.5-3 GeV.
This is in general larger than the value of the T-even quasi-
PDFs f9(x), /(x), and 7{(x). In summary, our study has
provided model implications and constraints on the quasi-
Sivers function and the quasi-Boer-Mulders function, and it
is possible to access the T-odd standard distributions from
lattice QCD calculations in the region P, > 2.5 GeV as fair
approximations.
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